Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A SYSTEM FOR MONITORING AUDITORY STARTLE RESPONSE
Document Type and Number:
WIPO Patent Application WO/2019/022689
Kind Code:
A2
Abstract:
The present invention relates to a diagnostic system (100) for measuring and analyzing startle response of a subject (10) wherein said diagnostic system (100) comprises a stimuli delivery module (110), whereby startle stimuli (120) and prepulse stimuli (121) are delivered to subject (10); said diagnostic system (100) comprises at least one sensor module (111), whereby the startle response of subject (10) are detected and recorded; said sensor module (111) comprises at least one electrode and one eye blink response measuring means; and said diagnostic system (100) comprises a diagnosis module (112) whereby the features of the startle response (130, 131, 132) and prepulse inhibition of subject (10) are extracted and analyzed.

Inventors:
CAKMAK YUSUF OZGUR (TR)
Application Number:
PCT/TR2018/050345
Publication Date:
January 31, 2019
Filing Date:
July 04, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CAKMAK YUSUF OZGUR (TR)
International Classes:
A61B5/296
Domestic Patent References:
WO2014179671A12014-11-06
WO2012129465A12012-09-27
WO2007136901A22007-11-29
Foreign References:
US20150289813A12015-10-15
Other References:
ZOLADZ; DIAMOND, NEUROSCI BIOBEHAV REV, vol. 37, 2013, pages 860 - 895
GRILLON; BAAS, CLIN NEUROPHYSIOL., vol. 114, 2003, pages 1557 - 1579
SHALEV ET AL., AM J PSYCHIATRY, vol. 157, 2000, pages 255 - 261
O'BEIRNE; PATUZZI, HEARING RES., vol. 138, 1999, pages 115 - 132
GRILLON ET AL., PSYCHIATRY RES., vol. 64, 1996, pages 169 - 178
ECHIVERRI-COHEN ET AL., J ANXIETY DISORD., vol. 37, 2016, pages 94 - 103
DICHTER ET AL., J AUTISM DEV DISORD., vol. 40, 2010, pages 858 - 869
MATSUO; HIROSHE, EUR J PLAST SURG., vol. 10, 1987, pages 82 - 83
FREEMAN; STEINMETZ, LEARN MEM., vol. 18, 2011, pages 666 - 677
HESS ET AL., PSYCHOPHYSIOLOGY, vol. 44, 2007, pages 431 - 435
BENNING ET AL., PSYCHOPHYSIOLOGY, vol. 41, 2004, pages 426 - 432
BRAFF ET AL., PSYCHOPHARMACOLOGY, vol. 156, 2001, pages 234 - 258
LEE ET AL., J NEUROSCI METHODS, vol. 193, 2010, pages 356 - 372
CHAU; BETKE: "Tech. Rep.", vol. 12, 2005, BOSTON UNIVERSITY COMPUTER SCIENCE
Attorney, Agent or Firm:
ATALAY, Baris (TR)
Download PDF:
Claims:
CLAIMS

1) A diagnostic system (100) for measuring and analyzing startle response of a subject (10) characterized in that;

said diagnostic system (100) comprises a stimuli delivery module

(110) , whereby startle stimuli (120) and prepulse stimuli (121) are delivered to subject (10);

said diagnostic system (100) comprises at least one sensor module

(111) , whereby the startle response (130, 131, 132) of subject (10) are detected and recorded;

said sensor module (111) comprises at least one electrode and one eyeblink response measuring means; and

said diagnostic system (100) comprises a diagnosis module (112) whereby the features of the startle response (130, 131, 132) and prepulse inhibition of subject (10) are extracted and analyzed.

2) A diagnostic system (100) as set forth in Claim 1, characterized in that said startle response of subject (10) detected by said sensor module (111) comprise eyeblink response (130), post-auricular muscle response (131) and intrinsic auricular muscle response (132).

3) A diagnostic system (100) as set forth in Claim 1, characterized in that stimuli delivery module (110) comprises a set of earphones whereby startle stimuli (120) is delivered to subject (10).

4) A diagnostic system (100) as set forth in Claim 1, characterized in that said startle stimuli (120) is a sudden, loud tone or noise. 5) A diagnostic system (100) as set forth in Claim 4, characterized in that said startle stimuli (120) is a sound burst of 95 decibels.

6) A diagnostic system (100) as set forth in Claim 1, characterized in that stimuli delivery module (110) comprises a display whereby prepulse stimuli (121) is delivered to subject (10).

7) A diagnostic system (100) as set forth in Claim 1, characterized in that said prepulse stimuli (120) are pleasant, unpleasant and neutral visuals.

8) A diagnostic system (100) as set forth in Claim 7, characterized in that said prepulse stimuli (120) are pleasant, unpleasant and neutral visuals selected from the International Affective Picture System (IAPS). 9) A diagnostic system (100) as set forth in Claim 1 or 2, characterized in that said sensor module (111) comprises at least one electrode configured to be placed over tragicus (13) and antitragicus muscles (14) of subject (10) whereby measurement of intrinsic auricular muscle response (132) of subject (10) is facilitated.

10) A diagnostic system (100) as set forth in Claim 1 or 2, characterized in that said sensor module (111) comprises at least one electrode configured to be placed over helicis major and helicis minor of subject (10) whereby measurement of intrinsic auricular muscle response (132) of subject (10) is facilitated.

11) A diagnostic system (100) as set forth in Claim 1 or 2, characterized in that said sensor module (111) comprises at least one electrode configured to be placed on the scalp behind the ear of subject (10) whereby measurement of post-auricular muscle response (131) of subject (10) is facilitated. 12) A diagnostic system (100) as set forth in Claim 11, characterized in that said sensor module (111) comprises one electrode configured to be placed on the back of the ear of subject (10) directly over post-auricular muscle (12) and one electrode configured to be placed directly adjacent on pinna (11) of subject (10).

13) A diagnostic system (100) as set forth in Claim 11, characterized in that said sensor module (111) comprises a grounding electrode.

14) A diagnostic system (100) as set forth in Claim 1, characterized in that said eyeblink response measuring means is a camera whereby measurement of eyeblink response (130) of subject (10) is facilitated.

15) A diagnostic system (100) as set forth in Claim 1, characterized in that said sensor module (11) and said diagnosis module (112) are in wired or wireless communication.

16) A diagnostic system (100) as set forth in Claim 15, characterized in that said diagnosis module (112) comprises a software application. 17) A diagnostic system (100) as set forth in Claim 16, characterized in that said diagnosis module (112) comprises a software application whereby feature extraction and analysis of startle response (130, 131, 132) data is performed. 18) A diagnostic system (100) as set forth in Claim 17, characterized in that said startle response (130, 131, 132) data comprises the amplitude and speed of response (130, 131, 132) and change in prepulse inhibition.

19) A diagnostic system (100) as set forth in Claim 17, characterized in that said diagnostic system (100) is in wired or wireless communication with a network interface whereby said feature extraction and analysis results are communicated to a clinician, care provider and/or subject (10).

20) A diagnostic system (100) as set forth in Claim 17, characterized in that said diagnostic system (100) is in wired or wireless communication with a network interface whereby said feature extraction and analysis results are outputted via a display device concurrently or after the fact.

21) A diagnostic system (100) as set forth in Claim 16, characterized in that said diagnosis module (112) comprises a software application whereby correlation of eyeblink response (130) and intrinsic auricular muscle response (132) data is effectuated in order to generate an index to determine the relationship between eyeblink response (130) and intrinsic auricular muscle response (132).

22) A diagnostic system (100) as set forth in any preceding Claim, characterized in that said diagnostic system (100) comprises a mobile electronic device, such as a smartphone, tablet or PC computer.

Description:
A SYSTEM FOR MONITORING AUDITORY STARTLE RESPONSE

Technical Field of the Present Invention

The present invention relates to a system whereby the auditory startle response of a subject is determined for diagnosis of PTSD.

Background of the Present Invention

Post-traumatic stress disorder (PTSD) can develop in individuals exposed to intense trauma that threatens physical injury or death. People who develop PTSD endure chronic psychological distress by repeatedly reliving their trauma through intrusive, flashback memories which are frequently precipitated by the presence of cues associated with the traumatic event. Additional debilitating symptoms, such as depression and substance abuse usually occur alongside the re-experiencing and avoidance symptoms of the disorder. Over the decades several physiological and behavioral abnormalities associated with PTSD have been documented, including heightened autonomic arousal, exaggerated startle, abnormally low baseline levels of Cortisol, smaller hippocampal volume and cognitive impairments based on impaired hippocampal and prefrontal cortical functioning (Zoladz and Diamond. Neurosci Biobehav Rev. 2013. 37:860-895). Currently PTSD is diagnosed by heart rate variability, questionnaires such as CAPS-5 and the PTSD checklist and neuroimaging. However, heart rate variability has limited effectiveness and is still controversial while questionnaires are highly subjective and therefore can be unreliable. Neuroimaging methods most widely used to diagnose PTSD are functional magnetic resonance imaging (FMRI) and magnetoencephalography (MEG). Neuroimaging has high accuracy but is very expensive to operate and has limited availability. Therefore, there exists a need for alternative biological diagnostic methods that are practical, accurate and inexpensive.

The presence of a physiological alteration accompanying a mental disorder, such as PTSD, can produce data that are more objective and more readily quantifiable than self-report data. For this reason, other biological markers, such as exaggerated startle response are being investigated as potential tools to diagnose PTSD. The startle response is a response to abrupt and intense stimulation, consisting of a rapid sequential muscle contraction with the likely purpose of facilitating the flight reaction and/or to protect the body from sudden attack. The amplitude of startle response is variable in a way that reflects variation in the internal state of the person, such as fear and anxiety, and so the startle reflex can be used as a probe of this internal state (Grillon and Baas. Clin Neurophysiol. 2003. 114: 1557-1579).

As mentioned above, exaggerated startle is linked to PTSD and is also a DSM- 5 diagnostic criterion for the disorder. The abnormal physiological startle response seen in trauma survivors may develop, along with PTSD, after traumatic exposure as a consequence of a progressive sensitization of the central nervous system (CNS). The exaggerated startle response is generally measured by recording the eyeblink reflex, however, cardiac acceleration and increased electrodermal conductivity of longer latency and duration can also be used. The eyeblink consists of a rapid contraction of the orbicularis oculi muscle which is innervated by the facial nerve. The eyeblink startle can be elicited by brief and intense auditory, visual or tactile stimuli with a fast rise time, acoustic startle being the most commonly used. Acoustic startle is evoked by short (50 ms) noises, usually broadband or white noise with a high intensity (90-110 dB). Startle stimuli can be delivered at any time to probe ongoing affective and mental processes. Electrical activity associated with contraction of the orbicularis oculi muscle can be detected with an EMG using two electrodes below one eye (Grillon and Baas. Clin Neurophysiol. 2003. 114: 1557-1579; Shalev et al. Am J Psychiatry. 2000. 157:255-261).

Methods and devices utilizing exaggerated startle response as a tool to assist in diagnosing PTSD are present in the art. An example of such a method may be referred to as WO 2014/179671 (Al), which discloses a system and method for classification and diagnosis of patients suffering from anxiety disorders, such as PTSD, by measuring objective physiological measures, such as inter-heartbeat interval and skin conductance. The system comprises a stimulus delivery module that provides audio and visual, traumatic or non ¬ traumatic stimulus to the subject. The system then measures various resulting physiological signals and extracts features from the physiological measures and a diagnosis is made by classifying the extracted features. Another example may be referred to as US 2015/289813 (Al), which discloses a system and method for the biological diagnosis of PTSD comprising an electronic device equipped with a built-in or attachable camera, built-in or attachable flash or controllable light source, and a software application. The software application includes a method that records and monitors the diameter of an individual's pupil prior to and after the application of light, using the camera and flash in communication with the electronic device. In another embodiment, the method includes the use of emotionally-charged visual stimuli to increase the accuracy of the diagnosis. In still another embodiment, a heart rate monitor is used to monitor the individual's heart rate variability to further increase the accuracy of the diagnosis. In still another embodiment, the method also measures the auditory startle response by measuring the orbicularis oculi response of the individual by electromyography. The method analyzes the data collected and determines the likelihood of individual suffering from PTSD.

An alternative measure of exaggerated startle response is the post-auricular muscle response (PAMR). PAMR is a large sound-evoked vestigial muscle response that acts to pull the ear backward, which can be evoked by clicks or tone-bursts and can be measured on the skin surface over the muscle behind the ear by electrodes. Currently, PAMR is mostly used as a clinical tool to test hearing due to the speed and ease with which the response can be obtained (O'Beirne and Patuzzi. Hearing Res. 1999. 138: 115-132).

An example of hearing-related use of PAMR may be referred to as WO 2012/129465 (Al) which discloses an arrangement for custom fitting a hearing prosthesis system, such as cochlear implant systems, to a patient to optimize its operation. The PAMR measurement determines a PAMR of the patient to an auditory stimulus signal. For example, the PAMR may include a PAMR amplitude growth function or a PAMR threshold stimulus level at which a PAMR is measured in the patient. Then a patient fitting module sets an operating characteristic of the hearing prosthesis system based on the PAMR response.

Another example may be referred to as WO 2007/136901 (A2), which discloses a device and method for objectively measuring tinnitus in human and animal subjects. The startle reflex is induced by exposing a subject to an alteration in a sound pattern otherwise qualitatively similar to the subject's tinnitus. The subject's acoustic startle response is obtained and used to determine whether the subject detected the alteration of the sound pattern. The device comprises a controller for selecting a primary sound pattern and selecting a reflex stimulus sound pattern, a generator for generating signals associated with the sound patterns selected by the controller, a transducer for converting the generated signals to the selected sound patterns and exposing the selected sound patterns to the subject and a response sensor for detecting a response by the subject to the selected reflex stimulus sound pattern.

However, recent studies have also shown that patients with PTSD exhibited normal acoustic startle amplitude, but showed a significant reduction in prepulse inhibition (PPI) relative to civilians. PPI occurs when a relatively weak sensory event (prepulse) is presented just before a strong startle inducing stimulus and reduces the magnitude of the startle response (Grillon et al. Psychiatry Res. 1996. 64: 169-178). For example eyeblink response is reduced when the subject is shown a pleasant visual, such as a photo of a smiling baby, just before the acoustic startle stimuli is delivered. PPI is thought to occur through a sensorimotor gating system that functions as an attentional filter to protect limited capacity systems from being overloaded with incoming sensory information. Increased PPI is thought to be associated with more effective information processing, whereas reduced PPI is thought to reflect reduced efficiency in inhibiting information. Thus, impaired PPI may reflect a reduced ability to inhibit sensory information and potentially a failure of sensorimotor gating. Studies show reduced PPI in individuals with PTSD. Lower PPI is also associated with higher overall PTSD severity, reexperiencing and hyperarousal symptoms (Echiverri-Cohen et al. J Anxiety Disord. 2016. 37:94-103).

The potentiation of the eyeblink reflex represents activation of the defensive emotional system which promotes withdrawal from frightening or threatening stimuli and is reduced by pleasant stimuli and enhanced by unpleasant stimuli. In contrast, potentiation of PAMR represents activation of the appetitive emotional system, which drives people to approach pleasant or life- sustaining stimuli, which is enhanced by pleasant stimuli and reduced by unpleasant stimuli (Dichter et al. J Autism Dev Disord. 2010. 40:858-869). Therefore, utilizing these two reflexes that show complementary responses to PPI is a useful tool for diagnosing PTSD.

The inventors of the present invention have also discovered an additional alternative measure of exaggerated startle response, which is the intrinsic auricular muscle response (IAMR). Intrinsic auricular muscles comprise helicis major, helicis minor, tragicus and antitragicus muscles. It is known that the tragicus and antitragicus muscles cooperate to constrict the external auditory meatus as the orbicularis oculi muscle constricts the palpebral fissure (Matsuo and Hiroshe. Eur J Plast Surg. 1987. 10:82-83). This is thought to be due to the eyeblink pathway wherein eyelid movement is generated by the facial motor nucleus (Freeman and Steinmetz. Learn Mem. 2011. 18:666-677). Facial nerve additionally innervates the muscles of the auricle. As a result, signals for movement of the orbicularis oculi transmitted by the facial nerve also reach the tragicus and antitragicus muscles, causing the constriction of the external auditory meatus. Therefore it is possible to determine the startle response by measuring the intrinsic auricular muscle response (IAMR) of the subject by electrodes on the skin surface over the muscles. It is also possible to use helicis major, helicis minor muscles for this purpose. The present invention aims to provide a system whereby the acoustic startle reflex, namely eyeblink response, IAMR and PAMR, of a subject and change in PPI of a subject are measured in order to present an effective and inexpensive method for diagnosing PTSD. The system comprises earphones for delivering auditory stimuli to the subject and a display device, such as a computer screen or a mobile phone for supplying pleasant and/or unpleasant prepulse stimuli to the subject. The earphones additionally contain electrodes for measurement of PAMR and IAMR respectively. The system also contains eyeblink response measuring means for determining the eyeblink response of the subject and measuring the amplitude thereof.

The present invention provides a diagnostic system as provided by the characterizing features defined in Claim 1. Objects of the Present Invention

The object of the invention is to provide a system whereby the acoustic startle reflex of a subject is measured in order to present an effective and inexpensive method for diagnosing PTSD.

Another object of the invention is to provide a system whereby startle eyeblink response, PAMR and IAMR and change in PPI of a subject are simultaneously measured and analyzed in order to present a corroborative, effective and inexpensive method for diagnosing PTSD.

Brief Description of the Technical Drawings

Accompanying drawings are given solely for the purpose of exemplifying a diagnostic system, whose advantages over prior art were outlined above and will be explained in brief hereinafter.

The drawings are not meant to delimit the scope of protection as identified in the Claims, nor should they be referred to alone in an effort to interpret the scope identified in said Claims without recourse to the technical disclosure in the description of the present invention.

Figure 1 demonstrates anatomical structures of the human head relevant to the present invention.

Figure 2 demonstrates a block diagram of a diagnostic system according to the present invention. Figure 3 demonstrates a schematic view of one embodiment of a diagnostic system according to the present invention.

Detailed Description of the Present Invention The following numerals are referred to in the detailed description of the present invention:

10 Subject

11 Pinna

12 Post-auricular muscle

13 Tragicus muscle

14 Antitragicus muscle

15 Orbicularis oculi muscle 100 Diagnostic system

110 Stimuli delivery module

111 Sensor module

112 Diagnosis module

120 Startle stimuli

121 Prepulse stimuli

130 Eyeblink response

131 Post-auricular muscle response

132 Intrinsic auricular muscle response

200 Ear-wearable body

201 Earphones

202 Measurement portion

203 Smartphone

204 Screen

205 Camera

Recent studies have demonstrated that the eyeblink response to sudden acoustic startle stimuli is modulated by the emotional state of the individual. When an individual is exposed to an unpleasant stimulus, the relevant subcortical, aversive system circuitry is activated which leads to the augmentation of defensive reflexes such as the eyeblink response reflex. Because appetitive and defensive states are opponent states, the opposite effect can be observed when the individual is exposed to pleasant stimuli. On the other hand, post-auricular muscle reflex (PAMR) displays an opposite pattern. Namely, individuals show an augmented PAMR to an acoustic startle probe when exposed to pleasant stimuli and a reduced one when exposed to unpleasant stimuli (Hess et al. Psychophysiology. 2007. 44:431-435). As PAMR is also evoked by an acoustic probe stimulus, it may be assessed concurrently with the startle eyeblink response.

The magnitude of eyeblink response and PAMR are modified if the startle- eliciting noise is preceded by the occurrence of a transient stimulus, an effect known as prepulse inhibition (PPI). PPI is thought to reflect a low-level sensory gating mechanism by which excess or trivial stimuli are screened or "gated out" of awareness, so that an individual can focus attention on the most salient aspects of the stimulus-laden environment. PPI is a ubiquitous phenomenon and can occur when the prepulse and startling stimuli are in the same or different sensory modalities (Benning et al. Psychophysiology 2004. 41 :426-432; Braff et al. Psychopharmacology. 2001. 156:234-258).

Patients with PTSD exhibit normal acoustic startle amplitude, but show a reduction in PPI relative to the non-affected subjects. PPI deficits are associated with perceptual abnormalities and deficiencies in gating irrelevant thoughts. Patients with PTSD are also characterized by perceptual deficits and by an inability to gate intrusive thoughts. Some of the symptoms of PTSD such as the intrusion of unwanted thoughts (e.g. flashback) could be hypothesized to result from a gating deficit. Alternatively, reduced PPI in patients with PTSD can reflect an attentional deficit. PPI is increased with increased attention to the prepulse and reduced PPI in patients with PTSD suggests less processing of the prepulse, perhaps because of distraction by internal stimuli (e.g. thoughts) (Grillon et al. Psychiatry Res. 1996. 64: 169- 178).

The present invention discloses a diagnostic system (100) comprising a stimuli delivery module (110), connected to earphones and at least one display, whereby startle stimuli (120) and prepulse stimuli (121) are delivered to subject (10); at least one sensor module (111), connected to at least one electrode and one eyeblink response measuring means, whereby the startle response, i.e. the eyeblink response (130), PAMR (131) and IAMR (132), and PPI of subject (10) are detected and recorded; and a diagnosis module (112) whereby the features of the startle response and PPI of subject (10) are extracted and classified by a software application (not shown) as will be delineated hereinafter (Figure 2).

As mentioned above, PAMR (131) is a large and simply measured auditory response, (up to 8 kHz or higher). The response is optimally recorded as the potential difference between the skin overlying the post-auricular muscle (12) and the rear of the pinna (11) of the subject (10), with a bandwidth from 10 to 300 Hz. This electrode positioning also reduces background electrical interference and muscle activity and eliminates blink artefacts (O'Beirne and Patuzzi. Hearing Res. 1999. 138: 115-132).

As also mentioned above, IAMR (132) can be used as an alternative measure of exaggerated startle response. The response can be recorded by placing electrodes on the tragicus (13) and antitragicus muscles (14) of the subject (10). Simultaneous measurement of eyeblink response (130) and IAMR (132) allows for the eyeblink data and IAM data to be correlated in order to generate an index to determine the relationship between eyeblink response (130) and IAMR (132). The index compiled from the correlation of eyeblink and IAM data will also have the advantage of providing noise reduction in startle response measurements. In an alternative embodiment, IAMR (132) can be recorded by placing electrodes on the helicis major, helicis minor of the subject (10). The diagnostic system (100) measures the auditory startle response (130, 131, 132) of a subject (10). Auditory startle response (130, 131, 132) is measured by stimuli delivery module (110) by delivering startle stimuli (120) to subject (10). Startle stimuli (120) are delivered by playing a sudden, loud tone or noise, such as a sound burst of 95 decibels, for subject (10) preferably using earphones. The diagnostic system (100) additionally measures the PPI of a subject (10) by delivering prepulse stimuli (121) to a subject (10) shortly before delivering startle stimuli (120). Prepulse stimuli (121) are delivered by showing pleasant, unpleasant and neutral visuals to subject (10) via a display. Display includes monitors, TV screens, flat panel displays, video walls, or any other type of display device to display the prepulse stimuli (121) to subject (10). In one embodiment, visuals are selected from the International Affective Picture System (IAPS) to represent the different valence (pleasant, unpleasant and neutral) categories. Preferably, startle stimuli (120) is delivered to the subject (10) 3-5 s after the delivery of prepulse stimuli (121).

Diagnostic system (100) also includes a sensor module (111) comprising plurality of sensors (not shown). The sensors are configured to monitor and record a plurality of different physiological responses to subject's (10) exposure to stimuli output (120, 121), such as eyeblink response (130), PAMR (131) and IAMR (132). The physiological response data are collected during the subject's (10) exposure to the stimuli. Sensor module (111) detects the subject's (10) response to startle stimuli (120) by monitoring the subject's (10) eyelid movement and/or movement of muscles associated with eyelid movement (eyeblink response (130)). In one embodiment, sensor module (111) detects eyeblink response (130) by recording the eyeblink response (130) of the subject (10) by a camera and measuring its speed and amplitude through displacement analysis. This can be achieved by any method present in the art, such as the blink detection methods developed by Lee et al. (J Neurosci Methods. 2010. 193:356-372), Chau and Betke (Tech. Rep. 2005-12, Boston University Computer Science) or other methods known to the skilled person.

Sensor module (111) also comprises at least one electrode designed to be placed on the back of the ear corresponding to post-auricular muscle (12) to measure the PAMR (131) of subject (10) simultaneously while measuring the eyeblink response (130), thereby increasing accuracy. Preferably, sensor module (111) comprises two electrodes to be placed one on the back of the ear of subject (10) directly over post-auricular muscle (12) and one directly adjacent on pinna (11) of subject (10) and a grounding electrode to be placed elsewhere on subject's (10) head. The PAMR (131) may be determined on one side, either ipsilateral or contralateral, of the subject (10), or on both sides of the subject (10).

Additionally, sensor module (111) comprises a sensor such as an EMG sensor detects the electric potential generated by the tragicus muscle (13) and antitragicus muscle (14) in order to measure the IAMR (132) of the subject. The sensor may comprise surface electrodes (surface EMG) or needle-shaped electrodes (intramuscular EMG). In one embodiment of the invention, needle- shaped electrodes are pricked on the auricular skin and reaches said tragicus muscle (13) and antitragicus muscle (14).

The eyeblink response (130), PAMR (131), IAMR (132) and PPI data are collected by sensor module (111) and transmitted to diagnosis module (112). Diagnosis module (112) can be in wired or wireless communication with sensor module (111). Diagnosis module (112) comprises a software application for analyzing data which can include the amplitude and speed of response (130, 131, 132) and change in PPI to determine whether the individual is suffering from PTSD.

Diagnosis module (112) may also determine a threshold value depending on at least one of the age, ethnic background, sex and baseline response of subject (10). In some embodiments, diagnosis module (112) combines and applies weights to the processed extracted features and compares the combined value to the threshold. The weighted features can be combined by any arithmetic process. In such embodiments, diagnosis module (110) identifies subject (10) as having PTSD if the combined value is above the threshold, and not having PTSD if the combined value is below the threshold.

In some embodiments, diagnostic system (100) may be coupled to a network interface configured for wired or wireless data communications, and the results may be transmitted to a remote computing system over a computer network and displayed to a clinician, care provider and/or subject (10) by outputting the results via a display device concurrently or after the fact.

In some embodiments, diagnostic system (100) can comprise a mobile electronic device, such as a smartphone, tablet, PC computer or any other like device known in the art.

Diagnostic system (100) allows startle response (130, 131, 132) and PPI to be monitored over time (long-term monitoring) and also emotional state of the subject (10) at that moment to be determined. Figure 3 illustrates an embodiment of diagnostic system (100). Diagnostic system (100) comprises an ear-wearable body (200) equipped with earphones (201) and a measurement portion (202) and a smartphone (203) equipped with a screen (204) and a built-in camera (205) a mobile application (not shown) for the analysis of data.

Earphones (201) are used to deliver startle stimuli (120) to subject (10) and screen (204) is used to deliver prepulse stimuli (121) to subject (10). In alternative embodiments, display may be the screen (204) of a smartphone or other mobile device, tablet, computer.

Measurement portion (202) comprises electrodes designed to be placed on the skin of the back of the ear of subject (10) corresponding to the post- auricular muscle (12) whereby the detection of the PAMR (131) of the subject (10) is realized as described above. Measurement portion (202) additionally comprises electrodes designed to be placed on the skin of the entrance of the ear canal of subject (10) corresponding to the tragicus muscle (13) and antitragicus muscle (14) the detection of the IAMR (132) of the subject (10) is realized.

Camera (205) is used to record the eyeblink of subject (10) to determine the eyeblink response (130) to startle stimuli (120). In one aspect of the present invention, a diagnostic system (100) for measuring and analyzing startle response of a subject (10) is proposed.

In a further aspect of the present invention, said diagnostic system (100) comprises a stimuli delivery module (110), whereby startle stimuli (120) and prepulse stimuli (121) are delivered to subject (10).

In a further aspect of the present invention, said diagnostic system (100) comprises at least one sensor module (111), whereby the startle response (130, 131, 132) of subject (10) are detected and recorded.

In a further aspect of the present invention, said sensor module (111) comprises at least one electrode and one eyeblink response measuring means.

In a further aspect of the present invention, said diagnostic system (100) comprises a diagnosis module (112) whereby the features of the startle response (130, 131, 132) and prepulse inhibition of subject (10) are extracted and analyzed.

In a further aspect of the present invention, said startle response of subject (10) detected by said sensor module (111) comprise eyeblink response (130), post-auricular muscle response (131) and intrinsic auricular muscle response (132).

In a further aspect of the present invention, stimuli delivery module (110) comprises a set of earphones whereby startle stimuli (120) is delivered to subject (10).

In a further aspect of the present invention, said startle stimuli (120) is a sudden, loud tone or noise. In a further aspect of the present invention, said startle stimuli (120) is a sound burst of 95 decibels.

In a further aspect of the present invention, stimuli delivery module (110) comprises a display whereby prepulse stimuli (121) is delivered to subject (10).

In a further aspect of the present invention, said prepulse stimuli (120) are pleasant, unpleasant and neutral visuals.

In a further aspect of the present invention, said prepulse stimuli (120) are pleasant, unpleasant and neutral visuals selected from the International Affective Picture System (IAPS). In a further aspect of the present invention, said sensor module (111) comprises at least one electrode configured to be placed over tragicus (13) and antitragicus muscles (14) of subject (10) whereby measurement of intrinsic auricular muscle response (132) of subject (10) is facilitated. In a further aspect of the present invention, said sensor module (111) comprises at least one electrode configured to be placed over helicis major and helicis minor of subject (10) whereby measurement of intrinsic auricular muscle response (132) of subject (10) is facilitated. In a further aspect of the present invention, said sensor module (111) comprises at least one electrode configured to be placed on the scalp behind the ear of subject (10) whereby measurement of post-auricular muscle response (131) of subject (10) is facilitated. In a further aspect of the present invention, said sensor module (111) comprises one electrode configured to be placed on the back of the ear of subject (10) directly over post-auricular muscle (12) and one electrode configured to be placed directly adjacent on pinna (11) of subject (10).

In a further aspect of the present invention, said sensor module (111) comprises a grounding electrode. In a further aspect of the present invention, said eyeblink response measuring means is a camera whereby measurement of eyeblink response (130) of subject (10) is facilitated.

In a further aspect of the present invention, said sensor module (11) and said diagnosis module (112) are in wired or wireless communication.

In a further aspect of the present invention, said diagnosis module (112) comprises a software application. In a further aspect of the present invention, said diagnosis module (112) comprises a software application whereby feature extraction and analysis of startle response (130, 131, 132) data is performed.

In a further aspect of the present invention, said startle response (130, 131, 132) data comprises the amplitude and speed of response (130, 131, 132) and change in prepulse inhibition.

In a further aspect of the present invention, said diagnostic system (100) is in wired or wireless communication with a network interface whereby said feature extraction and analysis results are communicated to a clinician, care provider and/or subject (10). In a further aspect of the present invention, said diagnostic system (100) is in wired or wireless communication with a network interface whereby said feature extraction and analysis results are outputted via a display device concurrently or after the fact. In a further aspect of the present invention, said diagnosis module (112) comprises a software application whereby correlation of eyeblink response (130) and intrinsic auricular muscle response (132) data is effectuated in order to generate an index to determine the relationship between eyeblink response (130) and intrinsic auricular muscle response (132).

In a further aspect of the present invention, said diagnostic system (100) comprises a mobile electronic device, such as a smartphone, tablet or PC computer.