Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TITANIUM BASED CARBONITRIDE ALLOY WITH NITRIDED SURFACE ZONE
Document Type and Number:
WIPO Patent Application WO/1998/051831
Kind Code:
A1
Abstract:
According to the present invention an uncoated titanium based carbonitride cutting tool insert with superior plastic deformation resistance and wear resistance is provided. This is accomplished by heat treating the material in nitrogen atmosphere under conditions to obtain a nitrogen rich surface zone, also containing substantial amounts of binder phase.

Inventors:
WEINL GEROLD
ROLANDER ULF
LINDAHL PER
Application Number:
PCT/SE1998/000910
Publication Date:
November 19, 1998
Filing Date:
May 15, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SANDVIK AB (SE)
International Classes:
B22F3/10; B23B27/14; C22C1/05; C22C29/04; C23C8/20; C23C30/00; (IPC1-7): C22C29/04
Domestic Patent References:
WO1995030030A11995-11-09
Foreign References:
EP0519895A11992-12-23
US4447263A1984-05-08
Other References:
PATENT ABSTRACTS OF JAPAN, Vol. 12, No. 41, (M-666); & JP,A,62 193 731 (MITSUBISHI METAL CORP) 25 August 1987.
Attorney, Agent or Firm:
T�quist, Lennart (Patent Dept, Sandviken, SE)
Download PDF:
Claims:
Claims
1. A cutting tool insert of sintered titaniumbased carbonitride alloy containing hard constituents based on Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and /or W in a cobalt binder phase, c h a r a c t e r i z e d in that said alloy has a 560 Fm, preferably 1550 Clam, most preferably 2040 Rm, thick nitrogen enriched surface zone and a Co content at the surface in the range 50150 %, preferably 75130%, most preferably 90125%, of the bulk value.
2. A cutting tool insert according to claim 1, c h a r a c t e r i z e d in that an Xray diffractogram of the surface contains 2 sets of peaks originating from Ti based hard phase and one set of peaks originating from a Co based binder phase, the intensity ratio TiN(200)/TiCN(200) being >0.5, preferably >1, most preferably >1.5.
3. A cutting tool insert according to any of the previous claims c h a r a c t e r i z e d in containing apart from inevitable impurities in addition to titanium, 215, preferably 27, atomic % tungsten and/or molybdenum, 015 atomic % of group IVa and/or group Va elements apart from titanium, tungsten and/or molybdenum, preferably 05 atomic % tantalum and/or niobium, 525, preferably 916, atomic % cobalt and with an average N/(C+N) ratio in the range 1060, preferably 1040, atomic %.
4. Method of manufacturing by liquid phase sintering followed by a nitriding process a sintered body of titanium based carbonitride alloy, containing hard constituents based on Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and/or W in a cobalt binder phase c h a r a c t e r i z e d in that nitriding is performed at a temperature of 1150 1250 OC in an atmosphere comprising 5001500 mbar, preferably 10001500 mbar, nitrogen gas for 140 hours, preferably 1025 hours.
5. Method of manufacturing a sintered body according to claim 4 c h a r a c t e r i z e d in that the body contains apart from inevitable impurities in addition to titanium, 215, preferably 27, atomic % tungsten and/or molybdenum, 015 atomic % of group IVa and/or group Va elements apart from titanium, tungsten and/or molybdenum, preferably 05 atomic % tantalum and/or niobium, 525, preferably 916, atomic % cobalt and with an average N/(C+N) ratio in the range 1060, preferably 1040, atomic %.
6. Method of manufacturing a sintered body according to any of claims 4 or 5 c h a r a c t e r i z e d in that the body is nitrided on an yttria surface.
Description:
Titanium based carbonitride allov with nitrided surface zone The present invention relates to a liquid phase sintered body of a carbonitride alloy with titanium as main component which has improved properties particularly when used as cutting tool material in cutting operations requiring sharp edges in combination with high wear resistance and plastic deformation resistance. This has been achieved by heat treating the material in a nitrogen atmosphere.

Titanium based carbonitride alloys, so called cermets, are today well established as insert material in the metal cutting industry and are especially used for finishing. They consist of carbonitride hard constituents embedded in a metallic binder phase. The hard constituent grains generally have a complex structure with a core surrounded by a rim of other composition.

In addition to titanium, group VIa elements, normally both molybdenum and tungsten and sometimes chromium, are added to facilitate wetting between binder and hard constituents and to strengthen the binder by means of solution hardening. Group IVa and/or Va elements, i.e.

Zr, Hf, V, Nb and Ta, are also added in all commercial alloys available today. All these additional elements are usually added as carbides, nitrides and/or carbonitrides.

The grain size of the hard constituents is usually <2 Clam.

The binder phase is normally a solid solution of mainly both cobalt and nickel. The amount of binder phase is generally 3 - 25 wt%. Other elements are sometimes added as well, e.g. aluminium, which are said to harden the binder phase and/or improve the wetting between hard constituents and binder phase.

