Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TORSIONAL SHOCK ABSORBER FOR BICYCLE
Document Type and Number:
WIPO Patent Application WO/1999/048711
Kind Code:
A1
Abstract:
A bicycle with a torsional shock absorber comprised of a torsion spring assembly (17). The elements of the torsion spring assembly include: housing, a shaft positioned within the housing, a rubbery substance bonded to the interior surface of the housing and the outer shaft. The torsional shock absorber is mounted on the bicycle such that shock forces are converted into rotational forces tending to rotate the shaft within the housing. These rotational forces are resisted by the spring force created by the rubbery substance within the torsion spring assembly; thereby absorbing the forces. In a preferred embodiment, the front and rear portions of the bicycle frame pivot about the pedal spindle axis. Also, in a preferred embodiment, the housing of the torsion spring assembly is rigidly connected to the front portion of the bicycle frame in-between the top tube (21) and middle brace (20) and just in front of the seat tube (3). The rear portion (44) of the bicycle frame (1) is pivotally connected to two torsion arms rigidly connected to the shaft.

Inventors:
SCHONFELD CARL W (US)
Application Number:
PCT/US1999/006830
Publication Date:
September 30, 1999
Filing Date:
March 29, 1999
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHONFELD CARL W (US)
International Classes:
B62K17/00; B62K25/28; F16F1/14; (IPC1-7): B60G7/00; B60G11/22; B60G13/00; B62K1/00
Foreign References:
GB109494A
US2915306A1959-12-01
US4421337A1983-12-20
US5409249A1995-04-25
Attorney, Agent or Firm:
Ross, John R. (CA, US)
Download PDF:
Claims:
I Claim:
1. A bicycle with a shock absorption assembly comprising: A) a bicycle frame defining a front portion and a rear portion, said front portion and said rear portion being pivotally connected at a pivot point, B) at least one torsion spring assembly comprising a: 1) an outer housing defining an inner surface, 2) a shaft defining an outer surface, 3) a rubbery substance bonded to the inner surface of said housing and the outer surface of said shaft wherein, either one of said front portion or said rear portion of said frame is attached to said outer housing and the other one of said front portion or said rear portion is attached to said shaft such that shock forces acting on said front or rear wheels are absorbed in said torsion spring assembly.
2. A bicycle as in Claim 1, further comprising a torsion spring assembly housing defining a torsion spring assembly housing inner surface and a torsion spring assembly housing outer surface, wherein said outer housing is rigidly attached to said torsion spring assembly housing inner surface, and wherein either one of said front portion or said rear portion of said frame is attached to said torsion spring assembly outer surface.
3. A bicycle as in Claim 1, wherein said shaft is comprised of a shaft housing and an actuation shaft positioned partially within said shaft housing and extending beyond said shaft housing.
4. A bicycle as in Claim 1, further comprising: A) a bottom bracket housing welded to said bicycle frame, B) at least one sleeve bearing to rotate inside said bottom bracket housing, C) a bottom bracket shell to rotate inside said at least one sleeve bearing, D) at least one bearing casing threaded into said bottom bracket shell, E) a bottom bracket spindle to rotate on said at least one bearing casing, F) a swingarm rigidly connected to said bottom bracket shell, wherein, said swingarm pivots concentrically and relative to axis formed by said bottom bracket spindle and said bottom bracket spindle rotates independently of said pivoting of said swingarm.
5. A bicycle as in Claim 4, further comprising: A) a rear arm pivotally connected to said swingarm at a lower pivot, and B) at least one torsion arm pivotally connected to said rear arm at an upper pivot and connected to said shaft of said at least one torsion spring assembly.
6. A bicycle as in Claim 5, and further comprising a torsion spring housing rigidly attached to said outer housing and said bicycle frame inbetween a top tube and middle brace of said bicycle frame and just forward of a seat support tube of said bicycle frame, and said shaft of said at least one torsion spring assembly comprises: A) a shaft housing, and B) at least one actuation shaft slid inside said shaft housing, and C) a nut and bolt assembly to secure said at least one torsion arm tightly against said outer housing, wherein said at least one torsion arm is rigidly connected to said at least one actuation shaft to apply said torque which is resisted by said rubbery substance.
7. A bicycle as in Claim 1, wherein said torsion spring assembly further comprises a damper.
8. A bicycle as in Claim 7, wherein said damper comprises: A) at least one elastomer plate keyed to said outer housing, B) a plurality of rolling indentors to roll against said elastomer plate, and C) at least one rolling indentor retainer to hold said plurality of rolling indentors against said elastomer plate, D) a nut and bolt assembly to press at least one torsion arm, said at least one elastomer plate, said plurality of rolling indentors, and said at least one rolling indentor retainer tightly against said outer housing for damping of said torque.
9. A bicycle as in Claim 1, wherein said torsion spring assembly further comprises an adjustable damper.
10. A bicycle as in Claim 9, wherein said adjustable damper comprises: A) a damper housing rigidly keyed to said outer housing, B) an elastomer damper surface bonded to said damper housing, C) a plurality of rolling indentors to roll against said elastomer damper surface, D) at least one rolling indentor retainer to hold said plurality of rolling indentors against said elastomer damper surface, E) a damper actuation plate comprising actuation prongs to apply compressive force against said at least one rolling indentor retainer, and F) a damper adjust cap to adjust the force on said damper actuation plate, and G) a threaded rod placed along the axis of said torsion spring assembly, wherein said damper adjust cap is threaded onto said threaded rod and the adjustment of force is achieved by turning said damper adjust cap.
11. A bicycle as in Claim 1, wherein said torsion spring assembly further comprises a dampening means.
12. A bicycle as in Claim 1, wherein said torsion spring assembly further comprises a preload device.
13. A bicycle as in Claim 12, wherein said preload device comprises: A) at least one torsion arm connecting said shaft to said rear portion, B) at least one plastic support riveted to said at least one torsion arm, and C) a tube welded to said bicycle frame rearward of said torsion spring, wherein said plastic support is braced against said tube to preload said torsion spring assembly.
14. A bicycle as in Claim 12, wherein said preload device is a user adjustable preload device.
15. A bicycle as in Claim 14, wherein said user adjustable preload device comprises: A) a torsion spring assembly housing rigidly attached to said bicycle frame, B) a spring housing rotatably positioned inside said torsion spring assembly housing, wherein said spring housing is keyed to said outer housing, C) a preload cable assembly defining a first cable assembly end and a second cable assembly end, wherein said first cable assembly end is keyed to said spring housing, D) a preload adjust bolt defining a top end and a bottom end, wherein said bottom end is positioned through said front portion of said bicycle frame and through said torsion spring assembly housing and attached to said second cable assembly end, and wherein said top end remains above said front portion of said bicycle frame, and E) a preload stop, positioned to prevent said shaft from rotating when said preload adjust bolt is turned, wherein the user is able to adjust the preload of said at least one torsion spring assembly by turning said preload adjust bolt.
