Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THREE-DIMENSIONAL PRINTER WITH A SUPPORTING ELEMENT INSERTION APPARATUS
Document Type and Number:
WIPO Patent Application WO/2017/188997
Kind Code:
A2
Abstract:
According to an example, in a method for forming a three-dimensional (3D) printed object, a plurality of layers of the 3D printed object and a channel that extends through the plurality of layers may be formed, in which the plurality of layers is formed of a first material. In addition, a supporting element may be inserted into the channel such that the supporting element extends through multiple layers of the plurality of layers, in which the supporting element is formed of a second material that differs from the first material.

Inventors:
HERTLING WILLIAM E (US)
ROBERTSON MELANIE (US)
Application Number:
PCT/US2016/030155
Publication Date:
November 02, 2017
Filing Date:
April 29, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HEWLETT PACKARD DEVELOPMENT CO LP (US)
Attorney, Agent or Firm:
LEMMON, Marcus, B. et al. (US)
Download PDF:
Claims:
What is claimed is:

1 . A method for forming a three-dimensional (3D) printed object, said method comprising:

forming a plurality of layers of the 3D printed object and a channel that extends through the plurality of layers, wherein the plurality of layers is formed of a first material; and

inserting a supporting element into the channel such that the supporting element extends through multiple layers of the plurality of layers, wherein the supporting element is formed of a second material that differs from the first material.

2. The method according to claim 1 , wherein inserting the supporting element further comprises inserting the supporting element while the supporting element is in a fluid state, and wherein the supporting element is to harden after the supporting element has been inserted into the channel.

3. The method according to claim 1 , wherein the supporting element is a solid, elongated member and wherein inserting the supporting element further comprises inserting the supporting element to be frictionally fit into the channel.

4. The method according to claim 1 , wherein the supporting element is a solid, elongated element and wherein inserting the supporting element further comprises inserting the supporting element with an adhesive into the channel.

5. The method according to claim 1 , wherein the supporting element has helical grooves and wherein inserting the supporting element further comprises inserting the supporting element through application of a screwing action on the supporting element.

6. The method according to claim 1 , further comprising:

forming another plurality of layers while forming another channel that extends through the another plurality of layers, wherein the another plurality of layers is formed of the first material, and wherein the another channel is offset with respect to the channel; and

inserting another supporting element into the another channel such that the another supporting element extends through multiple layers of the another plurality of layers, wherein the another supporting element is formed of the second material.

7. The method according to claim 1 , wherein forming the plurality of layers further comprises forming the plurality of layers through use of a first material deposition apparatus and wherein inserting the supporting element further comprises inserting the supporting element through use of a supporting element insertion apparatus, wherein the supporting element insertion apparatus is separate from the first material deposition apparatus.

8. The method according to claim 1 , wherein forming the plurality of layers further comprises forming the plurality of layers through fused deposition modelling printing.

9. A three-dimensional (3D) printer comprising:

a first material deposition apparatus to be implemented in forming a plurality of layers of a first material on a platform, wherein a channel is formed through the plurality of layers; and

a supporting element insertion apparatus, wherein the supporting element insertion apparatus is to insert a second material into the channel formed through the plurality of layers, wherein the second material differs from the first material and wherein the second material is to provide structural support to the plurality of layers of the first material.

10. The 3D printer according to claim 9, further comprising:

a processor;

a memory on which is stored machine readable instructions that are to cause the processor to:

control the first material deposition apparatus to form the channel to extend continuously through a subset of the plurality of deposited layers; and control the supporting element insertion apparatus to insert the second material into the channel.

1 1 . The 3D printer according to claim 10, further comprising:

a sensing system to obtain sensed data regarding the channel;

wherein the machine readable instructions are further to cause the processor to:

receive the sensed data;

determine a location of the channel from the received sensed data; and

control the supporting element insertion apparatus to insert the second material into the channel based upon the determined location of the channel.

12. The 3D printer according to claim 9, wherein the second material comprises a solid supporting element and wherein the supporting element insertion apparatus is to drive the solid supporting element into the channel.

13. The 3D printer according to claim 9, wherein the second material comprises a solid supporting element, wherein the solid supporting element comprises a helical groove, and wherein the supporting element insertion apparatus is to insert the solid supporting element into the channel through application of a screwing motion on the solid supporting element.

14. The 3D printer according to claim 9, wherein the channel is formed at an angle that is between about normal and about parallel to a plane of a layer of the plurality of layers.

