Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THREADED JOINT FOR AN OIL-WELL TUBING
Document Type and Number:
WIPO Patent Application WO/2008/044966
Kind Code:
A1
Abstract:
The invention relates to conical threaded tubing joints,used substantially in drilling engineering, and includes two variants of threaded joints for an oil-well tubing. In the first variant, the threaded joint comprises a threaded element (1) provided with an external conical thread and a threaded element (2), which has an internal thread and the threaded part of which is provided with a coating (4) applied by means of a thermodiffusion powder galvanising method. The conical thread is embodied in the form of a vee-thread and the threaded element having the internal thread is provided with an input cylindrical recess (3), the length of which is increased by the tightness increment value which is formed by the coating and calculated according the formula ΔA=κδmin÷κδmax, wherein κ is an empirical factor equal to 70 and δmin and δmax are the minimum and maximum thicknesses of the coating, respectively. Said invention makes it possible to provide a correct standard tightness in the threaded joint, the coupling of which is provided with a coating applied by the thermodiffusion powder galvanising method.

Inventors:
GETIMAN ALEKSANDR VLADIMIROVIC (RU)
STEPANOVA SVETLANA CEMYONOVNA (RU)
TRIFONOV YURIY ALEKSEEVICH (RU)
Application Number:
PCT/RU2007/000529
Publication Date:
April 17, 2008
Filing Date:
October 03, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TEMLUX HOLDING LTD S A (LU)
GETIMAN ALEKSANDR VLADIMIROVIC (RU)
STEPANOVA SVETLANA CEMYONOVNA (RU)
TRIFONOV YURIY ALEKSEEVICH (RU)
International Classes:
E21B17/08; F16L15/00
Foreign References:
RU38498U12004-06-20
RU30913U12003-07-10
US5411301A1995-05-02
SU439580A11974-08-15
Attorney, Agent or Firm:
GRIGORIEVA, Tatiana Viktorovna (3/12 str.1, of. 50, Moscow 8, RU)
Download PDF:
Claims:
формула изобретения

1. резьбовое соединение насосно-компрессорной трубы, содержащее резьбовой элемент с наружной конической треугольной резьбой и резьбовой элемент с внутренней резьбой, имеющий входную цилиндрическую выточку и резьбовую часть, имеющую, как минимум, покрытие, нанесённое методом термодиффузионного порошкового цинкования, отличающееся тем, что длина входной цилиндрической выточки элемента с внутренней резьбой увеличена на величину приращения натяга, вызванного покрытием, вычисляемого по формуле: δа = kδ min í kδ max> где к — эмпирический коэффициент, равный 70, а δ min и δт ах - соответственно, минимальная и максимальная толщина покрытия.

2. резьбовое соединение насосно-компрессорной трубы, содержащее резьбовой элемент с наружной конической трапецеидальной резьбой и резьбовой элемент с внутренней резьбой, имеющий входную цилиндрическую выточку и резьбовую часть, имеющую, как минимум, покрытие, нанесённое методом термодиффузионного порошкового цинкования, отличающееся тем, что длина входной цилиндрической выточки элемента с внутренней резьбой увеличена на величину приращения натяга, вызванного покрытием, вычисляемого по формуле: δа = kδ min í kδ maX; где к - эмпирический коэффициент, равный 30, а δ min и δ тах - соответственно, минимальная и максимальная толщина покрытия.

Description:

резьбовое соединение HACOCHO- компрессорной трубы

предложение относится к трубным коническим резьбовым соединениям, используемым преимущественно в буровой технике, точнее к резьбовым узлам соединения насосно-компрессорных или буровых труб в геологоразведочных, нефтяных или газовых скважинах.

употребляемые ниже термины и выражения имеют следующее толкование:

«Coeдинeниe, или трубное соединение)) - разборный узел, содержащий элемент с наружной резьбой, например, трубу или переходник, иногда в нормативных материалах называемый «ниппeлeм)), и элемент с внутренней резьбой, например, муфту или переходник, далее называемый «мyфтa».

«Oceвoй натяг резьбы)) или «нaтяг» - величина, измеряемая расстоянием между плоскостью, проходящей через конец сбега резьбы на ниппеле и плоскостью торца муфты (гост 633-80). натяг имеет положительное значение, если конец резьбы находится вне муфты, нулевое — при совпадении конца резьбы и торца муфты, и отрицательное, если конец резьбы находится внутри муфты. согласно тому же госту для целей проверки годности резьбы величина натяга измеряется в соединении, свинченном от усилия руки.

