Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THREE-PADDLE ROCKER CHILLER
Document Type and Number:
WIPO Patent Application WO/2015/073434
Kind Code:
A1
Abstract:
A rocker-type poultry chiller, including a tank for receiving poultry carcasses and holding chilled water, an axle mounted in the tank, a main paddle connected to the axle, and a side paddle connected to the axle. The oscillation of the main paddle and the side paddle urges the carcasses upwardly and laterally, which contributes to the cooling of the carcasses as a result of their thorough contact in the chilled water. The movement of the paddles also gently massages the carcasses by gently bumping them against the paddle blades and the wall of the tank. The repeated compression of the carcasses tends to tenderize the meat. The side paddles ensure more predictable and consistent contact between the paddles and all of the carcasses, which causes more agitation of the carcasses and more effective washing of the carcasses.

More Like This:
Inventors:
MILLER LUCAS M (US)
ESTES JEREMY B (US)
LANGLEY J BARTON (US)
MILLER MICHAEL E (US)
Application Number:
PCT/US2014/065015
Publication Date:
May 21, 2015
Filing Date:
November 11, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COOLING & APPLIED TECHNOLOGY INC (US)
International Classes:
F25D17/02
Foreign References:
US20070169502A12007-07-26
US2164277A1939-06-27
US1761564A1930-06-03
US20120152497A12012-06-21
US2053627A1936-09-08
Attorney, Agent or Firm:
GLASGOW, Richard, Blakely (Lindsey & Jennings LLP200 West Capitol Avenue,Suite 230, Little Rock AR, US)
Download PDF:
Claims:
CLAIMS

1 . A rocker-type poultry chiller, comprising:

a tank for receiving poultry carcasses and holding chilled water;

an axle mounted in said tank;

a main paddle connected to said axle; and

at least one side paddle connected to said axle.

2. The rocker-type poultry chiller of claim 1 , wherein said main paddle and said at least one side paddle extend downwardly towards an inner wall surface of said tank.

3. The rocker-type poultry chiller of claim 2, wherein said main paddle is connected to a paddle blade at an end of said main paddle.

4. The rocker-type poultry chiller of claim 2, wherein said at least one side paddle is connected to a paddle blade at an end of said side paddle.

5. The rocker-type poultry chiller of claim 1 , wherein said main paddle is connected directly to said axle.

6. The rocker-type poultry chiller of claim 1 , further comprising a cross-bar. 7. The rocker-type poultry chiller of claim 6, wherein said cross-bar is connected to said axle.

8. The rocker-type poultry chiller of claim 6, wherein said cross-bar is connected to said main paddle.

9. The rocker-type poultry chiller of claim 6, wherein said cross-bar is connected to said at least one side paddle.

10. The rocker-type poultry chiller of claim 1 , further comprising an electric motor.

1 1 . The rocker-type poultry chiller of claim 9, wherein said electric motor is connected to said axle.

12. The rocker-type poultry chiller of 1 , further comprising a stop connected to said at least one side paddle.

13. The rocker-type poultry chiller of claim 1 , wherein said side paddle is not fixed in position relative to said main paddle.

14. The rocker-type poultry chiller of claim 1 , wherein said side paddle is fixed in position relative to said main paddle.

15. The rocker-type poultry chiller of claim 1 , wherein said main paddle is not fixed in position related to said side paddle.

16. The rocker-type poultry chiller of claim 1 , wherein said main paddle oscillates along a portion of an inner surface of said tank.

17. The rocker-type poultry chiller of claim 1 , wherein said at least one side paddle oscillates along a portion of an inner surface of said tank.

18. The rocker-type poultry chiller of claim 1 , wherein said main paddle pivots when said axle rotates.

19. The rocker-type poultry chiller of claim 1 , wherein said at least one side paddle pivots when said axle rotates.

20. The rocker-type poultry chiller of claim 1 , further comprising an unloader.

Description:
THREE-PADDLE ROCKER CHILLER

CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No.