16. A bicycle as in Claim 15, wherein said preload stop comprises: A) at least one torsion arm connecting said shaft to said rear portion, B) at least one plastic support riveted to said at least one torsion arm, and C) a tube welded to said bicycle frame rearward of said torsion spring, wherein said plastic support is braced against said tube to prevent said shaft from rotating when said preload adjust bolt is turned.
17. A bicycle as in Claim 16, wherein said preload stop comprises: A) at least one torsion arm connecting said shaft to said rear portion, B) at least one link ear rigidly connected to said at least one torsion arm, C) a rebound/compression stop rigidly keyed to said torsion spring assembly housing, and D) at least one link ear stop rigidly connected to said rebound compression stop, wherein said at least one link ear is braced against said at least one link ear stop to prevent said shaft from rotating when said preload adjust bolt is turned.
18. A bicycle as in Claim 1, wherein said rubbery substance is rubber.
19. A bicycle as in Claim 18, wherein said rubber is natural rubber.
20. A bicycle as in Claim 1, wherein said at least one torsion spring assembly is a plurality of torsion spring assemblies located at a plurality of pivot locations of said torsional rear suspension assembly.
21. A bicycle as in Claim 1, wherein said torsion spring assembly is rigidly attached in the top tube of said bicycle frame.
22. A bicycle as in Claim 1, wherein said torsion spring assembly is rigidly attached in the seat tube of said bicycle frame.
23. A bicycle as in Claim 1, wherein said torsion spring assembly is rigidly attached behind the seat tube of said bicycle frame.
24. A bicycle as in Claim 1, wherein said torsion spring assembly is rigidly attached underneath the top tube of said bicycle frame.
25. A bicycle as in Claim 1, wherein said torsion spring assembly is rigidly attached between the top tube and seat tube of said bicycle frame.
26. A bicycle as in Claim 1, wherein said bicycle frame is a modified cruiser frame.
27. A bicycle as in Claim 1, wherein said bicycle frame is a modified neutral pivot type rear suspension frame.
28. A bicycle as in Claim 1, wherein said bicycle frame is a modified Horstlink rear suspension with concentric bottom bracket pivot frame.
29. A bicycle as in Claim 1, wherein said bicycle frame is a modified traditional Horstlink rear suspension frame.
30. A bicycle as in Claim 1, wherein said bicycle frame is a modified concentric bottom bracket swingarm frame.
31. A bicycle as in Claim 1, wherein said bicycle frame is a modified cantilever swingarm frame.
32. A bicycle as in Claim 1, wherein said bicycle frame is a modified floating drivetrain frame.
33. A bicycle with a shock absorption assembly comprising: A) a bicycle frame defining a front portion and a rear portion, said front portion and said rear portion being pivotally connected at a pivot point, B) at least one torsion spring means comprising a: 1) an outer housing defining an inner surface, 2) a shaft defining an outer surface, 3) a rubbery substance bonded to the inner surface of said housing and the outer surface of said shaft wherein, either one of said front portion or said rear portion of said frame is attached to said outer housing and the other one of said front portion or said rear portion is attached to said shaft such that shock forces acting on said front or rear wheels are absorbed in said torsion spring assembly.
34. A bicycle as in Claim 33, wherein said torsion spring means further comprises a dampening means.
35. A bicycle as in Claim 34, wherein said dampening means comprises: A) at least one elastomer plate keyed to said outer housing, B) a plurality of rolling indentors to roll against said elastomer plate, and C) at least one rolling indentor retainer to hold said plurality of rolling indentors against said elastomer plate, a nut and bolt assembly to press at least one torsion arm, said at least one elastomer plate, said plurality of rolling indentors, and said at least one rolling indentor retainer tightly against said outer housing for damping of said torque.
36. A bicycle as in Claim 34, wherein said dampening means comprises: A) a damper housing rigidly keyed to said outer housing, B) an elastomer damper surface bonded to said damper housing, C) a plurality of rolling indentors to roll against said elastomer damper surface, D) at least one rolling indentor retainer to hold said plurality of rolling indentors against said elastomer damper surface, E) a damper actuation plate comprising actuation prongs to apply compressive force against said at least one rolling indentor retainer, and F) a damper adjust cap to adjust the force on said damper actuation plate, and G) a threaded rod placed along the axis of said torsion spring assembly, wherein said damper adjust cap is threaded onto said threaded rod and the adjustment of force is achieved by turning said damper adjust cap.
37. A bicycle as in Claim 33, wherein said torsion spring means further comprises a preload means.
38. A bicycle as in Claim 37, wherein said preload means comprises: A) at least one torsion arm connecting said shaft to said rear portion, B) at least one plastic support riveted to said at least one torsion arm, and C) a tube welded to said bicycle frame rearward of said torsion spring, wherein said plastic support is braced against said tube to preload said torsion spring assembly.
39. A bicycle as in Claim 37, wherein said preload means comprises: A) a torsion spring assembly housing rigidly attached to said bicycle frame, B) a spring housing rotatably positioned inside said torsion spring assembly housing, wherein said spring housing is keyed to said outer housing, C) a preload cable assembly defining a first cable assembly end and a second cable assembly end, wherein said first cable assembly end is keyed to said spring housing, D) a preload adjust bolt defining a top end and a bottom end, wherein said bottom end is positioned through said front portion of said bicycle frame and through said torsion spring assembly housing and attached to said second cable assembly end, and wherein said top end remains above said front portion of said bicycle frame, and E) a preload stop means to prevent said shaft from rotating when said preload adjust bolt is turned, wherein the user is able to adjust the preload of said at least one torsion spring assembly by turning said preload adjust bolt.
40. A bicycle as in Claim 39, wherein said preload stop means comprises: A) at least one torsion arm connecting said shaft to said rear portion, B) at least one plastic support riveted to said at least one torsion arm, and C) a tube welded to said bicycle frame rearward of said torsion spring, wherein said plastic support is braced against said tube to prevent said shaft from rotating when said preload adjust bolt is turned.
Description:
TORSIONAL SHOCK ABSORBER FOR BICYCLE This invention relates to bicycles, and more specifically to bicycles with shock absorbers.

