Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A TIP FOR AN INTRAORAL SCANNER
Document Type and Number:
WIPO Patent Application WO/2016/185465
Kind Code:
A1
Abstract:
The present invention relates to a tip for an intraoral scanner, comprising: a housing body having an optical arrangement through which images are transferred to an imaging module of the intraoral scanner, at least one aperture adapted to provide gas streams, wherein said at least one aperture is configured such that during a scanning session a scanned region is first being cleaned (e.g., from blood or oral particles) by gas streams prior to the actual scanning of said region by said optical arrangement, while after the cleaning and during the actual scanning of said region, said at least one aperture causes gas streams to diffuse around the entire periphery of said cleaned and scanned region.

Inventors:
LIPOVETSKY SHLOMO (IL)
TANKUS SOPHIE (IL)
Application Number:
PCT/IL2016/050508
Publication Date:
November 24, 2016
Filing Date:
May 15, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LIPOVETSKY SHLOMO (IL)
International Classes:
A61C9/00; A61B5/00
Foreign References:
US20060154198A12006-07-13
US20100145189A12010-06-10
US4184175A1980-01-15
Other References:
See also references of EP 3297570A4
Attorney, Agent or Firm:
CROITORO, Boaz et al. (P.O. Box 5352, 02 Beer Sheva, IL)
Download PDF:
Claims:
CLAIMS

1. A tip for an intraoral scanner, comprising: a housing body having an optical arrangement through which images are transferred to an imaging module of the intraoral scanner, at least one aperture adapted to provide gas streams, wherein said at least one aperture is configured such that during a scanning session a scanned region is first being cleaned by gas streams prior to the actual scanning of said region by said optical arrangement, while after the cleaning and during the actual scanning of said region, said at least one aperture causes gas streams to diffuse around the entire periphery of said cleaned and scanned region.

2. The tip according to claim 1, in which the at least one aperture includes at least one pre-scanning nozzle adapted to provide air streams for cleaning a region of a portion of a tooth prior to its scanning by the optical arrangement, and at least one sub -gingival exposing nozzle adapted to cause air stream to diffuse around the entire periphery of said tooth after the cleaning of said region.

3. The tip according to claim 1, further comprising a buffering wall adapted for preventing the spread of oral particles to reach the optical arrangement during the cleaning, wherein said buffering wall at least partially surrounds the location of the optical arrangement.

4. The tip according to claim 1, further comprising an absorbing layer adapted to capture oral particles during the cleaning of the scanned region, wherein said absorbing layer is located on the housing in such a way that during the scanning session it faces toward the scanned region.

5. The tip according to claim 4, in which the absorbing layer is disposable and/or replaceable.

6. The tip according to claim 4, in which the absorbing layer is made of a flexible material, semi-rigid material or rigid material.

7. The tip according to claim 1, in which the gas is air or mixture of other gases.

8. The tip according to claim 1, in which the housing includes a connector to which a pressurized gas source is connected to supply the gas streams to the at least one aperture via one or more ducts or canals that transfers said gas from said source to said at least one aperture.

9. A method of performing a dental scan, said method comprising providing an intraoral scanner equipped with a tip configured to scan an intraoral region by enabling to clean the intraoral region prior to the actual scanning of said region, and while during the scanning of said region, causing gas streams to diffuse around the entire periphery of said region, thereby enabling to perform a scanning procedure on a subject or patient by first cleaning each intraoral region.

Description:
A TIP FOR AN INTRAORAL SCANNER Field of the Invention

The present invention relates to the field of intraoral scanners. More particularly, the invention relates to an enhanced tip or mouthpiece for an intraoral scanner.

Background of the invention

Scanners to determine the surface contour of objects by non-contact optical methods has become increasingly important in many applications including the in vivo scanning of dental structures to create a three- dimensional (3D) model. Such optical scanning devices, such as intraoral scanners have been developed and made commercially available for the dental market, and have been described in the patent literature incorporating a variety of technologies and configurations.

Unfortunately, for such intraoral scanners it has proven to be difficult to collect valid three-dimensional measured or scanned data of the jaw and/or teeth, for example because there are regions in the oral cavity that conceal the view of the sub -gingival or that are contaminated with blood and saliva.

