Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TETRACARBON
Document Type and Number:
WIPO Patent Application WO/1997/025078
Kind Code:
A2
Abstract:
A synthetic polymeric form of carbon (TetracarbonTM) which exhibits some properties similar to biological tissues. Tetracarbon is highly biocompatible and may have application in medicine and microelectronics. Tetracarbon is a biocompatible substrate coating made by depositing short linear chains of carbon atoms upon the surface of the substrate. The carbon chains are non-turbostratic and oriented perpendicular to the substrate surface and are densely packed parallel to one another in hexagonal structures with the distance between the carbon chains being between 4.8 - 5.03 �. A layer of Tetracarbon is identical to an adjacent layer and randomly shifted laterally relative to each other.

Inventors:
GUSEVA MALVINA B (RU)
NOVIKOV NIKOLAY D (RU)
BABAEV VLADIMIR G (RU)
ADAMYAN ARNOLD A (RU)
LAVYGIN IGOR A (RU)
Application Number:
PCT/IB1996/001487
Publication Date:
July 17, 1997
Filing Date:
December 18, 1996
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TETRA CONSULT LTD (RU)
GUSEVA MALVINA B (RU)
NOVIKOV NIKOLAY D (RU)
BABAEV VLADIMIR G (RU)
ADAMYAN ARNOLD A (RU)
LAVYGIN IGOR A (RU)
International Classes:
A61L27/00; A61L27/30; C23C14/02; C23C14/06; C23C14/12; C23C14/24; C23C14/28; C23C14/32; H01J37/32; A61F2/00; (IPC1-7): A61L27/00
Foreign References:
US5133845A1992-07-28
EP0102328A21984-03-07
GB2286347A1995-08-16
Other References:
THIN SOLID FILMS, vol. 188, no. 2, 15 July 1990, pages 293-300, XP000135196 ROTHER B ET AL: "CATHODIC ARC EVAPORATION OF GRAPHITE WITH CONTROLLED CATHODE SPOT POSITION"
THIN SOLID FILMS, vol. 270, no. 1/02, 1 December 1995, pages 391-398, XP000595248 GUPTA B K ET AL: "MICROMECHANICAL PROPERTIES OF AMORPHOUS CARBON COATINGS DEPOSITED BY DIFFERENT DEPOSITION TECHNIQUES"
DIAMOND AND RELATED MATERIALS, vol. 1, no. 2 - 04, 25 March 1992, pages 321-327, XP000349681 ULLMANN J ET AL: "DEPOSITION OF NON-GRAPHITIC CARBON FILMS BY LOW CARBON PARTICLE ENERGIES"
Download PDF:
Claims:
CLAIMS
1. A medical implant adapted for implantation within a mammal and having a tissue facing surface wherein at least a portion of said tissue facing surface has a coating comprising a plurality of linear carbon chains, each said carbon chain having an inner end adjacent to said tissue facing surface and an outer end in opposition thereto and a carbon chain axis therebetween wherein said carbon chain axis lies along a line connecting said inner end and said outer end and wherein said carbon chain axis is oriented substantially perpendicular to said tissue facing surface and wherein said inner end of a portion of said plurality of linear carbon chains is chemically bonded to said tissue facing surface of said medical implant.
2. The medical implant of claim 1 wherein said tissue facing surface is a biocompatible elastomer.
3. The medical implant of claim 2 wherein said elastomer comprises silicone.
4. The medical implant of claim 1 wherein said substantially each said carbon chain included within said plurality of carbon chains includes at least one carbon atom having an sp electronic state, said at least one carbon atom being chemically double bonded to two adjacent carbon atoms .
5. A substrate having a surface wherein at least a portion of said surface has a coating affixed thereto comprising a plurality of linear carbon chains, each said carbon chain having an inner end adjacent to said portion of said surface and an outer end in opposition to said inner end and a carbon chain axis therebetween wherein said carbon chain axis is defined as being a line connecting said inner end and said outer end of each said carbon chain and said carbon chain axis is oriented substantially perpendicular to a plane tangent to said surface at a point on said surface immediately adjacent to said inner end and wherein said inner end of a portion of said plurality of linear carbon chains is chemically bonded to said surface of said substrate.
6. The substrate of claim 5 wherein said surface is an elastomer.
7. The substrate of claim 5 wherein said surface is a semiconductor.
8. The substrate of claim 5 wherein said carbon chain includes at least one carbon atom having an sp electronic state, said at last one carbon atom being represented by the formula A=C=B where A and B are carbon atoms .
9. A coating for a substrate surface comprising at least one layer consisting essentially of a plurality of linear carbon chains wherein each carbon chain is oπented substantially perpendicular to a plane drawn tangent to said surface adjacent to said carbon chain, said layer being further characterized by the fact that the plurality of linear carbon chains forming the layer are parallel to one another and densely packed in hexagonal structures with the distance between adjacent carbon chains being between 4 8 5 03A. 10 The coating of claim 9 comprising more than one layer superimposed to form a coating having overlying layers, each said layer being substantially identical and randomly shifted in the plane ofthe layer relative to each other layer 11 A method for making a substrate having a coating in accordance with claim 9 comprising the steps of (a) mounting said substrate in a vacuum chamber, and (b) subjecting a portion of the surface of said substrate to a flux of inert gas ions having an energy in the range of 500 2000 eV, then (c) exposing said portion of said surface of said substrate to a plasma flux comprising carbon atoms.
10. 12 The method of claim 1 1 wherein step (b) further comprises the steps of. (i) evaporating carbon atoms from a graphite cathode in vacuum by a pulse arc discharge to form a carbon atom plasma; and (ii) directing said carbon atom plasma toward said substrate prior to performing step (c). 13 The method of claim 12 wherein said carbon plasma is formed with the density of 5 x 1012 1 x 1013 cm"3 and a pulse arc discharge duration of 200 600 μs, and a repetition rate of 1 5 Hz. 14 The method of claim 13 wherein said flux of inert gas ions comprises a flow of ions having energy of 150 2000 eV, said flow being directed toward said substrate to intersect the carbon plasma flux at the substrate surface. 15 The method of manufacturing a substrate having a coating according to claim 12 wherein the pressure inside the vacuum chamber is in the range 1 x 10"'1 x 10"2 Pa.
11. 16 The method of manufacturing a substrate having a coating in accordance with claim 12 wherein the inert gas is argon. 17 An apparatus operable for coating a substrate said coating is in accordance with claim 9 comprising: (a) a first vacuum chamber having a carbon plasma flux opening and an ion beam opening in the wall thereof, said first vacuum chamber containing a substrate holder; and (b) a second vacuum chamber containing: (i) a cathode of main discharge; (ii) an anode of main discharge; (iii) an ignition electrode; (iv) a cathode of auxiliary discharge separated from the ignition electrode by a dielectric spacer; and (v) a source of electrical power. said second vacuum chamber having a opening in gaseous communication with said carbon flux opening. (c) a third chamber adapted to provide an ion beam having an ion beam axis wherein said ion beam intersects said flux beam at said substrate holder. 18 An article of manufacture comprising a substrate having a surface wherein said surface has a coating thereon made in accordance with the method set forth in claim 11. 19. An article of manufacture comprising a substrate having a surface wherein said surface has a coating thereon made in accordance with the method set forth in claim 12. 20. An article of manufacture comprising a substrate having a surface wherein said surface has a coating thereon made in accordance with the method set forth in claim 13.
12. 21 An article of manufacture comprising a substrate having a surface wherein said surface has a coating thereon made in accordance with the method set forth in claim 14.
13. 22 An article of manufacture comprising a substrate having a surface wherein said surface has a coating thereon made in accordance with the method set forth in claim 15.
14. 23 An article of manufacture comprising a substrate having a surface wherein said surface has a coating thereon made in accordance with the method set forth in claim 16.
Description:
TETRACARBON