«Koнeц сбега резьбы)) или «кoнeц резьбы)) (по гост 633-80) - точка пересечения образующей конуса сбега резьбы с образующей цилиндра, диаметр которого равен наружному диаметру ниппеля (трубы).

другие употребляемые в настоящем описании термины: шаг резьбы, резьба и т.п. относятся к резьбовым соединениями насосно- компрессорных или буровых труб (далее: BDKT).

HKT работают в тяжёлых условиях ударных и знакопеременных нагрузок, под большим давлением, зачастую при повышенной температуре и в агрессивных средах. при этом резьбовые соединения таких труб должны быть очень надёжны и герметичны при давлениях до тысяч атмосфер. несмотря на применение различного рода герметизирующих и стопорящих составов, основным приёмом обеспечения надёжности и герметичности соединений является применение высоких усилий затяжки, близких по величине к пределу, за которым происходит срыв резьбы. из-за этого ресурс резьбовых элементов не превышает буквально всего нескольких циклов свинчивание-развинчивание.

известно коническое резьбовое соединение HKT, содержащее соединительную муфту, имеющую входную цилиндрическую расточку и сопрягаемый с ней ниппель, например трубу или переходник (гост 633- 80, черт. 6). согласно указанному госту резьба муфты должна иметь цинковое или фосфатное покрытие. способ нанесения покрытия стандарт не нормирует, но во времена его разработки применялись только электролитические покрытия толщиной порядка 10 мкм, сравнительно мягкие и неизносостойкие, предназначенные для защиты резьбы от коррозии при хранении и транспортировке резьбовых элементов. способ горячего цинкования опусканием муфты в ванну с расплавленным цинком не применяется из-за неравномерности получаемой на резьбе толщины покрытия и наплывов цинка на резьбе, препятствующих проверке калибрами. цинковое электролитическое покрытие обладает низкой механической прочностью и подвержено водородному охрупчиванию в условиях агрессивной среды нефтяной или газовой скважины. оно дороже, чем фосфатное и потому в настоящее время применяется практически только на резьбах обсадных труб, где обычно производится только одно-два свинчивания с дальнейшим цементированием обсадной

колонны. в настоящее время все российские трубные заводы применяют только фосфатное покрытие резьбы муфт насосно- компрессорных труб. в силу указанных выше свойств покрытий, стандартные требования по обеспечению натягов резьбового соединения базируются на толщину наиболее распространенного фосфатного покрытия резьбы муфты порядка 10 мкм

недостатком известного соединения является его малая долговечность. так, в «инcтpyкции по эксплуатации насосно- компрессорных тpyб» рд 39-136-95 в п. 7.15 сказано: «пpи эксплуатации насосно-компрессорных труб необходимо вести учёт количества циклов свинчивания-развинчивания резьбовых соединений. работоспособность резьбовых соединений, согласно проведённым исследованиям, сохраняется до 6-8 циклoв». это очень небольшая величина, если учесть, что трубы даже на эксплуатируемых скважинах периодически поднимаются на поверхность для очистки или замены насосного оборудования. поэтому повышение долговечности соединений HKT является основной задачей разработчиков.

при нулевом натяге, когда наружная резьба полностью ввинчивается от руки в муфту до последнего витка резьбы, соединение бракуется. износ соединения часто проявляется не в виде уменьшения профиля витков резьбы, когда натяг уменьшается, а в виде увеличения натяга сверх указанного вследствие появления задиров на контактирующих поверхностях. если натяг превосходит стандартный, соединение также бракуется.

известен резьбовой элемент для трубного резьбового соединения с высоким пределом выносливости, в котором, по меньшей мере, часть ниток резьбы содержит спиралевидный желобок, выходящий на вершину профиля резьбы (патент рф N° 2261395 по кл. F 16Ll 5/06). благодаря податливости ниток резьбы, ослабленных по

вершинам желобком, достигается более равномерное распределение нагрузки по виткам резьбы, то есть повышается надёжность соединения. недостаток известного соединения состоит том, что его элементы сложны в изготовлении. кроме того, такая резьба, легко сминается при неосторожном обращении. восстановление изношенных резьбовых элементов возможно только в условиях специализированных ремонтных центров, которые из-за сложности оборудования не могут быть многочисленны. ещё одним недостатком известного резьбового элемента является его нестандартность. насосно-компрессорные и буровые трубы, а также элементы для их соединения являются ответственными узлами буровой техники, имеют большой объём применения на обширнейших территориях. поэтому они должны быть строго стандартизированы и унифицированы для обеспечения, как надёжности, так и взаимозаменяемости. разработка новых видов соединений с улучшенными характеристиками, безусловно, необходима, но их проверка и внедрение потребуют многих лет. поэтому технические решения, улучшающие долговечность стандартных резьбовых соединений без отхода от требований стандартов, более актуальны и востребованы.