15. A method comprising: access data pertaining to a characteristic of a channel formed in a plurality of layers of a first material, wherein the first material is to form part of a three-dimensional printed object; and

controlling a supporting element insertion apparatus to insert a supporting element into the channel, the supporting element being formed of a second material that differs from the first material.

Description:
THREE-DIMENSIONAL PRINTER WITH A SUPPORTING ELEMENT

INSERTION APPARATUS

BACKGROUND

[0001] In three-dimensional (3D) printing, an additive printing process is often used to make three-dimensional solid parts from a digital model. 3D printing is often used in rapid product prototyping, mold generation, mold master generation, and short run manufacturing. Some 3D printing techniques, such as fused deposition modeling (FDM) are considered additive processes because they involve the application of successive layers of material. This is unlike traditional machining processes, which often rely upon the removal of material to create the final part. 3D printing often requires curing or fusing of the building material, which for some materials may be accomplished using heat-assisted extrusion, melting, or sintering, and for other materials may be accomplished using digital light projection technology.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements, in which:

[0003] FIG. 1 A shows a simplified block diagram of an example three-dimensional (3D) printer for forming a 3D printed object and a simplified cross-sectional view of an example 3D printed object;

[0004] FIG. 1 B shows a cross-sectional side view of the 3D printed object depicted in FIG. 1A in which other example configurations of the channels and the supporting elements are depicted;

[0005] FIG. 2 shows a simplified block diagram of another example 3D printer and a simplified cross-sectional side view of the example 3D printed object depicted in FIG. 1 A;

[0006] FIGS. 3 and 4, respectively, depict flow diagrams of methods for forming 3D printed object; and

[0007] FIG. 5 shows a simplified block diagram of another example 3D printer and a simplified cross-sectional side view of the example 3D printed object depicted in FIG. 1 A.

DETAILED DESCRIPTION

[0008] For simplicity and illustrative purposes, the present disclosure is described by referring mainly to an example thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure. As used herein, the terms "a" and "an" are intended to denote at least one of a particular element, the term "includes" means includes but not limited to, the term "including" means including but not limited to, and the term "based on" means based at least in part on.

[0009] Disclosed herein are a 3D printer and methods for implementing the 3D printer to form a 3D part (or equivalently, a 3D object). Particularly, the 3D printer disclosed herein may include a first material deposition apparatus and a supporting element insertion apparatus. The first material deposition apparatus may be implemented in the formation of a plurality of layers of a first material and a channel may be formed in a subset of the plurality of layers. In addition, the supporting element insertion apparatus may insert a second material into the channel to form a supporting element (or equivalently, a supporting member), in which the second material differs from the first material. In one example, the second material may be relatively stronger than the first material to provide additional structural support to the 3D part formed from the first material.

[0010] As discussed in greater detail herein, the second material may be inserted into the channel in a liquid form, a gel form, or a solid form. When inserted in liquid or gel form, the second material may be hardened through application of heat, light, and/or exposure to ambient air. As the supporting element may be relatively stronger than the first material, the supporting element may also provide additional support in the direction perpendicular to the direction in which the layers of the first material are formed. Additionally, an adhesive and/or epoxy may be used to bond the supporting element to the layers of the first material, thereby providing greater structural bonding between adjacent layers of the first material.

[0011] With reference first to FIG. 1A, there are shown a simplified block diagram of an example three-dimensional (3D) printer 100 for forming a 3D printed object 1 10 and a simplified cross-sectional view of an example 3D printed object 1 10. It should be understood that the 3D printer 100 depicted in FIG. 1A may include additional components and that some of the components may be removed and/or modified without departing from a scope of the 3D printer 100 disclosed herein.

[0012] The 3D printer 100 is depicted as including a first material deposition apparatus 102 and a supporting element insertion apparatus 104. Generally speaking, the first material deposition apparatus 102 and the supporting element insertion apparatus 104 may be employed to print or form a 3D printed object 1 10 on a build area platform 106. That is, the first material deposition apparatus 102 may be implemented to form a plurality of layers 1 12 of a first material 108. In addition, channels 1 14 that extend through multiple ones of the plurality of layers 1 12 may be formed and the supporting element insertion apparatus 104 may be employed to insert a supporting element 1 16 into the channels 1 14 formed in the layers 1 12 of the first material 108.