61/903,241 , entitled "Three-Paddle Rocker Chiller" and filed on November 12, 2013, U.S. Provisional Application No. 61/950,468, entitled "Three-Paddle

Rocker Chiller" and filed on March 10, 2014, and U.S. Provisional Application No. 62/016,764, entitled "Three-Paddle Rocker Chiller" and filed on June 25, 2014. The complete disclosure of said provisional patent applications are hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates generally to the field of poultry chillers and, more particularly, to a three-paddle rocker chiller for use in poultry processing for increasing product washing and cooling of poultry carcasses.

BACKGROUND ART

Rocker chillers are well-known in the poultry processing industry. The prior art rocker chillers typically include a tank for holding a heat-exchanging liquid and a paddle that oscillates to stir up the carcasses within the tank for purposes of cooling the carcasses. The contact between the carcasses and the paddle also causes product washing. It would therefore be desirable to develop a rocker chiller for cooling poultry carcasses that functions to increase product washing more than the prior art rocker chillers.

DISCLOSURE OF INVENTION The rocker chiller of the present invention includes an elongated tank for holding a chilled liquid; a main paddle assembly; a side main paddle assembly including two side paddles; and power means for oscillating the main paddle and the two side paddles in an arc along the bottom of the tank. The present invention is also directed to a method of using a 3-paddle rocker chiller to cool and increase washing of poultry carcasses.

These and other features, objects and advantages of the present invention will become better understood from a consideration of the following detailed description of the preferred embodiments and appended claims in conjunction with the drawings as described following:

BRIEF DESCRIPTION OF DRAWINGS

Figs. 1A-1 C are end views of the first preferred embodiment of the rocker chiller of the present invention.

Figs. 2A-2C are end views of the second preferred embodiment of the rocker chiller of the present invention.

Figs. 3A-3C are end views of the fourth preferred embodiment of the rocker chiller of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

With reference to Figs. 1A-3C, the preferred embodiments of the present invention may be described. The rocker chiller 10 of the present invention includes a semi-cylindrical tank 12 that contains a body of chilling liquid 14. The tank 12 is generally formed from an elongated longitudinal wall 16, an inlet wall (not shown), and an outlet wall (not shown). A longitudinal axis extends between the inlet wall and outlet wall of the tank 12. The chilling liquid 14 preferably includes water and may also include antimicrobial agents or other additives of the type well-known to those skilled in the art. The temperature of the cooling liquid is preferably slightly above 32 degrees F, however, the temperature of the cooling liquid may vary depending on the particular use of the rocker chiller in poultry processing.

Poultry carcasses are introduced into an inlet end of the tank 12. The carcasses are cooled by the chilling liquid 14 before being removed from the outlet end of the tank 12 by an unloader (not shown) of the type well-known to those skilled in the art. As the carcasses move in the chiller towards the outlet end, a main paddle assembly 18 and a side paddle assembly 32 oscillate through the tank 12. The paddle assemblies 18, 32 contact and stir the carcasses to ensure thorough contact with the chilled liquid 14. The contact of the carcasses with the chilling liquid 14 lowers the temperature of the carcasses, while the contact of the carcasses with the paddle assemblies causes more effective washing of the carcasses.

The main paddle assembly 18 includes a main paddle 22 mounted to an axle or shaft 20 aligned with the longitudinal axis of the tank 12. The main paddle assembly 18 extends between the inlet wall and outlet wall of the tank 12. The main paddle 22 extends downwardly from the axle 20 and supports an elongated paddle blade 28 at its distal end. The main paddle 22 extends from the axle 20 towards the concave inner surface of the longitudinal wall 16 of the tank 12 so that the paddle blade 28 is positioned closely adjacent the concave longitudinal wall 16. The side paddle assembly 32 includes two side paddles 24. Each of the side paddles 24 also supports an elongated paddle blade 28 at their distal end.

