Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TEMPERATURE-CONTROL DEVICE FOR A BATTERY SYSTEM
Document Type and Number:
WIPO Patent Application WO/2017/067923
Kind Code:
A1
Abstract:
The invention relates to a temperature-control device (1) for a battery system, at least comprising a cuboid-shaped hollow body (2) having at least one connection device (3) for supplying and at least one connection device (4) for discharging a separately temperature-controlled fluid, a plurality of regularly arranged and identical openings (7) extending from a first body surface (5) to a second body surface (6), wherein a cylindrical battery cell (8) is accommodated by each opening (7), such that a fluid-tight fluid chamber is formed, characterised in that, with the connection of the cell head (11) and the cell base (12), the hollow body (2) extends over a height h from > 20 to < 100% of the total height H of the battery system.

Inventors:
KREISEL PHILLIP (AT)
KREISEL JUN JOHANN (AT)
KREISEL MARKUS (AT)
Application Number:
PCT/EP2016/074969
Publication Date:
April 27, 2017
Filing Date:
October 18, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KREISEL ELECTRIC GMBH (AT)
International Classes:
H01M10/613; H01M10/625; H01M10/643; H01M10/6567; H01M50/213; H01M50/227; H01M10/617
Domestic Patent References:
WO2016099606A12016-06-23
Foreign References:
DE102011017375A12012-01-26
DE102014112628A12016-03-03
US20150210184A12015-07-30
DE102011082991A12013-03-21
DE102014205133A12015-09-24
Attorney, Agent or Firm:
HÜBSCHER, Helmut et al. (AT)
Download PDF:
Claims:
Patentansprüche

1 . Temperiereinrichtung (1 ) für ein Batteriesystem, zumindest umfassend einen quaderförmigen Hohlkörper (2) mit zumindest einer Anschlusseinrichtung (3) zum Zuführen und zumindest einer Anschlusseinrichtung (4) zum Abführen eines gesondert temperierten Fluids, eine Vielzahl regelmäßig angeordneter und identisch ausgebildeter, sich von einer ersten Körperoberfläche (5) zu einer zweiten Körperoberfläche (6) hin erstreckender Durchbrüche (7), wobei von jedem Durchbruch (7) eine zylinderförmige Batteriezelle (8) aufgenommen ist, sodass ein fluiddichter Flüssigkeitsraum gebildet wird, dadurch

gekennzeichnet, dass sich der Hohlkörper (2) unter Ausschluss des Zellkopfes (1 1 ) und des Zellbodens (12) über eine Höhe h von >20 bis <100%, der Gesamthöhe H des Batteriesystems erstreckt.

2. Temperiereinrichtung (1 ) für Batteriezellen nach Patentanspruch 1 , dadurch gekennzeichnet, dass jeder Durchbruch (7) ein Dichtelement (9) aufweist, das die zylinderförmigen Batteriezellen (8) umschließt.

3. Temperiereinrichtung (1 ) für Batteriezellen nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass der quaderförmige Hohlkörper (2) einteilig aus Kunststoff, beispielsweise POM, gefertigt ist.

4. Temperiereinrichtung (1 ) für Batteriezellen nach Patentanspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass Durchbrüche (7) in Form einer dichtesten Kreispackung angeordnet sind.

5. Temperiereinrichtung (1 ) für Batteriezellen nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Batteriezellen voneinander beabstandet sind.

6. Temperiereinrichtung (1 ) für Batteriezellen nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das gesondert temperierte Fluid über eine Heiz- und/oder Kühleinrichtung im Kreis gepumpt wird.

7. Temperiereinrichtung (1 ) für Batteriezellen nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Fluid leitend ist.

8. Batteriepack mit hintereinander geschalteten Temperiereinrichtungen (1 , 1 ', 1 ") nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das gesondert temperierte Fluid über Temperiereinrichtungen (1 , 1 ', 1 "), zumindest eine Pumpeinrichtung und eine Heiz- und/oder Kühleinrichtung hinweg im Kreis geführt wird.

Description:
Temperiereinrichtunq für ein Batteriesystem

Technisches Gebiet

Die vorliegende Erfindung betrifft eine Temperiereinrichtung für ein

Batteriesystem mit einem quaderförmigen Hohlkörper mit zumindest einer Anschlusseinrichtung zum Zuführen und zumindest einer Anschlusseinrichtung zum Abführen eines gesondert temperierten Fluids, einer Vielzahl an

regelmäßig angeordneten und identisch ausgebildeten, sich von einer ersten Körperoberfläche zu einer zweiten Körperoberfläche hin erstreckenden

Durchbrüchen, wobei von jedem Durchbruch eine zylinderförmige Batteriezelle aufgenommen ist, sodass ein fluiddichter Flüssigkeitsraum gebildet wird.

Batteriesysteme, bzw. ein Verbund an mehreren Batteriesystemen, z.T. auch als Batteriepack bezeichnet, kommen bei mobilen Anwendungen, zum Beispiel bei Elektrokraftfahrzeugen oder Hybridfahrzeugen, als wiederaufladbare elektrische Energiespeicher, zum Beispiel mit Lithium-Ionen-Akkumulatoren, Lithium-Polymer-Akkumulatoren oder Nickel-Metallhybrid-Akkumulatoren, zum Einsatz. Bei vollelektrischen Antrieben werden, unter anderem um Größe und Gewicht des Batteriesystems weiter zu reduzieren, zum Teil auch Lithium- Ionen-Hochspannungsbatterien verwendet.

Gattungsgemäße Batteriesysteme müssen in einem bestimmten

Temperaturfenster betrieben werden. Der Ablauf elektrochemischer Vorgänge in einer Batterie wird nämlich entscheidend von den Betriebsbedingungen der Batterie und der Temperatur beeinflusst. Höhere Temperaturen verbessern die Elektronen- oder lonenmobilität, reduzieren jedoch die innere Impedanz der Batteriezelle und steigern deren Kapazität. Höhere Temperaturen können jedoch auch ungewollte oder irreversibel ablaufende chemische Reaktionen und/oder einen Verlust des Elektrolyten herbeiführen, wodurch eine dauerhafte Schädigung oder ein vollständiger Ausfall der Batterie auftreten kann.

Wiederholte Temperaturänderungen können die Batterie ebenfalls schädigen.

Ab einer Betriebstemperatur von +40 °C verringert sich die Lebensdauer, während unterhalb von -10 °C der Wirkungsgrad nachlässt und die Leistung sinkt. Darüber hinaus darf der Temperaturunterschied zwischen den einzelnen Zellen 5 bis 10 K nicht überschreiten. Kurzzeitige Spitzenbelastungen iVm hohen Strömen wie Rekuperation oder Boosten führen zu einer nicht

unerheblichen Erwärmung der Zellen. Zusätzlich können hohe

Außentemperaturen, beispielsweise in den Sommermonaten, dazu beitragen, dass die Temperatur in dem Batteriesystem einen kritischen Wert erreicht.

Stand der Technik

Aus der US 2015 210 184 A1 ist ein luftgekühltes Batteriepack bekannt. Das Batteriepack umfasst eine Mehrzahl von Batteriezellen, die in einer Mehrzahl von Modulen angeordnet sind, sodass Kühlkanäle zwischen benachbarten Zellen in jedem der Module definiert werden.

Aus der DE 10 201 1 082 991 A1 ist eine Batterie, mit einem Batteriegehäuse, Temperierelemente und einer Lithium-Ionen-Zelle, die in direktem Kontakt mit einem der Temperierelemente steht, bekannt.

Ferner ist ein Batteriepack mit einer Anzahl von Batteriemodulen mit

Batteriezellen und mindestens einer Temperiereinrichtung, die dadurch gekennzeichnet ist, dass die Batteriezellen durch ein Material mit

temperaturabhängiger Wärmeleitfähigkeit mit der mindestens einen

Temperiereinrichtung gekoppelt sind, aus der DE 10 2014 205 133 A1 bekannt.

Weitere aus dem Stand der Technik bekannte Möglichkeiten zur Temperierung gattungsgemäßer Batteriesysteme sind beispielsweise Luft aus dem

klimatisierten Fahrzeuginnenraum anzusaugen, eine spezielle, in der

Batteriezelle eingeschlossene Verdampferplatte an die im Fahrzeug vorhandene Klimaanlage anzuschließen, oder eine in dem Batterieblock eingebaute Kühlplatte mit Kühlmittel zu durchströmen (vgl. hierzu Behr/Hella „Thermomanagement in Hybridfahrzeugen"; BEHR HELLA SERVICE GmbH, Schwäbisch Hall). Sämtlichen aus dem Stand der Technik bekannten Kühlkonzepten mangelt es an einer schnellen und insbesondere gleichmäßigen Abführung der

entstehenden Wärme, insbesondere an einem optimierten

Temperaturmanagement. Dies gilt insbesondere für extreme

Leistungsbereiche, d.h. bei einer hohen Leistungsabgabe bzw. einer hohen Leistungsaufnahme der Batteriezelle und bei sehr hohen

Umgebungstemperaturen.

Auch das Problem des thermischen Ungleichgewichts im Zellverbund, das zu unterschiedlichen Leistungsdichten und damit wiederum zu einem thermischen Ungleichgewicht innerhalb eines Batterieblocks führt (selbstschädigendes System), ist nicht zufriedenstellend gelöst.

Darstellung der Erfindung

Aufgabe der vorliegenden Erfindung ist es, eine verbesserte, zumindest aber alternative Temperiereinrichtung für ein Batteriesystem bereitzustellen.

Insbesondere ist es Aufgabe der Erfindung, für ein thermisches Gleichgewicht innerhalb eines Batteriesystems zu sorgen.

Erfindungsgemäß wird eine Temperiereinrichtung für ein Batteriesystem vorgeschlagen, die zumindest einen quaderförmigen Hohlkörper mit zumindest einer Anschlusseinrichtung zum Zuführen und zumindest einer

Anschlusseinrichtung zum Abführen eines gesondert temperierten Fluids umfasst; der quderförmige Hohlkörper weist eine Vielzahl regelmäßig angeordneter und identisch ausgebildeter, sich von einer ersten

Körperoberfläche zu einer zweiten Körperoberfläche hin erstreckender

Durchbrüche auf, wobei von jedem Durchbruch eine zylinderförmige Batteriezelle aufgenommen ist, so dass ein fluiddichter Flüssigkeitsraum gebildet wird.

Erfindungswesentlich ist dabei, dass sich der Hohlkörper unter Ausschluss des Zellkopfes und des Zellbodens über eine Höhe h von > 20 bis < 100%, der Gesamthöhe des Batteriesystems erstreckt. Die Batteriezellen werden in dem Flüssigkeitsraum von dem gesondert temperierten Fluid umspült. Durch diesen unmittelbaren, vollflächigen Kontakt einer jeden zylinderförmigen Batteriezelle des Batteriesystems mit dem temperierten Fluid kann das System aktiv innerhalb eines optimalen Betriebstemperaturbereiches gehalten werden. Somit ist es durch die vorliegende Erfindung nicht nur möglich, entstehende Wärme am Zellenmantel der Batteriezellen schnell abzuführen, sondern auch ein thermisches Ungleichgewicht im Batteriezellenverbund zu vermeiden.

Um einen fluiddichten Flüssigkeitsraum zu gewährleisten, ist es bevorzugt, ein Dichtelement vorzusehen, das die zylinderförmigen Batteriezellen umschließt. Ein derartiges Dichtelement kann beispielsweise ein an jedem der Durchbrüche ausgebildeter Dichtring sein, der die Zellen über den Umfang an der oberen und unteren Zellmantelposition dichtend verschließt. Vorzugsweise sind die Dichtelemente jedoch einteilig ausgebildete, mit Durchbrüchen, entsprechen denen des quaderförmige Hohlkörper versehene Dichtplatten. Diese Dichtplatten sind einteilig, beispielsweise aus einem TPE, EPDM oder einem anderen elastomeren, bevorzugt thermoplastischen, Kunststoff, gefertigt, und sind vorzugsweise mittels 2K-Techik auf den Oberflächen des quaderförmigen Hohlkörpers aufgebracht. Denkbar ist auch, dass die

Dichtplatten auf dem quaderförmigen Hohlkörper mittels lösbarer

Verbindungstechnik, beispielsweise verschnappt oder verschraubt, aufgebracht sind. Vorzugsweise werden dabei die zylinderförmigen Batteriezellen von den Dichtelementen der beiden Dichtplatten am jeweiligen Umfang der Zelle so umschlossen, dass sie vollständig abdichten. Der quaderförmige Hohlkörper ist vorzugsweise einteilig aus Kunststoff, beispielsweise POM, gefertigt. Um in der erfindungsgemäßen

Temperiereinrichtung möglichst viele zylinderförmige Batteriezellen

unterbringen zu können, d.h. eine möglichst raumsparende Anordnung der Batteriezellen zu gewährleisten, sind die Durchbrüche vorzugsweise in Form einer dichtesten Kreispackung angeordnet.

In einer Anordnung, in der von jedem Durchbruch eine zylinderförmige

Batteriezelle aufgenommen ist, ist jede Reihe von Batteriezellen zur

benachbarten Reihe um eine halbe Zellbreite versetzt angeordnet (1 /2

Durchmesser der Batteriezelle). Zwischen den einzelnen Zellen einer Reihe ist ein minimaler Abstand (S). Durch diesen Abstand und die Anordnung als dichteste Kreispackung ist gewährleistet, dass das gesondert temperierte Fluid jede Batteriezelle umströmen kann. Auch eine Durchströmung des

Flüssigkeitsraums mit dem temperierten Fluid ist hierdurch sichergestellt. Erfindungsgemäß erstreckt sich der quaderförmige Hohlkörper unter

Ausschluss des Zellkopfes und des Zellbodens über eine Höhe h von > 20 bis < 100% der Gesamthöhe H des Batteriesystems. Die Höhe h ist an die

Anforderung an das Temperaturmanagement, insbesondere an die

Kühlleistung, anzupassen, und wird bestimmt aus dem Gleichgewicht zwischen thermischen Anforderungen und dem Batteriegewicht, das mit zunehmender Hohlkörperhöhe steigt.

Über zumindest eine Anschlusseinrichtung zum Zuführen und zumindest eine weitere Anschlusseinrichtung zum Abführen eines gesondert temperierten Fluids wird das Batteriesystem, umfassend eine Vielzahl zylinderförmiger Batteriezellen, temperiert, dergestalt, dass in dem fluiddichten Flüssigkeitsraum die Zellwände der einzelnen Batteriezellen von dem Fluid umströmt werden.

Da der Flüssigkeitsraum nach oben abgedichtet ist, kommt das Fluid, insbesondere die Kühlflüssigkeit, nicht mit elektrisch sensiblen Bereichen des Batteriesystems in Kontakt. Ein inhomogenes Altern einzelner Batteriezellen innerhalb eines Batteriesystems bewirkt, dadurch, dass diese unterschiedlichen Temperaturen ausgesetzt sind, eine beschleunigte, überdurchschnittliche Alterung des

Batteriesystems, und ferner eine reduzierte Kapazität. In einer bevorzugten Ausführungsform wird daher das gesondert temperierte Fluid, insbesondere die Kühlflüssigkeit, aktiv durch die Temperiereinrichtung gepumpt. Damit kann zuverlässig verhindert werden, dass eine Batteriezelle, die an einer Außenseite des quaderförmigen Hohlkörpers angeordnet ist, einer anderen thermischen Umgebung ausgesetzt ist, als eine, die beispielsweise zwischen anderen Batteriezellen, insbesondere mittig angeordnet ist.

Vorzugsweise wird das Fluid über eine Heiz- und/oder Kühleinrichtung im Kreis gepumpt. In einer besonders bevorzugten Ausführungsform wird das Fluid durch mehrere hintereinander angeordnete erfindungsgemäße

Temperiereinrichtungen und zumindest einer Heiz- und/oder Kühleinrichtung im Kreis gepumpt. Als gesondert temperiertes Fluid wird insbesondere eine Kühlflüssigkeit, wie beispielsweise Wasser, verstanden, die über eine Heiz- und/oder Kühleinrichtung aktiv temperiert wird.

Durch eine Pumpeneinrichtung, Verbindungsleitungen zwischen zwei oder mehreren Temperiereinrichtung und einer Heiz- und/oder Kühleinrichtung kann ein Batteriepack, das aus mehreren Batteriesystemen besteht temperiert werden.

Mittels der erfindungsgemäßen Temperiereinrichtung und dem gesondert temperierten Fluid werden Temperaturunterschiede zwischen den einzelnen Batteriezellen von 5 bis 10 K nicht überschritten. Zudem kann das

Batteriesystem im optimalen, insbesondere von den Batterieherstellern vorgegebenen Temperaturfenster betrieben werden. Aus einer aktiven Kühlung bzw. Erwärmung der einzelnen Batteriezellen mittels der erfindungsgemäßen Temperiereinrichtung nicht nur innerhalb der vorgegebenen

Betriebstemperaturen, sondern in einem weiter begrenzten Temperaturbereich, resultiert eine optimierte Leistungsausbeute. Weitere Merkmale und Vorteile der vorliegenden Erfindung werden dem

Fachmann aus der nachfolgenden Beschreibung einer Ausführungsform, unter Bezugnahme auf die beigefügten Zeichnungen ersichtlich.

Kurze Beschreibung der Zeichnung Die Figuren zeigen:

Fig. 1 eine Temperiereinrichtung für ein Batteriesystem,

Fig. 2 eine Dichtplatte,

Fig. 3 einen quaderförmigen Hohlkörper von der Seite und von oben betrachtet und

Fig. 4 ein Batteriepack umfassend drei Temperiereinrichtungen. Weg zur Ausführung der Erfindung

Figur 1 zeigt eine Temperiereinrichtung (1 ) für ein Batteriesystem mit einem quaderförmigen Hohlkörper (2) mit zumindest einer Anschlusseinrichtung (3) zum Zuführen und zumindest einer Anschlusseinrichtung (4, vgl. Figur 4) zum Abführen eines gesondert temperiertem Fluids. In einer Vielzahl regelmäßig angeordneter und identisch ausgebildeter, sich von einer ersten

Körperoberfläche (5) zu einer zweiten Körperoberfläche (6, Figur 3A) hin erstreckender Durchbrüche (7) sind zylinderförmige Batteriezellen (8) angeordnet. Die Durchbrüche (7) resp. die Batteriezellen (8) die sind in Form einer dichtesten Kreispackung angeordnet.

Figur 2 zeigt eine Dichtplatte (9) aus einem elastomeren, bevorzugt

thermoplastischen Kunststoff, mit einer Vielzahl an regelmäßig angeordneten und identisch ausgebildeten Durchbrüchen (7 ' ). Um einen fluiddichten

Flüssigkeitsraum zu gewährleisten ist die Dichtplatte (9), vorzugsweise mittels 2K-Technik auf den Oberflächen (5, 6) des quaderförmigen Hohlkörpers (2) aufgebracht. Figur 3 zeigt den quaderförmigen Hohlkörper (2) von der Seite in einer

Schnittdarstellung (3A) bzw. von oben (3B), ebenfalls in einer

Schnittdarstellung. Man erkennt drei versetzt angeordnete Reihen, mit jeweils sieben Durchbrüchen (7). In jedem Durchbruch (7) ist im zusammengebauten Zustand eine zylinderförmige Batteriezelle (8) aufgenommen, dergestalt, dass jede Zelle zur Nachbarzelle einen minimalen Abstand (S) hat. Dieser Abstand (S) und die Anordnung als dichteste Kreispackung gewährleistet, dass jede einzelne Batteriezelle von dem gesondert temperiertem Fluid umströmt zu werden kann. Das Fluid wird über die Anschlusseinrichtung (3) dem

quaderförmigen Hohlkörper (2) zugeführt, und verlässt diesen an dessen Unterseite über die Anschlusseinrichtung (9).

Figur 4 zeigt drei hintereinander geschaltete Temperiereinrichtungen (1 , 1 ' , 1 " ) als Teil eines Batteriepacks, wobei die schwarze Linie (10) den Weg des Fluids darstellt. Über die Anschlussvorrichtung (3) strömt das Fluid in die erste

Temperiereinrichtung (1 ), um diese über die Anschlusseinrichtung (9) wieder zu verlassen; anschließend strömt das Fluid über die Anschlusseinrichtung (3 ' ) in die zweite Temperiereinrichtung (1 ' ), durchströmt diese und verlässt sie über die Anschlusseinrichtung (9 ' ) wieder. Dies setzt sich für die dritte und gegebenenfalls folgende Temperiereinrichtung fort. Der Hohlkörper (2) erstreckt sich über eine Höhe h, die kleiner als die Gesamthöhe H des

Batteriesystems ist. Die sensiblen Bereiche des Batteriesystems, insbesondere der Zellkopf (1 1 ) und der Zellboden (12), sind erfindungsgemäß von der Temperiereinrichtung (1 ) ausgeschlossen.