An attempt to overcome this problem is suggested by US 2010/0145189, which discloses an intraoral scanner for collecting three-dimensional measured or scanned data of the jaw or teeth, which accommodates a scanning unit in a front region leading into the oral region and which at this front region also accommodates an air delivery device through which pressurized air may be locally supplied in the oral region. However, in the configuration of the proposed scanner, the air delivery device becomes ineffective as while it tries to reveal the concealed region with the pressurized air, it covers the optical element at the edge of the scanner's tip with in mouth particles (e.g., blood, saliva and other residues located with the oral cavity of the patient).

It is an object of the present invention to provide a device which is capable of performing an accurate scanning that includes the sub-gingival.

It is another object of the present invention to provide a device which is capable of enabling to provide a precise data collection and transmission of the scanned intraoral region.

It is yet another object of the present invention to provide a device that enables to create a correct 3D model the intraoral region of a subject.

It is a further object of the present invention to provide a device that enables to obtain an optimal partial denture that may result in long lasting healthy gum and tooth. It is still an object of the present invention to provide a device which is capable of revealing covered teeth portions while applying in vivo scanning of dental structures to create a 3D model, while maintaining the optical elements in a clean condition (e.g., clean mirror from oral particles and with no moisture or vapor).

Other objects and advantages of the invention will become apparent as the description proceeds.

Summary of the Invention

The present invention relates to a tip for an intraoral scanner, comprising: a housing body having an optical arrangement through which images are transferred to an imaging module of the intraoral scanner, at least one aperture adapted to provide gas streams, wherein said at least one aperture is configured such that during a scanning session a scanned region is first being cleaned (e.g., from blood or oral particles) by gas streams prior to the actual scanning of said region by said optical arrangement, while after the cleaning and during the actual scanning of said region, said at least one aperture causes gas streams to diffuse around the entire periphery of said cleaned and scanned region.

According to an embodiment of the invention, the at least one aperture includes at least one pre -scanning nozzle adapted to provide air streams for cleaning a region of a portion of a tooth prior to its scanning by the optical arrangement, and at least one sub-gingival exposing nozzle adapted to cause air stream to diffuse around the entire periphery of said tooth after the cleaning of said region.

According to an embodiment of the invention, the tip further comprises a buffering wall adapted for preventing the spread of oral particles to reach the optical arrangement during the cleaning, wherein said buffering wall at least partially surrounds the location of the optical arrangement.

According to an embodiment of the invention, the tip further comprises an absorbing layer adapted to capture oral particles during the cleaning of the scanned region, wherein said absorbing layer is located on the housing in such a way that during the scanning session it faces toward the scanned region. The absorbing layer can be disposable and/or replaceable. The absorbing layer can be made of a flexible material (e.g., sponge), semi-rigid material or rigid material.

According to an embodiment of the invention, the gas can be air, mixture of other gases or any other type of suitable gas.

According to an embodiment of the invention, the housing includes a connector to which at least one pressurized gas source is connected to supply the gas streams to the at least one aperture via one or more ducts or canals that transfers said gas from said source to said at least one aperture.

In another aspect, the present invention relates to a method of performing a dental scan, said method comprising providing an intraoral scanner equipped with a tip configured to scan an intraoral region by enabling to clean the intraoral region prior to the actual scanning of said region, and while during the scanning of said region, causing gas streams to diffuse around the entire periphery of said region, thereby enabling to perform a scanning procedure on a subject or patient by first cleaning each intraoral region.

Brief Description of the Drawings

In the drawings :

Fig. 1 schematically illustrates a side view of a tip for an intraoral scanner, according to an embodiment of the invention;

Fig. 2 schematically illustrates a bottom view of the tip of Fig. Y,

Fig. 3 schematically illustrates a side view of the tip of Fig. 1 provided a buffering wall for preventing the dirtying of the optical element;

Fig. 4 schematically illustrates a bottom view of the tip of Fig. 3; Fig. 5 shows an implementation of a tip for an intraoral scanner in a perspective view, according to an embodiment of the invention; and Fig. 6 shows a partial bottom view of the tip of Fig. 5. Detailed Description of the Invention

Reference will now be made to several embodiments of the present invention, examples of which are illustrated in the accompanying figures. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.