One main advantage with cermets compared to WC-Co based material is that relatively high wear resistance and chemical inertness can be obtained without applying surface coatings. This property is utilized mainly in extreme finishing operations requiring sharp edges and

chemical inertness to cut at low feed and high speed.

However, these desirable properties are generally obtained at the expense of toughness and edge security as well as ease of production. The most successful materials have large nitrogen content (N/(C+N) often exceeding 50%) which makes sintering in conventional processes difficult due to porosity caused by denitrification. High nitrogen content also makes the material difficult to grind.

Grinding may be necessary to obtain sharp defect free edges and close tolerances. Ideally, for extreme finishing operations, one would like to have an uncoated cermet with low to moderate nitrogen content for ease of production, but with wear resistance as PVD- or CVD- coated material.

US 4,447,263 discloses inserts of a titanium based carbonitride alloy provided with a wear resistant surface layer of carbonitride or oxycarbonitride alone or in combination where the surface layer is completely free from binder phase. The layer is obtained by a heat treatment at 1100 - 13500C in an atmosphere of N2, CO and/or CO2 at subpressure.

Another example is in US 5,336,292 where the surface layer contains a low amount of binder phase but is separated from the interior of the material by a sharp interface to a binder phase enriched zone. The layer is obtained by heat treatment in an atmosphere of N2 and/or NH3 possibly in combination with at least one of CH4, CO and CO2 at 1100 - 13500C for 1-25 hours at atmospheric pressure or higher.

It is an object of the present invention to provide a sintered titanium based carbonitride alloy, which has been heat treated to obtain a 5-60 Am thick surface zone with high nitrogen content. The heat treatment is performed as a process step included in the cooling part of the sintering cycle or as a separate process e.g. as last production step, after any optional grinding operation has been performed.

Fig 1 is a photomicrograph in 2000X showing a portion of an insert of the present invention.

Fig 2 is an EMPA (electron Microprobe Analysis) line scan of Co, N, W, Ti and C in a portion of an insert of the present invention.

Fig 3 is an X-ray diffractogram of the heat treated surface of an insert of the present invention.

The sintered titanium-based carbonitride alloy of teh present invention contains 2-15 atomic %, preferably 2-6 atomic %, tungsten and/or molybdenum. Apart from titanium, the alloy contains 0-15 atomic % of group IVa and/or group Va elements, preferably 0-5 atomic % tantalum and/or niobium. As binder phase forming element 5-25 atomic %, preferably 9-16 atomic %, cobalt is added.

The alloy has a N/(C+N) ratio in the range 10-60 atomic Oo, preferably 10-40 atomic %. Most preferably no elements apart from C, N, Ti, W, Ta and Co are intentionally added. In a 5-60 Am, preferably 15-50 Rm, most preferably 20-40 Rm, thick surface zone the nitrogen content increases towards the surface. This enrichment is mainly due to the presence of TiN grains formed during heat treatment and can be identified by X-ray diffraction.

These TiN grains may grow separately but can also grow epitaxially, forming an outer shell at least partly surrounding carbonitride grains. Furthermore, the nitrogen enriched zone has a binder phase content being approximately the same as in the bulk and being distributed all the way out to the surface. The Co content at the surface is 50-150 %, preferably 75-130%, most preferably 90-125%, of the bulk value depending on whether any Co gradient towards the surface was present in the material prior to heat treatment. Thus, the enriched zone is not a coating and not an essentially binder phase free hard phase layer. In an alternative embodiment the Co-content in the surface zone is essentially the same as in the inner part of the body. In an X-ray diffractogram of the surface, Ti containing hard phase is seen as two distinct peaks, one peak originating

from TiN, the other peak originating from mixed cubic carbonitride phase. The intensity ratio TiN(200)/TiCN(200) shall be >0.5, preferably >1, most preferably >1.5. In the same diffractogram is also seen a distinct peak originating from Co based binder phase.

The alloy must not contain nickel and/or iron apart from inevitable impurities. For higher levels of these binder forming elements the desired microstructure cannot be produced. Instead an essentially binder phase free hard phase surface layer is formed. Such layers have been presented by previous inventors as an alternative to expensive coating operations but have inferior properties compared to CVD- and PVD coatings.

In another aspect of the invention, there is provided a method of manufacturing a sintered carbonitride alloy in which powders of carbides, carbonitrides and/or nitrides are mixed with Co to a prescribed composition and pressed into green bodies of desired shape. The green bodies are liquid phase sintered in vacuum or a controlled gas atmosphere at a temperature in the range 1370-1500 OC, preferably using the technique described in Swedish patent application 9701858-4. Either directly upon cooling from the sintering temperature or as a separate process, the inserts are heat treated at a temperature of 1150-1250 OC in an atmosphere comprising 500-1500 mbar, preferably 1000-1500 mbar, nitrogen gas for 1-40 hours, preferably 10-25 hours.

It has quite surprisingly turned out that, for the compositions specified above, nitrification can be used to enhance chemical inertness, wear resistance and plastic deformation resistance of cermets without obtaining a hard phase surface layer. The reason for this has turned out to be that in a Co based binder phase and at relatively high nitrogen pressures in the furnace, nitrogen diffusion from the surface is distinctly faster than titanium diffusion. For this reason TiN is nucleated inside the material rather than at the surface. The rate of TiN formation at a given depth from the surface is

determined by the nitrogen activity at that depth. T1 is most probably taken predominantly from the rims of the hard phase grains. Thus, the rims are dissolved at least to some extent, leading to decreased grain size. Excess group V and group VI elements from the rims diffuse away from the surface and reprecipitate on existing hard phase grains in the interior of the material. Due to this latter process a slight binder phase enrichment of the nitrided surface zone may occur, at least for longer process times. If this is not desirable it can be counteracted by forming a moderate binder phase depletion in the surface zone of the insert prior to heat treatment. This is preferably done using the technique described in the patent application cited above. As soon as any appreciable amount of Ni or Fe is added to the alloy, the solubility of titanium in the binder phase increases dramatically. This, in turn, increases the diffusion rate of titanium and a hard phase surface layer will form instead.

Since the process is controlled by reactive gases in the sintering atmosphere, it is a definite advantage to place the inserts on a surface which is inert to this atmosphere. One good example of this is yttria coated graphite trays, as described in WO 97/40203.

Example 1 A powder mixture with a chemical composition of (at%) 40.7% Ti, 3.6% W, 30.4% C 13.9% N and 11.4% Co was manufactured from Ti(C,N), WC and Co raw material powders. The mean grain size of the Ti(C,N) and WC powders were 1.4 Fm. The powder mixture was wet milled, dried and pressed into green bodies of the insert type TNMG 160408-PF. The bodies were liquid phase sintered at 1430 OC for 90 minutes in a 10 mbar Ar atmosphere. In the sintering process the technique with reversed melting, where the liquid binder phase forms in the centre and propagates outwards towards the surface was used to obtain a macroscopic Co-gradient through the material,

the Co-content in the surface being 85% of that in the centre of the alloy. This process is described in Swedish patent application 9701858-4. In the cooling part of the process a nitriding step was included where the bodies were heat treated in 1013 mbar nitrogen gas at 1200 OC for 20 hours.

Polished cross sections of the inserts were prepared by standard metallographic techniques and characterised using optical microscopy and electron microprobe analysis (EMPA). Optical microscopy showed that the inserts had a golden to bronze coloured approximately 40 Rm thick surface zone, Fig 1. Fig 2 shows an EMPA line scan analysis of Co, N, W, Ti and C ranging from the surface and 500 Am into the material. Clearly, in an approximately 30 Fm thick surface zone the nitrogen content increases substantially towards the surface, the Ti content increases while the W-and C content decreases.

In the same zone, the cobalt content increases and reaches approximately 125% of the bulk content at the surface. Fig 3 shows an X-ray diffractogram of the heat treated surface. Clearly, the Ti-based hard phase gives rise to two distinct series of peaks, one originating from TiN with an intensity being approximately twice that of the other, which originates from a carbonitride phase.

Co peaks are also present in the diffractogram.

Example 2 (Comparative) As a reference for performance testing, TNMG160408-PF inserts were manufactured of a powder mixture consisting of (in atomic-%) Co 8.3, Ni 4.2, Ti 34.8, Ta 2.5, Nb 0.8, W 4.2, Mo 2, C 26.6 and N 16.6 and liquid phase sintered in a conventional process. These inserts were coated with an about 4 Fm thick Ti(C,N)-layer and a less than 1 Fm thick TiN-layer using the physical vapour deposition technique (PVD). This is a well established PVD-coated cermet grade within the P25-range for turning.

Example 3 A longitudinal turning operation was carried out to study the wear resistance and plastic deformation resistance of the inserts of Examples 1 and 2. Tool life criterion was edge fracture due to plastic deformation or flank wear exceeding 0.3 mm. One test was carried out with cooling to test mainly wear resistance. The other test was performed without cooling to test mainly plastic deformation resistance. The time needed to reach end of tool life was measured for each cutting edge. In each test three edges per variant were tested. The speed was 275 m/min, the feed 0.2 mm/revolution, the depth of cut was 2 mm and the work piece material was SS2541. The result is given in Table 1 below.

Table 1 Coolant PVD-coated Heat treated yes 19 39 no 14 32 Comparing the results it is clear that the nitriding process dramatically improves both wear resistance and plastic deformation resistance. It should be noted that uncoated inserts manufactured according to example 1 excluding the nitriding step are not meaningful to include in this test. Even with coolant their plastic deformation resistance would not be sufficient to withstand more than 1-3 minutes.