BACKGROUND OF THE INVENTION Bicycles have been used as a means of recreation and transportation for many years. With the advent of the fuel crisis in the 1970's and the rise in overall health consciousness in society, bicycling recently gained even greater popularity. Finally, just recently, mountain biking has become the most popular form of bicycling with sales of mountain bikes surpassing those of ordinary road bikes.

With the increase in the popularity of mountain biking, bicycle developers have been faced with issues that were of little or no concern when most bicycle riders road on the street. Foremost of these issues is the issue of shock absorption devices for a bicycle. Mountain bikers quickly learned that a rough trail could equate to a sore body without proper suspension for the bicycle.

Hence, there have been many recent developments of shock absorbers for bicycles.

These developments have tended to consist of a variety of linear shock absorbers placed at various locations on a bicycle frame to provide for front and rear shock absorption. While satisfactory results have been obtained, unfortunately there have been problems associated with traditional shock absorbers for bicycles. Specifically, linear shock absorbers tend to be expensive, high maintenance devices that tend to wear out long before most of the other bicycle parts. Owners have been forced to either buy a new bicycle or replace the shock absorbers, both of which are very costly.

Torsion springs are also well known devices. Torsion springs are very low maintenance, inexpensive, and tend to have a long life that often equals or surpasses that of the equipment on which they are being used. Torsion spring prior use has included many applications, such as: exercise equipment, military equipment, automobiles and trucks.