The terms, "for example", "e.g.", "optionally", as used herein, are intended to be used to introduce non-limiting examples. While certain references are made to certain example system components or services, other components and services can be used as well and/or the example components can be combined into fewer components and/or divided into further components.

The present invention is a tip for an intraoral scanner that includes a housing body having an optical arrangement (e.g., lenses, mirrors, etc.) through which images are transferred to an imaging module of the intraoral scanner and at least one aperture adapted to provide gas streams. According to an embodiment of the invention, the at least one aperture is configured such that during a scanning session an intraoral region is first being cleaned (e.g., from blood or oral particles) by applying gas streams directed at that region, prior to the actual scanning of that intraoral region by the optical arrangement, while after the cleaning and during the actual scanning of that region, the at least one aperture causes gas streams to diffuse around the entire periphery of the cleaned region.

According to an embodiment of the invention, the aperture is configured in such a way that it enables to form two stage actions on a scanned intraoral region during a scanning session:

- A pre-scanning stage that cleans that region by applying gas streams at that region; and

- A sub-gingival exposing stage that causes gas streams to diffuse around the entire periphery of the cleaned region during the actual scanning of that region, thereby enabling to reveal the concealed portion of a tooth or jaw. The sub-gingival exposing stage also maintains the scanned area clean and dry.

According an embodiment of the invention, both stages can be achieved by a single aperture that runs along the housing body, in such a way that a portion of this aperture forms the pre-scanning stage and other portion of it forms the sub-gingival exposing stage. For example, an approximate portion of the aperture (with respect to the length of the tip) may function as a pre-scanning nozzle that forms the pre-scanning stage and a distal portion of the aperture (with respect to the length of the tip) may function as a sub-gingival exposing nozzle(s) that forms the sub-gingival exposing stage. In such embodiment, the distal portion may at least partially surround the optical arrangement while the proximate portion may be located prior to the location of the optical arrangement.

Figs. 1 and 2 show a device that can be used in conjunction with the invention. The device illustrated in this figures is particularly convenient because it can be applied as an ad-on device to existing intraoral scanners without the need to carry out major alterations in the structure. The device generally indicated by numeral 10 in the figure comprises a housing body 4 having an optical arrangement 5 through which images are transferred to an imaging module of an intraoral scanner (not shown), at least one pre-scanning nozzle 1 and one or more sub-gingival exposing nozzles 2 and 3. Each of the nozzles 1, 2 and 3 is adapted to deliver pressurized gas (e.g., air) through it via ducts or canals (as indicated by numerals 11, 21 and 31, respectively) that may receive the gas from an external gas source. Device 10 includes a connector or other arrangement adapted to connect the gas source to the ducts or canals. The dotted lines 21 and 31 in Fig. 2 indicate a possible form and location of the ducts or canals within the body 4 of device 10. According to an embodiment of the invention, the external gas source may supply the air to all the nozzles simultaneously. According to another embodiment, the gas can be supplied to the pre-scanning nozzle and to sub-gingival exposing nozzles separately, thereby enabling to control the timing of the gas streams at each stage.

Device 10 is used as a tip (i.e., a mouthpiece) of an intraoral scanner, which is adapted to be inserted into an oral region in order to collect 3D measured or scanned data. During operation, device 10 is positioned, for example, upwardly to perform a scan of an upper dental arch, and the device may then be rotated approximately 180° to face downward for scanning, for example, the lower dental arch. The device 10 may move laterally or horizontally (side-to-side) and distally/proximally (in and out), in relation to the mouth of the patient. Usually, the vertical, planar position of device 10 is maintained, whereby device 10 moves only in a single plane, and does not rise or fall, move up or down, or rotate or tilt during a scanning procedure.

As shown in the figures, nozzles 1-3 are deployed on the housing body 4 in such a way that pressurized air may be locally supplied in the oral region. The air is supplied from an external gas source outside device 10 via a connecting line which simultaneously may supply pressurized air to all the nozzles (e.g., using corresponding ducts or canals).

