Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEMS AND METHODS FOR PROVIDING DETECTION VIA TRANSFER OF OBJECTS
Document Type and Number:
WIPO Patent Application WO/2023/064389
Kind Code:
A1
Abstract:
A dynamic movement analytics system is disclosed that includes a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers. The perception transfer system includes at least one perception system for providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers.

Inventors:
ALLEN THOMAS (US)
Application Number:
PCT/US2022/046445
Publication Date:
April 20, 2023
Filing Date:
October 12, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BERKSHIRE GREY OPERATING COMPANY INC (US)
International Classes:
B25J9/16; B25J19/02; B65G1/137; B65G65/02; G06Q10/08; B07C5/36
Foreign References:
US9604358B12017-03-28
US20150032252A12015-01-29
Attorney, Agent or Firm:
HILTON, William E. et al. (US)
Download PDF:
Claims:
23

CLAIMS

1. A dynamic movement analytics system comprising a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers, said perception transfer system including at least one perception system for providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers.

2. The dynamic movement analytics system as claimed in claim 1, wherein at least one perception system of the perception transfer system includes at least one optical perception unit and at least one weight detection sensor that together provide perception information regarding any of weight data, 3D information from 3D scanners, barcode information, RFID information from RFID scanners, label information, and other identifying including any of color, color combinations, and non-standard shapes.

3. The dynamic movement analytics system as claimed in any of claims 1 - 2, wherein the programmable motion device and the perception transfer system are mounted on a common base.

4. The dynamic movement analytics system as claimed in claim 3, wherein the perception transfer system provides movement toward the any of the plurality of destination containers in an angular direction with respect to the common base.

5. The dynamic movement analytics system as claimed in claim 4, wherein the perception transfer system further provides movement toward the any of the plurality of destination containers in an additional linear direction with respect to the common base.

6. The dynamic movement analytics system as claimed in claim 3, wherein the perception transfer system provides movement toward the any of the plurality of destination containers in at least two mutually orthogonal linear directions with respect to the common base.

7. The dynamic movement analytics system as claimed in any of claims 1 - 6, wherein the perception transfer system further includes an actuation system for transferring the object from the perception transfer system to any of the plurality of destination containers.

8. The dynamic movement analytics system as claimed in claim 7, wherein the actuation system includes at least one actuatable panel on a floor of the perception transfer system. 9. The dynamic movement analytics system as claimed in claim 8, wherein each at least one actuatable panel on the floor of the perception transfer system includes a weight detection sensor.

10. The dynamic movement analytics system as claimed in any of claims 1 - 9, wherein the perception transfer system includes a perception conveyor, and wherein the perception conveyor includes a weight detecting sensor.

11. The dynamic movement analytics system as claimed in claim 10, wherein the perception transfer system includes at least one buffer conveyor and a transfer conveyor, the buffer conveyor for selectively providing objects to the transfer conveyor, and the transfer conveyor for providing objects to an output conveyance system of the output area.

12. The dynamic movement analytics system as claimed in claim 11, wherein the output conveyance system includes a tilt-tray conveyor, and wherein the transfer conveyor provides objects onto the tilt-tray conveyor at a speed in a direction of the tilt-tray conveyor that generally matches the speed of the tilt-tray conveyor.

13. A dynamic movement analytics system comprising a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers, said perception transfer system including a perception system for providing perception data regarding the object as it is moved toward the any of the plurality of destination containers, said perception system including at least one optical perception unit and at least one weight detection sensor.

14. The dynamic movement analytics system as claimed in claim 13, wherein the at least one optical perception unit and the at least one weight detection sensor together provide perception information regarding any of weight data, 3D information from 3D scanners, barcode information, RFID information from RFID scanners, label information, and other identifying including any of color, color combinations, and non-standard shapes.

15. The dynamic movement analytics system as claimed in any of claims 13 - 14, wherein the programmable motion device and the perception transfer system are mounted on a common base. 16. The dynamic movement analytics system as claimed in claim 15, wherein the perception transfer system provides movement toward the any of the plurality of destination containers in an angular direction with respect to the common base.

17. The dynamic movement analytics system as claimed in claim 15, wherein the perception transfer system provides movement toward the any of the plurality of destination containers in at least two mutually orthogonal linear directions with respect to the common base.

18. The dynamic movement analytics system as claimed in any of claims 13 - 17, wherein the perception transfer system further includes an actuation system for transferring the object from the perception transfer system to any of the plurality of destination containers.

19. The dynamic movement analytics system as claimed in claim 18, wherein the actuation system includes at least one actuatable panel on a floor of the perception transfer system.

20. The dynamic movement analytics system as claimed in claim 19, wherein each at least one actuatable panel on the floor of the perception transfer system includes a weight detection sensor.

21. The dynamic movement analytics system as claimed in any of claims 13 - 20, wherein the perception transfer system includes a perception conveyor, and wherein the perception conveyor includes a weight detecting sensor.

22. The dynamic movement analytics system as claimed in claim 21, wherein the perception transfer system includes at least one buffer conveyor and a transfer conveyor, the buffer conveyor for selectively providing objects to the transfer conveyor, and the transfer conveyor for providing objects to an output conveyance system of the output area.

23. The dynamic movement analytics system as claimed in claim 22, wherein the output conveyance system includes a tilt-tray conveyor, and wherein the transfer conveyor provides objects onto the tilt-tray conveyor at a speed in a direction of the tilt-tray conveyor that generally matches the speed of the tilt-tray conveyor.

24. A dynamic movement analytics system comprising a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers, said 26 perception transfer system including a perception system for providing perception data regarding the object as it is moved toward the any of the plurality of destination containers, and an actuation system for transferring the object received from the perception transfer system to any of the plurality of destination containers.

25. The dynamic movement analytics system as claimed in claim 24, wherein the perception transfer system further includes at least one optical perception unit and at least one weight detection sensor that together provide perception information regarding any of weight data, 3D information from 3D scanners, barcode information, RFID information from RFID scanners, label information, and other identifying including any of color, color combinations, and non-standard shapes.

26. The dynamic movement analytics system as claimed in any of claims 24 - 25, wherein the programmable motion device and the perception transfer system are mounted on a common base.

27. The dynamic movement analytics system as claimed in claim 26, wherein the perception transfer system provides movement toward the any of the plurality of destination containers in an angular direction with respect to the common base.