BACKGROUND OF THE INVENTION

Field ofthe Invention

The invention relates to biocompatible carbonaceous films for applications

including medical implantation and to a method for fabricating the films on a

substrate surface.

2. Prior Art

Elemental carbon occurs naturally in two widely known allotropic forms:

diamond and graphite, each of which exist in more than one polymorphic

modification. Diamond is a 3-dimensional spatial polymer of tetrahedral carbon in

which every carbon atom is bonded to four other carbon atoms by four identical

bonds, each 1.54 A, long. Diamond, which is a dielectric, has a minimal structural

unit consisting of a tetrahedron, with carbon atoms occupying positions in each of

the tetrahedron's corners and at the center ofthe tetrahedron.

Graphite consists of one or more 2-dimensional (planar) polymer sheets of

trigonal carbon wherein the polymeric sheets form parallel layers. Each carbon atom

is bonded to three other carbon atoms with three identical bonds evenly distributed

in a plane, each bond being 1.42 A long. The identical overlying graphite layers are

oriented parallel to each other and are located at a distance of 3.35 A from each

other. Graphite is a conductor of electric current. The 6-carbon benzene ring is the

basic structural unit of graphite.

Carbyne is the third known allotropic form of polymeric carbon. The

structure of carbyne is the most similar to the structure of Tetracarbon™, the

polymeric form of carbon referred to hereinafter as Tetracarbon, which comprises

the subject matter of the present invention and is defined. Carbyne is a

semiconductor formed from linear polymeric carbon A straight carbon chain is the

basic structural element within a carbyne layer in which every carbon atom is bonded to two neighbors with two equal bonds, wherein each bond is between 1 19 - 1 38 A

long and the distance between carbon chains is 2 97 A A minimal structural unit

from which a carbyne crystal can be assembled is a hexagonal prism Bent chains are

located in the corners of the hexagon Bendings divide the prism into two parts A straight chain is located in the center ofthe lower part with a comparable chain being

absent in the upper part Admixture of hetero (non-carbon) atoms may result in

such hetero atoms occupying this vacancy Carbyne was obtained for the first time

in 1969 by means of oxidizing polydehydrocondensation of acetylene Carbyne forms a sheet-like microcystal consisting of a plurality of regularly shifted chemically

bonded A-B-A-B layers Each A layer comprising the microcrystal consists of densely packed carbon chains oriented perpendicular to the plane of the layer and

sandwiched between two B layers A and B layers are regularly shifted relative to

each other and chemically bonded to adjacent layers In each B layer there is a

regular grating of chain vacancies. At present, no carbyne crystals are known having a size greater than 1 μm (Bulletin of the Russian Academy of Science Physics,

1993, vol 3, p 450)

In addition to the pure crystalline allotropic forms of carbon described above,

there are a number of intermediate transitional forms such as pyrolytic carbon and glassy carbon Pyrolytic carbon is a synthetic high-density carbon polymeric with

turbostratic structure and composed of either pure or silicon-alloyed carbon

microcrystals These properties distinguish pyrolytic carbon from other polymeric

carbon materials such as graphite, diamond and glassy carbon. Short range order in

7/ 250 7 8

a pyrolytic carbon film which presents a turbostratic structure wherein the carbon

chains are in a plane parallel to the plane of the film and is similar to that of graphite,

the basic structural unit being 6-carbon slightly-deformed benzene rings. Pyrolysis of

a gaseous hydrocarbon is employed for depositing pyrolytic carbon upon a substrate

surface. The high temperature required for pyrolytic deposition limits the choice of

substrate to materials to those which are stable at high temperatures such as ceramics

and low-porosity graphite. In addition, a substrate composed of a brittle material such as graphite must first be mechanically shaped prior to coating. Due to the

extreme hardness of pyrolytic carbon, it can only be worked and polished with

diamond tools and pastes so that only relatively simple shapes are suitable for

graphite substrates. Vapor deposition has been used to transfer carbon atoms from a turbostratic

carbon target to a substrate such as the surface of an implantable prosthesis. By

appropriately regulating the conditions under which carbon deposition takes place, it

is possible to hold the temperature ofthe substrate below a predetermined limit so as

to minimize or prevent altering the substrate's physical characteristics Vapor deposition allows carbon to be deposited in a thin film upon a substrate surface, the

film forming a coating which retains the turbostratic structure and high-density

characteristic of pyrolytic carbon. Representative patents and author's certificates describing various prior art

carbon coatings, including turbostratic coatings, are presented below in Table I.