известно резьбовое соединение для труб, содержащее резьбовые участки и находящиеся в плотном контакте участки без резьбы, обеспечивающие герметичность при затяжке резьбы (патент рф N° 2258171 по кл. F16L15/00). разделение участков, обеспечивающих герметичность и участков, обеспечивающих необходимое усилие уплотнения, является эффективным приёмом, который широко применяется в вакуумной технике. но применительно к буровой технике этот приём не решает задачи повышения долговечности резьбы, так как усилия затяжки остаются по-прежнему огромными и соединение не выдерживает без ремонта более нескольких циклов. кроме того, его

герметичность сильно зависит от чистоты сопрягаемых поверхностей, которую в полевых условиях не всегда удаётся обеспечить. другим недостатком известного соединения является то, что оно требует повышенной точности изготовления, а это осложняется тем, что один из обеспечивающих герметичность участков без резьбы находится глубоко внутри элемента с внутреней резьбой (муфты). ещё одним недостатком известного соединения является то, что его геометрия не соответствует действующим стандартам.

известно также резьбовое соединение для стальных труб, содержащее резьбовые участки и находящиеся в плотном контакте участки без резьбы, обеспечивающие герметичность при затяжке резьбы (патент рф N° 2248495 по кл. Fl 6Ll 5/04). по меньшей мере, на один из участков без резьбы нанесено твёрдое смазочное покрытие с подслоем из пористого цинка или цинкового сплава, наносимое методом обдувки частицами, состоящими из железного сердечника и цинковой оболочки. такое соединение надёжнее обеспечивает герметичность соединения, чем предыдущий аналог, но это достигается значительным усложнением изготовления, тем более что один из обеспечивающих герметичность участков без резьбы находится глубоко внутри элемента с внутреней резьбой (муфты), что затрудняет его обработку. остальные недостатки известного соединения те же, что и у предыдущего аналога.

известны также резьбовые соединения для стальных труб, в которых для повышения надёжности на резьбовой поверхности, по меньшей мере, одного из элементов нанесена твёрдая смазочная плёнка из смеси смазочного порошка (например, дисульфида молибдена) и связующего вещества (патенты рф жNs 2258170, 2258859 и 2262029 по кл. F 16Ll 5/00). недостатком известных соединений является сложность приготовления и нанесения твёрдой смазочной плёнки, требующая

специальной подготовительной обработки резьбовой поверхности, включающей создание пористого подслоя. несмотря на всю сложность, срок службы соединений не превышает 10...20 циклов свинчивание- развинчивание .

известен способ изготовления резьбового соединения с трапецеидальным профилем конической резьбы для трубы нефтяной скважины, состоящий в том, что вначале задают семь основных параметров (внешний диаметр трубы, толщина стенки трубы, размеры центрирующей заточки и т.п.), а затем по предложенным формулам определяют семь зависимых параметров резьбы (длина и конусность уплотнения, угол заплечика, угол наклона рабочей стороны профиля резьбы и т. п.) (заявка на изобретение рф N° 2003130748 по кл. F 16Ll 5/04). в опубликованной формуле заявки не приводятся результаты практического осуществления предложенного способа, которые позволили бы судить о его эффективности. кроме того, параметры, определённые расчётным путём, на практике всегда приходится корректировать по результатам испытаний, поскольку размеры готовых изделий неизбежно имеют отклонения от заданных на основании расчётов. рассчитанное согласно известному способу соединение не будет соответствовать действующим стандартам, а потому его освоение потребует длительного времени.

известна труба насосно-компрессорной или буровой колонны, содержащая соединительную муфту и переходник, на резьбовых поверхностях которых нанесено двухслойное защитное покрытие, состоящее из цинкового слоя толщиной 10...14 мкм, нанесённого способом термодиффузионного цинкования, и нанесённой на него фосфатной плёнки толщиной 2...3 мкм (патент рф на полезную модель, N° 38498 по кл. F 16Ll 5/08). предложенное покрытие обеспечивает защиту элементов соединения от коррозии при хранении и транспортировке, но

для надёжной герметизации соединения и повышения его ресурса, толщина покрытия недостаточна. фосфатное покрытие непрочно и легко истирается. поскольку при нарезании резьбы чистота поверхности назначается обычно Rz 20, заявленная толщина в 2...3 мкм, в несколько раз меньшая неровностей, никак не может заметным образом повысить долговечность резьбы. технология термодиффузионного цинкования резьбовых поверхностей указанной чистоты обработки не обеспечивает гарантированной непрерывности покрытия толщиной менее 15 мкм.