What is needed is a shock absorption device for a bicycle that is low maintenance, inexpensive and has a long life.

SUMMARY OF THE INVENTION The present invention provides a bicycle with a torsional shock absorber comprised of a torsion spring assembly. The elements of the torsion spring assembly include: housing, a shaft positioned within the housing, a rubbery substance bonded to the interior surface of the housing and the outer surface of the shaft. The torsional shock absorber is mounted on the bicycle such that shock forces are converted into rotational forces tending to rotate the shaft within the housing. These rotational forces are resisted by the spring force created by the rubbery substance within the torsion spring assembly; thereby absorbing the shock forces. In a preferred embodiment, the front and rear portions of the bicycle frame pivot about the pedal spindle axis. Also, in a preferred embodiment, the housing of the torsion spring assembly is rigidly connected to the front portion of the bicycle frame in-between the top tube and middle brace and just in front of the seat tube. The rear portion of the bicycle frame is pivotally connected to two torsion arms rigidly connected to the shaft.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the torsional rear suspension assembly attached to a bicycle frame.

FIG. 2 shows the elements of the bottom bracket pivot assembly.

FIG. 3 shows a side view of the bottom bracket pivot assembly.

FIG. 4 shows a top view of the bottom bracket pivot assembly.

FIG. 5 shows the torsional shock absorber assembly.

FIGS. 6A-6G show the elements of the torsional shock absorber assembly.

FIG. 7 shows a top view of the torsional shock absorber assembly.

FIGS 8A-8B show elements for damping the torsional shock absorber assembly.

FIG. 9 shows the operation of the torsional rear suspension assembly.

FIGS. 1 OA-1 OF show possible locations for the torsional shock absorber assembly.

FIGS. 11A-11G show some possible bicycle frames that could use the torsional rear suspension assembly.

FIG. 12 shows an exploded view of another preferred embodiment of the present invention.

FIG. 13 shows a cross sectional view of another preferred embodiment of the preload assembly.

FIG. 14 shows link ear stops preventing link ears from further rotation.

FIG. 15 shows an exploded view of another preferred embodiment of the damping assembly.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Preferred embodiments of the present invention are described below by reference to FIGS. 1-15.

SHOCK FORCES CONVERTED INTO ROTATIONAL FORCES FIG. 9 shows the basic principles of the present invention. The frame of a bicycle shown in FIG. 9 is divided into two parts, a front portion 42 (shown shaded) and a rear portion 44 (unshaded). Both sections are pivotally connected to each other at pedal axis 40 and they pivot about pedal axis 40. A torsion spring assembly is shown at 17. Torsion spring housing 18 is welded to the front portion of the frame and the shaft of the torsion spring assembly 17 is attached to torsion arm 16 which is in turn pivotally connected to rear portion 44. The torsion spring used in this embodiment is rated at about 13 inch-pounds per degree and is pre-loaded to about 20 degrees or about 260 inch-pounds by pivoting torsion arm 16 counter-clockwise from its relaxed horizontal position. Tube 21 is welded to seat tube 3 and prevents torsion arm 16 from returning to its relaxed position. A 150 pound rider will produce a steady torque of about 300 inch-pounds on torsion spring assembly 17, which will rotate the shaft of assembly 17 about 23 degrees (i. e., 3 degrees beyond the pre-loaded position). Shock forces applied to either front or rear axis by bumps are absorbed by torsion spring assembly 17.

FIRST PREFERRED EMBODIMENT The present invention may be utilized with most pre-existing bicycle frames.

However, for the preferred embodiment, a cruiser type frame was modified. The frame of the cruiser bicycle is shown as bicycle frame 1 in FIG. 1. The procedures for modifying a bicycle to accept the present invention and the use of the present invention are listed below.

Concentric Relative Rotation Bottom Bracket Pivot Aluminum bottom bracket housing 2 is welded to bicycle frame 1 at the intersection of seat support tube 3 and down tube 4, as shown in FIG. 1. The elements that comprise the bottom bracket pivot assembly are illustrated in FIG. 2. Sleeve bearing 5 is a dry, self-lubricating plastic bearing. Sleeve bearing 5 press fits into aluminum bottom bracket housing 2. Aluminum bottom bracket shell 6 slips freely inside both sleeve bearings 5 so as to rotate on sleeve bearings 5. Bottom bracket shell 6 has internal threads 6A so that bearing casings 7 can be threaded onto both sides of bottom bracket shell 6, as shown in FIG. 3. Bottom bracket spindle 8 rotates freely while supported by bearing casings 7. As shown in FIG. 4, swingarms 9 fit over bottom bracket shell 6 and are tightened against sleeve bearings 5 by tightly threading aluminum lock ring 10 on external threads 6B of bottom bracket shell 6.