TABLE I

Country Number Title

USSR a c. 1837620 The method of plasma-spraying of bioactive coatings

a. c. 165628 The method of manufacturing of free nickel films

a.c. 646578 The method of manufacturing of thin films

a/c. 1 163656 The method of plasma reactive spraying of films in

vacuum

a.c. 1405361 The appliance for ion-plasma processing of substrates

in vacuum

a.c. 1750270 The method of manufacturing of films and the

appliance for its realization

a.c. 1710596 The method of carbon-based films manufacturing

a.c. 1710596 Pulse generator of carbon plasma

a.c. 1809840 The appliance for thin films deposition in vacuum

a.c. 336981 The appliance for deposition of films by means of

cathode spraying

a.c. 603701 The appliance for manufacturing of metal,

semiconductor, and dielectric films, in particular, of

the artificial diamond coatings by the method of

cathode spraying

USA patent 5270077 The method of chemical deposition of plane diamond

film from vapor phase

patent 5133845 The method of prostheses manufacturing from polymer

materials with biocompatible carbon coating

patent 5073241 The method of formation of carbon films and the

appliance for its realization

patent 5073241 The method of formation of carbon films

patent 5078837 The method of ion deposition of coating and the appliance for its realization

patent 4981568 The method of manufacturing of diamond films of high

purity at low temperatures and the appliance for its

realization France patent 2675517 The method of deposition of diamond-like layer and an object covered with such layer

Japan patent 5-26867 The method of manufacturing of hard carbon film

patent 5-10426 Hard carbon film

patent 5-10425 The method of manufacturing of thin carbon film

patent 5-40825 The method of formation of hard carbon film

patent 5-42506 The device for vacuum spraying of films

patent 5-43783 The device for deposition of film coating patent 3-177567 The appliance for vacuum spraying of films patent 3-15846 The method of formation of carbon coating with

diamond-like structure

patent 3-6223 The method and appliance for formation of carbon

coating transparent for infrared beams

PCT 2/09715 The method of plasma spraying of biologically active coatings on implants

European 0467043 Diamond film without a substrate, the method and

appliance for its manufacturing

0474369 Coating made of diamond-like carbon

0500359 Carbon with graphite structure its interpolation

derivatives and the methods of their production

0474369 Coating made of diamond-like carbon

0420781 The method of manufacturing of a carbon-based material

A method for manufacturing a polymeric prosthesis having a biocompatible carbon coating is shown in US Patent 5,133,845. The biocompatible carbon coating

is deposited on the substrate surface by means of triode cathode spraying. Carbon is sprayed at low temperature at a pressure ranging from 6 x 10 "4 - 6 - 10 "3 mbar (6 x 10 '2 - 6 x 10 '1 Pa). Spraying voltage is 2000 - 3200 V, the spraying current being

between 0.1 - 0.3 Amperes. A uniform biocompatible coating of turbostratic carbon

is formed upon the substrate surface with the density ofthe coating being at least 2.1 g/cm 3 . Another method for manufacturing a prosthesis having a biocompatible film

coating is presented in US patent 5,084,151. The coating deposition proceeds in a

vacuum chamber at a pressure of 10 "4 - 10 "2 mbar. A plasma beam is formed and directed toward a carbon cathode disposed to lie in the path of the plasma beam High voltage at low current is applied to the cathode. The sprayed carbon atoms are

directed toward and impinge upon the substrate surface which is heated to a

temperature of 250° C. The coating obtained by this method also has turbostratic

structure.

A turbostratic carbon polymer film can be applied to the outer surface of a

prosthesis in an apparatus comprising a power supply and a vacuum chamber

partitioned to form two sub-chambers. A gaseous ion source directs an ion beam

through an aperture in the first sub-chamber into the second sub-chamber. In the

second sub-chamber, which is open to (in gaseous communication with) the first sub- chamber, a carbon cathode is located directly in the path of the ion beam. A ring- shaped anode surrounds the carbon cathode. A heat transfer system is employed for

cooling the carbon cathode and anode. The carbon cathode is sprayed with the ion

beam and carbon is vaporized. The substrates to receive the coating are placed within the second sub-chamber and disposed to receive the carbon vapor on the surface thereof upon carbon vapor condensation. This method and apparatus

produces a turbostratic carbon film which is deposited upon a substrate surface to

form a coating on the substrate which is reported to exhibit biocompatible properties.

Carbyne coating has been reported to posses high biocompatibility and thromboresistivity (Diamond and Related Materials, v.4 (1995) p.1 142-44). Carbyne

coatings, fibers and films are prepared by the chemical dehydrohalogenation of

halogen-containing polymers such as, for example, polyvinylidene fluoride

("PVDF"). An alkaline alcoholic solution is used as the dehydrohalogenating agent.

However, such carbyne coatings can be produced only on the surface of PVDF

substrates which limits its applications.

A method for effecting the ion-stimulated deposition of carbyne on a

substrate surface is known (Bulletin of the Section of Physics of the Academy of

Natural Sciences of Russia, no. 1, 1993, p. 12). The method relies on the ion- stimulated condensation of carbon in high vacuum (10 *7 Torr) A flowstream of

carbon and a flowstream of ions of inert gas (e.g. argon), either simultaneously or

sequentially, are directed to impinge upon the substrate surface. The carbon flux is

obtained by means of thermal evaporation or ion spraying of graphite The energy of the argon ions (Ar + ) bombarding the substrate surface may vary, but for deposition is generally within the energy interval between 90 up to 200 eV The current density of

ions at the substrate is 10 - 1000 μA/cm 2 , the rate of film growth is 10 - 1000 A/min,

and the thickness of the deposited film is 200 - 1000 A. Carbyne films are obtained by means of irradiation with ions either simultaneously or alternating with

condensation of carbon. The resulting films are quasimorphous, consisting of an amorphous carbon matrix and microcrystalline impurities The method is inoperable

for coating surfaces having either a relatively large area and/or a complex shape, and

may be applied only for the deposition of films on conducting or semiconducting

substrate surfaces. The method is inoperable for depositing carbyne on the surface of substrates such as ceramics, non-conducting polymers and silicone rubber which

are substrate materials commonly used for manufacturing medical implants.