наиболее близким к предложенному по технической сущности и достигаемому результату является коническое резьбовое соединение труб насосно-компрессорной или буровой колонны, содержащее соединительную муфту, имеющую входную цилиндрическую выточку, и сопрягаемый с ней элемент с наружной резьбой (ниппель), например трубу или переходник, в котором на резьбовых поверхностях муфты и элемента с наружной резьбой выполнено термодиффузионное порошковое цинкование, (патент рф на полезную модель JVb 30913 по кл. F16L15/08). толщина покрытия на резьбовых поверхностях подобрана экспериментально таким образом, чтобы покрытие было сплошным и достаточно прочным, но, в то же время, не отслаивалось и не расслаивалось при свинчивании. цель нанесения покрытия - повышение долговечности соединения, а не антикоррозийная защита, и оно значительно толще, чем обычно применяемые. поэтому покрытие заметным образом увеличивает натяг соединения. приблизительно у половины изготовленных муфт, отвечавших требованиям стандарта до нанесения покрытия, после нанесения покрытия натяг выходит из допустимых пределов. это вынуждает рассортировывать изготовленные муфты перед нанесением покрытия так, чтобы на те из них, которые после цинкования не будут соответствовать требованиям стандарта, наносить только тонкое фосфатное покрытие, не обеспечивающее повышения

ресурса соединения. если потребитель заказал только оцинкованные муфты с повышенным ресурсом, то выход годных изделий, оцениваемых по величине натяга, составит около половины, что неприемлемо для производства, особенно если муфты должны быть изготовлены из дорогой стали со специальными свойствами.

в эксплуатационных условиях годность соединения оценивается по величине натяга в свинченном от руки соединении. согласно упомянутой выше рд 39-136-95 «...ecли резьба ниппеля с моментом, меньше минимального, ввинчивается в муфту до последнего витка резьбы, или если после свинчивания с максимальным моментом остаётся более двух свободных, не вошедших в муфту витков, следует забраковать обе тpyбы...». оценка натяга производится рабочими визуально, исходя из количества выступающих над краем муфты витков и момента свинчивания гидравлического ключа. при поступлении на скважины новых муфт с термодиффузионным цинковым покрытием, имеющих увеличенный натяг, рабочие, руководствуясь инструкциями и прежним опытом, будут либо браковать новые муфты, либо, пытаясь добиться требуемого натяга, превышать нормативный момент свинчивания, понижая тем самым надёжность соединения. поэтому известное решение, как показали испытания, вполне эффективное, оказывается неприменимым в широких масштабах на практике из-за необходимости замены рабочих инструкций, переучивания персонала, изготовления новых поверочных инструментов, ремонтной оснастки, - и всё это на тысячах скважин, расположенных по всему миру.

известное соединение имеет ещё один недостаток. согласно действующим стандартам, после силового свинчивания вне муфты, должно остаться не более двух витков ниппеля. в известном же соединении при силовом свинчивании с установленным моментом вне муфты оказываются более двух витков резьбы. при стендовых

испытаниях на долговечность, оцениваемую по числу циклов свинчивание-развинчивание, это не имеет значения, но в эксплуатационных условиях незащищённые выточкой муфты витки повреждаются механическим воздействием среды скважины и могут быть изношены или повреждены ещё до первого подъёма из скважины. по мере износа, величина натяга уменьшается, витки погружаются глубже в муфту и, когда повреждённые витки ниппеля доходят до витков муфты, соединение приходится браковать, хотя и оно не выработало определённого стендовыми испытаниями ресурса. для обычных соединений, выдерживающих 6-8 циклов, износ или повреждение выступающих за муфту витков не так вероятен и велик, как для соединений с покрытием, выдерживающих свыше 50 циклов. поэтому увеличение срока службы известного соединения не может быть гарантировано, если бы даже удалось преодолеть вышеописанные препятствия организационного характера.