The operation of the bottom bracket pivot assembly can best be determined by reference to FIGS. 1 and 4. As the bicycle is ridden, vertical forces are applied at the rear wheel and transferred to rear portion 44 of the frame at 11, as shown in FIG. 1.

Force causes swingarms 9 to pivot around bottom bracket shell 6. Referring to FIG.

4, because swingarms 9 are held tightly against sleeve bearings 5 by lock rings 10, the following bottom bracket pivot assembly elements rotate relative to bottom bracket pivot housing 2 along with swingarms 9: lock rings 10, sleeve bearings 5, and bottom bracket shell 6. Bottom bracket housing 2 is welded to the bicycle frame and obviously stays stationary relative to front portion 42 of the frame. The bicycle pedals are attached to bottom bracket spindle 8 which is supported by bearing casings 7 and rotates within housing 2 as the pedals are rotated as shown in FIG. 4.

An important advantage of the above design is that swingarms 9 pivot with respect to spindle 8, avoiding any change in chain length (i. e., the distance between the axis of the pedal gear and the axis of the rear wheel gears). With no change in chain length, this suspension can be used with all single-gear bicycle drivetrain designs, such as BMX, cruiser, city bikes, and any bicycle that uses internally geared hubs, without the need for chain tensioning devices.

As shown in FIG. 1, swingarms 9 are pivotally attached to rear arms 12 at pivot point 13. Rear arms 12 are welded together at bar 14 for support and are pivotally attached to torsion arms 16 at pivot point 15 as shown in FIGS. 1 and 5. Torsion arms 16 are rigidly attached to the shaft of torsion spring assembly 17.

Rubber Torsion Shock Absorber Aluminum rubber torsion spring housing 18 is welded to the bicycle frame in between top tube 19 and middle brace 20, as shown in FIGS. 1 and 5. Aluminum tube 21 is also welded to the bicycle frame rearward of torsion spring housing 18 and between top tube 19, seat support tube 3 and middle brace 20.

The internal elements of a preferred torsion spring assembly 17 are shown in FIGS. 6A-6G and 7. An end view of torsion spring 50 as shown in FIG. 6H. Aluminum shaft housing 21 is inserted inside outer housing 18B. Rubbery substance 22 is bonded to the internal smooth surface of outer housing 18B and the external smooth surface of shaft housing 21. Key 18A functions to prevent slipping between outer housing 18B and torsion spring housing 18, as shown in FIG. 6G.

Preferred torsion springs, each one consisting of outer housing 18B, rubbery substance 22 and shaft housing 21 is available from B. F. Goodrich Company, at 6061 B. F. Goodrich Boulevard, Blount Island, Jacksonville, Fla. 32226.

Shaft housing 21 has a hexagonal internal shape that corresponds to hexagonal actuation shafts 23, as shown in FIGS. 6G and 6C. Actuation shafts 23 are inserted in both ends of shaft housing 21 so that each shaft 23 extends from each end of shaft housing 21 approximately'/2 inch. Plastic friction washers 25, as shown in FIG. 6E and FIG. 7, are slid over the exposed ends of shaft 23. Torsion arms 16 with hexagonal cutout 16A are then slid over shafts 23. Bolt 24 is threaded through either one of actuation shafts 23 and then out through the other actuation shaft 23. Nut 24A is threaded over the exposed end of bolt 24 until the head of bolt 24 and nut 24A presses tightly against torsion arms 16, as shown in FIG. 7.

The operation of torsion spring assembly 17 can be understood by reference to FIG. 1 and FIG. 7. As the bicycle is ridden, vertical force components are imparted to rear wheel axis 11, which will produce on swingarms 9 counter-clockwise torque around bottom bracket housing 2. As swingarms 9 tend to rotate counter-clockwise, this motion will be transferred to rear arms 12, which are connected to torsion arms 16 at upper pivot axis'15. Hence, vertical forces on rear wheel axis 11 produces a rotational force component on torsion arms 16. The rotational force component tends to force torsion arms 16 to rotate counter-clockwise. However, torsion arms 16 are connected to actuation shafts 23, which are rigidly connected to shaft housing 21. As shaft housing 21 tends to rotate, its motion is resisted through rubbery substance 22 and the shock of the force originally transferred through rear wheel axis 11 is absorbed.

Pre-loading the Rubber Torsion Spring Preferably, torsion spring assembly 17 is pre-loaded. In other words, better shock absorbing effects are achieved if torsion spring 50 is already is a state of torque prior to use of the bicycle. If there were no pre-loading, the rear suspension of the bicycle would feel more like a pogo stick and less like a true shock absorber.

Pre-loading of torsion spring assembly 17 is best understood by reference to FIGS. 1 and 5. Aluminum tube 21 is welded rearward of torsion spring housing 18. Riveted to both torsion arms 16, are plastic supports 29. The normal position (i. e., no pre- loading) of torsion arms 16 would be horizontal, as indicated by the horizontal line in FIG. 5. However, torsion arms 16 are forced counter-clockwise approximately 20 degrees. As rubbery substance 22 attempts to force downward torsion arms 16, plastic supports 29 brace against aluminum tube 21 and the downward motion is stopped. The result is therefore a pre-loaded torsion spring assembly 17.