28. The dynamic movement analytics system as claimed in claim 27, wherein the perception transfer system further provides movement toward the any of the plurality of destination containers in an additional linear direction with respect to the common base.

29. The dynamic movement analytics system as claimed in claim 26, wherein the perception transfer system provides movement toward the any of the plurality of destination containers in at least two mutually orthogonal linear directions with respect to the common base.

30. The dynamic movement analytics system as claimed in any of claims 24 - 29, wherein the actuation system includes at least one actuatable panel on a floor of the perception transfer system.

31. The dynamic movement analytics system as claimed in claim 30, wherein each at least one actuatable panel on the floor of the perception transfer system includes a weight detection sensor. 27

32. The dynamic movement analytics system as claimed in any of claims 24 - 31, wherein the perception transfer system includes a perception conveyor, and wherein the perception conveyor includes a weight detecting sensor.

33. The dynamic movement analytics system as claimed in claim 32, wherein the perception transfer system includes at least one buffer conveyor and a transfer conveyor, the buffer conveyor for selectively providing objects to the transfer conveyor, and the transfer conveyor for providing objects to an output conveyance system of the output area.

34. The dynamic movement analytics system as claimed in claim 33, wherein the output conveyance system includes a tilt-tray conveyor, and wherein the transfer conveyor provides objects onto the tilt-tray conveyor at a speed in a direction of the tilt-tray conveyor that generally matches the speed of the tilt-tray conveyor.

35. A method of processing objects comprising: moving an object from an input area using a programmable motion device including an end-effector; receiving the object from the programmable motion device in a perception transfer system moving the object toward any of a plurality of destination containers; and providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers.

36. The method as claimed in claim 35, wherein the providing perception data includes providing perception information regarding any of weight data, 3D information from 3D scanners, barcode information, RFID information from RFID scanners, label information, and other identifying including any of color, color combinations, and non-standard shapes.

Description:
SYSTEMS AND METHODS FOR PROVIDING

DETECTION VIA TRANSFER OF OBJECTS

PRIORITY

[0001] The present application claims priority to U.S. Provisional Patent Application No. 63/256,392 filed October 15, 2021, the disclosure of which is hereby incorporated by reference in its entirety.

BACKGROUND

[0002] The invention generally relates to object processing systems, and relates in particular to object processing systems such as distribution center systems and sortation systems that are used for processing a variety of objects.

[0003] Current object processing systems generally involve the processing of a large number of objects, where the objects are received in either organized or disorganized batches, and must be routed to desired destinations in accordance with a manifest or specific addresses on the objects (e.g., in a mailing system). Current distribution center sorting systems generally assume an inflexible sequence of operations whereby a disorganized stream of input objects is first singulated into a single stream of isolated objects presented one at a time to a scanner that identifies the object. An induction element transports the objects to the desired destination or further processing station, which may include a bin, a tote, a box, a chute, a bag or a conveyor etc.

[0004] Current state-of-the-art sortation systems rely on human labor to some extent. Most solutions rely on a worker that is performing sortation, by scanning an object from an induction area (chute, table, etc.) and placing the object in a staging location, conveyor, or collection bin. All objects may be presumed to be accurately labelled, and the object processing system is presumed to have accurate information about each object. New objects may be separated and inducted individually by human personnel as exceptions, presenting challenges to automated processing systems and processes.

[0005] Adding to these challenges are the conditions that some objects may have information about the object entered into the manifest or a shipping label incorrectly. For example, if a manifest in a distribution center includes a size or weight for an object that is not correct (e.g., because it was entered manually incorrectly), or if a shipping sender enters an incorrect size or weight on a shipping label, the processing system may reject the object as being unknown if inconsistent data is encountered in connection with the object.

[0006] There remains a need for a more efficient and more cost-effective object processing systems that process objects of a variety of sizes and weights into appropriate destination locations such as collection bins, totes or boxes, yet is efficient in handling objects of widely varying sizes and weights.

SUMMARY

[0007] In accordance with an aspect the invention provides a dynamic movement analytics system is disclosed that includes a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers. The perception transfer system includes at least one perception system for providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers.

[0008] In accordance with another aspect the invention provides a dynamic movement analytics system that includes a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers. The perception transfer system includes a perception system for providing perception data regarding the object as it is moved toward the any of the plurality of destination containers, and the perception system includes at least one optical perception unit and at least one weight detection sensor.

[0009] In accordance with a further aspect the invention provides a dynamic movement analytics system that includes a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers. The perception transfer system includes a perception system for providing perception data regarding the object as it is moved toward the any of the plurality of destination containers, and an actuation system for transferring the object received from the perception transfer system to any of the plurality of destination containers.

[0010] In accordance with a further aspect the invention includes a method of processing objects that includes moving an object from an input area using a programmable motion device including an end-effector, receiving the object from the programmable motion device in a perception transfer system, moving the object toward any of a plurality of destination containers; and providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The following description may be further understood with reference to the accompanying drawings in which:

[0012] Figure 1 shows an illustrative diagrammatic view of an object processing system in accordance with an aspect of the present invention;

[0013] Figure 2 shows an illustrative diagrammatic enlarged view of a portion of the system of Figure 1 showing a perception transfer unit;

[0014] Figures 3A - 3D show illustrative diagrammatic side elevational views of the system of Figure 1, showing the perception unit positioned to be loaded (Figure 3 A), showing the perception unit being loaded (Figure 3B), showing the perception unit rotated to an unloading position (Figure 3C), and showing the perception unit dropping an object into a destination location (Figure 3D);

[0015] Figures 4A - 4B show illustrative diagrammatic enlarged views of the system of Figure 1 , showing the perception unit positioned to move linearly toward an extended unloading position (Figure 4A), and showing the perception unit dropping an object from an extended position into a destination location (Figure 4B);

[0016] Figures 5A - 5B show illustrative diagrammatic views of an object processing system of Figure 1, showing a heavy or fragile object being grasped (Figure 5 A), and showing the fragile or heavy object being placed into a destination location (Figure 5B);

[0017] Figures 6A - 6B show illustrative diagrammatic views of an object processing system in accordance with another aspect of the present invention that includes dual perception transfer units, showing an object being grasped for movement to a first perception transfer unit (Figure 6A), and showing the dual perception transfer units having moved such that the first perception unit is closer to a loading position (Figure 6B);

