Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TAXANES HAVING FURYL OR THIENYL SUBSTITUTED SIDE-CHAIN
Document Type and Number:
WIPO Patent Application WO/1994/021651
Kind Code:
A1
Abstract:
Taxane derivatives having a C13 side chain which includes a furyl or thienyl substituent.

Inventors:
HOLTON ROBERT A
NADIZADEH HOSSAIN
BIEDIGER RONALD J
RENGAN KASTHURI
SUZUKI YUKIO
TAO CHUNLIN
CHAI KI-BYUNG
IDMOUMAZ HAMID
Application Number:
PCT/US1994/003097
Publication Date:
September 29, 1994
Filing Date:
March 21, 1994
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV FLORIDA STATE (US)
International Classes:
C07D333/20; A61K31/335; A61K31/337; A61K31/34; A61K31/341; A61K31/38; A61K31/381; A61P35/00; A61P35/02; C07C227/22; C07C231/12; C07C233/87; C07D205/08; C07D205/085; C07D205/09; C07D305/14; C07D307/00; C07D401/04; C07D401/12; C07D401/14; C07D403/04; C07D403/12; C07D403/14; C07D405/04; C07D405/12; C07D405/14; C07D407/00; C07D407/12; C07D407/14; C07D409/00; C07D409/04; C07D409/12; C07D409/14; C07D413/14; C07F7/08; C07F7/18; (IPC1-7): C07F7/08; C07D305/14; A61K31/335
Foreign References:
US4942184A1990-07-17
US5175315A1992-12-29
US5227400A1993-07-13
Other References:
See also references of EP 0690867A4
Download PDF:
Claims:
WHAT I CLAIM IS :
1. A taxane derivative having the formula: wherein Xτ_ is OX6, SXj , or NX8X9; X2 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl; X3 and X4 are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, acyl or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl, provided, however, that R3 and R4 are not both acyl; X5 is COX10, COOX:o, COSX10, CONX8X10, or S02X ; X6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, hydroxy protecting group, or a functional group which increases the water solubility of the taxane derivative; X7 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or sulfhydryl protecting group; X8 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl; X9 is an amino protecting group; X10 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl alkynyl, aryl or heteroaryl; X is alkyl, alkenyl, alkynyl, aryl, heteroaryl, OX10, or NX8X14; X14 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl; R14 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with Rj forms a carbonate; R14a is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl; Rio is hydrogen or together with R:0a forms an oxo; RXOa is hydrogen, OCOR29, hydroxy, or protected hydroxy, or together with R:0 forms an oxo; R9 is hydrogen or together with R9a forms an oxo; R9a is hydrogen, hydroxy, protected hydroxy, acyloxy, or together with R9 forms an oxo; R7a is hydrogen or together with R7 forms an oxo; R7 is hydrogen, halogen, protected hydroxy, OR28, or together with R7a forms an oxo; R6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R6a forms an oxo; R6a is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R6 forms an oxo; R5 is hydrogen or together with R5a forms an oxo; R5a is hydrogen, hydroxy, protected hydroxy, acyloxy, together with R5 forms an oxo, or together with R4 and the carbon atoms to which they are attached form an oxetane ring; R4 is hydrogen, together with R4a forms an oxo, or together with R5a and the carbon atoms to which they are attached form an oxetane ring; R4a is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cyano, hydroxy, OCOR30, or together with R4 forms an oxo, oxirane or methylene; R2 is hydrogen, hydroxy, or OCOR31; R2a is hydrogen or taken together with R2 forms an oxo; Ri is hydrogen, hydroxy, protected hydroxy; R28 is hydrogen, acyl, hydroxy protecting group or a functional group which increases the solubility of the taxane derivative; R29, R30, and R31 are independently hydrogen, alkyl, alkenyl, alkynyl, monocyclic aryl or monocyclic heteroaryl; provided, however, at least one of X3, X4 and X1C is furyl or thienyl; and R:0a is hydrogen or together with Rio forms an oxo; R9a is hydrogen, hydroxy, protected hydroxy, or acyloxy; R7 is hydrogen, halogen, OR28 wherein R28 is acyl, or together with R7a forms an oxo; R4a is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cyano, hydroxy, OCOR30 wherein R30 is other than methyl, or together with R4 forms an oxo, oxirane or methylene; R2 is hydrogen, hydroxy, or OCOR3i wherein R31 is other than phenyl; Rα is other than hydroxy or R14 is other than hydrogen.
2. The taxane derivative of claim 1 wherein Rι0a is hydrogen or together with R10 forms an oxo or R9a is hydrogen, hydroxy, protected hydroxy, or acyloxy.
3. The taxane derivative of claim 1 wherein R„ is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cyano, hydroxy, OCOR30 wherein R30 is other than methyl, or together with R4 forms an oxo, oxirane or methylene or R2 is hydrogen, hydroxy, or OCOR3j wherein R31 is other than phenyl .
4. The taxane derivative of claim 1 wherein X3 or X4 is thienyl, X5 is COOXι0, and X10 is other than phenyl and alkoxy.
5. The taxane derivative of claim 1 wherein X5 is COX10, X10 is furyl or thienyl and neither of X3 or X4 are phenyl or pnitro substituted phenyl.
6. The taxane derivative of claim 1 wherein R is other than hydroxy or R14 is other than hydrogen.
7. A βlactam corresponding to the formula: wherein X: is OX6, SX7, or NX8X9; X2 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl; X3 and X4 are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, acyl or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl, provided, however, that X3 and X4 are not both acyl; X5 is COXjo, COOXio, COSXio, CONX8X10, or S02Xn; X6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, hydroxy protecting group, or a functional group which increases the water solubility of the taxane derivative; X7 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or sulfhydryl protecting group; X8 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl; X9 is an amino protecting group; XJO is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl alkynyl, aryl or heteroaryl; Xn is alkyl, alkenyl, alkynyl, aryl, hetero aryl, OX10, or NX8X14; Xi4 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl; and at least one of X3, X4 and X10 is furyl or thienyl .
8. A pharmaceutical composition which contains the taxane derivative of claim 1 and one or more pharmacologically acceptable, inert or physiologically active diluents or adjuvants.
Description:
TAXANES HAVING FURYL OR THIENYL SUBSTITUTED SIDE-CHAIN

BACKGROUND OF THE INVENTION

The present invention is directed to novel taxanes which have utility as antileukemia and antitumor agents .

The taxane family of terpenes, of which taxol is a member, has attracted considerable interest in both the biological and chemical arts. Taxol is a promising cancer chemotherapeutic agent with a broad spectrum of antileukemic and tumor-inhibiting activity. Taxol has a 2'R, 3'S configuration and the following structural formula:

6-H5-COu (1)

wherein Ac is acetyl . Because of this promising activity, taxol is currently undergoing clinical trials in both France and the United States.

Colin et al . reported in U.S. Patent No.

4,814,470 that taxol derivatives having structural formula (2) below, have an activity significantly greater than that of taxol (1) .

R' represents hydrogen or acetyl and one of R" and R' ' ' represents hydroxy and the other represents tert-butoxy- carbonylamino and their stereoisomeric forms, and mixtures thereof. The compound of formula (2) in which R' ' is hydroxy, R' ' ' is tert-butoxycarbonylamino having the 2'R, 3'S configuration is commonly referred to as taxotere.

Although taxol and taxotere are promising chemotherapeutic agents, they are not universally effective. Accordingly, a need remains for additional chemotherapeutic agents.

SUMMARY OF THE INVENTION

Among the objects of the present invention, therefore, is the provision of novel taxane derivatives which are valuable antileukemia and antitumor agents. Briefly, therefore, the present invention is directed to taxane derivatives having a C13 side chain which includes a furyl or thienyl substituent. In a preferred embodiment, the taxane derivative has a tricyclic or tetracyclic core and corresponds to the formula:

wherein

X τ _ is -OX 6 , -SX 7 , or -NX 8 X 9 ;

X 2 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl;

X 3 and X 4 are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, acyl or hetero¬ substituted alkyl, alkenyl, alkynyl, aryl or heteroaryl, provided, however, that X 3 and X 4 are not both acyl; X 5 is -COX 10 , -COOX 10 , -COSX 10 , -CONX 8 X 10/ or -S0 2 X n ;

X 6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, hydroxy protecting group, or a functional group which increases the water solubility of the taxane derivative;

X 7 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or sulfhydryl protecting group;

X 8 is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl, alkynyl, aryl or heteroaryl;

X 9 is an amino protecting group;

X 10 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, or heterosubstituted alkyl, alkenyl alkynyl, aryl or heteroaryl; X n is alkyl, alkenyl, alkynyl, aryl, heteroaryl, -OX 10 , or -NX 8 X :4 ;

X 14 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl;

R 14 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with Rj forms a carbonate;

R 14a is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl;

R 10 is hydrogen or together with R 10a forms an oxo; R 10a is hydrogen, -OCOR 29 , hydroxy, or protected hydroxy, or together with R 10 forms an oxo;

R 9 is hydrogen or together with R 9a forms an oxo;

R 9a is hydrogen, hydroxy, protected hydroxy, acyloxy, or together with R 9 forms an oxo;

R 7a is hydrogen or together with R 7 forms an oxo;

R 7 is hydrogen, halogen, protected hydroxy, -OR 28 , or together with R 7a forms an oxo; R 6 is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R 6a forms an oxo;

R 6a is hydrogen, alkyl, alkenyl, alkynyl, aryl, or heteroaryl, hydroxy, protected hydroxy or together with R 6 forms an oxo;

R 5 is hydrogen or together with R 5a forms an oxo;

R 5a is hydrogen, hydroxy, protected hydroxy, acyloxy, together with R 5 forms an oxo, or together with R 4 and the carbon atoms to which they are attached form an oxetane ring;

R 4 is hydrogen, together with R 4a forms an oxo, or together with R 5a and the carbon atoms to which they are attached form an oxetane ring;

R 4a is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cyano, hydroxy, -OCOR 30 , or together with R 4 forms an oxo, oxirane or methylene;

R 2 is hydrogen, hydroxy, or -OCOR 31 ; R 2a is hydrogen or taken together with R 2 forms an oxo;

R j is hydrogen, hydroxy, protected hydroxy;

R 28 is hydrogen, acyl, hydroxy protecting group or a functional group which increases the solubility of the taxane derivative; and

R 29 , R 30 , and R 31 are independently hydrogen, alkyl, alkenyl, alkynyl, monocyclic aryl or monocyclic heteroaryl; and at least one of X 3 , X 4 and X 10 is furyl or thienyl . Other objects and features of this invention will be in part apparent and in part pointed out hereinafter.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As used herein "Ar" means aryl; "Ph" means phenyl; "Ac" means acetyl; "Et" means ethyl; "R" means alkyl unless otherwise defined; "Bu" means butyl; "Pr" means propyl; "TES" means triethylsilyl; "TMS" means trimethylsilyl; "TPAP" means tetrapropylammonium perruthenate; "DMAP" means p-dimethylamino pyridine; "DMF" means dimethylformamide; "LDA" means lithium diisopropylamide; "LAH" means lithium aluminum hydride; "Red-Al" means sodium bis (2-methoxyethoxy) aluminum hydride; FAR means 2-chloro-l, 1, 2-trifluorotriethylamine; "AIBN" means azo- (bis) -isobutyronitrile; "10-DAB" means 10-desacetylbaccatin III; protected hydroxy means -OR wherein R is a hydroxy protecting group; sulfhydryl protecting group" includes, but is not limited to, hemithioacetals such as 1-ethoxyethyl and methoxy-methyl, thioesters, or thiocarbonates; "amine protecting group" includes, but is not limited to, carbamates, for example,

2, 2 , 2-trichloroethylcarbamate or tertbutyl-carbamate; and "hydroxy protecting group" includes, but is not limited to, ethers such as methyl, -butyl, benzyl, p-methoxybenzyl, p-nitrobenzyl, allyl, trityl, methoxymethyl, methoxyethoxymethyl, ethoxyethyl, tetra- hydropyranyl, tetrahydrothiopyranyl, and trialkylsilyl ethers such as trimethylsilyl ether, triethylsilyl ether, dimethylarylsilyl ether, triisopropylsilyl ether and t-butyldimethylsilyl ether; esters such as benzoyl, acetyl, phenylacetyl, for yl, mono-, di-, and trihaloacetyl such as chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl; and carbonates including but not limited to alkyl carbonates having from one to six carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl; isobutyl, and n-pentyl; alkyl carbonates having from one to six carbon atoms and substituted with one or more halogen atoms such as 2 ,2, 2-trichloroethoxymethyl and 2 , 2 , 2-trichloro-ethyl; alkenyl carbonates having from two to six carbon atoms such as vinyl and allyl; cycloalkyl carbonates have from three to six carbon atoms such as cyclopropyl, cyclo- butyl, cyclopentyl and cyclohexyl; and phenyl or benzyl carbonates optionally substituted on the ring with one or more C t . b alkoxy, or nitro. Other hydroxyl, sulfhydryl and amine protecting groups may be found in "Protective

Groups in Organic Synthesis" by T. W. Greene, John Wiley and Sons, 1981.

The alkyl groups described herein, either alone or with the various substituents defined hereinabove are preferably lower alkyl containing from one to six carbon atoms in the principal chain and up to 15 carbon atoms. They may be straight or branched chain and include methyl, ethyl, propyl, isopropyl, butyl, hexyl and the like. The alkenyl groups described herein, either alone or with the various substituents defined

hereinabove are preferably lower alkenyl containing from two to six carbon atoms in the principal chain and up to 15 carbon atoms. They may be straight or branched chain and include ethenyl, propenyl, isopropenyl, butenyl, isobutenyl, hexenyl, and the like.

The alkynyl groups described herein, either alone or with the various substituents defined herein¬ above are preferably lower alkynyl containing from two to six carbon atoms in the principal chain and up to 15 carbon atoms. They may be straight or branched chain and include ethynyl, propynyl, butynyl, isobutynyl, hexynyl, and the like.

The aryl moieties described herein, either alone or with various substituents, contain from 6 to 15 carbon atoms and include phenyl . Substituents include alkanoxy, protected hydroxy, halogen, alkyl, aryl, alkenyl, acyl, acyloxy, nitro, amino, amido, etc. Phenyl is the more preferred aryl.

The heteroaryl moieties described herein, either alone or with various substituents, contain from 5 to 15 atoms and include, furyl, thienyl, pyridyl and the like. Substituents include alkanoxy, protected hydroxy, halogen, alkyl, aryl, alkenyl, acyl, acyloxy, ni-tro, amino, and amido. The acyloxy groups described herein contain alkyl, alkenyl, alkynyl, aryl or heteroaryl groups.

The substituents of the substituted alkyl, alkenyl, alkynyl, aryl, and heteroaryl groups and moieties described herein, may be alkyl, alkenyl, alkynyl, aryl, heteroaryl and/or may contain nitrogen, oxygen, sulfur, halogens and include, for example, lower alkoxy such as methoxy, ethoxy, butoxy, halogen such as chloro or fluoro, nitro, amino, and keto.

In accordance with the present invention, it has been discovered that compounds corresponding to structural formula 3 show remarkable properties, _in_

vitro, and are valuable antileukemia and antitumor agents. Their biological activity has been determined in vitro, using tubulin assays according to the method of Parness et al . , J. Cell Biology, 91: 479-487 (1981) and human cancer cell lines, and is comparable to that exhibited by taxol and taxotere.

In one embodiment of the present invention, the substituents of the cyclic nucleus of the taxane (other than the C13 substituent) correspond to the substituents present on baccatin III or 10-DAB. That is, R 10 is hydrogen, R 10a is hydroxy or acetoxy, R 9 and R 9a together form an oxo, R 7a is hydrogen, R 7 is hydroxy, R 5 is hydrogen, R 5a and R 4 and the carbons to which they are attached form an oxetane ring, R 4a is acetoxy, R 2a is hydrogen, R 2 is benzoyloxy, and Rj is hydroxy and the C13 side-chain substituents ( X 1 -X ) are as previously defined. Preferably, Xj is -OH, X 2 is hydrogen, X 3 is furyl or thienyl, X 4 is hydrogen, X 5 is -COX 10 or -COOX 10 , and X 10 is alkyl, alkenyl, alkynyl, aryl, furyl, thienyl or other heteroaryl and the taxane has the 2'R, 3'S configuration. In a particularly preferred embodiment, X 3 is furyl or thienyl, X 4 is hydrogen, X 5 is -COX 10 or -COOX 10 and X 10 is furyl or thienyl, alkyl substituted furyl or thienyl, tert-, iso- or n-butoxy, ethoxy, iso- or n- propoxy, cyclohexyloxy, allyloxy, crotyloxy, 1,3- diethoxy-2-propoxy, 2-methoxyethoxy, neopentyloxy, PhCH 2 0-, -NPh 2 , -NHnPr, -NHPh, or -NHEt .

In other embodiments of the present invention, the taxane has a structure which differs from that of taxol or taxotere with respect to the C13 side chain and at least one other substituent. For example, R 2 may be hydroxy or -OCOR 31 wherein R 31 is hydrogen, alkyl or selected from the group comprising

and Z is alkyl, hydroxy, alkoxy, halogen, or trifluoro- methyl . R 9a may be hydrogen and R 9 may be hydrogen or hydroxy, R 10a may be hydrogen and R 10 may be acetoxy or other acyloxy or R 10 and R 10a may be oxo, X 3 may be selected from isobutenyl, isopropyl, cyclopropyl, n-butyl, t- butyl, cyclobutyl, amyl cyclohexyl, furyl, thienyl, pyridyl or the substituted derivatives thereof, X 5 may be -COX 10 or -COOX 10 and X :o may be selected from furyl, thienyl, alkyl substituted furyl or thienyl, pyridyl, tert-, iso- or n-butyl, ethyl, iso- or n-propyl, cyclopropyl, cyclohexyl, allyl, crotyl, 1, 3-diethoxy-2- propyl, 2-methoxyethyl, amyl, neopentyl, PhCH 2 0-, -NPh 2 , -NHnPr, -NHPh, and -NHEt . Taxanes having the general formula 3 may be obtained by reacting a β-lactam with metal alkoxides having the taxane tricyclic or tetracyclic nucleus and a C-13 metallic oxide substituent to form compounds having a β-amido ester substituent at C-13. The β-lact ' ams have the following structural formula:

wherein X 2 - X 5 are as previously above.

The β-lactams can be prepared from readily available materials, as is illustrated in schemes A and B below:

Scheme A

Scheme B

reagents: (a) triethylamine, CH 2 C1 2 , 25<>C, 18h; (b) 4 equiv eerie ammonium nitrate, CH 3 CN, -10°C, 10 min; (c) 5 KOH, THF, H 2 0, 0°C, 30 min, or pyrolidine, pyridine, 25 °C, 3h, (d) TESC1, pyridine, 25 °C, 30 min or 2- methoxypropene toluene sulfonic acid (cat.), THF, 0°C, 2h; (e) n-butyllithium, THF, -78 °C, 30 min; and an acyl chloride or chloroformate (X 5 = -COX 10 ) , sulfonyl chloride 0 (X 5 = -COSX 10 ) or isocyanate (X 5 = -CONX 8 X 10 ) ; (f) lithium diisopropyl amide, THF -78°C to -50°C; (g) lithium hexamethyldisilazide, THF -78°C to 0°C; (h) THF, -78oc to 25°C, 12h.

The starting materials are readily available. 5 In scheme A, α-acetoxy acetyl chloride is prepared from glycolic acid, and, in the presence of a tertiary amine, it cyclocondenses with imines prepared from aldehydes and p-methoxyaniline to give l-p-methoxyphenyl-3-acyloxy-4- arylazetidin-2-ones . The p-methoxyphenyl group can be 0 readily removed through oxidation with eerie ammonium nitrate, and the acyloxy group can be hydrolyzed under

standard conditions familiar to those experienced in the art to provide 3-hydroxy-4-arylazetidin-2-ones . In Scheme B, ethyl-α-triethylsilyloxyacetate is readily prepared from glycolic acid. In Schemes A and B, X 2 is preferably -0X 6 and X 6 is a hydroxy protecting group. Protecting groups such as 2-methoxypropyl ("MOP") , 1-ethoxyethyl ("EE") are preferred, but a variety of other standard protecting groups such as the triethylsilyl group or other trialkyl (or aryl) silyl groups may be used. As noted above, additional hydroxy protecting groups and the synthesis thereof may be found in "Protective groups in Organic Synthesis" by T.W. Greene, John Wiley & Sons, 1981.

The racemic β-lactams may be resolved into the pure enantiomers prior to protection by recrystallization of the corresponding 2-methoxy-2- (trifluoromethyl) phenylacetic esters. However, the reaction described hereinbelow in which the β-amido ester side chain is attached has the advantage of being highly diastereo- selective, thus permitting the use of a racemic mixture of side chain precursor.

The alkoxides having the tricyclic or tetracyclic taxane nucleus and a C-13 metallic oxide or ammonium oxide substituent have the following structural formula:

wherein R- x - R 14a are as previously defined and M comprises ammonium or is a metal optionally selected from the group comprising Group IA, Group IIA and transition metals, and preferably, Li, Mg, Na, K or Ti . Most preferably, the alkoxide has the tetracyclic taxane nucleus and corresponds to the structural formula:

MOllll

wherein M, R 2 , R 4a , R 7 , R 7a , R 9 , R 9a , R :0 , and R 10a are as previously defined. The alkoxides can be prepared by reacting an alcohol having the taxane nucleus and a C-13 hydroxyl group with an organometallic compound in a suitable solvent. Most preferably, the alcohol is a protected baccatin III, in particular, 7-O-triethylsilyl baccatin III (which can be obtained as described by Greene, et al . in JACS 110: 5917 (1988) or by other routes) or

7, 10-bis-O-triethylsilyl baccatin III.

As reported in Greene et al . , 10-deacetyl baccatin III is converted to 7-O-triethylsilyl-10- deacetyl baccatin III according to the following reaction scheme:

O CO C - H -

1 , CC 2 H 5 D 3 Si C I , C 5 H 5 N 2. CH 3 COCI, C 5 H 5 N

(4) a, R=H b, R=COCH 3

Under what is reported to be carefully optimized conditions, 10-deacetyl baccatin III is reacted with 20 equivalents of (C 2 H 5 ) 3 SiCl at 23°C under an argon atmosphere for 20 hours in the presence of 50 ml of pyridine/mmol of 10-deacetyl baccatin III to provide 7-triethylsilyl-10-deacetyl baccatin III (4a) as a reaction product in 84-86% yield after purification. The reaction product may then optionally be acetylated with 5 equivalents of CH 3 C0C1 and 25 mL of pyridine/mmol of 4a at 0 °C under an argon atmosphere for 48 hours to provide 86% yield of 7-O-triethylsilyl baccatin III (4b) . Greene, et al . in JACS .110., 5917 at 5918 (1988) .