The nozzles are configured in such a way that prior to the collection of the 3D measured or scanned data in a specific region, an air stream provided through nozzle 1 first cleans that region, by causing any saliva or discharged blood presented in that region to be removed. As a result, during the collection of the 3D measured or scanned data, nozzles 2 and 3 cause air stream to diffuse around the entire periphery of the region of a portion of a tooth that is already cleaned by nozzle 1.

The air stream provided by nozzles 2 and 3 causes that a type of pocket or groove is formed between the gingiva and the tooth. Thereby, a vahd collection of 3D measured or scanned data is enabled, so that the transition region, which is normally covered by the tooth via the gingiva, may be recorded.

According to an embodiment of the invention, in order to cause the removing of any blood, saliva or other residues, prior to the imaging of the tooth, nozzle 1 needs to supply the pressurized air to each region before the optical arrangement 5 scans it. For example, nozzle 1 can be located at the bottom of the housing body 4 prior to the location of optical arrangement 5 with respect to the distally/proximally (in and out) movement of the intraoral scanner (as shown in the figures).

According to an embodiment of the invention, nozzles 2 and 3 are located from both sides of the optical arrangement 5. An individual air streams flows from each of both nozzles 2 and 3, and as a whole these nozzles essentially diffuse around the entire periphery of this region, and due to the supplied air pressure the gingiva are pushed away slightly from the tooth, thus forming the pocket or groove and exposing the tooth at this location.

According to an embodiment of the invention, the arrangement of the nozzles may create a masking air wall that prevents blood or saliva to contaminate the optical elements.

According to an embodiment of the invention, a buffering wall 6 is provided at the bottom of the housing body 4 of device 10 for preventing from oral particles such as saliva or discharged blood to reach the surface of a mirror or other optical element of the optical arrangement 5. For example, the optical element can be one or more lens/mirrors adapted to deliver images of the oral cavity to an imaging module of the intraoral scanner. As shown in Fig. 3 and 4, the buffering wall 6 is located between nozzle 1 and the optical arrangement 5, such that any oral residual that might spread in that region (due to the pressurized air provided by nozzle l), may hit the buffering wall 6 but will not reach the elements of the optical arrangement 5.

In particular to control the air pressure in a targeted manner, for example to simultaneously form a pocket all the way around a tooth or to form larger and smaller pockets, it is practical for the air delivery device to be connected to a control device by means of which the quantity and/or pressure of the air supply may be adjusted. According to an embodiment of the invention, for the targeted control of a given locally selectable oral region, device 10 may include a mechanism (not shown) adapted to adjust the position of one or more of the nozzles, thereby enabling to adjust the position of nozzles 2, 3 and/or nozzle 1 for the targeted delivery of air in a desired direction. Such an adjustment of the nozzles may be performed manually, for example before the intraoral scanning, depending on the particular design of the nozzle, or by use of a control device which is connected to the air delivery device (e.g., via electro-mechanical actuators).

Referring now to Figs. 5 and 6, a possible implementation of device 10 is shown in accordance with an embodiment of the present invention.

According to an embodiment of the invention, device 10 further comprises an absorbing layer adapted to capture oral particles such as blood during the cleaning of the scanned region (e.g., as indicated by numeral 7 in Figs. 5 and 6). The absorbing layer can be located on the housing body 4 in such a way that during the scanning session it faces toward the scanned region. As best seen in Fig. 6, an absorbing layer 7 surrounds the pre-scanning nozzle 1. The absorbing layer 7 can be disposable and/or replaceable. The absorbing layer 7 can be made of a flexible material (e.g., sponge), semi ¬ rigid material or rigid material. The housing body 4 can be molded or otherwise fabricated using plastic or other appropriate lightweight material, and can be formed as a single unit, or can be formed as sections, example upper and lower halves, which are fitted together to form the single housing body unit.

As will be appreciated by the skilled person the arrangement described in the figures results in a device which is capable of revealing covered teeth portions while applying in vivo scanning of dental structures to create a 3D model, while maintaining the optical elements in a clean condition

All the above description and examples have been given for the purpose of illustration and are not intended to limit the invention in any way. Many different mechanisms can be employed, all without exceeding the scope of the invention.