SECOND PREFERRED EMBODIMENT Rubber Torsion Shock Absorber-with Damping A second embodiment of torsion spring assembly 17 is made by substituting the elements described in FIG. 6E (i. e., plastic friction washers 25) with elements described in FIGS. 8A and 8B. Instead of placing plastic friction washers 25 between torsion arms 16 and outer housing 18B, components are inserted to add a damping effect to the torsional motion resisted by torsion spring 50. As seen in FIG. 8B, outer housing 18B has key cutout 18C. Elastomer plate 26 is made out of a high loss factor rubbery substance. Metal elastomer backing plate 26A is cut to fit at key cutout 18C, as shown in FIG. 8A. Rolling indentor retainer 27 is made out of metal and has 6 holes to accept rolling indentors 28. Also, rolling indentor retainers 27 have a hexagonal internal cutout so as to have a tight fit over actuation shafts 23. Rolling indentors 28 are made out of metal ball bearings and have a diameter of approximately 1/4 inch. Their diameter is slightly larger than the diameter of the holes in indentor retainer 27.

Installing Second Embodiment All procedures of installing the second embodiment are identical to that of the first embodiment through the installation of actuation shafts 23. Elastomer plates 26 are bonded to elastomer backing plates 26A, which are then keyed to key cutout 18C of outer housing 18B. Rolling indentors 28 are then placed against rolling indentor retainers 27 and both are slid over actuation shafts 23 and pressed against elastomer plates 26. Torsion arms 16 are then slid over shafts 23 and the entire assembly is tightened with bolt 24 and nut 24A as described above under the first embodiment.

Operation of the Damper As torsion arms 16 cause actuation shafts 23 to rotate, indentor retainers 27 rotate as well. However, elastomer plates 26 remain essentially stationary because they are keyed to key cutout 18C of outer housing 18B. Between rotating elastomer plates 26 and indentor retainers 27 are rolling indentors 28. As indentor retainers 27 rotate around shafts 23, rolling indentors roll against elastomer plates 26 dampening the effect of torsion spring assembly 17 through hysteresis losses in the elastomer.

THIRD PREFERRED EMBODIMENT Adjustable Preload and Damping A third preferred embodiment showing adjustable preload capability is seen by reference to FIGS. 12 and 13. FIG. 12 shows an exploded view of torsion spring assembly 17 with adjustable preload. In FIG. 12 only the right side components are shown. It should be noted that the left side components are identical to right side except that there is just one torsion spring 50 and just one threaded rod 400. In this embodiment, bracket 100 is welded to top tube 19. Torsion spring 50 is press fit inside spring housing 110. Preload cable assembly 112 is then attached to spring housing 110 so that cable stop 114 is adjacent to key 116 of spring housing 110.

Spring housing 110 and preload cable assembly 112 are lowered into the pocket in lower shell 104. Lower shell 104 allows for free rotation of spring housing 110 and preload cable assembly 112, but no axial motion. Upper shell 102 is then snapped to lower shell 104 and lower shell 104 is mounted to bracket 100 with mounting bolts 106. When rigidly bolted together with bolts 106, upper shell 102, lower shell 104 and bracket 100 form torsion spring assembly housing 108, as shown in FIG. 13.

Threaded cable end 118 is threaded inside preload adjust bolt 120 after preload adjust bolt has been lowered through thrust washer 122, top tube 19, bracket 100 and upper shell 102.

Operation of the Adjustable Preload As shown in FIG. 13, rotating preload adjust bolt 120 causes threaded cable end 118 to rise inside preload adjust bolt 120. This causes cable 119 to pull cable stop 114, rotating outer shell 18A of torsion spring 50 clockwise to preload the torsion spring.

In the case of the 13 inch pound per degree, a twenty degree rotation will provide a 260 inch pound preload. For example, this may be a desirable preload for a 150 pound rider.

Adjustable Preload Stops As shown in FIG. 14 and FIG. 12, actuation shaft 200 is rigidly attached to torsion arm 202. Link ears 204 are also rigidly attached to torsion arm 202.

Rebound/compression stop 206 is rigidly keyed to upper shell 102 and lower shell 104 at keys 206A. Link ear stops 208 are rigidly attached to rebound/compression stop 206. In a preferred embodiment, link ear stops 208 are fabricated from hard rubber.