The 7-protected baccatin III (4b) is reacted with an organometallic compound such as LHMDS in a solvent such as tetrahydrofuran (THF) , to form the metal

alkoxide 13-0-lithium-7-0-triethylsilyl baccatin III as shown in the following reaction scheme:

L HM D S

X H F

As shown in the following reaction scheme, 13-0-lithium-7-0-triethylsilyl baccatin III reacts with a β-lactam in which Xj is preferably -OX 6 , (X 6 being a hydroxy protecting group) and X 2 - X 5 are as previously defined to provide an intermediate in which the C-7 and C-2 ' hydroxyl groups are protected. The protecting groups are then hydrolyzed under mild conditions so as not to disturb the ester linkage or the taxane substituents .

C 1 _. T H F

C 2 } H F , P y r i d i n e , C H - C N

Both the conversion of the alcohol to the alkoxide and the ultimate synthesis of the taxane derivative can take place in the same reaction vessel. Preferably, the β-lactam is added to the reaction vessel after formation therein of the alkoxide.

Compounds of formula 3 of the instant invention are useful for inhibiting tumor growth in animals including humans and are preferably administered in the form of a pharmaceutical composition comprising an effective antitumor amount of compound of the instant invention in combination with a pharmaceutically acceptable carrier or diluent.

Antitumor compositions herein may be made up in any suitable form appropriate for desired use; e.g., oral, parenteral or topical administration. Examples of parenteral administration are intramuscular, intravenous, intraperitoneal, rectal and subcutaneous administration.

The diluent or carrier ingredients should not be such as to diminish the therapeutic effects of the antitumor compounds .

Suitable dosage forms for oral use include tablets, dispersible powders, granules, capsules, suspensions, syrups, and elixirs. Inert diluents and carriers for tablets include, for example, calcium carbonate, sodium carbonate, lactose and talc. Tablets may also contain granulating and disintegrating agents such as starch and alginic acid, binding agents such as starch, gelatin and acacia, and lubricating agents such as magnesium stearate, stearic acid and talc. Tablets may be uncoated or may be coated by unknown techniques; e.g., to delay disintegration and absorption. Inert diluents and carriers which may be used in capsules include, for example, calcium carbonate, calcium phosphate and kaolin. Suspensions, syrups and elixirs may contain conventional excipients, for example, methyl cellulose, tragacanth, sodium alginate; wetting agents, such as lecithin and polyoxyethylene stearate; and preservatives, e.g., ethyl- p-hydroxybenzoate.

Dosage forms suitable for parenteral administration include solutions, suspensions, dispersions, emulsions and the like. They may also be manufactured in the form of sterile solid compositions which can be dissolved or suspended in sterile injectable medium immediately before use. They may contain suspending or dispersing agents known in the art .

The water solubility of compounds of formula (3) may be improved by modification of the C2 ' and/or C7 substituents. For instance, water solubility may be increased if X 1 is -OX 6 and R 7 is -OR 28 , and X 6 and R 28 are independently hydrogen or -COGCOR 1 wherein:

G is ethylene, propylene, -CH=CH-, 1,2-cyclo- hexylene, or 1, 2-phenylene;

R 1 = OH base, NR 2 R 3 , OR 3 , SR 3 , OCH 2 CONR 4 R 5 , or OH;

R 2 = hydrogen or methyl ;

R 3 = ( CH 2 ) n NR 6 R 7 or ( CH 2 ) n N ® R 6 R 7 R 8 X e ; n = 1 to 3 ;

R 4 = hydrogen or lower alkyl containing 1 to 4 carbons ; R 5 = hydrogen, lower alkyl containing 1 to 4 carbons, benzyl, hydroxyethyl , CH 2 C0 2 H, or dimethylaminoethyl ; R 6 and R 7 = independently selected from lower alkyl containing 1 or 2 carbons or benzyl, or R 6 and R 7 together with the nitrogen atom of NR 6 R 7 forms one of the following rings

R 8 = lower alkyl containing 1 or 2 carbons, or benzyl ; X θ = halide; base = NH 3 , (HOC 2 H 4 ) 3 N, N(CH 3 ) 3 , CH 3 N (C 2 H 4 OH) 2 , NH 2 (CH 2 ) 6 NH 2 , N-methylglucamine, NaOH, or KOH.

The preparation of compounds in which X α or X 2 is -COGCOR 1 is set forth in Hangwitz U.S. Patent 4,942,184 which is incorporated herein by reference.

Alternatively, solubility may be increased when X, is -OX 6 and X 6 is a radical having the formual

-COCX=CHX or -COX-CHX-CHX-S0 2 0-M wherein X is hydrogen, alkyl or aryl and M is hydrogen, alkaline metal or an ammonio group as described in Kingston et al . , U.S. Patent No. 5,059,699 (incorporated herein by reference) .

Taxanes having alternative C9 substituents may be prepared by selectively reducing the C9 keto substituent to yield the corresponding C9 β-hydroxy derivative. The reducing agent is preferably a borohydride and, most preferably, tetrabutylammonium- borohydride (Bu 4 NBH 4 ) or triacetoxy-borohydride.

As illustrated in Reaction Scheme 1, the reaction of baccatin III with Bu 4 NBH 4 in methylene chloride yields 9-desoxo-9β-hydroxybaccatin III 5. After the C7 hydroxy group is protected with the triethylsilyl protecting group, for example, a suitable side chain may be attached to 7-protected-9β-hydroxy derivative 6 as elsewhere described herein. Removal of the remaining protecting groups thus yields 9β-hydroxy-desoxo taxol or other 9β-hydroxytetracylic taxane having a C13 side chain.

REACTION SCHEME 1

Alternatively, the C13 hydroxy group of 7- protected-9β-hydroxy derivative 6 may be protected with trimethylsilyl or other protecting group which can be selectively removed relative to the C7 hydroxy protecting group as illustrated in Reaction Scheme 2, to enable further selective manipulation of the various substituents of the taxane. For example, reaction of 7 , 13-protected-9β-hydroxy derivative 7 with KH causes the acetate group to migrate from CIO to C9 and the hydroxy group to migrate from C9 to CIO, thereby yielding 10- desacetyl derivative 8. Protection of the CIO hydroxy group of 10-desacetyl derivative 8 with triethylsilyl yields derivative 9. Selective removal of the C13 hydroxy protecting group from derivative 9 yields

derivative 10 to which a suitable side chain may be attached as described above.

REACTION SCHEME 2

T

idine

1 0

As shown in Reaction Scheme 3, 10-oxo derivative 11 can be provided by oxidation of 10- desacetyl derivative 8. Thereafter, the C13 hydroxy protecting group can be selectively removed followed by attachment of a side chain as described above to yield 9- acetoxy-10-oxo-taxol or other 9-acetoxy-lO-oxotetracylic taxanes having a C13 side chain. Alternatively, the C9 acetate group can be selectively removed by reduction of 10-oxo derivative 11 with a reducing agent such as samarium diiodide to yield 9-desoxo-10-oxo derivative 12 from which the C13 hydroxy protecting group can be selectively removed followed by attachment of a side chain as described above to yield 9-desoxo-10-oxo-taxol or other 9-desoxo-10-oxotetracylic taxanes having a C13 side chain.

REACTION SCHEME 3

T PA P TM S Oin

8 1 1 S

X M S OI I

1 2

Reaction Scheme 4 illustrates a reaction in which 10-DAB is reduced to yield pentaol 13. The C7 and CIO hydroxyl groups of pentaol 13 can then be selectively protected with the triethylsilyl or another protecting group to produce triol 14 to which a C13 side chain can be attached as described above or, alternatively, after further modification of the tetracylic substituents.

REACTION SCHEME 4

1 4

Taxanes having C9 and/or CIO acyloxy substituents other than acetate can be prepared using 10- DAB as a starting material as illustrated in Reaction Scheme 5. Reaction of 10-DAB with triethylsilyl chloride in pyridine yields 7-protected 10-DAB 15. The CIO hydroxy substituent of 7-protected 10-DAB 15 may then be readily acylated with any standard acylating agent to yield derivative 16 having a new CIO acyloxy substituen . Selective reduction of the C9 keto substituent of derivative 16 yields 9β-hydroxy derivative 17 to which a C13 side chain may be attached. Alternatively, the CIO and C9 groups can be caused to migrate as set forth in Reaction Scheme 2, above.

REACTION SCHEME 5

Acy I at i ng agent

Taxanes having alternative C2 and/or C4 esters can be prepared using baccatin III and 10-DAB as starting materials. The C2 and/or C4 esters of baccatin III and 10-DAB can be selectively reduced to the corresponding alcohol (s) using reducing agents such as LAH or Red-Al, and new esters can thereafter be substituted using standard acylating agents such as anhydrides and acid chlorides in combination with an amine such as pyridine, triethylamine, DMAP, or diisopropyl ethyl amine. Alternatively, the C2 and/or C4 alcohols may be converted to new C2 and/or C4 esters through formation of the corresponding alkoxide by treatment of the alcohol with a

suitable base such as LDA followed by an acylating agent such as an acid chloride.

Baccatin III and 10-DAB analogs having different substituents at C2 and/or C4 can be prepared as set forth in Reaction Schemes 6-10. To simplify the description, 10-DAB is used as the starting material. It should be understood, however, that baccatin III derivatives or analogs may be produced using the same series of reactions (except for the protection of the CIO hydroxy group) by simply replacing 10-DAB with baccatin III as the starting material. Derivatives of the baccatin III and 10-DAB analogs having different substituents at CIO and at least one other position, for instance Cl, C2 , C4, C7, C9 and C13, can then be prepared by carrying out any of the other reactions described herein and any others which are within the level of skill in the art .

In Reaction Scheme 6, protected 10-DAB 3 is converted to the triol 18 with lithium aluminum hydride. Triol 18 is then converted to the corresponding C4 ester using Cl 2 CO in pyridine followed by a nucleophilic agent (e.g., Grignard reagents or alkyllithium reagents) .

Scheme 6

T M S Ol

T M S Oi

2 0 1 9

Deprotonation of triol 18 with LDA followed by introduction of an acid chloride selectively gives the C4 ester. For example, when acetyl chloride was used, triol 18 was converted to 1,2 diol 4 as set forth in Reaction Scheme 7.

Triol 18 can also readily be converted to the 0 1,2 carbonate 19. Acetylation of carbonate 19 under vigorous standard conditions provides carbonate 21 as described in Reaction Scheme 8; addition of alkyllithiums or Grignard reagents to carbonate 19 provides the C2 ester having a free hydroxyl group at C4 as set forth in 5 Reaction Scheme 6.

Scheme 7

TMSOlll

Scheme 8

TM

AC 2 0

DMAP

TMSOlll

As set forth in Reaction Scheme 9, other C4 substituents can be provided by reacting carbonate 19 with an acid chloride and a tertiary amine to yield

carbonate 22 which is then reacted with alkyllithiums or Grignard reagents to provide 10-DAB derivatives having new substituents at C2.

Scheme 9

Alternatively, baccatin III may be used as a starting material and reacted as shown in Reaction Scheme 10. After being protected at C7 and C13 , baccatin III is reduced with LAH to produce 1,2,4,10 tetraol 24. Tetraol 0 24 is converted to carbonate 25 using Cl 2 CO and pyridine, and carbonate 25 is acylated at CIO with an acid chloride and pyridine to produce carbonate 26 (as shown) or with acetic anhydride and pyridine (not shown) . Acetylation of carbonate 26 under vigorous standard conditions

provides carbonate 27 which is then reacted with alkyl lithiums to provide the baccatin III derivatives having new substituents at C2 and CIO.

Scheme 10

LAH

TMSOlll

TMSOlll

T M

10-desacetoxy derivatives of baccatin III and 10-desoxy derivatives of 10-DAB may be prepared by reacting baccatin III or 10-DAB (or their derivatives) with samarium diiodide. Reaction between the tetracyclic taxane having a CIO leaving group and samarium diiodide may be carried out at 0°C in a solvent such as tetrahydrofuran. Advantageously, the samarium diiodide selectively abstracts the CIO leaving group; C13 side chains and other substituents on the tetracyclic nucleus remain undisturbed. Thereafter, the C9 keto substituent may be reduced to provide the corresponding 9-desoxo-9β- hydroxy-10-desacetyoxy or 10-desoxy derivatives as otherwise described herein.

C7 dihydro and other C7 substituted taxanes can be prepared as set forth in Reaction Schemes 11, 12 and 12a.

REACTION SCHEME 11

OI I CH.

nBu 3 SnH

A I BN Ccat3 to l uene C r ef I ux

HOI

REACTION SCHEME 12

REACTION SCHEME 12a

T M

L i Ollll

e , C H 3 C N

As shown in Reaction Scheme 12, Baccatin III may be converted into 7-fluoro baccatin III by treatment with FAR (or, alterntively, diethylaminosulfur trifluoride ("DAST")) at room temperature in THF solution. Other baccatin derivatives with a free C7 hydroxyl group behave similarly. Alternatively, 7-chloro baccatin III can be prepared by treatment of baccatin III with methane sulfonyl chloride and triethylamine in

methylene chloride solution containing an excess of triethylamine hydro-chloride.

A wide variety of tricyclic taxanes are naturally occurring, and through manipulations analogous to those described herein, an appropriate side chain can be attached to the C13 oxygen of these substances. Alternatively, as shown in Reaction Scheme 13, 7-0- triethylsilyl baccatin III can be converted to a tricyclic taxane through the action of trimethyloxonium tetrafluoroborate in methylene chloride solution. The product diol then reacts with lead tetraacetate to provide the corresponding C4 ketone.

REACTION SCHEME 13

H

P b O A c 3 4

Recently a hydroxylated taxane (14-hydroxy-10- deacetylbaccatin III) has been discovered in an extract of yew needles (C&EN, p 36-37, April 12, 1993) .

Derivatives of this hydroxylated taxane having the various C2, C4, etc. functional groups described above may also be prepared by using this hydroxylated taxane. In addition, the C14 hydroxy group together with the Cl hydroxy group of 10-DAB can be converted to a 1,2- carbonate as described in C&EN or it may be converted to a variety of esters or other functional groups as otherwise described herein in connection with the C2, C4, C7, C9, CIO and C13 substituents.

The following examples are provided to more fully illustrate the invention.

EXAMPLE 1

(26-4)

Preparation of N-debenzoyl-N- (furoyl) -3 ' - desphenyl-3 ' - (4-nitrophenyl) taxol .

To a solution of 7 -triethylsilyl baccatin III ( 200 mg , 0 . 286 iratiol ) in 2 mL of THF at -45 °C was added dropwise 0.174 mL of a 1.63M solution of nBuLi in hexane. After 0.5 h at -45 °C, a solution of cis-1- (furoyl) -3- triethylsilyloxy-4- (4-nitrophenyl) azetidin-2-one (596 mg, 1.43 mmol) in 2 mL of THF was added dropwise to the mixture. The solution was warmed to 0 °C and kept at that temperature for 1 h before 1 mL of a 10% solution of AcOH in THF was added. The mixture was partitioned between saturated aqueous NaHC0 3 and 60/40 ethyl acetate/hexane. Evaporation of the organic layer gave a residue which was purified by filtration through silica gel to give 320 mg of a mixture containing (2'R,3'S)- 2' ,7- (bis) triethylsilyl-N-debenzoyl-N- (furoyl) -3 '-

desphenyl-3 ' - (4-nitrophenyl) taxol and a small amount of the (2'S,3'R) isomer.

To a solution of 320 mg (0.286 mmol) of the mixture obtained from the previous reaction in 18 mL of acetonitrile and 0.93 mL of pyridine at 0 °C was added 2.8 mL of 48% aqueous HF. The mixture was stirred at 0 °C for 3 h, then at 25 °C for 13 h, and partitioned between saturated aqueous sodium bicarbonate and ethyl acetate. Evaporation of the ethyl acetate solution gave 254 mg of material which was purified by flash chromatography to give 187 mg (74%)N-debenzoyl-N-

(furoyl) -3 ' -desphenyl-3 '- (4-nitrophenyl) taxol, which was recrystallized from methanoi/water.

. p.184-185 oc ; [α] 25 Na -60.0° (c 0.006, CHC1 3 ) .

2 H NMR (CDC1 3 , 300 MHz) δ 8.26 (d, J = 8.79 Hz, 2H,

Ar-N0 2 ) , 8.12 (d, J=7.2 Hz, 2H, benzoate ortho) , 7.68 (d, J=8.8 Hz 2H, benzamide ortho), 7.7-7.47 (m, 6 H, aromatic) , 7.3 (d, J = 9.3 Hz, IH, NH) , 7.02(d, J=3.3 Hz, IH, furyl) , 6.48(dd, J=3.3 Hz, 1.65 Hz, IH, furyl) , 6.27 (s, IH Hz, H10) , 6.26 (dd, J = 8.5, 8.5 Hz, IH, H13) , 5.87 (dd, J = 8.8, 1.65 Hz, IH, H3 ' ) , 5.65 (d, J = 6.6 Hz, IH, H2β) , 4.93 (d, J = 8.2 Hz, IH, H5) , 4.79 (dd, J = 2.7, 1.4 Hz, IH, H2') , 4.38 (m, IH, H7 ) , 4.29 (d, J = 8.4 Hz, IH, H20α) , 4.18 (d, J = 8.4 Hz, IH, H20β) , 3.97 (d, J=3.3 Hz, IH, 2 OH) , 3.79 (d, J = 6.6 Hz, IH, H3 ) , 2.5 (m, IH, H6α) , 2.4(m, IH, 70H) , 2.38 (s, 3H, 4Ac) , 2.27 (m, 2H, H14) , 2.22 (s, 3H, lOAc) , 1.88 (m, IH, H6β) , 1.81 (br s, 3H, Mel8) , 1.78 (s, IH, 10H) , 1.68 (s, 3H, Mel9) , 1.21 (s, 3H, Mel7) , 1.13(s, 3H, Mel6) .

EXAMPLE 2-43

Using the procedure set forth in Example 1 (except for the substituents of azetidin-2-one and the amounts of the reactants) a series of compounds were prepared having the structure shown above in which X 3 and X 10 are as shown in the following table. The structures were confirmed by NMR.

χ 3

2-furyl 4-methylbenzoyl 2-furyl isobutoxycarbonyl 2-furyl butoxycarbonyl 2-furyl diethylcarbamyl 2-furyl isopropoxycarbonyl 2-furyl allyloxycarbonyl 2-furyl benzyloxycarbonyl 2-furyl diphenylcarbamyl 2-thienyl ethoxycarbonyl 2-thienyl 3-butynyloxycarbonyl 2-thienyl crotyloxycarbonyl 2-thienyl 1, 3-diethoxy-2- propoxycarbonyl

2-thienyl methoxyethoxycarbonyl 2-thienyl neopentyloxycarbonyl 2-thienyl isopropoxycarbonyl 2-thienyl isobutoxycarbonyl 2-furyl 2-thienylcarbonyl 2-furyl 2-methoxyethoxy¬ carbonyl

2-furyl crotyloxycarbonyl 2-furyl neopentyloxycarbonyl 2-furyl cyclohexyloxycarbonyl 2-furyl 1, 3-diethoxy-2- propyloxycarbonyl

2-furyl 3-butynyloxycarbonyl 2-furyl N-methy1-N-pheny1- carbamoyl

χ 5

N,N-dimethylcarbamoyl 4-morpholinocarbony1 2-furoyl

N-n-propylcarbamoyl N-phenylcarbamoyl N-pheny1carbamoy1 N-n-propylcarbamoyl

The compounds of the preceding examples were in in vitro cytotoxicity activity against human colon carcinoma cells HCT-116 and HCT-116/VM46. The HCT116/VM cells are cells that have been selected for teniposide resistance and express the multidrug resistance phenotype, including resistance to taxol. Cytotoxicity was assessed in HCT116 and HCT VM46 human colon carcinoma cells by XTT (2 , 3-bis (2-methoxy-4-nitro-5-sulfophenyl) - 5- [ (phenylamino) carbonyl] -2H-tetrazolium hydroxide) assay (Scudiero et al, "Evaluation of a soluble tetrazolium/ formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines", Cancer Res. 48:4827-4833, 1988) . Cells were plated at 4000 cells/well in 96 well microtiter plates and 24 hours later drugs were added and serial diluted. The cells were incubated at 37°C for 72 hours at which time the tetrazolium dye, XTT, was added. A dehydrogenase enzyme in live cells reduces the XTT to a form that absorbs light at 450 nm which can be quantitated spectro- photometrically. The greater the absorbance the greater the number of live cells. The results are expressed as an IC 50 which is the drug concentration required to inhibit cell proliferation (i.e. absorbance at 450 nm) to

( _0 L0 L0 L0 _ ISJ _O _O _ _ tO _0 I— > I- 1 H 1 h- 1 I- 1 H 1 1 3 CO -O O. Ln tt-. L > ιs i- Λ o D Co -J cnLπ ιt- > ιsj |— Ό ID OO -J en LΠ it-. OJ t O

rf_- ωωω ωω w f- f-ω w μ

I I I I I I I

OJ KJ H rf- W t P i^ W M H J- UJ W t P > co ι— i I— » tt-. h

V Λ

O O O O O O O O O O CD O O O O O O O O O O O O O O O O O O O O O O CD O O O O O O O O O O O O O L0 O O O l O < O O O h A CD O O O O O |- 1 O O O O O <__> <-_i O O C- C_i H P H - l 1 P I m o P M H tt) U I P M^ m H M Ul H H ' if-. D il-. -O I-' h-' l-' l--' .— 1 !— ^ t

V

Λ Λ H> Λ Λ Λ Λ Λ

O O O KJ O O O O CO LΠ O O CO O O O O O I— ' O O O O O O I-^ LΠ O O O O O O O O O O O - oo μ μ ω ι o -) Ui ιo μw μ σι ω o o μ o ι ) t. μ ) t. uι „ [ μ ι ω uι t- (- μ μ ω o ι_n_ o σι ιMΛ) (» o μ - i μ nD > I-> CO OO LΠ μ o μ coω t o μ iw σi υi iti μ ω t cD -j w j- t

TABLE 2 CONTINUED

I so HCT HCT Example Compound 116 VM46

Using the procedures set forth in Example 1

(except for the substituents of azetidin-2-one and the protected taxane and the amounts of the reactants) a series of compounds were prepared having the following structure in which X 3 , X 10 , R 2 , R 7a , R 9a , and R 10a are as shown in Table 3. Unless otherwise indicated, R 2 is benzoyl, R 7a is hydroxy, R 9a is keto, and R 10a is acetoxy. The structures were confirmed by NMR.

TABLE 3

Example Compound ■• 10 Ri 0a ' .a ^

EXAMPLE 58

The taxanes of the Examples 45-57 were evaluated using the procedures set forth in Example 44. All compounds had an IC 50 of less than 0.1, indicating that they are cytotoxically active.

In view of the above, it will be seen that the several objects of the invention are achieved.

As various changes could be made in the above compositions without departing from the scope of the invention, it is intended that all matter contained in the above description be interpreted as illustrative and not in a limiting sense.