[0013] According to an example, the first material 108 may be a polymer and the first material deposition apparatus 102 may be an apparatus that is to deposit or print the first material 108. For instance, the first material deposition apparatus 102 may perform fused deposition modeling (FDM) to deposit or print the first material 108 into the layers 1 12. In this example, the first material deposition apparatus 102 may receive a feedstock of the polymer in a solid form, may partially melt the feedstock, and may force a smaller diameter portion of the melted polymer to be extruded through a nozzle (not shown) and onto the build area platform 106 or a previously deposited layer 1 12 of the first material 108. The first material deposition apparatus 102 and/or the build area platform 106 may be moved with respect to each other in the x, y, and/or z directions to enable the first material deposition apparatus 102 to deposit the layers 1 12 of the first material 108 on desired locations to form the 3D printed object 1 10.

[0014] In this example, the first material deposition apparatus 102 may be movable in at least the x and y directions such that first material deposition apparatus 102 may deposit the first material 108 in predetermined locations with respect to the build area platform 106. In addition, as the first material deposition apparatus 102 deposits the first material 108 into the layers 1 12, the first material deposition apparatus 102 may form the channels 1 14 in multiple ones of the layers 1 12 and in multiple locations of the 3D printed part 1 10 as shown in FIG. 1A.

[0015] In another example, the first material deposition apparatus 102 may be a delivery mechanism for delivering a fusing agent onto a powder bed. In this example, multiple layers 1 12 of the first material 108 may be formed such that the locations in which the channels 1 14 are to be formed do not receive the fusing agent. Instead, the locations at which the channels 1 14 are to be formed may be supplied with a fusing agent and/or may be supplied with a detailing agent, such as a cooling liquid, to prevent the powder in those locations from being fused together when energy from a fusing lamp (not shown) is applied to those locations. In addition or alternatively, the 3D printer 100 may include a mechanism (not shown) for forming the channels 1 14 in the formed layers 1 12. The mechanism may include, for instance, a drill bit or an auger that is able to remove the loose or fused powder to form the channels 1 14.

[0016] In the examples above, the channels 1 14 may be formed to have any suitable cross-sectional shape along the x-y directions, including circular, rectangular, triangular, etc. The channels 1 14 may, however, be formed to have sufficiently large widths to accommodate for the viscosities of the second material in examples in which the second material is inserted in liquid or gel form. In addition, as shown in FIG. 1A, the sides of the channels 1 14 may have ridges, which may be formed during the deposition of the layers 1 12 or may be formed through a boring operation performed on multiple ones of the layers 1 12. In one regard, the ridges in the channels 1 14 may enable for the supporting elements 1 16 to provide greater structural support to the layers 1 12 over which the supporting elements 1 16 extend.

[0017] The supporting element insertion apparatus 104 may insert the supporting elements 1 16 into the channels 1 14 following the formation of the channels 1 14. For instance, the supporting element insertion apparatus 104 may insert the supporting elements 1 16 into the channels 1 14 prior to a layer (or layers) 1 12 that covers the channels 1 14 from being formed over the channels 1 14. The supporting elements 1 16 may be formed of a second material that differs from the first material 108. For instance, the second material may be a plastic, a rubber, a metal, an epoxy, a glue, etc., material. Generally speaking, the supporting elements 1 16 may be formed of a material that is of sufficient strength to enhance the structural integrity of the 3D printed object 1 10 in the z-direction, e.g., in the direction that is perpendicular to the direction in which the layers 1 12 of the first material 108 are formed. For example, the second material may be relatively stronger and/or more rigid than the first material 108.

[0018] According to an example, the supporting element insertion apparatus 104 may insert the supporting elements 1 16 into the channels 1 14 while the supporting elements 1 16 are in a fluid state. In this example, the supporting element insertion apparatus 104 may include an inserting mechanism (not shown) through which the supporting element insertion apparatus 104 may insert the supporting elements 1 16 in their liquid states into the channels 1 14. In addition, the supporting elements 1 16 may harden following insertion of the supporting elements 1 16 into the channels 1 14. For instance, the supporting elements 1 16 may be formed of a material that is to harden after exposure to sufficient levels of heat, to light, and/or to air.