In summary, the prior art does not provide either an apparatus or a method

for depositing a non-turbostratic carbon film having a structure as described below

or an apparatus operable for depositing a non-turbostratic carbon film on a large

surface, wherein the film exhibits the properties characterizing Tetracarbon which

are more fully disclosed below.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a biocompatible coating for a

surgically implantable article.

It is a further object of this invention to provide a non-turbostratic carbon

film adapted for coating a substrate surface.

It is a further object of the invention to provide a method for making a

prosthesis or similar surgically implantable device which has a biocompatible tissue-

contacting coating on the outer surface.

It is yet a further feature of the invention to provide an apparatus which is

operable for depositing a non-turbostratic biocompatible polymeric coating upon the

surface of a substrate.

A further objective of the invention is to provide a coating for a surgically

implantable medical device wherein the coating is adapted to permit self-reassembly

in order to accommodate tissue ingrowth

Tetracarbon is a polymeric carbon film having a non-turbostratic 2-

dimensional planar structure. In Tetracarbon films the short, straight linear carbon

chains that form the layer are organized into densely packed hexagonal structures

with the distance between chains being 4.8 - 5.03 A. Unlike turbostratic carbon

films, in Tetracarbon film the long axis of the linear carbon chains comprising the

film ares oriented perpendicular to the plane of the film. A Tetracarbon film may

be a single layer or many layers which overlie one another. If the number of layers in

a Tetracarbon film exceeds one, the layers are identical and randomly shifted

relative to each other. In Tetracarbon, the interaction between the linear carbon

chains in the film is due to van der Waals forces which set the distance between the

chains in the range 4.8 - 5.03 A. As is true with carbyne, a carbon chain is the main

structural element of Tetracarbon. The Tetracarbon chain consists substantially

entirely of carbon atoms, each carbon atom having two 1.19 - 1.38 A-long valence

bonds with a 180° angle between them. The introduction of hetero atoms into a

carbon chain under the influence of ion irradiation and alloying can modify the

structure of Tetracarbon be to adapted to particular applications. The

morphological features characterizing a Tetracarbon coating can be modified, for

example by:

(a) - regular joining of chains within adjacent layers;

(b) - splitting of a chain into linear fragments; and/or

(c) - formation of bends within a carbon chain; and/or

(d) - changing the distance between carbon chains.

The length of linear carbon chain fragments and the number of bends effect

the morphology of Tetracarbon. Thus, the morphology may be varied by the choice

of gas used for ion irradiation, the composition using an admixture of gases and

varying the proportions of the admixture and the temperature of deposition.

Tetracarbon structure may "self-organized" in vivo; structurally readjusting to

adapt itself to the structure of a protein molecule growing on and intimately into the

Tetracarbon due to the interaction between the film and the protein penetration of

endogenous ions into the Tetracarbon layer.

The above objectives are met with a polymeric carbon film referred to herein

as Tetracarbon. Tetracarbon refers to a carbonaceous polymeric film, the surface

of the film defining a plane. The film may be either a single layer or a

1 superimposition of multiple layers wherein each layer within the film consists

2 essentially of a plurality of linear chains of covalently bonded carbon atoms The

3 linear (end to end) axis of each linear carbon chain in a layer is perpendicular to the

4 plane of the film surface Thus, Tetracarbon is a non-turbostratic material Only

5 one end of the carbon chains comprising the innermost layer of Tetracarbon may be

6 bonded to the surface of the substrate upon which the Tetracarbon layer is

7 deposited The opposing end of the carbon chains project away from the substrate

8 surface in a substantially vertical direction.

9 An apparatus operable for depositing a Tetracarbon coating upon a

I o substrate surface comprises essentially a vacuum chamber inside which are disposed

I I in combination: a graphite cathode of main discharge, an anode of main discharge,

12 an ignition electrode, a cathode of auxiliary discharge separated from the ignition

13 electrode by a dielectric spacer; and a power supply The vacuum chamber has two

14 side compartments, each of which are in gaseous communication with the interior of

15 the vacuum chamber by means of apertures therebetween. One of the two side

16 compartments contains the cylindrical graphite cathode of main discharge and the

17 anode of auxiliary discharge, surrounding the cathode of main discharge with a gap

18 therebetween The end of the cylindrical anode of auxiliary discharge closest to the

19 substrate has a conic shear directed axially inward and facing the cathode of main

20 discharge. The anode of the main discharge comprises two or more electrically

21 conductive parallel rings which are rigidly connected to one another by metal rods

22 The ignition electrode, dielectric spacer, and the cathode of the auxiliary discharge

23 are fabricated as a laminated ring, each of the elements being rigidly affixed to each

24 other and interposed between the anodes of the main and auxiliary discharges The

anode of auxiliary discharge, cathode of main discharge, ignition electrode, cathode

of auxiliary discharge, dielectric spacer and anode of main discharge are coaxially

disposed with respect to each other. A substrate holder, placed inside the vacuum chamber behind the anode is

adapted to support a substrate and permit planetary rotation of the substrate around

two axes and is connected electrically to the chassis ground of the vacuum chamber.

The axis around which the substrate holder revolves is tilted or inclined with respect to the orbital axis. An aperture in the wall of the second side compartment of the vacuum chamber permits entry of an ion beam into the vacuum chamber. The ion

and plasma beams intersect at the substrate surface. The apparatus also includes a capacitor and an inductance, one pole of the inductance being connected to the cathode of main discharge and the other pole being connected to a negatively

charged plate of the capacitor, the positively charged plate of which is connected to

the anode of main discharge. The poles of the power supply are attached to the

corresponding plates of the capacitor. The cathode of main discharge is made of graphite having high purity. For medical applications, a purity of 99.99% or better is

preferred.

While the above summary of the invention generally sets forth the nature of

the invention, the features of the invention believed to be novel are set forth with

particularity in the appended claims. However, particular embodiments of the

invention, both as to organization and method of operation, together with further

objects and advantages thereof may best be understood by reference to the following

description taken in conjunction with the accompanying drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 A is a schematic drawing showing the atomic distribution in

graphite.

Figure 1 B is a schematic drawing showing the atomic distribution in

diamond.

Figure 1 C is a schematic drawing showing the atomic distribution in carbyne.