In the first preferred embodiment, the two side paddles 24 are joined between a cross bar 26. The cross-bar 26 is connected to the top surface of the axle 20 and extends the length of the axle. A bearing or bushing is preferably attached to the axle 20, however, it should be understood that other means for connecting the cross-bar 26 and the axle 20 that would be well-known to those skilled in the art may be utilized. The side paddles 24 extend the entire length of the main paddle 22. The side paddles 24 extend downwardly towards the longitudinal wall 16 of the tank 12 and are positioned on opposite sides of the main paddle 22. The axle 20 is coupled to a power means (not shown) for rotating the axle in an oscillating fashion to oscillate the paddle assemblies 18, 32 in the tank 12. The power means preferably is an electric motor, but it may be any other device for moving the paddle assemblies that would be well-known to those skilled in the art. The main paddle assembly 18 oscillates along a path that follows the curved bottom portion of the tank 12.

In an example of the first preferred embodiment, as shown in Fig. 1A, each side paddle 24 forms a 30.9° angle with respect to the main paddle 22 at the resting position. The side paddles 24 move along approximately the same arc as the main paddle 22. The side paddles 24, however, are not fixed in position with respect to the main paddle 22. Instead, the side paddles 24 are capable of pivoting or swiveling within a certain range. Thus, the angle between the side paddles 24 and the main paddle 22 can change. The side paddle assembly pivots at the point 34 where the cross-bar 26 is connected to the axle 20. Stops 30 are joined to the inside surface of each of the side paddles 24 and are positioned between the side paddles 24 and the axle 20.

As the axle rotates and the main paddle 22 oscillates along the

longitudinal wall 16 up and to the right, which is shown in Fig. 1 B, the right stop 30 associated with right side paddle 24 contacts the axle 20. The stop 30 prevents the right side paddle 24 from moving any closer to the main paddle 22, thus ensuring a space between the right side paddle 24 and the main paddle 22. When the stop 30 is contacting the axle 20, the angle between the right side paddle 24 and the main paddle 22 in the example embodiment is 24.1 °.

Because of the pivoting feature of the side paddles 24, when the angle and distance between the right side paddle 24 and the main paddle 22 decreases, the angle and distance between the left side paddle 24 and the main paddle 22 necessarily increases. As shown in Fig. 1 B, when the right stop 30 is contacting the axle 20, the angle between the left side paddle 24 and the main paddle 22 in the example embodiment is 37.7°.

As the main paddle 22 oscillates along the longitudinal wall 16 up and to the left, which is shown in Fig. 1 C, the left stop 30 associated with left side paddle 24 contacts the axle 20. The stop 30 prevents the left side paddle 24 from moving any closer to the main paddle 22, thus ensuring a space between the left side paddle 24 and the main paddle 22. When the stop 30 is contacting the axle 20, the angle between the left side paddle 24 and the main paddle 22 in the example embodiment is 24.1 °. Because of the pivoting feature of the side paddles 24, when the angle and distance between the left side paddle 24 and the main paddle 22 decreases, the angle and distance between the right side paddle 24 and the main paddle 22 necessarily increases. As shown in Fig. 1 C, when the left stop 30 is contacting the axle 20, the angle between the right side paddle 24 and the main paddle 22 in the example embodiment is 37.7°. It should be understood that the angles described herein between the side paddles and the main paddle are exemplary only and not limiting to the full scope of the present invention.

In the second preferred embodiment, the cross-bar 26 is connected to both longitudinal ends of the main paddle 22 directly under the axle 20. The side paddles 24 extend the entire length of the main paddle 22. The side paddles 24 extend downwardly towards the longitudinal wall 16 of the tank 12 and are positioned on opposite sides of the main paddle 22. At the resting position, as shown in Fig. 2A, each side paddle 24 preferably is equally spaced from the main paddle 22. The side paddles 24 move along approximately the same arc as the main paddle assembly 18. The side paddles 24, however, are not fixed in position with respect to the main paddle 22. Instead, the side paddles 24 are capable of pivoting or swiveling within a certain range. The side paddle assembly pivots at the point 34 where the cross-bar 26 is connected to the main paddle 22. Instead of being positioned on the inside surfaces of the side paddles like in the first embodiment, the stops 30 in the second embodiment are rounded portions at the top of the side paddles 24. The axle 20 is positioned within the channel created by the two stops 30.