As torsion spring 50 rotates clockwise as the result of rotation of preload adjust bolt 120, continuous rotation of actuation shaft 200 is prevented by link ears 204, because link ears 204 are stopped by link ear stops 208 as shown in FIG. 14. When link ears 204 are stopped from further rotation by link ear stops 208, the preload of torsion spring 50 can be varied by rotation of preload adjust bolt 120 as describe above. It should be noted that compression/rebound stops 206 also function to limit torsion spring 50 rotation in the counter-clockwise direction when excessive shock forces are applied to the front or rear wheel axis of the bicycle.

Adjustable Damping The adjustable damping capability is seen by reference to FIGS. 12 and 15. Damper housing 300 is keyed to upper shell 102 and lower shell 104 so that it is rigid with respect to the front portion of the bicycle frame and does not rotate with respect to torsion spring 50. Elastomer damping surface 304 is bonded to damper housing 300.

Rolling indentors 306 are held against elastomer damping surface 304 by indentor retainer 308. Note that indentor retainer 308 is dimpled on the side facing elastomer damping surface 304 (dimples not shown in drawing) to hold in place rolling indentors 306. Indentor retainer 308 has holes 310 that extend approximately half way through indentor retainer 308. Damper actuation plate 312 has actuation prongs 314 that insert into holes 310. Prior to their insertion into holes 310, however, actuation prongs first pass through holes 316 in torsion arm 202 as shown in FIG. 12.

Damper adjust cap 318 is threaded onto threaded rod 400 outward of damper actuation plate 312. As shown in FIG. 12, threaded rod nut 402 is threaded onto threaded rod 400 and functions to press tightly torsion arm 202. Hence, the degree of damping on torsion spring assembly 17 is independent of the tightness of threaded rod nut 202 against torsion arm 202.

As torsion arm 202 rotates, damper actuation plate 312 also rotates because actuation prongs 314 are inserted through holes 316. Actuation prongs 314 mate with holes 310, therefore causing indentor retainer 308 to rotate as well. By tightening damper adjust cap 318, actuation prongs 314 are pressed tighter against holes 310 in indentor retainer 308. This increases the damping of torsion spring assembly 17 by increasing the axial force on rolling indentors 306. Likewise, as damper adjust cap 318 is loosened, the damping of torsion spring assembly 17 is decreased.

OTHER EMBODIMENTS Location of the Torsional Shock Absorber Assembly Preferred embodiments described the location of torsion spring assembly 17 as being located in-between top tube 19 and middle brace 20 and just forward of seat support tube 3, as shown in FIG. 10A. However, torsion spring assembly 17 could be placed in several other locations on the bicycle frame as well. For example, it could be welded into top tube 19 (as shown in FIG. 1 OB), or into seat tube 3 (as shown in FIG. 10C), or behind seat tube 3 (as shown in FIG. 10D), or underneath top tube 19 (as shown in FIG. 10E), or wedged in-between top tube 19 and seat tube 3 (as shown in FIG. 10F).

Other Bicycle Frame Types In FIGS. 1 lA-11G, the shaded parts of the bicycle frame tend to rotate clockwise as vertical force is applied to rear wheel axis 11 and the non-shaded parts tend to rotate counter-clockwise. The preferred embodiment was based on a modification of cruiser bicycle frame, as shown in FIG. llA. To review, vertical force is transferred through rear wheel axis 11 to cause swingarm 9 to pivot concentric to bottom bracket shell 6.

Motion is therefore transferred to rear arm 12 through lower pivot axis 13 and then to torsion arm 16 through upper pivot axis 15. This causes counter-clockwise rotation of torsion arm 16, which is resisted by torsion spring assembly 17. The present invention may also be used with other frame designs. For example, FIG. 11B illustrates a modification of a neutral pivot type rear suspension design. Here the lower pivot point for swingarm 9 is at pivot 6C rather than at bottom bracket shell 6.

FIG. I 1C illustrates a modification of a Horst-link rear suspension with bottom bracket pivot design. Here, lower pivot 13 is in-between bottom bracket shell 6 and rear wheel axis 11. FIG. 11 D illustrates a modification of a traditional Horst-link rear suspension design. Here, pivot 6C is rigidly connected to the bicycle frame rearward of bottom bracket shell 6 and lower pivot 13 is in-between rear wheel axis 11 and pivot 6C. FIGS. 1 IE-11G are examples of bicycle frames that do not utilize a rear arm 12. FIG. 1 lE illustrates a modification of a concentric bottom bracket swing arm design. In this design, rubbery substance 22 is bonded to the exterior surface of bottom bracket shell 6 and to the interior surface of bottom bracket housing 2. FIG.

1 IF illustrates a modification of a cantilever swingarm design. In this design, torsion spring housing 18 is welded to down tube 4, rubbery substance 22 is bonded to the interior surface of outer housing 18B (which is press fit inside and keyed to torsion spring housing 18) and to the exterior surface of shaft housing 21, which is rigidly connected to swing arm 9. FIG. 11 G illustrates a modification of a floating drivetrain design. In this design, swingarm 9 and bottom bracket housing 2 containing spindle 6 are joined to form one large swingarm 30. Large swingarm 30 rigidly connects to shaft housing 21. Rubbery substance 22 is bonded to the exterior surface of shaft housing 21 and to the interior surface of outer housing 18B (which is press fit inside and keyed to torsion spring housing 18). Torsion spring housing 18 is welded at the intersection of seat tube 3 and down tube 4.

Other Possible Uses of a Torsion Spring Besides Rear Suspension There are other possible uses of a rubber torsion spring on a bicycle besides for rear suspension. For example, a torsion spring could be place in-between the handlebars and the front wheel axis to provide front suspension. Or, a torsion spring could be placed on the handlebars to provide shock absorption for the bicycle rider's hands. Or a torsion spring could be placed in-between the bicycle seat and the bicycle frame for shock absorption or on the bicycle's stem.

Other Modifications For rubbery substance 22, the type of rubber used was natural rubber. Synthetic rubbers are also possible as well as other rubbery type substances.

In the third preferred embodiment, it was described how link ears 204 braced against link ear stops 208 and therefore actuation shaft 200 was prevented from further rotation when preload adjust bolt 120 is turned. However, in another preferred embodiment link ears 204 and link ear stops 208 can be removed and actuation shaft 200 can be prevented from further rotation by utilizing the preload stop shown in FIG.

5. In other words, plastic support 29 could be riveted to torsion arm 202 and aluminum tube 21 could be welded rearward of bracket 100. Therefore, when preload adjust bolt 120 is turned, plastic support 29 will brace against aluminum tube 21 and prevent further rotation of actuation shaft 200.

Also, in the third preferred embodiment an adjustable damper was described that utilized rolling indentors 300, elastomer damping surface 304 and indentor retainer 308. It was described how a larger dampening effect could be achieved by tightening damper actuation plate 312 against indentor retainer plate 308. Those of ordinary skill in the art should recognize that other dampening devices would be effective as well. For example, a friction damper or a viscous damper could be substituted in place of rolling indentors 300, elastomer damping surface 304 and indentor retainer 308.

In the preferred embodiments, it was described how the front portion of the bicycle frame was rigidly attached to the torsion spring assembly housing and how the rear portion of the bicycle frame was attached to the torsion spring assembly shaft.

However, those of ordinary skill in the art will recognize, of course, that this could be reversed and that the front portion of the frame could be attached to the torsion spring assembly shaft and that the rear portion of the frame could be attached to the torsion spring assembly housing.

In the third preferred embodiment, the adjustable damper was described as being utilized in conjunction with the adjustable preload device. However, those of ordinary skill in the art will recognize that the adjustable preload device and the adjustable damper could be used independently of each other. For example, the adjustable damper disclosed in FIG. 15 could be interchanged for the damper disclosed in FIG. 8A.

In the preferred embodiments, it was described how torsion spring 50 was inserted inside torsion spring assembly housing 18. However, those of ordinary skill in the art will recognize that the shape of the outer surface of outer housing 18B could be modified so that torsion spring 50 could be rigidly attached to the bicycle frame without using a torsion spring assembly housing device. In other words, for example, torsion spring 50 could be bolted, welded or clamped to the bicycle frame.

In the preferred embodiment, it was described how for torsion spring 50, rubbery substance 22 is bonded to the internal smooth surface of outer housing 18B and the external smooth surface of shaft housing 21. Those of ordinary skill in the art will recognize that rubbery substance 22 can also be vulcanized to the internal smooth surface of outer housing 18B and the external smooth surface of shaft housing 21 or it can be both bonded and vulcanized to the internal smooth surface of outer housing 18B and the external smooth surface of shaft housing 21.

In the preferred embodiment, it was described how rolling indentors 28 are made out of metal ball bearings. Those of ordinary skill in the art will recognize that rolling indentors 28 could also be made out of other equivalent materials, such as hard plastic. Also, those of ordinary skill in the art will recognize that sliding indentors could be substituted for rolling indentors 28. For example, by referring to FIG. 15, indentor retainer 308 could have sliding indentors welded to the side of indentor retainer 308 that faces elastomer damping surface 304. These sliding indentors would provide damping by rubbing against elastomer damping surface 304.

For the preferred embodiment, one torsion spring assembly 17 was described, as shown if FIG. 1. However, it is possible to put a rubber torsion spring at every location where there is a pivot. For example, referring to FIG. 1, a rubber torsion spring could be place in-between bottom bracket shell 6 and bottom bracket housing 2. Furthermore, a torsional spring assembly could be place at lower pivot axis 13 and at upper pivot axis 15.

Although the above-preferred embodiments have been described with specificity, persons skilled in this art will recognize that many changes to the specific procedures disclosed above could be made without departing from the spirit of the invention.

Therefore, the scope of the invention is to be determined by the appended claims and their legal equivalents.