техническая задача, решаемые настоящим предложением, состоит в повышении эксплуатационной надёжности резьбового соединения, муфта которого имеет на резьбовой части покрытие, нанесённое методом диффузионного цинкования, за счёт обеспечения правильного стандартного натяга.

указанная задача решается тем, что в известном трубном муфтовом соединении насосно-компрессорной или буровой колонны, содержащем резьбовой элемент с наружной конической треугольной резьбой, например трубу или переходник, и резьбовой элемент с внутренней резьбой, например муфту или переходник, имеющий входную цилиндрическую выточку и резьбовую часть с покрытием, нанесённым методом термодиффузионного порошкового цинкования, длина входной цилиндрической выточки муфты увеличена на величину вызванного

цинкованием приращения натяга резьбы δа, вычисляемого по формуле: δа = kδ min í kδ maX) где к - эмпирический коэффициент, равный 70, а δ min и δ max - соответственно, минимальная и максимальная толщина покрытия.

указанная задача решается также тем, что в известном трубном муфтовом соединении насосно-компрессорной или буровой колонны, содержащем резьбовой элемент с наружной конической трапецеидальной резьбой, например трубу или переходник, и резьбовой элемент с внутренней резьбой, например муфту или переходник, имеющий входную цилиндрическую выточку и резьбовую часть с покрытием, нанесённым методом термодиффузионного порошкового цинкования, длина входной цилиндрической выточки муфты увеличена на величину вызванного цинкованием приращения натяга резьбы δа, вычисляемого по формуле: δа = kδ min í kδ maX; где к - эмпирический коэффициент, равный 30, а δ min и δ тах — соответственно, минимальная и максимальная толщина покрытия.

технический результат от увеличения длины входной цилиндрической выточки резьбового элемента с внутренней резьбой на величину вызванного цинкованием приращения натяга резьбы, определяемого по заявленной эмпирической формуле, состоит в повышении надёжности соединения в эксплуатационных условиях, поскольку исключается вероятность перетягивания соединения в стремлении достичь номинального натяга, а также повреждение выступающих из муфты крайних витков резьбы в ходе эксплуатации. этот результат достигается без затрат времени и средств на переобучение персонала, издание и доведение до каждой буровой новых нормативных материалов, изготовление новых поверочных инструментов и ремонтной оснастки. в свою очередь, это позволяет немедленно начать поставку на скважины предложенных соединений и повысить срок службы

стандартных резьбовых соединений HKT с 6í8 циклов свинчивание- развинчивание до 50 и более.

кроме того надёжность соединения повышается ещё и за счёт того, что благодаря увеличению длины выточки, при силовом свинчивании стандартным крутящим моментом резьбовая часть элемента с наружной резьбой оказывается почти целиком скрыта внутри выточки и, таким образом, защищена от механического воздействия среды скважины.

существо предложения поясняется чертежами.

на фиг. 1 изображено известное резьбовое соединение, муфта которого имеет на резьбовой части покрытие, свинченное усилием руки.

на фиг. 2 изображено предложенное резьбовое соединение, свинченное усилием руки.

на фиг. 3 изображено предложенное резьбовое соединение, свинченное установленным рабочим моментом.

предложенное резьбовое соединение (фиг. 1) состоит из элемента с наружной резьбой 1, например, буровой трубы или переходника, далее для краткости, называемого ниппелем, и сопряжённого с ним элемента с внутренней резьбой 2, например муфты или переходника, далее, для краткости, называемого муфтой. входная часть муфты 2 имеет цилиндрическую выточку 3. диаметр выточки немного больше диаметра свободной от резьбы части ниппеля 1. на резьбовой части муфты имеется покрытие 4, нанесённое методом диффузионного порошкового цинкования. толщина покрытия 4 обычно лежит в пределах 15...30 мкм, но может быть и толще - до 50 мкм. поверх цинкового покрытия может быть нанесено антикоррозийное фосфатное покрытие толщиной несколько микрон. на резьбовой поверхности ниппеля 1 покрытия нет,

или нанесено стандартное антикоррозийное фосфатное покрытие толщиной 2..3 мкм.

глубина G выточки 3, измеряемая расстоянием от торца 5 муфты 2 до начала резьбы, равна сумме стандартной глубины g выточки, нормированной для соединений без цинкового покрытия, и величины вызванного цинкованием приращения натяга резьбы δа, то есть G = g + δа. при этом величина δа, определённая опытным путём, не зависит от шага или диаметра резьбы и составляет вычисляется по формуле: δа = kδ min í kδ maXj где к - эмпирический коэффициент, равный 70 для резьбы с треугольным профилем и равный 30 для резьбы с трапецеидальным профилем для толщин покрытия в диапазоне 15í50 мкм. при определении формулы для δа было учтено, что величину натяга персонал скважин оценивает на глаз по числу выступающих над краем муфты витков. точность такого определения составляет приблизительно 1/4í1/3 витка и потому предложенные муфты, натяг который лежит в пределах стандартного поля допусков, в эксплуатационных условиях признаются годными, независимо от того, увеличена ли глубина выточки на kδ miпj либо на kδ max.

выражение для δа справедливо для любых стандартных конических резьб независимо от диаметра и шага резьбы. значение k определены экспериментально при испытаниях муфт с покрытием. предпочтительным является назначение величины δа исходя из средней толщины покрытия δ med , устанавливаемой по технологическим соображениям как оптимальной для долговечности соединения и прочности покрытия. в этом случае величина δа будет равна kδ med . величина δ med не обязательно должна являться средним арифметическим между δ m j n и δ max. так, опытным путём установлено, что хотя повышение срока службы соединения обеспечивается при толщинах покрытия, лежащих в диапазоне 15...30 мкм, наилучшие результаты достигаются,

если параметры технологического процесса нанесения покрытия ориентированы на получение δ med = 25 мкм. но если в одной из партий муфт, например, из-за отклонения технологического режима, средняя толщина покрытия окажется меньше δ med , хотя и в пределах поля допусков, целесообразно для этой партии рассчитать соответствующее ей новое значение δа и соответственно уменьшить длину выточки. поскольку муфта имеет резьбу и выточки с двух сторон, то в результате применения предложенного решения, длина муфты увеличивается на 2δA. длина же переходников, имеющих внутреннюю резьбу только с одной стороны, увеличивается на δа.

разные значения коэффициентов k для треугольной и трапецеидальной резьб объясняется тем, что в резьбе треугольного профиля контакт витков ниппеля и муфты происходит по средней линии резьбы, то есть по боковым поверхностям' профиля, а в соединения с резьбой трапецеидального профиля посадка осуществляется по внутреннему или по внутреннему и наружному диаметру резьбы.

предложенное соединение изготавливается и используется следующим образом.

заготовка муфты изготавливается с увеличенной на величину δа глубиной выточки. предпочтительным является увеличение длины элемента с наружной резьбой на величину δа для переходников и 2 δа для муфт. в муфтонарезном станке вводится коррекция на величину δа так, чтобы основная плоскость резьбы сместилась на это же расстояние в сторону малого диаметра резьбового конуса. после нарезки резьбы на муфте производится проверка осевого натяга стандартным резьбовым калибром (фиг.2). при этом годными считаются муфты, у которых натяг равен натягу а, заданному в стандартах на резьбовое соединение, за вычетом величины δа, то есть муфты с натягом (а - δа). таким образом

реализуется всё поле допуска по натягам, заданное в стандартах.

поскольку отход от стандартного метода проверки производится на промежуточной стадии изготовления, на него не требуется получать согласований или разрешений. для освоения производства предложенных муфт потребуется внести изменения только в технологическую инструкцию производителя.

муфты, прошедшие испытание, подвергаются диффузионному порошковому цинкованию. толщина нанесённого покрытия может составлять 15...50 мкм. изготовленные муфты подвергаются выходному контролю стандартными калибрами по стандартной методике, то есть натяг муфты, проверяемой с помощью калибра-пробки, должен составлять стандартную величину а с учётом предельных отклонений. таким образом и входной контроль муфт у потребителя покажет стандартную величину а, то есть какие-либо изменения в эксплуатационных инструкциях потребителя не потребуются.

при первом силовом свинчивании предложенного соединения величина натяга уменьшается на 0,5...0,8 мм. в дальнейшем уменьшение натяга резьбы оцинкованной муфты происходит со средней скоростью 0,05 мм за один цикл свинчивание-развинчивание.

опыт стендовых и промысловых испытаний EQCT с муфтами, резьба которых оцинкована методом термодиффузии, а длина выточки увеличена согласно настоящему предложению, показывает, что данные соединения собираются с моментами кручения, аналогичными обычным HKT. осевые и диаметральные натяги соединения также соответствуют обычным HKT. при сборке соединений использовались обычные в практике нефтяников смазки. сборка предложенных соединений не требует никакого специального оборудования. случаев отбраковки годных соединений персоналом скважин не было.