As the main paddle 22 oscillates along the longitudinal wall 16 up and to the right, which is shown in Fig. 2B, the left stop 30 associated with left side paddle 24 contacts the axle 20. The stop 30 prevents the right side paddle 24 from moving any closer to the main paddle 22, thus ensuring a space between the right side paddle 24 and the main paddle 22. Because of the pivoting feature of the side paddles 24, when the distance between the right side paddle 24 and the main paddle 22 decreases, the distance between the left side paddle 24 and the main paddle 22 necessarily increases.

As the main paddle 22 oscillates along the longitudinal wall 16 up and to the left, which is shown in Fig. 2C, the right stop 30 associated with right side paddle 24 contacts the axle 20. The stop 30 prevents the left side paddle 24 from moving any closer to the main paddle 22, thus ensuring a space between the left side paddle 24 and the main paddle 22. Because of the pivoting feature of the side paddles 24, when the distance between the left side paddle 24 and the main paddle 22 decreases, the angle and distance between the right side paddle 24 and the main paddle 22 necessarily increases.

In the third preferred embodiment, the side paddle assembly 32 is fixed in position in relation to the main paddle 22. The side paddle assembly 32 is preferably positioned such that the carcasses may contact the side paddles and the main paddle in the space between each side paddle 24 and the main paddle 22. For example, the side paddles 24 may be fixed in position in the configurations shown in Fig. 1A and Fig. 2A, however, it should be understand that the angles may vary from those described above.

In the fourth preferred embodiment, the side paddles 24 are connected directly to and fixed in position relative to the axle 20. The main paddle 22 is connected to the axle 20 via a connecting piece 36 that extends downwardly from each end of the axle 20. The main paddle 22 is not fixed in position relative to the side paddles 24. The main paddle 22 is capable of pivoting or swiveling within a certain range. The main paddle 22 pivots at the point 34 where the main paddle 22 is connected to the connecting piece 36 extending from the axle 20. Thus, the angle between the main paddle 22 and the side paddles 24 changes as the axle 20 rotates and the side paddles 24 oscillate. At the resting position, as shown in Fig. 3A, each side paddle 24 preferably is equally spaced from the main paddle 22. As the side paddle assembly 32 oscillates along the longitudinal wall 16 up and to the right (as shown in Fig. 3B) or up and to the left (as shown in Fig. 3C), the main paddle 22 remains in approximately the same position. Any movement of the main paddle 22 results from the poultry carcasses contacting the main paddle 22, such as when the carcasses are moved by the oscillating side paddles 24. As the distance between the right side paddle 24 and the main paddle 22 increases, the distance between the left side paddle 24 and the main paddle 22 necessarily decreases. Similarly, as the distance between the left side paddle 24 and the main paddle 22 increases, the distance between the right side paddle 24 and the main paddle 22 necessarily decreases. The oscillation of the main paddle 22 and side paddles 24 urges the carcasses upwardly and laterally, which contributes to the cooling of the carcasses as a result of their thorough contact in the chilling liquid. The movement of the paddles also gently massages the carcasses by gently bumping them against the paddle blades and the longitudinal wall. The repeated compression of the carcasses tends to tenderize the meat. The side paddles ensure more predictable and consistent contact between the paddles and all of the carcasses, which causes more agitation of the carcasses and more effective washing of the product. This additional agitation causes faster cooling of the carcasses and contributes to more uniform residence time of the carcasses in the chiller. Additional absorption of chilling liquid within the carcasses is a side effect of the extra compression and washing of the carcasses.

While it is believed that three paddles is preferable for achieving the benefits discussed above, the present invention is not limited to a specific number of paddles. In alternative embodiments, the paddle assembly may include only two paddles or may include four or more paddles.

The present invention has been described with reference to certain preferred and alternative embodiments that are intended to be exemplary only and not limiting to the full scope of the present invention.