[0019] According to another example, the supporting elements 1 16 may be in a solid form when the supporting element insertion apparatus 104 inserts the supporting elements 1 16 into the channels 1 14. In this example, the supporting elements 1 16 may be formed of elongated members, such as rods, and the supporting element insertion apparatus 104 may include an inserting mechanism (not shown) that is to drive the supporting elements 1 16 into their respective channels 1 14. The rods may be formed of a relatively rigid material such as plastic, metal, an alloy, etc. The supporting elements 1 16 may be friction fit into the channels 1 14. In addition, or alternatively, the supporting element insertion apparatus 104 may apply an adhesive to the supporting elements 1 16 as the supporting elements 1 16 are inserted into the channels 1 14 such that the adhesive bonds the supporting elements 1 16 to the walls of the channels 1 14. In a further example, the supporting elements 1 16 may include helical grooves and supporting element insertion apparatus 104 may apply a screwing or rotating action on the supporting elements 1 16 to drive the supporting elements 1 16 into the channels 1 14. In a still futher example in which the channels 1 14 are not formed prior to insertion of the supporting elements 1 16, insertion of the supporting elements 1 16 may displace or remove part of the first material 108 to form the channels 1 14.

[0020] With reference now to FIG. 1 B, there is shown a cross-sectional side view of the 3D printed object 1 10 depicted in FIG. 1 A in which other example configurations of the channels and the supporting elements are depicted. The 3D printed object 1 10 depicted in FIG. 1 B differs from the 3D printed object 1 10 depicted in FIG. 1A in that the channels 120-124 are configured differently as compared with the channels 1 14 depicted in FIG. 1 B. In this regard, FIG. 1 B depicts a few alternate channel configurations in which supporting elements 130-134 may be inserted. It should be understood that the alternate channel configurations shown in FIG. 1A are not exhaustive and that other channel configurations may be implemented without departing from a scope of the present disclosure.

[0021] The 3D printed object 1 10 is depicted in FIG. 1 B as including a plurality of channels 120-124 and a plurality of supporting elements 130-134 that have been inserted into the channels 120-124. As shown, a first channel 120 and the second channel 122 are depicted as extending at angles with respect to the y-axis. That is, for instance, the first and second channels 120 and 122 are depicted as extending diagonally with respect to the y-axis. As also shown, a third channel 124 is depicted as having a larger bottom section as compared with a top section of the channel 124. In each of the channels 120-124, a respective supporting element 130-134 may be inserted in any of the manners discussed above with respect to FIG. 1A. In one regard, the channels 120-124 may be formed to have configurations other than vertical, for instance, to provide greater strength to the 3D printed part 1 10. In another regard, the channels 120-124 may be formed to have other configurations to enable the supporting elements 130-134 to be provided in portions of 3D printed parts that are curved or have other shapes.

[0022] By way of particular example, the channels 120-124 may be formed to have fixed dimensions. For instance, a channel 120 may be 1 mm x 1 mm in the x and y directions and 4 mm in the z direction. In addition, the channels 120-124 may be formed such that they are offset from each other in the z direction. For instance, a first channel 120 may start 1 mm from the bottom of the 3D printed part 1 10, a second channel 122 may start 2 mm from the bottom, the third channel 124 may start 3 mm from the bottom, a fourth channel (not shown) may start at 2 mm from the bottom, and so forth. According to example, the channels 120-124 may be staggered with respect to each other such that each layer 1 12 has multiple channels 120-124.

[0023] Turning now to FIG. 2, there are shown a simplified block diagram of another example 3D printer 200 and a simplified cross-sectional side view of the example 3D printed object depicted in FIG. 1 A. The 3D printer 200 is depicted as including the first material deposition apparatus 102 and the supporting element insertion apparatus 104 depicted in FIG. 1A. In addition, in the 3D printer 200, the first material deposition apparatus 102 and the supporting element insertion apparatus 104 are depicted as being arranged on a carriage 202. The 3D printer 200 is further depicted as including a controller 204 that may control operations of the 3D printer 200, a data store 206 that may include data pertaining to a 3D part to be printed by the 3D printer 200, and a memory 208 that may store instructions that the controller 204 is to execute in controlling the operations of the 3D printer 200.

[0024] The controller 204 may be a computing device, a semiconductor-based microprocessor, a central processing unit (CPU), an application specific integrated circuit (ASIC), and/or other hardware device. As shown, the controller 204 may control each of the first material deposition apparatus 102, the supporting element insertion apparatus 104, and the carriage 202. Particularly, for instance, the controller 204 may control actuators (not shown) that are to move and/or activate the first material deposition apparatus 102, the supporting element insertion apparatus 104, and the carriage 202 based upon, for instance, the instructions stored in the memory 208 and the data stored in the data store 206.