[0018] Figures 7A - 7D show illustrative diagrammatic side elevational views of an object processing system in accordance with a further aspect of the present invention that includes a linearly movable perception transfer unit, showing the perception unit positioned to be loaded (Figure 7A), showing the perception unit being loaded (Figure 7B), showing the perception unit linearly moved to an unloading position (Figure 7C), and showing the perception unit dropping an object into a destination location (Figure 7D);

[0019] Figures 8A - 8B show illustrative diagrammatic enlarged views of the system of Figures 7A - 7D, showing the perception unit positioned to move linearly toward a further extended unloading position (Figure 8 A), and showing the perception unit dropping an object from an extended position into a destination location (Figure 8B);

[0020] Figure 9 shows an illustrative diagrammatic view of an object processing system in accordance with a further aspect of the present invention that includes dual perception linear transfer units;

[0021] Figures 10A- 10B show illustrative diagrammatic cut-away views of a perception transfer unit in accordance with an aspect of the present invention, showing the perception transfer unit doors in the closed position (Figure 10A), and the open position (Figure 10B);

[0022] Figures 11A - 1 ID show illustrative diagrammatic enlarged views of the system of Figures 3A - 3D, showing the object placed into the perception transfer unit (Figure 11 A), the object moving with the perception transfer unit (Figure 1 IB), showing the object moving radially outward due to the rotation (Figure 11 C), and showing the object moving in an tangential direction due the unit stopping (Figure 1 ID);

[0023] Figures 12A - 12D show illustrative diagrammatic enlarged views of the object processing system of Figures 7A - 7D, showing the object placed in the perception transfer unit (Figure 12A), showing the object undergoing first linear movement due the unit accelerating linearly (Figure 12B), showing the object moving with an attained speed (Figure 12C), and showing the object undergoing deceleration when the unit stops (Figure 12D);

[0024] Figures 13A - 13B show illustrative diagrammatic views of an object in a perception transfer unit moving from a first position and orientation (Figure 13 A) to a second position and orientation (Figure 13B);

[0025] Figures 14A - 14B show illustrative diagrammatic views of an object with low position authority in a perception transfer unit moving from a first position and orientation (Figure 14A) to a second position and orientation (Figure 14B);

[0026] Figures 15A - 15B show illustrative diagrammatic views of an object with low pose authority in a perception transfer unit moving from a first position and orientation (Figure 15 A) to a second position and orientation (Figure 1 B); [0027] Figures 16A - 16B show illustrative diagrammatic views of an object in a perception transfer unit of an aspect of the invention that includes actuatable rollers, showing the object in a first position (Figure 16A), and in a second position upon actuation of the rollers (Figure 16B);

[0028] Figures 17A - 17B show illustrative diagrammatic views of an object in a perception transfer unit of an aspect of the invention that includes actuatable rollers and force sensors, showing the doors in a closes position (Figure 17A), and showing the doors in an open position (Figure 17B);

[0029] Figure 18 shows an illustrative diagrammatic view of an object processing system in accordance with a further aspect of the present invention that provides dynamic movement analysis and transfer to a distribution system using a differentially-belted speed matching conveyor;

[0030] Figure 19 shows an illustrative diagrammatic underside view a processing station in the system of Figure 18;

[0031] Figure 20 shows an illustrative diagrammatic view of conveyor sections in the processing station of Figure 19;

[0032] Figures 21A - 21D show illustrative diagrammatic plan views of a differentially belted conveyor section of the processing station of Figure 19, showing an object positioned to enter the differentially belted conveyor section (Figure 21 A), entering the differentially belted conveyor section (Figure 2 IB); traveling along the differentially belted conveyor section (Figure 21 C), and being discharged from the differentially belted conveyor section (Figure 21D);

[0033] Figures 22A - 22B show illustrative diagrammatic plan views of the differentially belted conveyor section of Figure 19 with an object being moved thereon, showing the object entering the differentially belted conveyor section at a first side thereof (Figure 22A), and being discharged from the differentially belted conveyor section (Figure 22B);

[0034] Figures 23A - 23B show illustrative diagrammatic plan views of the differentially belted conveyor section of Figure 19 with an object being moved thereon, showing the object entering the differentially belted conveyor section at a second side thereof (Figure 23A), and being discharged from the differentially belted conveyor section (Figure 23B);

[0035] Figures 24A - 24B show illustrative diagrammatic cut-away views of a weight-sensing tilt-tray of a system in accordance with an aspect of the present invention, showing the weight sensing tilt-tray in a loading position (Figure 24A), and showing the weight sensing tilt-tray in a discharge position (Figure 24B);

[0036] Figures 25A - 25B show illustrative diagrammatic views of an output area of the system of Figure 18, showing a tilt-tray beginning to discharge an object while moving (Figure 25 A), and fully discharging the object while still moving (Figure 25B);

[0037] Figures 26A - 26B show illustrative diagrammatic views of pull-out drawers of the output area of the system of Figure 18, showing a drawer being processed (Figure 26A), and showing the drawer being removed for processing of the destination containers (Figure 26B);

[0038] Figures 27A - 27B show illustrative diagrammatic views of the pull-out drawer of Figures 26A - 26B, showing the drawer partially withdrawn (Figures 27A), and fully withdrawn (Figure 27B);

[0039] Figure 28 shows an illustrative diagrammatic view of an object processing system of Figure 18, showing a designated exceptions bin;

[0040] Figure 29 shows an illustrative diagrammatic view of an object processing system in accordance with a further aspect of the present invention that provides dynamic movement analysis and transfer to a distribution system using a single belted speed matching conveyor;

[0041] Figure 30 shows an illustrative diagrammatic underside view a processing station in the system of Figure 29;

[0042] Figure 31 shows an illustrative diagrammatic view of conveyor sections in the processing station of Figure 29;

[0043] Figures 32A - 32B show illustrative diagrammatic plan views of the single belted conveyor section of Figure 29 with a large object being moved thereon, showing the object on the single belted conveyor section at a first end thereof (Figure 32A), and being discharged from the single belted conveyor section (Figure 32B);

[0044] Figures 33A - 33B show illustrative diagrammatic plan views of the single belted conveyor section of Figure 29 with a small object being moved thereon, showing the object on the single belted conveyor section at a first end thereof (Figure 33A), and being discharged from the single belted conveyor section from further along the single belted conveyor section (Figure 33B);

[0045] Figure 34 shows an illustrative diagrammatic view of an object processing system of Figure 29, showing a designated exceptions bin; [0046] Figure 35 shows illustrative diagrammatic alternate views of conveyor section for use in the processing station of Figure 29, showing a multi-stage multi-directional plurality of conveyors;

[0047] Figure 36 shows an illustrative diagrammatic view of an alternate conveyor section for use in the processing station of Figure 29, showing a single-stage multi-direction conveyor section;

[0048] Figure 37 shows a weight-sensing tilt-tray in the output processing system of Figure 29, showing tilt actuators and mounting of the tilt-tray bed on weight sensors with the tilt-tray bed in a loading position; and

[0049] Figure 38 shows the weight-sensing tilt-tray of Figure 37 with the tilt-tray bed in an unloading position.