1 identifies the chain vacancies; 2 indicates regular bends between the layers; A refers

to a densely packed layer; and B indicates a layer with chain vacancies.

Figure 1 D is a schematic drawing showing the atomic distribution of carbon

atoms in a non-turbostratic polymeric carbon film (Tetracarbon).

Figure 1 E is a hypothetical model of a Tetracarbon chain with two bends,

which illustrates the possible random shift of Tetracarbon layers.

Figure 2 is a schematic drawing of an apparatus operable for depositing a

Tetracarbon coating upon the surface of a substrate.

Figure 3 is a top cutaway perspective view of the electrode assembly (3-4 -

5-6-7-8) of Figure 2.

Figure 4 shows the electron diffraction pattern of a turbostratic carbon film

with the direction ofthe axis of the electron beam perpendicular to the surface of the

film.

Figure 5 shows the electron diffraction pattern of a Tetracarbon film with

the direction of the electron beam with respect to the surface of the film identical to

that of Figure 4.

Figure 6A shows the orientation of the axes of planetary rotation of a

spherical substrate relative to the carbon plasma flux.

Figure 6B is a schematic diagram showing the rotation of the substrate during

Tetracarbon coating

Figure 7 is the Raman spectra of X and Y-type Tetracarbon coatings.

Figure 8 is the Raman spectrum of Z-type layer of film impregnated with

nitrogen atoms.

Figure 9 shows a spherical coordinate for a point on the surface of a spherical

substrate being coated.

Figure 10 is a graphical presentation illustrating the dependence of the

thickness of the coating (-log T) on the number of pulses applied to the graphite

cathode of main discharge.

Figure 11 shows the dependence of the thickness of a layer of Tetracarbon

on the angle A (Figure 9).

Figure 12 shows the theoretically calculated curves for the coating thickness

as a function of A for different values of θ (Figure A).

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The term Tetracarbon, as used herein, refers to a polymeric film formed as a

coating on a substrate wherein the film has at least one layer comprised essentially of

a plurality of carbon chains and wherein only one end of a chain is bonded to a

substrate surface, the plurality of carbon chains being parallel to each other and being

oriented generally perpendicularly to the surface of the layer The linear carbon

chains of Tetracarbon are parallel and densely packed into hexagonal structures with the distance between the chains being between 4.8 - 5 03 A. If there is more

than one layer, the layers are identical and statistically shifted relative to each other

For coating the surface of medical devices for implantation, Tetracarbon is

preferably obtained by evaporation of graphite from a graphite target having a purity of better than 99.99%. In the present apparatus, the evaporation of graphite from a

graphite electrode is performed by pulse arc discharge in a vacuum chamber. Depending upon the particular electron energy, the geometry of the apparatus,

voltage, current and ions present in the gaseous discharge, compensated currentless plasma sheaves are formed around the cathode. The compensated currentless plasma

sheaves formed around the cathode have a density of around 5 x 10 12 - 1 x 10 14 cm " 3 , for a pulse duration of 200 - 600 μs, and a pulse repetition rate of 1 - 5 Hz. A

beam of ions of and inert gas, preferably argon (or an admixture of gases comprising an inert gas such as argon), having an energy of 150 - 2000 eV is directed to

intersect the flow of compensated currentless sheaves of carbon plasma at the

surface of the substrate. The substrate surface is positioned within a vacuum

chamber at the intersection of the ion beam and carbon plasma flow stream.

Tetracarbon deposits upon the substrate surface as layer-forming linear carbon

chains oriented substantially perpendicular to the plane of the adjacent surface of the

substrate at a temperature between 0 - 200°C, depending on the substrate. For a

silicone substrate, a surface temperature in the range of 20° - 50°C is preferred.

When the number of layers of Tetracarbon in a Tetracarbon coating is more than one, each layer is parallel to one another, identical and randomly shifted relative to

the adjacent underlying layer. While argon is preferably used as the inert gas with

the argon-partial pressure inside the vacuum chamber being in the range 1 x 10 " ' - 1

x 10 "2 Pa, other pressures and/or gases may be preferred for the ion beam for other

substrates and/or applications.

With reference to Figure 2, a schematic view of an apparatus operable for

making Tetracarbon is shown. The apparatus A includes a vacuum chamber 1, the chassis of which has two side compartments or chambers 1 A and IB in which carbon

chain plasma beams and ion beams are respectively formed, their respective beam

axes intersecting within the interior 1 A of the vacuum chamber. Inside chamber IA,

a cylindrical cathode of main discharge 5 and an anode of auxiliary discharge 4 are located, the latter being tubular and surrounding the cathode of main discharge 5

with a gap therebetween. One end of the anode of auxiliary discharge 4 is beveled

inwardly at about 45° to provide a surface which faces both the cathode of main discharge 5 and the ignition electrode 6. The anode of main discharge 3 is formed

from two parallel rings rigidly connected to one another by metal rods (not shown in

Figure 2) equally spaced around the perimeter of the rings. The ignition electrode 6,

dielectric spacer 8, and the cathode of the auxiliary discharge 7 are made as a

laminate annulus or ring, the elements 6, 8 and 7 rigidly connected to each other and

laminated ring 6, 8, 7, placed between the anode of main discharge 3 and auxiliary

discharge 4.

The substrate holder 2 is positioned within the vacuum chamber 1, the holder

2 being adapted to provide planetary rotation of a substrate around a vertical axis.

The substrate holder is electrically connected to the chassis of vacuum chamber 1.