[0025] The data store 206 may store data pertaining to the locations at which the first material 108 is to be deposited, the locations at which the channels 1 14 are to be formed, the timing at which the supporting elements 1 16 are to be inserted into the channels 1 14, etc. In addition, the controller 204 may execute the instructions 210 to control the first material deposition apparatus 102 to cause the first material 108 to be deposited and the channels 1 14 to be formed, the instructions 212 to control the supporting element insertion apparatus 212 to cause the second material to be inserted to form the supporting elements 1 16, and the instructions 214 to control the carriage 214 to position the first material deposition apparatus 102 and the supporting element insertion apparatus 104 at desired locations during the material deposition and insertion processes.

[0026] The memory 208 may be any electronic, magnetic, optical, or other physical storage device that contains or stores executable instructions. Thus, the memory 208, which may also be construed as a machine-readable storage medium, may be, for example, Random Access Memory (RAM), an Electrically Erasable Programmable Read-Only Memory (EEPROM), a storage device, an optical disc, and the like. The memory 208 (machine-readable storage medium) may be a non-transitory machine-readable storage medium, where the term "non-transitory" does not encompass transitory propagating signals.

[0027] Additionally, the 3D printer 200 is depicted as including a sensing system 220 that may also be supported on the carriage 202. According to an example, the sensing system 220 may include any of an imaging system, a sonar system, a light detection and ranging (LIDAR) system, or the like, that may sense physical conditions of the layers 1 12 of first material 108. Generally speaking, the sensing system 220 may sense the physical conditions, e.g., capture images, detect distances, etc., and may communicate the sensed conditions to the controller 204. The controller 204 may, for instance, determine the locations of the channels 1 14 from the sensed conditions. That is, the controller 204 may determine that a channel 1 14 is located at a particular location based upon an analysis of a captured image at that location and/or based upon a determination that a detected distance is relatively longer at that location. The use of the sensing system 220 may be considered to be optional in some examples, for instance, in those examples in which the controller 204 tracks the locations at which the channels 1 14 are formed during the deposition of the first material 108 into the layers 1 12.

[0028] Although the first material deposition apparatus 102, the supporting element insertion apparatus 104, and the sensing system 220 have been depicted as being supported on a carriage 202, it should be understood that these components may be supported on separate carriages or may otherwise be independently movable with respect to each other without departing from a scope of the present disclosure.

[0029] Various manners in which the 3D printer 100, 200 may be implemented are discussed in greater detail with respect to the methods 300 and 400 respectively depicted in FIGS. 3 and 4. It should be apparent to those of ordinary skill in the art that the methods 300 and 400 may represent generalized illustrations and that other operations may be added or existing operations may be removed, modified, or rearranged without departing from the scopes of the methods 300 and 400.

[0030] The descriptions of the methods 300 and 400 are made with reference to the 3D printers 100 and 200 illustrated in FIGS. 1 and 2 for purposes of illustration. It should, therefore, be understood that 3D printers having other configurations may be implemented to perform either or both of the methods 300 and 400 without departing from the scopes of the methods 300 and 400. [0031 ] Prior to execution of either of the methods 300 and 400 or as part of the methods 300 and 400, the controller 204 may execute instructions (not shown) stored in the memory 208 to access data pertaining to a 3D part 1 10 that is to be printed. By way of example, the controller 204 may access data stored in the data store 206 pertaining to the 3D part 1 10 that is to be printed. The controller 204 may determine, for instance, the placements at which the channels 1 14 are to be formed in the layers 1 12 of the first material 108 and the timings at which the supporting elements 1 16 are to be inserted into the channels 1 14. In other examples, however, a processing device (not shown) outside of the 3D printer 100 may execute instructions to access the 3D part 1 10 data and to determine the placements at which the channels 1 14 are to be formed in the layers 1 12 and the timings at which the supporting elements 1 16 are to be inserted into the channels 1 14. In these examples, the processing device may communicate this information to the controller 204 and the controller 204 may implement this information in executing either of the methods 300 and 400.

[0032] With reference first to FIG. 3, at block 302, a plurality of layers 1 12 of the 3D printed object 1 10 and a channel 1 14 that extends through the layers 1 12 may be formed. As discussed above, the controller 204 may control the first material deposition apparatus 102 to form the plurality of layers 1 12 while also forming the channel 1 14. In addition, the channel 1 14 may be formed to extend vertically through the plurality of layers 1 12 or at various angles as discussed above with respect to FIG. 1 B. According to an example, the controller 204 may determine the location at which the channel 1 14 is to be formed prior to forming the channel 1 14. In one example, the controller 204 may determine the location to be location that is sufficiently distant from edges of the 3D printed part 1 10 to prevent the structural element 1 16 from creating artifacts on an exterior surface of the 3D printed part 1 10, while also providing a desired level of structural support to the 3D printed part 1 10.

[0033] At block 304, a supporting element 1 16 may be inserted into the channel 1 14 such that the supporting element 1 16 extends through multiple layers of the plurality of layers 1 12. The controller 204 may control the supporting element insertion apparatus 104 to insert a second material in liquid, gel, and/or solid form into the channel 1 14. In addition, the supporting element 1 16 may be formed of material that differs from the first material. For instance, the supporting element 1 16 may be formed of a material that is significantly stronger and/or harder than the first material when the second material is hardened.

[0034] Blocks 302 and 304 may be repeated at various locations with respect to the 3D printed part 1 10 to thus form a plurality of channels 1 14 in a plurality of layers 1 12 and to insert a plurality of supporting elements 1 16 into the channels 1 14. In this regard, the supporting elements 1 16 may provide additional structural support to the 3D printed part 1 10.

[0035] With reference now to FIG. 4, at block 402, a plurality of layers 1 12 of the 3D printed object 1 10 may be formed while a channel 1 14 that extends through the layers 1 12 is formed in any of the manners discussed above.

[0036] At block 404, a location of the channel 1 14 may be determined. In one example, the controller 204 may determine the location of the channel 1 14 based upon a known location of the channel 1 14 as the channel 1 14 was formed. In another example, the sensing system 220 may be maneuvered with respect to the printed layers 1 12 and the sensing system 220 may output sensed data to the controller 204. In addition, the controller 204 may analyze the sensed data to determine the location of the channel 1 14. According to an example, the controller 204 may access data pertaining to a characteristic of the channel 1 14, in which the characteristic may include a location of the channel 1 14, an orientation of the channel 1 14, a size of the channel, and the like.

[0037] At block 406, a supporting element 1 16 may be inserted into the located channel 1 14. As discussed above, the controller 204 may control the supporting element insertion apparatus 104 to insert the supporting element 1 16 into the channel 1 14, in which the supporting element 1 16 is formed of a second material that differs from the first material. By way of particular example, the supporting element 1 16 may be a relatively rigid elongated member, such as a plastic or metal rod, and the supporting element insertion apparatus 104 may drive the supporting element 1 16 into the channel 1 14. Similarly, as shown in FIG. 5, which depicts a simplified block diagram of another example 3D printer 500 and a simplified cross-sectional side view of the example 3D printed object depicted in FIG. 1A, the supporting element 1 16 may include helical grooves and may be inserted into the channel 1 14 through a rotating and/or screwing action. That is, the supporting element insertion apparatus 104 may include a rotating element 502 that may engage the supporting element 1 16. In addition, the supporting element insertion apparatus 104 may insert the supporting element 1 16 into the channel 1 14 by causing the rotating element 502 to rotate as depicted by the arrow 504 and driving the supporting element 1 16 down in the negative z-direction.

[0038] At block 408, a determination may be made as to whether additional layers 1 12 are to be formed. For instance, the controller 204 may determine that additional layers 1 12 are to be formed on top of the layers 1 12 in which the channel 1 14 has been formed. In response to a determination that additional layers are to be formed, blocks 402-404 may be repeated to position supporting elements 1 16 at multiple locations along the height of the 3D printed part 1 10. However, in response to a determination at block 408 that no additional layers are to be formed, the method 400 may end as indicated at block 410.

[0039] Some or all of the operations set forth in the methods 300 and 400 may be contained as utilities, programs, or subprograms, in any desired computer accessible medium. In addition, the methods 300 and 400 may be embodied by computer programs, which may exist in a variety of forms both active and inactive. For example, they may exist as machine readable instructions, including source code, object code, executable code or other formats. Any of the above may be embodied on a non-transitory computer readable storage medium.

[0040] Examples of non-transitory computer readable storage media include computer system RAM, ROM, EPROM, EEPROM, and magnetic or optical disks or tapes. It is therefore to be understood that any electronic device capable of executing the above-described functions may perform those functions enumerated above.

[0041] Although described specifically throughout the entirety of the instant disclosure, representative examples of the present disclosure have utility over a wide range of applications, and the above discussion is not intended and should not be construed to be limiting, but is offered as an illustrative discussion of aspects of the disclosure.

[0042] What has been described and illustrated herein is an example of the disclosure along with some of its variations. The terms, descriptions and figures used herein are set forth by way of illustration only and are not meant as limitations. Many variations are possible within the spirit and scope of the disclosure, which is intended to be defined by the following claims - and their equivalents - in which all terms are meant in their broadest reasonable sense unless otherwise indicated.