[0050] The drawings are shown for illustrative purposes only.

DETAILED DESCRIPTION

[0051] In accordance with an aspect, the invention provides a dynamic movement analysis system 10 that includes a processing station 12 that is positioned between an infeed area 14 and an output area 16 as shown in Figure 1. The infeed area includes one or more input conveyors 18, 20, and the output area includes one or more output conveyors 22, 24. Generally, objects from input containers 30 (e.g., boxes, bins, totes etc.), are retrieved by a programmable motion device 34 of the processing station 12 and routed to output containers 32 (e.g., boxes, bins, totes etc.). Each object is selectively removed from an input container by an end effector 36 of the programmable motion device 34, and is placed onto a transfer unit 42 of a perception transfer system 40. The input containers 30 and output containers 32 may all include indicia markers that are detectable by any of a plurality of marker detection units on the conveyors. One or more perception units 38 may be used to assess objects in the work area of the processing station 12, may be relied upon during grasping and movement, and may be used to confirm movement of objects. Operation of the system, in communication with all perception units, programmable motion devices and conveyors etc., is controlled by one or more processing systems 100.

[0052] With further reference to Figure 2, the perception transfer system 40 also includes an articulated mount 44 that travels on a circular track 46 along a base 50 on which the programmable motion device 34 is also mounted. The track 46, in an aspect, encircles at least a portion of the base of the programmable motion device 34. The perception transfer unit 42 includes transfer perception units and actuatable drop floor panels as discussed in more detail below with reference to Figures 3A - 3D. Generally, the perception transfer unit 42 receives an object from the programmable motion device 34, and the system collects perception data regarding the object while the object is being moved to a destination location. The perception information may include any of weight data, dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s).

[0053] Figure 3A shows the end effector 36 of the programmable motion device 34 engaging and lifting an object from an input container, and Figure 3B shows the end effector 36 of the programmable motion device 34 having moved the end effector over the perception transfer unit 42 and dropping (or placing) the object into the perception transfer unit 42. Perception units on the perception transfer unit then begin to collect data regarding the object as it is being moved as discussed in more detail below. The perception data may include any of weight data, dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s).

[0054] Figure 3C shows the articulated mount 44 having travelled along a section of the track 46 to a destination location at which one or more output containers 32 may be provided. At the same time, the programmable motion device 34 has returned the end effector 36 to a position at which it is ready to select a new object. With reference to Figure 3D, the perception transfer unit 42 may then drop the object into the selected destination output container via actuatable drop floor panels 41 (as further shown in Figure 4B), while the end effector 36 of the programmable motion device 34 is grasping a new object.

[0055] The system provides that a substantial amount of perception data may be obtained regarding the object while it is being transferred in a rotational direction to the output container (as will be discussed in more detail below). The detection via transfer system, for example, may capture any of weight data, dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s). Further, the programmable motion device may much more quickly turn to the task of acquiring and lifting a new object while the first object is being delivered to an output container, providing improved efficiencies in processing. In this way, the system provides buffering of each object so the articulated arm may begin the process of picking another object while object being transferred is moved toward conveyance system(s) leading to destination locations. Additionally, the system may maintain providing a stream of singulated objects (singulation) and any desired spacing (time and/or distance) between objects in advance of the conveyance system(s).

[0056] With further reference to Figures 4A and 4B, the articulated mount 40 may provide for movement of the perception transfer unit 42 radially from the track 46 by extension of an extension arm member 41. When so extended (as shown in Figure 4A), the perception transfer unit 42 (and object therein) may be positioned over an output container 32 on the outer output conveyor 24, whereupon the object may be dropped into the output container 32 on the outer output conveyor 24 as shown in Figure 4B by actuation of the actuatable drop floor panels 41. As further shown in Figures 4A and 4B, the output conveyors 22, 24 may include actuatable brace units 23 for securing output containers on the output conveyors while the containers are being loaded. This permits a plurality of conveyors to provide output containers to the work area reachable by the dynamic movement analytics system of Figure 1.

[0057] The perception units on the perception transfer unit 42 may be used for any of confirming an identity of an object, gathering further information regarding an object (such as weight, shape, size, pose authority, position authority, of further identity information), or gathering information to determine any special handling considerations, for example if the object is fragile, too large to be dropped from the perception transfer unit, too light to be reliably dropped from the perception transfer unit, or too heavy to be dropped from the perception transfer unit. In any of these situations, the programmable motion device 34 may bring the end effector 36 over to the object, may lift the object from the perception transfer unit 42 (as shown in Figure 5A), and may place the object into the desired output container (as shown in Figure 5B). The perception units on the perception transfer unit, as well as the perception units 38 positioned on a frame surrounding the processing system, may further provide information regarding any reaction (e.g., movement) of the object to rotational or linear acceleration or deceleration of the perception transfer unit as discussed in more detail below.

[0058] Systems and methods in accordance with aspects of the invention, therefore, may provide a dynamic movement analytics system that includes a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers. The perception transfer system includes at least one perception unit for providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers.

[0059] In accordance with a further aspect of the present invention (and with reference to Figures 6A and 6B), a perception transfer system 60 may include a pair of articulated mounts 62, 64, that travel along a circular track 63 that encircles the base of the programmable motion device 34. The articulated mount 62 may carry a perception transfer unit 66, and the articulated mount 64 may carry a perception transfer unit 68. The articulated mounts may, in accordance with an aspect of the invention, generally move in directions opposite one another as shown, such that they generally alternately providing objects to the pair of output conveyors 22, 24, being alternately provided objects by the end effector 36 of the programmable motion device 34. Figure 6A shows the perception transfer unit 68 having been unloaded and Figure 6B shows the perception transfer unit 66 moving toward the input area for re-loading. The perception transfer units 66, 68 therefore cooperate to increase the speed of processing of the objects.

[0060] In accordance with another aspect, the invention provides a dynamic movement analysis system that again includes a processing station that is positioned between an infeed area 14 with input conveyors 18, 20, and an output area 16 with output conveyors 22, 24, but with a different perception transfer system as shown in Figures 7A - 7D. Figure 7A shows the perception unit positioned to be loaded, Figure 7B shows the perception unit being loaded, Figure 7C shows the perception unit linearly moved to an unloading position, and Figure 7D shows the perception unit dropping an object into a destination location. Again, objects from input containers 30, (e.g., boxes, bins, totes etc.), are generally retrieved by a programmable motion device 34 of the processing station and routed to output containers 32 (e.g., boxes, bins, totes etc.). Each object is selectively removed from an input container (e.g., by the use of one or more perception units 38) by an end effector 36 of the programmable motion device 34, and is placed onto a transfer unit 72 of a perception transfer system 70, which perceives perception information. The perception information may include any of weight data, dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s).

[0061] The perception transfer system 70 also includes a linear track 74 on which the transfer unit 72 may travel. The linear track 74 itself is mounted on a set of transversely running tracks 76, some of which are mounted on a base 52 on which the programmable motion device 34 is also mounted. Similarly, the perception transfer unit 72 includes transfer perception units and actuatable drop floor panels 71 as discussed in more detail below with reference to Figures 7A - 7D.

[0062] Figure 7A shows the end effector 36 of the programmable motion device 34 engaging and lifting an object from an input container, and Figure 7B shows the end programmable motion device having moved the end effector over the perception transfer unit 72 and dropping (or placing) the object into the perception transfer unit 72. Perception units on the perception transfer unit then begin to collect data regarding the object as it is being moved as discussed in more detail below. Again, the perception information may include any of weight data, dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s).

[0063] Figure 7C shows the perception transfer unit 72 having travelled along a section of the linear track 74 to a destination location at which one or more output containers 32 may be provided. The linear track 74 has also traveled on the transversely running tracks 76 to position the perception transfer unit 72 over a selected destination location. At the same time, the programmable motion device 34 has returned the end effector 36 to a position at which it is ready to select a new object. With reference to Figure 7D, the perception transfer unit 72 may then drop the object into the selected destination output container actuatable drop floor panels, while the end effector 36 of the programmable motion device 34 is grasping a new object.

[0064] Again, the system provides that a substantial amount of perception data may be obtained regarding the object while it is being transferred in a linear direction to the output container (e.g., any of weight data, dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s)). Moreover, the system provides that the programmable motion device may much more quickly turn to the task of acquiring and lifting a new object while the first object is being delivered to an output container, providing improved efficiencies in processing.

[0065] With further reference to Figures 8A and 8B, the perception transfer unit 72 may travel to a position over a destination location over the outer output conveyor 24 (whereas the transfer unit 72 shown in Figures 7C and 7D travelled to a position over a destination location of the inner output conveyor 22). Figure 8A shows the perception unit positioned to move linearly toward a further extended unloading position, and Figure 8B shows the perception unit dropping an object from an extended position into a destination location. The linear track 74 has also traveled on the transversely running tracks 76 to position the perception transfer unit 72 over a different selected destination location than that of Figures 7C and 7D. At the same time, the programmable motion device 34 has returned the end effector 36 to a position at which it is ready to select a new object. With reference to Figure 7D, the perception transfer unit 72 may then drop the object into the selected destination output container actuatable drop floor panels, while the end effector 36 of the programmable motion device 34 is grasping a new object.

[0066] In accordance with a further aspect of the present invention (and with reference to Figure 9), a perception transfer system 80 may include a pair of linear movement systems 82, 92. The linear movement system 82 includes a perception transfer unit 84 that travels along a linear track 86, and the track 86 is movable along a transverse track 88 that is mounted, at least on part, on a base 52 common to the programmable motion device. The linear movement system 92 includes a perception transfer unit 94 that travels along a linear track 96, and the track 96 is movable along a transverse track 98 that is mounted, at least on part, on a base 52 common to the programmable motion device. The perception transfer units 84, 94 each include perception units as discussed above as well as actuatable panels for releasing objects into output containers. The linear movement systems may, in accordance with an aspect of the invention, generally move in directions opposite one another as shown, such that they alternately provide objects to either of two general areas of the pair of output conveyors 22, 24, each of which being alternately provided objects by the end effector 36 of the programmable motion device 34, thereby increasing throughput processing speed.

[0067] Again, systems and method in accordance with aspects of the invention may therefore provide a dynamic movement analytics system that includes a programmable motion device including an end-effector, and a perception transfer system for receiving an object from the end-effector and for moving the object toward any of a plurality of destination containers, e.g., along linear directions. The perception transfer system includes at least one perception unit for providing perception data regarding any of weight, shape, pose authority, position authority or identity information regarding the object as it is moved toward the any of the plurality of destination containers. [0068] Figures 10A and 10B show an enlarged view of the perception transfer unit 42 of each of the above disclosed systems. The perception transfer unit 42 includes a frame 101 and a pair of actuatable drop floor panels 102, 104, each of which is formed of top and bottom plates that are separated by force sensors 108. The frame 101 includes side walls that facilitate containing an object that may have low position authority (such as an object that may roll). The top plate is shown partially broken away exposing the force sensors 108, and Figure 10A shows the drop floor panels closed, while Figure 10B shows the drop floor panels opened. While the perception units 106 obtain data regarding any movement of an object in the unit 42 during transfer, the force sensors 108 may also provide a substantial amount of information, such as a mass of the object and different positions of the object within the unit 42 during transfer. This information may confirm or augment the information obtained by the perception units 106.

[0069] The perception transfer unit 42 may therefore obtain a substantial amount of data regarding an object on the perception transfer unit 42 as an object is being moved to a destination container, either by rotational motion or linear motion, both of which, for example, may elicit any of position and/or orientation changes of the object on the perception transfer unit 42. This data may include 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s).

[0070] For example and with reference to Figures 11A - 1 ID, as the perception transfer unit 42 is moved in a radial direction (with radial acceleration, velocity and deceleration), an object 110 on the perception transfer unit 42 may move (e.g., change position and/or orientation) with respect to the perception transfer unit 42. Figure 11A shows the object placed into the perception transfer unit, Figure 1 IB shows the object moving with the perception transfer unit, Figure 11C shows the object moving radially outward due to the rotation, and Figure 1 ID shows the object moving in a tangential direction due the unit stopping. These responses (in addition to other perceived data such as mass, shape and size), may be used to verify an identity of an object, and/or detect a multi-pick. In particular, the system (including the one or more computer processing systems), may access previously stored data regarding expected responses to known items. These expected responses may be provided by any of experience, modelling or associative assignment based on similar objects.

[0071] With reference to Figures 12A - 12D, as the perception transfer unit 42 is moved in a linear direction (with linear acceleration, velocity and deceleration), an object 110 on the perception transfer unit 42 may move (e.g., change position and/or orientation) with respect to the perception transfer unit 42. Figure 12A shows the object placed in the perception transfer unit, Figure 12B shows the object undergoing first linear movement due the unit accelerating linearly, Figure 12C shows the object moving with an attained speed, and Figure 12D shows the object undergoing deceleration when the unit stops. These responses (in addition to other perceived data such as mass, shape and size), may be used to verify an identity of an object, and/or detect a multi-pick. Again, the system (including the one or more computer processing systems), may access previously stored data regarding expected responses to known items. These expected responses may be provided by any of experience, modelling or associative assignment based on similar objects.

[0072] Figures 13A and 13B diagrammatically show the generally rectangular object 110 in the perception transfer unit 42 undergoing a change in position and/or orientation with respect to the perception transfer unit 42 while perception units 106 are capturing these changes in position and/or orientation with respect to the perception transfer unit 42. Figure 13A shows an object in a perception transfer unit moving from a first position and orientation, and Figure 13B shows the object having moved to a second position and orientation. Figures 14A and 14B diagrammatically show a generally spherical object 112 in the perception transfer unit 42 undergoing a change in position and/or orientation with respect to the perception transfer unit 42 while perception units 106 are capturing these changes in position and/or orientation with respect to the perception transfer unit 42. Figure 14A shows an object with low position authority in a perception transfer unit moving from a first position and orientation, and Figure 14B shows the object having moved to a second position and orientation. Figures 15A and 15B diagrammatically show object 114 in the perception transfer unit 42 that has any of low position authority (e.g., an object that may roll) or low pose authority (e.g., a shipping bag of polyethylene containing one or more objects). Figure 15A shows an object with low pose authority in a perception transfer unit moving from a first position and orientation, and Figure 15B shows the object having moved to a second position and orientation. The object 114 is shown undergoing a change in position and/or orientation (and in fact unfolding) with respect to the perception transfer unit 42 while perception units 106 are capturing these changes in position and/or orientation with respect to the perception transfer unit 42.

[0073] In accordance with a further aspect, the perception transfer unit may include an active element that may be used to elicit a particular response (which particular response may be then used to verify an identity of the object). For example, Figures 16A and 16B show a perception transfer unit 42’ that includes one or more active rollers (e.g., formed of rubber or polyurethane) that cause an object then to be briefly accelerated over the roller(s) 116, 118. Figure 16A shows an object in a perception transfer unit of an aspect of the invention that includes actuatable rollers, showing the object in a first position, and Figure 16B shows the object having moved to a second position upon actuation of the rollers. Roller 116 is shown in Figures 17A and 17B. As further shown in Figures 17A and 17B, the perception transfer unit 42’ may also include a plurality of force sensors 122 for also capturing data regarding an object on the unit 42’. Figure 17A shows an object in a perception transfer unit of an aspect of the invention that includes actuatable rollers and force sensors, showing the doors in a closed position, and Figure 17B shows the doors in an open position. Similarly, responses to the movement of the briefly actuated rollers 116, 118 (in addition to other perceived data such as mass, shape and size), may be used to verify an identity of an object, and/or detect a multi-pick. In particular, the system (including the one or more computer processing systems), may access previously stored data regarding expected responses to known items. These expected responses may be provided by any of experience, modelling or associative assignment based on similar objects.

[0074] In accordance with further aspects and with reference to Figure 18, a dynamic movement analysis system 210 is provided that includes a plurality of processing stations 212 that receive objects at an associated infeed area 214 and provide processed objects at an output area 216. The infeed area 214 may, for example, include one or more input conveyors 213 that may cooperate (via transfer sections) to selectively provide objects (e.g., in- feed containers 219) to processing sections 220 of each processing station 212 via diverters. The output area 216 includes a tilt tray conveyor loop 260 that provides objects to any of a plurality of destination locations 270 that include containers provided in sets (e.g., of four) on movable carts 290.

[0075] With further reference to Figure 19, each processing station 212 includes a programmable motion device 216 such as an articulated arm with an end effector 215 for grasping objects from in- feed containers 219 and moving them onto a perception transfer system as discussed in more detail below. Each processing station 212 also includes a top perception system 218 with a plurality of different perception units 217 for assessment dimensional data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s). Each processing station 212 may also include a plurality of additional perception units 221 for determining any further such scan information as well as assisting the programmable motion device 216 in grasping and moving objects.

[0076] Each processing station 212 also includes a weight sensing conveyor section 222 with a plurality of weight detection sensors 229 such as load cells or force sensors that may determine any of weight, footprint, center of mass, position authority, and/or pose authority of an object placed in the conveyor section 222, providing additional object identification/verification information as shown in Figure 20. The conveyor section 222 may lead to a series of conveyor sections 224, 226, 228 under one or more additional perception units 223 that are independently motion and speed controllable to buffer each object for delivery at desired times to the tilt tray conveyor loop 260. With further reference to Figures 21A and 21B, once an object (e.g., 232) is selected for transfer to a particular tray (e.g., 234) of the tilt tray conveyor 260, perception units 225, 227 may be engaged to monitor the position and speed of the object 232 and the designated tilt-tray 234. Figure 21 A shows an object positioned to enter the differentially belted conveyor section, Figure 21B shows the object entering the differentially belted conveyor section; Figure 21C shows the object traveling along the differentially belted conveyor section, and Figure 2 ID shows the object being discharged from the differentially belted conveyor section. In particular, the conveyor section 228 will hold the object 232 (Figure 21 A) until the designated tilt tray 234 is aligned with the object (as shown in Figure 21B). Once aligned, the conveyor section 228 will move the object 232 onto conveyance section 230 that includes a plurality of varying length belt conveyors 236.

[0077] The belt conveyors 236 move in a belt direction at a speed of V h and the conveyor loop 260 moves in a conveyor direction (at the area of transfer) at a speed of V c . With reference to Figure 21C, if an X-Y grid is applied, for example, with the Y direction along the direction of the conveyor ( ), then the vector for the speed Vh will have Wand Y components (Vhx, Vbr) as shown. In accordance with certain aspects, the speed Vbr should be the same as the speed V c . In other words, the component of the speed of the belts 236 in the direction of movement of the conveyor 260 should be matched. The will ensure that as the object travels on the belts 236, the object (e.g., 232) will contact the selected tilt tray (e.g., 234 as shown in Figure 21D) regardless of which of the plurality of belts 236 carries the object. Figure 22A shows the object entering the differentially belted conveyor section at a first side thereof, and Figure 22B shows the object being discharged from the differentially belted conveyor section. In particular, if an object 242 destined for tilt-tray 244 is provided on the shortest belts 236 as shown in Figure 22A, the object 242 will properly contact the selected tilt-tray 244 as shown in Figure 22B Showing the object entering the differentially belted conveyor section at a first side thereof (Figure 22A), and being discharged from the differentially belted conveyor section (Figure 22B). Similarly, if an object 246 destined for tilt-tray 248 is provided on the longest belts 236 as shown in Figure 23 A, the object 242 will properly contact the selected tilt-tray 248 as shown in Figure 23B. Figure 23A shows the object entering the differentially belted conveyor section at a second side thereof, and Figure 23B shows the object being discharged from the differentially belted conveyor section. Even though the opening area at the discharge end of the belt conveyor section 230 is larger than a single tilt-tray, the objects will be properly loaded onto the selected tilt -trays.

[0078] With further reference to Figures 24A and 24B, each tilt-tray (e.g., 262) includes a pair of tray sections 264 that form a V-shaped support structure that is mounted on a base 266 for pivotable movement with respect to the base 266. Figure 24A shows the weight sensing tilttray in a loading position, and Figure 24B shows the weight sensing tilt-tray in a discharge position. In particular, Figure 24A shows the tilt -tray sections in a non-pivoted position in which they may receive and carry and object. The pivotable movement may be actuated by pivot motors 265, and when tilted as shown in Figure 24B, cause an object on the tray sections 264 to be dropped from the tilt-tray 262. As shown in the broken-away sections of the tilt-tray sections 264 in Figures 24A and 24B, each tilt-tray section may be provided with interior weight sensors 268 such as force sensors or load cells, which provide information regarding an object (such as weight) on the tilt-tray. Each set of sensors or load cells 268 may be sandwiched between plates to form a tray section. Weight data from the sensors 268 may also be used to confirm receipt of an object as well as discharge of the object from the tilt -tray.

[0079] The tilt trays on the tilt-tray conveyor 260 bring the objects to the output area 216 that includes the destination stations 270 as shown in Figure 18. With reference to Figure 25A, as tilt-trays (e.g., 271, 275) travel along the conveyor 260, the tilt-trays begin to tilt to drop an object thereon into the selected destination location 270 as it is dropped from a tilt -tray while the tilt-tray conveyor is moving. Figure 25A shows the tilt-tray beginning to discharge an object while moving, and Figure 25B shows the tilt-tray fully discharging the object while still moving. Each destination location 270 includes an associated ramp surface 272 as well as a back wall 274 and side wall(s) 276, which help guide an object into the destination location 270. For example, Figure 25A shows tilt-tray 271 beginning to drop an object 273 into a destination location on one side of the conveyor 260, and also shows a tilt-tray 275 beginning to drop an object 277 into a different destination location on the other side of the conveyor 260. With reference to Figure 25B, as the conveyor 260 moves, the objects (273 and 277) separate from the respective tilt-trays and drop into the selected destination locations.

[0080] Each destination location 270 may include a container (such as a bin, a box or a tote), and multiple containers may be provided on a single pull-out drawer 290. Each pull-out drawer 290 may include, for example, a container on either side of the tilt-tray conveyor 260. In certain embodiments, two containers may be assigned to each opposing set of destination locations. In particular, Figures 26A and 26B show a pull-out drawer 290 that includes four containers 280, 282, 284 and 286. Figure 26A shows the drawer being processed, and Figure 26B shows the drawer being removed for processing of the destination containers. In Figure 26A, containers 280 and 284 are provided at the destination locations on either side of the tilttray conveyor 260. When both of the containers 280, 284 are completed or otherwise finished with the processing, the drawer 290 may be moved (as shown in Figure 26B) to expose containers 282 and 286 at the destination locations vacated by the containers 280 and 284. In this way, four containers may service two destination locations.

[0081] Figure 27A shows the drawer 290 partially pulled out from the output section 216, and Figure 27B shows the drawer 290 fully removed from the output section 216. Movement of the drawer may be automated by using linear gear motors 292 that engage each drawer 290 to move the drawer as required. Any of the destination locations may also be designated to provide an exceptions container into which objects are dropped that may be not otherwise processed by the system. In certain embodiments, a designated exceptions bin 298 may be provided apart from the destination locations as shown in Figure 28, which shows the system 210 from the in- feed side. The exceptions bin 298 may, for example, be positioned downstream of the destination locations pass. Tilt-trays including objects that are unknown or that have associated inconsistencies (e.g., with any of 3D information, barcode(s) information, RFID information, other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s)) as compared with any known or perceived information regarding the object, the object may be dropped into the exceptions bin 298.

[0082] In accordance with further aspects and with reference to Figure 29, a dynamic movement analysis system 310 is provided that includes a plurality of processing stations 312 that receive objects at an associated infeed area 314 and provide processed objects at an output area 316. The infeed area 314 may, for example, include one or more input conveyors 313 that may cooperate (via transfer sections) to selectively provide objects (e.g., in in-feed containers 319) to processing sections 320 of each processing station 312 via diverters. The output area 316 includes a tilt tray conveyor loop 360 that provides objects to any of a plurality of destination locations 370 that include containers provided in sets (e.g., of four) on movable carts 390.

[0083] With further reference to Figure 30, each processing station 312 includes a programmable motion device 316 such as an articulated arm with an end effector 315 for grasping objects from in- feed containers 319 and moving them onto a perception transfer system as discussed in more detail below. Each processing station 312 also includes a top perception system 318 with a plurality of different perception units 317 for determining assessment data (including 3D information from 3D scanner(s)), barcode(s) information, RFID information from RFID scanner(s), other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s). Each processing station 312 may also include a plurality of additional perception units 321 for determining any further such scan information as well as assisting the programmable motion device 316 in grasping and moving objects.