The substrate is preferably electrically isolated from the substrate holder; maintained

at a floating voltage and at a temperature between 20 - 50°C. Condensation of

carbon chains from the currentless carbon plasma upon the substrate surface

progresses at a pressure of about (10 ~3 - 10 "4 mbar) 1 x 10 " ' - 1 x 10 "2 Pa. An arc

discharge is ignited between the cathode of main discharge 5 and anode of main discharge 3 (which are preferably separated by a voltage of about 200 V) by means

of auxiliary discharge between the cathode of auxiliary discharge 7 and the cathode

of main discharge 5 and the anode of auxiliary discharge 4 surrounding the cathode of main discharge 5. The auxiliary discharge is ignited by means of ignition electrode 6, made in

the form of an annular ring as described earlier and disposed between anode 4 and

cathode 5 of the auxiliary discharge. Formation of Tetracarbon film upon a

substrate surface such as, for example, the surface of a medical implant which will be

exposed to living tissue following implantation within an organism progresses by the

condensation of short carbon chains from a carbon plasma sheaf upon the substrate

surface. The sheaf of carbon plasma is formed in a pulsed arc discharge. The

evaporation of the carbon plasma sheaf from the graphite cathode of main discharge 5 is caused by local heating of the graphite surface by electron bombardment to T =

3000°C. Chains of carbon atoms, C„ (where n = 1, 2, 3, 5, 7,...), thus formed in the

plasma sheaf are directed by electrodes to impinge upon the surface of the substrate

where the polycondensation of carbon chains takes place. The condensation includes

chain lengthening due to interchain end to end bonding. The electronic temperature

of the carbon chain plasma should not exceed the energy required to break the

covalent sp double bonds in the carbon chains in order to avoid the formation of

non-chain carbon having the short-range order of diamond or graphite.

Capacitor 1 1 is charged to 200 volts by a power supply 10 which is

connected in parallel to the corresponding plates of capacitor 1 1. Capacitor 1 1 and

inductance 12 are series-connected in the electric circuit of the main discharge and

limit the rate of increase of the discharge current pulse. The anode of main discharge

3 is constructed as a "squirrel cage", i.e. with two identical parallel rings

interconnected at points along their periphery by rigid metal rods equally spaced

along the ring circumference. The anode of main discharge 3 and anode of auxiliary

discharge 4, cathode of main discharge 5, ignition electrode 6, cathode of auxiliary

discharge 7, and dielectric spacer 8 are disposed coaxially with respect to one

another.

A substrate (not shown in Figure 2) having a surface upon which the

formation of Tetracarbon condensate occurs, is attached to a rotatably

mountedsubstrate holder 2 positioned within the vacuum chamber 1 20 - 30 cm

behind the anode of main discharge 3. The substrate may be a material such as a

ceramic, metal, polymer, silicone rubber, alloy, etc., and may be of any shape. The

Tetracarbon coating may be deposited uniformly with high adhesion to any

substrate surface contour, including concave and sharply convex contours, having a

radius of curvature greater than about 10 μm. The substrate (not shown) is mounted

on the substrate holder 2 which, during the course of film deposition, completes a

planetary orbital trajectory, rotating about an orbital axis indicated by + in Figure 2

while simultaneously revolving around the substrate holder axis (not shown) which is

inclined with respect to the orbital axis + and shown more clearly in Figures 6a and

6b.

During the entire cycle of Tetracarbon deposition, the substrate surface

supporting the growing film is irradiated with ions of an inert gas 9a, such as argon

and/or nitrogen. Suitable inert gas ions 9a are formed in the ion source 9 housed

within a side compartment and communicating with the interior of the vacuum

chamber 1 through an aperture 9b. The aperture 9b is suitably dimensioned to

provide passage of an ion beam which will impact the substrate surface at all orbital

positions of the substrate. Gas ion sources are well known in the art and are

generally two-electrode systems consisting of a cylindrical cathode with a circular

hole through which the ion beam passes and a coaxial ring-shaped anode. The

energy of the ion beam irradiating the substrate has initial energy ranging from 150

eV up to 2000 eV to prevent formation of non-linear carbon structures on the

substrate surface. The compensated currentless carbon plasma sheaves, formed

outside the area of arc discharge gap, have a density of 5 x l0 l2 - l x lO 14 cm *3 , a

duration of 200 - 600 μsec, and a pulse repetition rate of 1 - 5 Hz. These

parameters are determined experimentally, but generally will depend upon the

particular configuration of the ignition electrodes, the electrical circuit of the plasma

generator, (including the storage capacitor), the limiting inductance and the three-

stage ignition scheme.

The method for manufacturing of Tetracarbon and the apparatus therefor

presented hereinabove allows the deposition of a continuous Tetracarbon film upon

the surface of many diverse materials (rubber, polymers, ceramics, metals, and alloys;

particularly titanium alloys) and upon complex contoured surfaces having micron-

sized hollows therein and protrusions therefrom. Non-turbostratic Tetracarbon

films have excellent substrate surface adhesion, continuity, and uniformity

particularly for a substrate such as medical grade vulcanized silicone elastomer or a semiconductor surface such as prime silicon wafer.

Elemental, naturally occurring carbon is generally regarded as a

biocompatible material. However preliminary experiments indicate that the physical

characteristics ofthe Tetracarbon structure render it even more biocompatible than naturally occurring forms of polymeric carbon. The layered, linear-chain non-

turbostratic structure of Tetracarbon film may permit the coating to interact with

atmospheric substances, such as water, nitrogen, oxygen to cause reassemblage of

the film. The atoms of oxygen, nitrogen, H" and OH ions are bonded to free

valences of carbon atoms at the ends of the chains and the formation of such bonds mediates reassemblage. In a living organism, these end-groups which are bonded to a terminal carbon atom of a carbon chain may be replaced by other groups which allows reassemblage in a manner which is controlled by the organism.

The structural difference between the parallel, non-turbostratic linear chains

of covalently double-bonded sp carbon atoms comprising a Tetracarbon layer and the structure of a turbostratic film comprising chains of sp2 carbon atoms arranged to form benzene-like rings is shown in Figures 4 and 5. Figure 4 is an electron

diffraction pattern for a turbostratic carbon film. The pattern includes multiple

concentric rings, the innermost ring having a diameter which is larger than the

diameter ofthe single ring observed for Tetracarbon which is shown in Figure 5. In

addition to the difference in the electron diffraction patterns observed between

turbostratic carbon and Tetracarbon, Auger spectroscopy and Raman spectra

provide additional support for the non-turbostratic structure of Tetracarbon.

The regularity of the Tetracarbon polymeric structure within a coating is

easily achieved over large areas of substrate surface. The regularity promotes

oriented growth of living tissue on the Tetracarbon coating following implantation

of a coated substrate beneath the skin. Such well-oriented ingrowth of simple

proteins on Tetracarbon may be referred to as "bioepitaxy". Although the reason

for bioepitaxy is unknown, it is possible that within a living organism a Tetracarbon coating may rearrange itself, aligning to accommodate atoms or functional groups on a protein adsorbed on the film.

Tetracarbon has a structure and structure-related properties similar to

biological tissues. Tetracarbon 's unique structure exhibits prospects for further application in microelectronics in connection with the development of its novel

properties (functional electronics) based on the simulation of properties and

processes in a living organism Tetracarbon consists of a plurality of identical bent

carbon chains with bending randomly oriented relative to the chain axis. As a result, the carbon chains form close-packed layers, each layer being randomly shifted in a

direction normal to the carbon chain axes (shown schematically in Figure I D ).

Since the carbon chains within a layer are parallel and close-packed, the bendings of the neighboring chains being correlated and positioned in one plane and in one

direction, the translation-symmetrical 2D-hexagonal lattice is formed as shown at

Figure 1 D. This regularity of Tetracarbon structure may be localized within a

portion of a layer referred to as a "regular zone" having a variable size broadly in the

range of about 1000 Angstroms square. Within a regular zone the thickness of each

layer of Tetracarbon is uniform, but the thickness of one regular zone may be

different from the thickness of other zones. The accumulation of "regular zones"

over a substrate surface form the mosaic structure characteristic of Tetracarbon coating.

The formation of structure of a Tetracarbon layered film is a complicated

process involving a delicate balance of multiple large opposing forces arising from intermolecular steric strain due to ion-induced carbon chain bending, electrical

charge distribution and van der Waals forces to minimize the free energy. The

resulting Tetracarbon layer coating the surface of the substrate is a mosaic pattern

of adjacent interacting regular zones, each regular zone comprising a large number of close packed parallel carbon chains projecting substantially away from the substrate

surface and having a regular zone "thickness" which may be different for adjacent

regular zones. Ion beam irradiation of a substrate surface is essential for achieving

Tetracarbon non-turbostratic deposition. Ion irradiation of the surface of the

substrate must occur prior to the attachment of one end of the carbon chains thereto

to form an innermost Tetracarbon layer. The bombardment of the substrate surface

with gaseous ions such as argon or nitrogen creates centers of condensation on the

substrate surface to which the carbon chains in the plasma flux may be attached.

Short carbon chains (from 1 up to 5 carbon atoms each) are formed in the carbon sheaf without any interaction of the chains with the Ar * ion beam. These short

chains are attached to the substrate so that the carbon chains are growing, but their

structure is unstable. According to quantum mechanical calculations, bends within the carbon

chains will enhance the structural stability ofthe film. As a hypothesis, it is possible

that the ion beam irradiation of the substrate surface forms bends in the attached

carbon chains which may stabilize the growing chain ensemble. The bending of

the linear sp carbon chains in a layer of Tetracarbon film is believed to be due to the

resonance charge exchange process between Ar + and carbon atoms in a condensed

chain. As a result, an electron is taken away from a carbon atom and the double

bond between the stripped carbon atom and another carbon atom becomes a single

bond. This configuration is unstable and the requirement for minimization of energy leads to chain bending, deformation and the association of negative charge on

the neighboring atom. Such a bend is called a neutral solitone, which may be able to move along the carbon chain without the input of additional energy. Although in

each individual sp-carbon chain these defects (bends) can appear in a random place,

the minimization of the total energy of the system of parallel sp-carbon chains leads

to their "synchronization", and the bends are all concentrated in one plane - as a

double electrical layer, which may play an important role in the reduction of the total energy of the assemblage of carbon chains. Such bendings form inter-layer

boundaries within a regular zone.

The number of the defects in the chains depends on the energy of ions and

their flow density. As a result, the number of the Tetracarbon layers and the "unit length" depend on energy and flow density of the ion beam and on the type of ions

employed. As stated above, the layer thickness (and corresponding unit length) is

uniform and constant within a zone of regularity. The innermost Tetracarbon layer

bonded to the substrate surface may be viewed as being "point welded" to the

substrate. Only the terminal end of a portion of the parallel carbon chains within the

innermost layer of Tetracarbon are covalently bonded to the substrate surface. The

remaining chains within the innermost layer are not bound to the substrate but are

held in position relative to the bonded chains by interchain forces

Biogenic ions interacting with a Tetracarbon film implanted within a living

tissue can cause further bending of the carbon chains and a variation of the inter-

chain distances. The biogenic ions may penetrate the Tetracarbon film and

influence the angle of chain bending thereby changing the local structure of a layer.

For example, potassium ions introduced into the carbyne structure (Figure lc) induces formation of another crystal lattice due to an intercalation of potassium in the carbyne. It is reasonable to expect that Tetracarbon exhibits similar behavior.

The structure of Tetracarbon reported herein, while not directly observed, is

based on studies of the Tetracarbon structure by the methods of electron diffraction, Auger spectroscopy, Raman spectroscopy and transmission electron

microscopy. Atomic force spectroscopy of Tetracarbon films is in progress.

These methods of analyzing surface structure provide sufficient data to establish the

general structure of Tetracarbon, but do not permit the measurement of parameters

such as the length of the chains in the innermost layer (i.e.: the layer adjacent to the

substrate surface) or the angle ofthe chain bending.

As stated above, the electron diffraction patterns (Figure 5) of a thin

Tetracarbon film (200 Angstrom thickness) gives the most explicit evidence of

Tetracarbon structure. One bright ring comprised of 6 shaφ maxima is observed

with spacing dio.o = 4.30 - 4.37 A. Other diffraction maxima are absent. The

electron diffraction pattern of Tetracarbon impregnated with nitrogen (not shown)

is similar to the pattern of non-impregnated Tetracarbon.

Auger spectroscopy of Tetracarbon shows that the percentage by weight of

carbon in Tetracarbon is greater than 97% while the concentration of nitrogen and

oxygen is less than 3%. Auger spectroscopy of Tetracarbon impregnated with

nitrogen shows the concentration of nitrogen ranging from 5% up to 10% and

oxygen concentration less than 1%.

Raman spectrum of Tetracarbon impregnated with nitrogen has a sharp maximum at 1525 cm "1 , another sharp maximum at 2060 + 10 cm '1 corresponding to

=C=C=N bonds, and a broad maximum at 2280 cm "1 corresponding to — C≡N

bonds. EXAMPLE

Tetracarbon coatings having varying thickness and composition were

deposited on an elastomer substrate as described below. With reference to Figures

6 A and 6B, a spherical silicone shell 61 was inflated, sealed and positioned within a

vacuum chamber 62 After the evacuation of air from the chamber, the residual

intra-shell pressure maintained the spherical shape of the shell with the diameter of

the shell in vacuo 1.5 times greater than the initial diameter of the inflated shell. A substrate holder 60 was designed to support the spherical, silicone shell substrate 61

and ensure planetary rotation about C-C and 0-0 axes with an angle Θ = 35° between

the axes (Figs. 6 A, 6B). As the substrate revolves about the 0-0 axis, the 0-0 axis

rotates around the C-C axis. The carbon chain plasma flux 63 shown at the dotted

arrows in Figs. 6 A and 6B, propagates in the picture plane. The direction of the Ar

ion beam flux (not shown) is oriented normally to the plane of the picture to

intersect the beam 63 at the substrate surface. The impulse repetition frequency used for generating the carbon plasma flux was 3 Hz, the impulse duration being 1 msec.

Three distinct types of Tetracarbon coatings were deposited on the surface

of the substrate 61. An "X"-type coating refers to a thick film of Tetracarbon

deposited using 400 pulses in an argon atmosphere of 10 '3 Pa. A "Y"- type coating is

thinner than the X-type coating and is produced by subjecting the substrate surface

to 100 pulses of carbon plasma in an argon atmosphere of 10 '3 Pa. A "Z"-type

coating refers to a thin Tetracarbon film deposited using 100 pulses in an N 2

atmosphere of 10 "2 Pa.

Prior to the deposition of the X,Y, and Z type coatings on the substrate

surface, the surface was irradiated by Ar ions having an ion energy of 500 eV for

two minutes, the ion current being 200 mA. During carbon film deposition of both

the X and Y type coatings the parameters of Ar ion beam irradiation were kept at the

same level as before the deposition. For Z-type coating the substrate surface was

irradiated by N + ions during carbon chain deposition. The N ion energy was 500 eV

and the ion current was 200 mA.

Figure 7 shows the Raman spectrum of Tetracarbon for both X and Y

coatings (which appeared to be identical). Strong maximum is observed at 1550-

1570 cm "1 . A weak shoulder appears at 1300-1350 cm "1 and a very weak maximum

is observed at 2070 cm "1 . These maxima correspond to the linear chain carbon.

Figure 8 presents the Raman spectrum of Z-type Tetracarbon film

impregnated by nitrogen. There are two strong maxima at 1550-1570 cm '1 and

1350-1370 cm _1 and two weak maxima at 2300 and 2070 cm '1 This spectrum

corresponds to the linear chain carbon and to C≡N stretching vibrations.

The distribution of film thickness h was measured by optical transmissivity.

The carbon film transmittance T is determined as follows:

T = l/l 0

where l 0 is the intensity of incident light;

I is the intensity of light after passing through the film.

The experimental film thickness h is seen to be proportional to -Log (T) as

illustrated in Figure 10 where -Log (T), determined from a transmission

measurement of Tetracarbon reference films deposited by 0, 100, 200, 300, 400

pulses is plotted as a function ofthe number of pulses N.

To find the thickness distribution of Tetracarbon films at the spherical

surface of the substrate the transmittance of the Tetracarbon coating is measured as

a function of angles A and B (Fig. 1 1) where angle A was measured from the 0-0

axis (Fig. 9), and angle B is the azimuth angle of a point on the surface.

Measurements performed on the X-type film show that the film thickness does not

depend on angle B and depends only on angle A as shown in Fig. 1 1. In Figure 1 1,

the crosses "x" correspond to the measured thickness while the solid line is the

theoretically calculated thickness data for Θ=35°. The theoretical thickness

distribution is in accord with the experimental data with the exception of the area

near A=180° where the substrate holder was positioned which causes a thinner film

deposition therearound. The maximal film thickness is at the equator (A=90°) and

the minimal at the bottom of the shell where the gripping device was affixed to the

shell. The maximum thickness is approximately 4 times thicker than the minimum

thickness.

The following expression was used for theoretical estimations of a film

thickness T at the spherical surface rotated around two axes simultaneously in the

manner shown in Fig. 6a:

T(a)= f f[(sin(f)«cos(p)+sin(p)«cos(Θ)«cos(f))*sin(A)-cos(A)» sin(Θ) «cos(f)] df dp J J where the integration is over all angles f and p where the integrated function is

positive and Θ=35°. The results of theoretical calculations of Tetracarbon film

thickness as a function of the Θ angle are presented at Figure 12 for different angles

Θ = 0°, 30°, 45°, 60°, 90°. From this figure one can conclude that if Θ is kept

within the range 45-60°, the film thickness will be the most uniform.

A representative list of medical products which can be enhanced by

Tetracarbon coating are presented in Table 2. Some of these applications are under

development (mostly pre-clinical trials). It is reasonable to expect that Tetracarbon

coating will enhance the substantial parameters of these potential products. Table 2 Potential Medical and Consumer Products with Tetracarbon Coating:

i connective tissue formation

8 i Contact lens i Biocompatibility (reduces i laboratory

I probabilities of inflammation, tissue j mechanical tests j irritation, UV protection \ planned

9 j Contraceptive spirals j Biocompatibility (reduces probability I idea i of inflammation, tissue irritation), i prevents scars formation

10 I Metal consumer goods in I Biocompatibility, reduced irritation I idea I permanent contact with j skin: bracelets of watches, j rims of glasses, jewelry

While particular embodiments of the present invention have been illustrated

and described, it would be obvious to those skilled in the art that various other

changes and modifications can be made without departing from the spirit and scope of the invention. For example, nitrogen may be mixed into argon flow. The two

gases are directed into the vacuum chamber with controlled flow rates. An ion bean

other than Argon can be used, such as, for example, He or Ne, with the energy ofthe

beam adjusted accordingly. In addition, the geometry of the electrodes and their operating parameters may be varied to adapt the apparatus for providing a coating

having desirable properties for a particular application. It is therefore intended to

cover in the appended claims all such changes and modifications that are within the

scope of this invention. What we claim is: