Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THERMAL INSULATING COVERING AND/OR COATING STRUCTURE WITH LINEAR SOLAR CONCENTRATION MEANS
Document Type and Number:
WIPO Patent Application WO/2009/040857
Kind Code:
A1
Abstract:
The present invention relates to a solar co-generation/tri-generation system having a thermal insulating coating structure (1) comprising a plurality of support beams (3), parallel each other, that can be fixed to a support structure; a support layer (5) provided on said support beams (3); a plurality of solar concentration linear means (2), provided on said support layer (5) in correspondence of said plurality of support beams (3) and that can be connected with a power generation system; and an insulating layer (7) coupled with said support layer (5).

Inventors:
SAGLIOCCA LORENZO (IT)
Application Number:
PCT/IT2008/000588
Publication Date:
April 02, 2009
Filing Date:
September 12, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INPROGEST SOLARE S R L (IT)
SAGLIOCCA LORENZO (IT)
International Classes:
F24J2/04; F24J2/51; F24J2/52; F24S10/70; F24S23/74
Domestic Patent References:
WO1998017880A11998-04-30
Foreign References:
US4602613A1986-07-29
US5655515A1997-08-12
US5123247A1992-06-23
US4756301A1988-07-12
DE2711261A11978-09-21
EP0045821A11982-02-17
JPS51150751A1976-12-24
FR2492114A11982-04-16
US4602613A1986-07-29
US5655515A1997-08-12
Attorney, Agent or Firm:
TIBURZI, Andrea et al. (Via Piemonte 26, Roma, IT)
Download PDF:
Claims:

CLAIMS

1. Thermal insulating coating structure (1) comprising: a plurality of support beams (3), parallel each other, that can be fixed to a support structure; a support layer (5) provided on said support beams (3); a plurality of solar concentration linear means (2), provided on said support layer (5) in correspondence of said plurality of support beams (3) and that can be connected with a power generation system; and an insulating layer (7) coupled with said support layer (5).

2. Structure (1) according to claim 1, characterized in that each one of said solar concentration linear means (2) comprises a receiving tube (4), within which a thermal carrier fluid flows, that can be connected to a power generation system, and a reflecting layer (8), having, in cross-section, a parabolic curve having a focus axis as focus points locus, provided substantially parallel to the respective beam (3), said receiving tube (4) being provided along said focal axis (6), so that said reflecting layer (8) reflects an incident light concentrating the same on said receiving tube (8), so as to heat said thermal carrier fluid.

3. Structure (1) according to claim 2, characterized in that said receiving tube (4) is placed into an under vacuum chamber (9) or within an under vacuum glass tube. 4. Structure (1) according to claim 2 or 3, characterized in that said reflecting layer (8) of each one of said solar concentration linear means is comprised of glass.

5. Structure (1) according to each one of the preceding claims, characterized in that said support layer (5) is an undulated layer, said solar concentration linear means (2) being housed on the upper concave portions of said support layer (5).

6. Structure (1) according to each one of the preceding claims, characterized in that said support layer (5) is comprised of polycarbonate and/or of plastics and /or of composite materials. 7. Structure (1) according to each one of the preceding claims 1

- 6, characterized in that said support layer (5) is comprised of or of metal.

8. Structure (1) according to claim 6, characterized in that said insulating layer can have one or more opening suitable to permit passage of light through said support layer, so as to realize skylights.

9. Structure (1) according to claim 6 or 7, characterized in that said support layer (5) and said insulating layer (7) have one or more overlapped openings so as to permit passage of light between support beams (3) and/or installation of a skylight.

10. Structure (1) according to one of the preceding claims, characterized in that said insulating layer (7) is placed between said support layer (5) and said solar concentration linear means (2).

11. Structure (1) according to one of the preceding claims 1 - 9, characterized in that said insulating layer (7) is placed under said support layer.

12. Structure (1) according to one of the preceding claims, characterized in that said insulating layer (7) is comprised of polyurethane.

13. Structure (1) according to one of the preceding claims, characterized in that said support beams (3) has a substantially "Y" shaped section.

14. Structure (1) according to one of the preceding claims, characterized in that said power generation system is a co-generation system.

15. Structure (1) according to claim 14, characterized in that said power generation system is a tri-generation system.

16. Structure (1) according to one of the preceding claims, characterized in that said it is applied to a building, support beams (3) being fixed to the bearing structure of said building.

18. Structure (1) according to one of the preceding claims 1 - 15, characterized in that said system is applied to a shelter.

Description:

THERMAL INSULATING COVERING AND/OR COATING STRUCTURE WITH LINEAR SOLAR CONCENTRATION

MEANS

The present invention relates to a thermal insulating covering and/or coating structure with linear solar concentration means.

More specifically, the invention concerns a modular covering and/or coating structure with solar concentration linear means employing solar energy for producing heat that can be used in co-generation systems (combined production system of electric and/or thermal and/or frigorific power, employing as sole source the solar power).

It is well known that the problem of a proper managing of energetic sources is always more felt.

In fact, both at the industrial and domestic level, required and consumed electric power always grows. Furthermore, continuous increase of petroleum and natural gas price cause a corresponding increase of the costs of electric power, and thus of the expenses sustained by families and companies.

At present, alternative power generation system are always more diffused not only in the industrial field, but even in the domestic field.

Particularly, it is always more diffused installation of collectors and solar panels, permitting integrating supply of electric power. Diffusion of said collectors of solar panels is also promoted by governmental agencies, providing fiscal incentives for those buying and installing these systems. However, the above systems, notwithstanding the always more diffused commercial use, are rather expensive, also because it is necessary providing suitable support structures for their installation. This implies further expenses for realizing a system with collectors or solar panels, as well as need of having enough space for installing said support structures. It is well evident that the above is really expensive.

In view of the above, it is therefore object of the present invention that of suggesting a thermal insulating covering and/or coating structure provided with linear means for solar concentration, suitable to operation in systems for combined production (co-generation) of electric and/or thermal and/or frigorific power by solar energy, having also covering and insulation functions, thus permitting realization savings.

It is therefore specific object of the present invention a thermal insulating coating structure comprising a plurality of support beams,

parallel each other, that can be fixed to a support structure; a support layer provided on said support beams; a plurality of solar concentration linear means, provided on said support layer in correspondence of said plurality of support beams and that can be connected with a power generation system; and an insulating layer coupled with said support layer.

Always according to the invention, each one of said solar concentration linear means can comprise a receiving tube, within which a thermal carrier fluid flows, that can be connected to a power generation system, and a reflecting layer, having, in cross-section, a parabolic curve having a focus axis as focus points loci, provided substantially parallel to the respective beam, said receiving tube being provided along said focal axis, so that said reflecting layer reflects an incident light concentrating the same on said receiving tube, so as to heat said thermal carrier fluid.

Still according to the invention, said receiving tube can be placed into an under vacuum chamber or within an under vacuum glass tube.

Furthermore according to the invention, said reflecting layer of each one of said solar concentration linear means can be comprised of glass. Preferably, according to the invention, said support layer can an undulated layer, said solar concentration linear means being housed on the upper concave portions of said support layer.

Always according to the invention, said support layer is comprised of polycarbonate and/or of plastics and /or of composite materials or of metal.

Still according to the invention, said insulating layer can have one or more opening suitable to permit passage of light through said support layer, so as to realize skylights.

Furthermore, according to the invention, said support layer and said insulating layer can have one or more overlapped openings so as to permit passage of light between support beams and/or installation of a skylight.

Advantageously, according to the invention, said insulating layer can be placed between said support layer and said solar concentration linear means, or it can be placed under said support layer.

Always according to the invention, said insulating layer can be comprised of polyurethane.

Still according to the invention, said support beams can have a substantially "Y" shaped section.

Furthermore, according to the invention, said power generation system can be a co-generation system and preferably a tri-generation system.

Advantageously, according to the invention, said system can be applied to a building, support beams being fixed to the bearing structure of said building.

Furthermore according to the invention, said system can be applied to a shelter.

The present invention will be now described, for illustrative but not limitative purposes, according to its preferred embodiments, with particular reference to the figures of the enclosed drawings, wherein: figure 1 shows a perspective view of an insulating covering and/or coating structure with solar concentration linear means according to the present invention; figure 2 shows a cross-section of the structure according to the invention; and figure 3 shows a cross-section of a longitudinal element and of solar concentration linear means of structure of figure 1.

Same parts will be indicated by the same reference numbers in the different views.

Making reference to figures 1 and 2, it is observed a covering and/or coating structure 1 , that can be for example applied on domestic buildings or industrial buildings according to the invention.

Said structure 1 is comprised of a plurality of support beams 3 placed parallel adjacent each other or in such a way to leave gaps between each other.

Said support beams 3 can be fixed to the bearing structure of the building on which they must be installed.

In correspondence of each support beam 3, said structure 1 also comprises parabolic linear solar concentration means 2, for picking up solar energy, that can be connected with electric generation and/or co- generation systems. According to a preferred embodiment, support beams 3 have, as shown in the figures, a "Y" cross-section. This kind of support beam 3

has high mechanical resistance features and is well suited to be installed on linear solar concentration means 2, above the same.

Coming back to the linear solar concentration means 2, it is observed that they include a receiving tube 4, the exact position of which will be described in greater detail in the following, within which a thermal carrier fluid to be heated flows.

A support layer 5 is placed on the support beams 3, comprised of composite material, e.g. polycarbonate, of metal or of glass.

Said support layer is preferably undulated, and said linear solar concentration means 2 are housed within its concavities.

Further, in correspondence of each beam 3, said support layer 5 is placed on a linear reflecting layer 8 of sand linear solar concentration means 2. Said linear reflecting layer 8 has a curved upper surface with a parabolic cross-section, having as focus points locus a straight line 6, (thus the focus axis), substantially parallel to the same beam 3, as particularly shown in figure 3. Said linear reflecting layer 8 can be comprised of glass or of metal, thus realizing parabolic linear mirrors.

A further insulating layer 7 is provided between said support layer 5 and said reflecting layer 8, thus permitting an insulating action. Covering and/or coating structure 1 according to the invention can have discontinuities, that can be used as skylights (not shown in the figures) between the support beams 3. In case, said skylights can be comprised using for the support layer 5 a transparent composite material and suitably distributing the insulating layer 7. In other words, it is possible following the below different alternatives for realizing a skylight:

• support layer 5 comprised of polycarbonate and/or plastics and/or composite materials and having a opening-free surface: skylight can be obtained by realization of suitable openings on the insulating layer 7, being it possible realizing said transparent support layer 5;

• support layer 5, eventually comprised of metal, and insulating layer having overlapped openings, wherein it is possible installing suitable skylights.

In case discontinuities are present between a support beam 3 and the other one (i.e. in the convex part of the support layer 5) insulating

not-reflecting linear solar concentration means will be installed with or without skylights.

Receiving tube 4 of each one of said linear concentration means 2 is placed along the focus axis 6. Once installed, reflecting layers 8 of each one of said linear solar concentration means 2 concentrate incident light on the focus axis 6, along which, as already said, it is positioned said receiving tube 4. Thus, thermal carrier fluid is heated at high temperature (that can be even higher than 800 0 C) and is used as primary energy in order to operate, e.g. an electric generator (not shown in the figure).

Said thermal carrier fluid, once cooled at the outlet of the generator, can be used for heating and/or producing conditioning hot water and/or cooled water (or for industrial processes) using an absorption frigorific. In other words, energy accumulated can be employed into co- generation systems, for example for producing at the same time electric and thermal energy, but also into tri-generation systems that, as known, besides permitting production of electric power, permit employing thermal energy recovered from transformation also to produce frigorific energy, or refrigerated water for conditioning or industrial processes. Each receiving tube 4 is preferably comprised of steel and it is protected by a further under vacuum glass tube or by an under vacuum glass chamber 9.

A mechanical solar follower mechanism (not shown in the figures) is connected to the receiving tube 4, suitable to orient it with respect to solar rays in order to permit a better efficiency.

Structure according to the present invention can be also comprised by a honeycomb technology permitting to the structure to be insulated and self-supporting.

In case said covering and/or coating structure is not used for buildings or it is used for buildings where it is not possible installing said

"Y" cross-section support beam 3, linear concentration solar means of said structure will be installed on supports designed according to the structural needing.

Main advantage of the solution according to the present invention is that of permitting realization of solar co-generation and/or tri- generations systems, realizing at the same time a covering and/or coating

and thermal insulation system for buildings and other structures (e.g. skylights).

A further advantage of the present invention is that of being modular, permitting aggregating linear solar concentration means 2 even according to different geometries.

The present invention has been described for illustrative but not limitative purposes, according to its preferred embodiments, but it is to be understood that modifications and/or changes can be introduced by those skilled in the art without departing from the relevant scope as defined in the enclosed claims.