[0084] Each processing station 312 also includes a weight sensing conveyor section 322 with a plurality of weight sensors 329 such as load cells or force sensors that may determine any of weight, footprint, center of mass, position authority, and/or pose authority of an object placed in the conveyor section 322, providing additional object identification/verification information. The conveyor section 322 may lead to a series of conveyor sections 324, 326 under one or more additional perception units 323 that are independently motion and speed controllable act to buffer each object for delivery at desired times to the tilt tray conveyor loop 360 as shown in Figure 31. With further reference to Figures 32A and 32B, once an object (e.g., 332) is selected for transfer to a particular tray (e.g., 334) of the tilt tray conveyor 360, perception units 225, 227 may be employed to monitor the position and speed of the object 232 and the designated tilt-tray 234. In particular, the conveyor section 328 will hold the object 332 (Figure 32A) until the desired tilt tray 334 is aligned with the object (as shown in Figure 32B). Once aligned, the conveyor section 328 will move the object 332 onto conveyance section 330 that includes a transfer bar 328 that urges objects off of the conveyor section 330 onto the tilttray conveyor.

[0085] The belt conveyor section 330 moves in a belt conveyor direction at a speed of V h and the conveyor loop 360 moves in a conveyor direction (at the area of transfer) at a speed of V c , which speeds should be very closely matched. This will ensure that as the object travels on the conveyor section 330, the object (e.g., 332) will contact the selected tilt tray (e.g., 334) regardless of size and where on the conveyor section 330 the object is carried by having the object urged by the transfer bar 328 onto the associated tilt-tray regardless of when the transfer occurs. Figures 32A and 32B show the processing of a fairly large object, and Figures 33A and 33B show the processing of a smaller object. Figure 32A shows the object on the single belted conveyor section at a first end thereof, and Figure 32B shows the object being discharged from the single belted conveyor section. In particular, if an object 342 destined for tilt-tray 344 is provided a smaller object as shown in Figure 33A, the object 342 will properly contact the selected tilt -tray 344 as shown in Figure 33B by traveling further along the belt conveyor section 330 until urged by the transfer bar 328 off of the conveyor section 330. Figure 33A shows the object on the single belted conveyor section at a first end thereof, and Figure 33B shows the object being discharged from the single belted conveyor section from further along the single belted conveyor section.

[0086] As discussed above with reference to Figures 24A and 24B, each tilt-tray (e.g., 334, 344) includes a pair of tray sections that form a V-shaped support structure that is mounted on a base for pivotable movement with respect to the base. Each tilt-tray section may be provided with interior weight sensor, which provide information regarding an object (such as weight) on the tilt-tray as discussed above. Each set of weight sensors may be sandwiched between plates to form a tray section. Weight data from the sensors may also be used to confirm receipt of an object as well as discharge of the object from the tilt-tray.

[0087] As also discussed above, the tilt trays on the tilt-tray conveyor 360 bring the objects to the output area 316 that includes the destination stations 370. As the tilt-trays travel along the conveyor 360, the tilt-trays begin to tilt to drop an object thereon into the selected destination location 370. Each destination location 370 includes an associated ramp surface as well as a back wall and side wall(s) as discussed above, which help guide an object into the destination location 370.

[0088] Each destination location 370 may include a container (such as a bin, a box or a tote), and multiple containers may be provided on a single pull-out drawer 390, and each pull-out drawer 390 may include, for example, a container on either side of the tilt- tray conveyor 360 as discussed above. Again, in certain embodiments, two containers may be assigned to each opposing set of destination locations, and four containers may service two destination locations. [0089] Again, movement of the drawer may be automated by using linear gear motors that engage each drawer 390 to move the drawer as required. Any of the destination locations may also be designated to provide an exceptions container into which objects are dropped that may be not otherwise processed by the system. In certain embodiments, a designated exceptions bin 398 may be provided apart from the destination locations as shown in Figure 34, which shows the system 310 from the in- feed side. The exceptions bin 398 may, for example, be positioned downstream of the destination locations pass. Tilt-trays including objects that are unknown or that have associated inconsistencies (e.g., with any of 3D information, barcode(s) information, RFID information, other label information (e.g., text and symbols), and other identifying features such as color, color combinations, and non-standard shape(s)) as compared with any known or perceived information regarding the object, the object may be dropped into the exceptions bin 398.

[0090] Movement of objects on the conveyors and on the tilt-trays may also be contained in the systems of Figures 18 - 34 by using a combination of walls as well as perception systems and conveyor motion. In particular, Figure 35 shows conveyor sections 224, 226 and 228 of the system of Figures 18 - 28 with walls 229 for containing any objects with low position authority (e.g., that may roll). Additionally, each conveyor section 224, 226, 228 may move in a reverse direction (responsive to input from the perception units 223, 225) to further contain objects on the conveyor sections 224, 226, 228. Similarly, Figure 36 shows conveyor section 324 of the system of Figures 29 - 34 with walls 329 for containing any objects with low position authority (e.g., that may roll). Additionally, the conveyor section 324 may move in a reverse direction (responsive to input from the perception unit 323) to further contain objects on the conveyor section 324. In both systems, positioning of objects with respect to the sides of the conveyor is accommodated by the transfer system (e.g., the belts 236 or transfer bar 328) to ensure that each object is properly transferred to the designated tilt-tray. With reference to Figure 37, the tilt-trays 262, 362 (as shown in Figure 37 at 402) may each also include walls 404 to facilitate maintaining objects on the tilt-trays during transfer to the tilt-trays and during movement along the tilt-tray conveyors 260, 360. Figure 38 shows the tilt-tray 402 of Figure 37 in the discharge position under the control of the actuators 406. As shown at 408, each of the actuators 406 (on both sides) may be mounted on a weight sensor 408 for determining a weight of the content of the tilt-tray, for providing, for example, weight information as discussed above with reference to the systems of Figures 18 - 35. The weight sensors 408 may be used to any of confirm the receipt of an object as well as discharge of the object from the tilt-tray. [0091] Those skilled in the art will appreciate that numerous modifications and variations may be made to the above disclosed systems and methods without departing from the spirit and scope of the present invention.

[0092] What is claimed is: