Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TRANSMISSION SYSTEM AND TRANSMISSION METHOD FOR TRANSMITTING DATA AND ENERGY VIA A TWO-WIRE LINE
Document Type and Number:
WIPO Patent Application WO/2023/031017
Kind Code:
A1
Abstract:
The invention relates to a transmission system for transmitting data and energy, comprising a master module (8), at least one slave module (10-12), and a two-wire line (9) between the master module (8) and the slave module (10-12) for bidirectional data transmission between the master module (8) and the slave module (10-12) and for energy transmission from the master module (8) to the slave module (10-12). According to the invention, the transmission system can be switched between a plurality of operating states, the operating states preferably differing with regard to the energy transmission and/or with regard to the data transmission. The invention also comprises an adapted master module (8), a slave module (10-12) and an associated operating method.

Inventors:
DEUSE-KLEINSTEUBER JOHANNES (DE)
SCHOLZ PETER (DE)
SCHAPER ELMAR (DE)
REINHOLD CHRISTIAN (DE)
Application Number:
PCT/EP2022/073702
Publication Date:
March 09, 2023
Filing Date:
August 25, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PHOENIX CONTACT GMBH & CO (DE)
International Classes:
H04B3/54
Foreign References:
US20200304172A12020-09-24
DE102016118004A12018-03-29
Attorney, Agent or Firm:
V. BEZOLD & PARTNER PATENTANWÄLTE - PARTG MBB (DE)
Download PDF:
Claims:
ANSPRÜCHE

1. Übertragungssystem zur Übertragung von Daten und Energie, mit a) einem Master-Modul (8), b) mindestens einem Slave-Modul (10-12), und c) einer Zweidrahtleitung (9) zwischen dem Master-Modul (8) und dem Slave-Modul (10-12) zur bidirektionalen Datenübertragung zwischen dem Master-Modul (8) und dem Slave-Modul (10-12) und zur Energieübertragung von dem Master-Modul (8) zu dem Slave-Modul (10-12), dadurch gekennzeichnet, d) dass das Übertragungssystem umschaltbar ist zwischen mehreren Betriebszuständen, wobei sich die Betriebszustände vorzugsweise hinsichtlich der Energieübertragung und/oder hinsichtlich der Datenübertragung unterscheiden.

2. Übertragungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Übertragungssystem umschaltbar ist zwischen mindestens zwei der folgenden Betriebszustände: a) einem ersten Betriebszustand zur Energieübertragung von dem Master-Modul (8) über die Zweidrahtleitung (9) zu dem mindestens einen Slave-Modul (10-12), wobei in dem ersten Betriebszustand vorzugsweise keine Datenübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt, b) einem zweiten Betriebszustand zur Datenübertragung von dem Master-Modul (8) über die Zweidrahtleitung (9) zu dem mindestens einen Slave-Modul (10-12), wobei in dem zweiten Betriebszustand vorzugsweise keine Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt, und c) einem dritten Betriebszustand zur Datenübertragung von dem mindestens einen Slave-Modul (10-12) über die Zweidrahtleitung (9) zu dem Master-Modul (8), wobei in dem dritten Betriebszustand vorzugsweise auch eine Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt.

3. Übertragungssystem nach Anspruch 2, dadurch gekennzeichnet, a) dass die Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) in dem zweiten Betriebszustand während der Datenübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) vorübergehend eingeschränkt

24 oder unterbrochen ist, und b) dass das mindestens eine Slave-Modul (10-12) einen Energiespeicher (24) aufweist, insbesondere einen Kondensator (24), um das Slave-Modul (10-12) während der Einschränkung oder Unterbrechung der Energieübertragung von dem Master-Modul (8) in dem zweiten Betriebszustand mit der zum Betrieb erforderlichen Energie zu versorgen, c) dass das mindestens eine Slave-Modul (10-12) vorzugsweise einen Entladeschutz (29) aufweist, um während der Einschränkung oder Unterbrechung der Energieübertragung von dem Master-Modul (8) in dem zweiten Betriebszustand eine übermäßige Entladung des Energiespeichers (24) zu verhindern, insbesondere mit cl) einer Diode, die dem Energiespeicher (24) vorgeschaltet ist, oder c2) einer aktiven Abschaltung des Energiespeichers (24), insbesondere mittels einem in Reihe mit dem Energiespeicher (24) geschalteten Transistor oder einem in Reihe mit dem Energiespeicher (24) geschalteten Relais.

4. Übertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Master-Modul (8) und das mindestens eine Slave-Modul (10-12) ausgebildet sind, um Daten von dem mindestens einen Slave-Modul (10-12) durch eine Lastmodulation über die Zweidrahtleitung (9) zu dem Master-Modul (8) zu übertragen.

5. Übertragungssystem nach Anspruch 4, dadurch gekennzeichnet, a) dass das mindestens eine Slave-Modul (10-12) einen Strommodulator (30, 32) aufweist, um einen über die Zweidrahtleitung (9) von dem Master-Modul (8) bereitgestellten Laststrom entsprechend den zu übertragenden Daten zu modulieren, und b) dass das Master-Modul (8) einen Stromdemodulator (35) aufweist, um den von dem Slave- Modul (10-12) bereitgestellten Laststrom zu demodulieren und die darin enthaltenen Daten zu ermitteln.

6. Übertragungssystem nach Anspruch 5, dadurch gekennzeichnet, dass der Strommodulator (30, 32) in dem mindestens einen Slave-Modul (10-12) mindestens einen Stromimpulsgenerator (30, 32) aufweist, der den über die Zweidrahtleitung (9) bereitgestellten Laststrom impulsförmig moduliert, so dass der Laststrom entsprechend den zu übertragenden Daten Stromimpulse aufweist.

7. Übertragungssystem nach Anspruch 6, dadurch gekennzeichnet, a) dass der Strommodulator (30, 32) in dem mindestens einen Slave-Modul (10-12) mehrere Stromimpulsgeneratoren (30, 32) aufweist, die parallelgeschaltet sind, und b) dass die parallelgeschalteten Stromimpulsgeneratoren (30, 32) den über die Zweidrahtleitung (9) bereitgestellten Laststrom unterschiedlich modulieren, so dass der Laststrom unterschiedliche Stromimpulse zeigen kann.

8. Übertragungssystem nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Stromimpulsgenerator (30, 32) in dem mindestens einen Slave-Modul (10-12) mindestens eine der folgenden Komponenten aufweist: a) ein Schaltelement, insbesondere einen Transistor, insbesondere einen Bipolartransistor, wobei das Schaltelement zwischen die beiden Leitungen der Zweidrahtleitung (9) geschaltet ist, um den Laststrom zu modulieren, der über die Zweidrahtleitung (9) von dem Master-Modul (8) bereitgestellt wird, b) einen Strombegrenzer (31, 33), insbesondere als Kollektorwiderstand an dem Transistor, um den Laststrom zu begrenzen, wenn der Transistor durchschaltet, c) einen Mikroprozessor (27) zur Ansteuerung des Transistors entsprechend den Daten, die von dem Slave-Modul (10-12) an das Master-Modul (8) übertragen werden sollen.

9. Übertragungssystem nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der Stromdemodulator (35) in dem Master-Modul (8) einen Stromimpulsdetektor (35) aufweist, um die Stromimpulse des Laststroms zu detektieren.

10. Übertragungssystem nach Anspruch 9, dadurch gekennzeichnet, dass der Stromimpulsdetektor (35) in dem Master-Modul (8) mindestens eine der folgenden Komponenten aufweist: a) ein Filter (36), insbesondere ein Hochpassfilter, um die sich schnell ändernden Stromänderungen des Laststroms durchzulassen, die von den informationshaltigen Stromimpulsen verursacht werden, und die sich langsam ändernden Stromänderungen des Laststroms zu abzuschwächen, wobei das Filter ein Laststromsignal ausgibt, b) einen Verstärker (36) zur Verstärkung des von dem Filter gefilterten Laststromsignals, c) einen Detektor (37) zum Vergleich des Laststromsignals mit mindestens einem vorgegebenen Pegel, insbesondere als digitaler Detektor, insbesondere als Komparator (37), d) einen Vorzustand-Speicher (39) zur Zwischenspeicherung eines Vorzustands des Laststroms, wobei der Komparator (37) den aktuellen Zustand des Laststromsignals mit dem in dem Vorzustand-Speicher (39) gespeicherten Vorzustand des Laststromsignals vergleicht.

11. Übertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Master-Modul (8) für die Datenübertragung zu dem mindestens einen Slave-Modul (10- 12) mindestens eine der folgenden Komponenten aufweist: a) einen steuerbaren Schalter (34), insbesondere als Transistor, zum Schalten der Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) während der Datenübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12), b) eine Ausgangsschaltung (26) zur Erzeugung von Spannungsimpulsen auf der Zweidrahtleitung (9) entsprechend den an das mindestens eine Slave-Modul (10-12) zu übertragenden Daten, c) einen Mikroprozessor (22) zur Bereitstellung der an das Slave-Modul (10-12) zu übertragenden Daten und zur Ansteuerung des Transistors oder der Ausgangsschaltung (26) entsprechend den an das mindestens eine Slave-Modul (10-12) zu übertragenden Daten.

12. Übertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Slave-Modul (10-12) einen Spannungsdetektor (28) aufweist zur Detektion der von dem Master-Modul (8) über die Zweidrahtleitung (9) übertragenen Spannungsimpulse, insbesondere mit einem Transistor, insbesondere mit einem Bipolartransistor mit einem vorgeschalteten Basiswiderstand und einem Emitterwiderstand.

13. Übertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, a) dass das Master-Modul (8) und das mindestens eine Slave-Modul (10-12) ein gemeinsames elektrisches Bezugspotential haben, und/oder b) dass das Übertragungssystem als Bus-System ausgebildet ist, so dass über die Zweidrahtleitung (9) mehrere parallelgeschaltete Slave-Module (10-12) mit dem Master-Modul (8) verbunden werden können.

14. Übertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, a) dass das Master-Modul einen steuerbaren Umschalter aufweist, der die Zweidrahtleitung in dem Master-Modul entweder mit einer Versorgungsspannung oder mit einem Empfänger verbindet, und/oder b) dass das Master-Modul zwischen der Versorgungsspannung und dem Umschalter einen steuerbaren Schalter aufweist, um Spannungsimpulse über die Zweidrahtleitung zu übertragen, und/oder c) dass das Slave-Modul einen Spannungsdetektor enthält, um die von dem Master-Modul über die Zweidrahtleitung gesendeten Spanungsimpulses zu erfassen, und/oder

27 d) dass das Slave-Modul einen Stromimpulsgenerator aufweist, um Stromimpulse für die Datenübertragung von dem Slave-Modul zu dem Master-Modul zu erzeugen.

15. Übertragungssystem nach Anspruch 14, dadurch gekennzeichnet, dass das Übertragungssystem umschaltbar ist zwischen mindestens zwei der folgenden Betriebszustände: a) einem ersten Betriebszustand zur Energieübertragung von dem Master-Modul zu dem Slave- Modul, wobei der Umschalter in dem Master-Modul die Zweidrahtleitung mit der Versorgungsspannung verbindet und der Schalter geschlossen ist, so dass die Versorgungsspannung mit der Zweidrahtleitung verbunden ist und das Slave-Modul über die Zweidrahtleitung mit Strom versorgt, b) einem zweiten Betriebszustand zur Datenübertragung von dem Master-Modul zu dem Slave- Modul, wobei der Umschalter in dem Master-Modul die Zweidrahtleitung mit der Versorgungsspannung verbindet und der Schalter die Versorgungsspannung entsprechend den zu übertragenden Daten moduliert, c) einem dritten Betriebszustand zur Datenübertragung von dem Slave-Modul an das Master- Modul, wobei der Umschalter in dem Master-Modul die Zweidrahtleitung mit dem Empfänger verbindet und der Empfänger in dem Master-Modul die von dem Slave-Modul über die Zweidrahtleitung gesendeten Daten empfängt.

16. Übertragungssystem nach Anspruch 14 oder 15, dadurch gekennzeichnet, a) dass der Empfänger in dem Master-Modul einen Transistor aufweist, insbesondere einen Bipolartransistor, der mit seiner Basis über den Umschalter mit der Zweidrahtleitung verbunden ist, b) dass der Transistor des Empfängers in dem Master-Modul zwischen die Versorgungsspannung und Masse geschaltet ist, c) dass in dem Master-Modul zwischen der Versorgungsspannung und dem Transistor ein Strombegrenzer angeordnet ist.

17. Master-Modul (8) für ein Übertragungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Master-Modul (8) umschaltbar zwischen mehreren Betriebszuständen, wobei sich die Betriebszustände vorzugsweise hinsichtlich der Energieübertragung und/oder hinsichtlich der Datenübertragung unterscheiden.

18. Master-Modul (8) nach Anspruch 17, dadurch gekennzeichnet, dass das Master-Modul (8) umschaltbar ist zwischen mindestens zwei der folgenden Betriebszustände:

28 a) dem ersten Betriebszustand zur Energieübertragung von dem Master-Modul (8) über die Zweidrahtleitung (9) zu dem mindestens einen Slave-Modul (10-12), wobei in dem ersten Betriebszustand vorzugsweise keine Datenübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt, b) dem zweiten Betriebszustand zur Datenübertragung von dem Master-Modul (8) über die Zweidrahtleitung (9) zu dem mindestens einen Slave-Modul (10-12), wobei in dem zweiten Betriebszustand vorzugsweise keine Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt, und c) dem dritten Betriebszustand zur Datenübertragung von dem mindestens einen Slave-Modul (10-12) über die Zweidrahtleitung (9) zu dem Master-Modul (8), wobei in dem dritten Betriebszustand vorzugsweise auch eine Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt.

19. Master-Modul (8) nach Anspruch 18, dadurch gekennzeichnet, dass das Master-Modul (8) mindestens eine der folgenden Komponenten aufweist: a) den Stromdemodulator (35), um den von dem Master-Modul (8) über die Zweidrahtleitung (9) bereitgestellten Laststrom zu demodulieren und die darin enthaltenen Daten zu ermitteln, b) das Filter (36), insbesondere ein Hochpassfilter, um die sich schnell ändernden Stromänderungen des Laststroms durchzulassen, die von den informationshaltigen Stromimpulsen verursacht werden, und die sich langsam ändernden Stromänderungen des Laststroms abzuschwächen, wobei das Filter ein Laststromsignal ausgibt, c) den Verstärker (36) zur Verstärkung des gefilterten Laststromsignals, d) den Detektor (35) zum Vergleich des Laststromsignals mit mindestens einem vorgegebenen Pegel, insbesondere als digitaler Detektor, insbesondere als Komparator (37), e) den Vorzustand-Speicher (39) zur Zwischenspeicherung eines durch den Detektor (35) ermittelten Vorzustands des gefilterten Laststroms, wobei der Komparator (37) den aktuellen Zustand des Laststromsignals mit dem in dem Vorzustand-Speicher (39) gespeicherten Vorzustand des Laststromsignals vergleicht. f) den steuerbaren Schalter (23), insbesondere als Transistor, zum Schalten der Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) während der Datenübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12), g) die Ausgangsschaltung (26) zur Erzeugung von Spannungsimpulsen auf der Zweidrahtleitung (9) entsprechend den an das mindestens eine Slave-Modul (10-12) zu übertragenden Daten,

29 h) den Mikroprozessor (22) zur Bereitstellung der an das mindestens eine Slave-Modul (10-12) zu übertragenden Daten und zur Ansteuerung des Transistors oder der Ausgangsschaltung (26) entsprechend den an das mindestens eine Slave-Modul (10-12) zu übertragenden Daten.

20. Master-Modul nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, a) dass das Master-Modul einen steuerbaren Umschalter aufweist, der die Zweidrahtleitung in dem Master-Modul entweder mit einer Versorgungsspannung oder mit einem Empfänger verbindet, und/oder b) dass das Master-Modul zwischen der Versorgungsspannung und dem Umschalter einen steuerbaren Schalter aufweist, um Spannungsimpulse über die Zweidrahtleitung zu übertragen, und/oder c) dass das Slave-Modul einen Spannungsdetektor enthält, um die von dem Master-Modul über die Zweidrahtleitung gesendeten Spanungsimpulses zu erfassen, und/oder d) dass das Slave-Modul einen Stromimpulsgenerator aufweist, um die Stromimpulse für die Datenübertragung von dem Slave-Modul zu dem Master-Modul zu erzeugen.

21. Master-Modul nach Anspruch 20, dadurch gekennzeichnet, dass das Übertragungssystem umschaltbar ist zwischen mindestens zwei der folgenden Betriebszustände: a) einem ersten Betriebszustand zur Energieübertragung von dem Master-Modul zu dem Slave- Modul, wobei der Umschalter in dem Master-Modul die Zweidrahtleitung mit der Versorgungsspannung verbindet und der Schalter geschlossen ist, so dass die Versorgungsspannung mit der Zweidrahtleitung verbunden ist und das Slave-Modul über die Zweidrahtleitung mit Strom versorgt, b) einem zweiten Betriebszustand zur Datenübertragung von dem Master-Modul zu dem Slave- Modul, wobei der Umschalter in dem Master-Modul die Zweidrahtleitung mit der Versorgungsspannung verbindet und der Schalter die Versorgungsspannung entsprechend den zu übertragenden Daten moduliert, c) einem dritten Betriebszustand zur Datenübertragung von dem Slave-Modul an das Master- Modul, wobei der Umschalter in dem Master-Modul die Zweidrahtleitung mit dem Empfänger verbindet und der Empfänger die von dem Slave-Modul über die Zweidrahtleitung gesendeten Daten empfängt.

22. Master-Modul nach Anspruch 20 oder 21, dadurch gekennzeichnet, a) dass der Empfänger in dem Master-Modul einen Transistor aufweist, insbesondere einen Bi-

30 polartransistor, der mit seiner Basis über den Umschalter mit der Zweidrahtleitung verbunden ist, b) dass der Transistor des Empfängers in dem Master-Modul zwischen die Versorgungsspannung und Masse geschaltet ist, c) dass in dem Master-Modul zwischen der Versorgungsspannung und dem Transistor ein Strombegrenzer angeordnet ist.

23. Master-Modul (8) nach einem der Ansprüche 17 bis 22, dadurch gekennzeichnet, a) dass das Master-Modul (8) einen steuerbaren ersten Schalter (50) aufweist, der die Zweidrahtleitung (9) in Abhängigkeit von seiner Ansteuerung wahlweise mit einer Versorgungsspannung verbindet oder von der Versorgungsspannung trennt, b) dass der steuerbare erste Schalter (50) für eine Energieübertragung von dem Master-Modul (8) zu dem Slave-Modul (10) geschlossen wird, c) dass der steuerbare erste Schalter (50) für eine Datenübertragung von dem Master-Modul (8) zu dem Slave-Modul (10) im Takt der zu übertragenden Daten geschlossen und geöffnet wird, d) dass der steuerbare erste Schalter (50) für eine Datenübertragung von dem Slave-Modul (10) zu dem Master-Modul (8) geöffnet wird.

24. Master-Modul (8) nach Anspruch 23, dadurch gekennzeichnet, a) dass das Master-Modul (8) einen steuerbaren zweiten Schalter (51) aufweist, der die Zweidrahtleitung (9) in Abhängigkeit von seiner Ansteuerung wahlweise über eine Strombegrenzung (52) mit der Versorgungsspannung verbindet oder von der Versorgungsspannung trennt, b) dass der steuerbare zweite Schalter (51) für eine Energieübertragung von dem Master-Modul (8) zu dem Slave-Modul (10) vorzugsweise geöffnet wird, c) dass der steuerbare zweite Schalter (51) für eine Datenübertragung von dem Master-Modul (8) zu dem Slave-Modul (10) geöffnet wird, und d) dass der steuerbare erste Schalter (51) für eine Datenübertragung von dem Slave-Modul (10) zu dem Master-Modul (8) geschlossen wird.

25. Slave-Modul (10-12) für ein Übertragungssystem nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Slave-Modul (10-12) umschaltbar ist zwischen mehreren Betriebszuständen, wobei sich die Betriebszustände vorzugsweise hinsichtlich der Energieübertragung und/oder hinsichtlich der Datenübertragung unterscheiden.

31

26. Slave-Modul (10-12) nach Anspruch 25, dadurch gekennzeichnet, dass das Slave-Modul (10- 12) umschaltbar ist zwischen mindestens zwei der folgenden Betriebszustände: a) dem ersten Betriebszustand zur Energieübertragung von dem Master-Modul (8) über die Zweidrahtleitung (9) zu dem mindestens einen Slave-Modul (10-12), wobei in dem ersten Betriebszustand vorzugsweise keine Datenübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt, b) dem zweiten Betriebszustand zur Datenübertragung von dem Master-Modul (8) über die Zweidrahtleitung (9) zu dem mindestens einen Slave-Modul (10-12), wobei in dem zweiten Betriebszustand vorzugsweise keine Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt, und c) dem dritten Betriebszustand zur Datenübertragung von dem mindestens einen Slave-Modul (10-12) über die Zweidrahtleitung (9) zu dem Master-Modul (8), wobei in dem dritten Betriebszustand vorzugsweise auch eine Energieübertragung von dem Master-Modul (8) zu dem mindestens einen Slave-Modul (10-12) erfolgt.

27. Slave-Modul (10-12) nach Anspruch 25 oder 26, dadurch gekennzeichnet, dass das Slave- Modul (10-12) mindestens eine der folgenden Komponenten aufweist: a) den Energiespeicher (24), insbesondere einen Kondensator, um das Slave-Modul (10-12) während der Unterbrechung der Energieübertragung von dem Master-Modul (8) in dem zweiten Betriebszustand mit der zum Betrieb erforderlichen Energie zu versorgen, b) den Entladeschutz (29), um während der Unterbrechung der Energieübertragung von dem Master-Modul (8) in dem zweiten Betriebszustand eine übermäßige Entladung des Energiespeichers (24) zu verhindern, insbesondere mit einer Diode, die in Reihe mit dem Energiespeicher (24) geschaltet ist, c) den Strommodulator (30, 32), um einen von dem Master-Modul (8) über die Zweidrahtleitung (9) bereitgestellten Laststrom entsprechend den an das Master-Modul (8) zu übertragenden Daten zu modulieren, d) den Stromimpulsgenerator (30, 32), der den über die Zweidrahtleitung (9) bereitgestellten Laststrom impulsförmig moduliert und Stromimpulse entsprechend den an das Master-Modul (8) zu übertragenden Daten erzeugt, e) den Transistor, insbesondere den Bipolartransistor, der zwischen die beiden Leitungen der Zweidrahtleitung (9) geschaltet ist, um den Laststrom zu modulieren, der über die Zweidrahtleitung (9) von dem Master-Modul (8) bereitgestellt wird, f) den Strombegrenzer (31, 33), insbesondere als Kollektorwiderstand an dem Transistor, um

32 den Laststrom zu begrenzen, wenn der Transistor durchschaltet, g) den Mikroprozessor (27) zur Ansteuerung des Transistors entsprechend den Daten, die von dem Slave-Modul (10-12) an das Master-Modul (8) übertragen werden sollen. 28. Übertragungsverfahren zur Übertragung von Daten und Energie über eine Zweidrahtleitung

(9) zwischen einem Master-Modul (8) und einem Slave-Modul (10-12), dadurch gekennzeichnet, dass das Master-Modul (8) und das Slave-Modul (10-12) in verschiedenen Betriebszuständen betrieben werden, wobei sich die Betriebszustände vorzugsweise hinsichtlich der Energieübertragung und/oder hinsichtlich der Datenübertragung unterscheiden.

33

Description:
Übertragungssystem und Übertragungsverfahren zur Übertragung von Daten und Energie über eine Zweidrahtleitung

Die Erfindung betrifft ein Übertragungssystem und ein Übertragungsverfahren zur Übertragung von Daten und Energie über eine Zweidrahtleitung zwischen einem Master-Modul und einem oder mehreren Slave-Modul(en). Weiterhin betrifft die Erfindung ein dafür ausgelegtes Master-Modul und ein dafür ausgelegtes Slave-Modul.

Die Erfindung betrifft die Übertragung von Energie und Daten über eine Zweidrahtleitung zwischen einem Master-Modul und mindestens einem Slave-Modul, wobei die Datenübertragung bidirektional erfolgt und das Übertragungssystem möglichst kostengünstig und einfach sein sollte. Im Stand der Technik sind hierzu im Wesentlichen zwei Übertragungsverfahren bekannt, die nachfolgend kurz beschrieben werden.

So zeigt Figur 1 ein bekanntes Übertragungssystem mit einem Master-Modul 1 und einem Slave- Modul 2, die über eine Zweidrahtleitung 3 miteinander verbunden sind. Das Master-Modul 1 enthält hierbei eine Energiequelle 4 und eine Datenschnittstelle 5. Entsprechend enthält auch das Slave-Modul 2 eine Energiesenke 6 und eine Datenschnittstelle 7. Das zu übertragende Datensignal kann hierbei einer Trägerfrequenz aufmoduliert und über die Zweidrahtleitung 3 zwischen dem Master-Modul 1 und dem Slave-Modul 2 übertragen werden, wobei das Datensignal eine eingeprägte Gleichspannung überlagern kann, wie es bei Figur 1 der Fall ist.

Ein Nachteil besteht darin, dass auf diese Weise nur Punkt-zu-Punkt-Verbindungen möglich sind, d.h. es ist nicht möglich, neben dem Slave-Modul 2 weitere Slave-Module mit dem Master-Modul 1 zu verbinden. Schließlich besteht ein weiterer Nachteil dieser technischen Lösung darin, dass aufwändige und relativ große Bauteile erforderlich sind, wie beispielsweise Induktivitäten und integrierte Schaltungen (ICs)

Eine weitere bekannte technische Lösung besteht darin, das Datensignal mithilfe einer Trägerfrequenz aufzumodulieren, was unter dem Stichwort „Power Line Communication" bekannt ist.

Nachteilig an dieser bekannten technischen Lösung („Power Line Communication") ist zunächst, dass sowohl auf Senderseite als auch auf Empfängerseite eine aufwändige Hardware erforderlich ist, die beispielsweise integrierte Schaltungen (ICs) und analoge Filter aus Kapazitäten und Induktivitäten enthält, wodurch das Übertragungssystem teuer ist und auf einer Leiterplatte relativ viel Platz benötigt.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein entsprechend den oben genannten Nachteilen optimiertes Übertragungssystem bzw. Übertragungsverfahren zu schaffen. Darüber hinaus liegt der Erfindung auch die Aufgabe zugrunde, ein entsprechend optimiertes Master-Modul und ein entsprechend verbessertes Slave-Modul zu schaffen.

Diese Aufgabe wird durch die technische Lösung gemäß den unabhängigen Ansprüchen gelöst.

Das erfindungsgemäße Übertragungssystem umfasst zunächst in Übereinstimmung mit der eingangs beschriebenen bekannten technischen Lösung ein Master-Modul, mindestens ein Slave-Modul und eine Zweidrahtleitung zwischen dem Master-Modul und dem Slave-Modul. Zum einen ermöglicht das erfindungsgemäße Übertragungssystem eine bidirektionale Datenübertragung zwischen dem Master-Modul und dem Slave-Modul, wie es an sich bereits aus dem Stand der Technik bekannt ist. Zum anderen ermöglicht das erfindungsgemäße Übertragungssystem auch eine Energieübertragung von dem Master-Modul zu dem Slave-Modul.

Das erfindungsgemäße Übertragungssystem unterscheidet sich nun vom Stand der Technik dadurch, dass das Übertragungssystem umschaltbar ist zwischen mehreren Betriebszuständen, wobei sich die verschiedenen Betriebszustände vorzugsweise hinsichtlich der Energieübertragung und/oder hinsichtlich der Datenübertragung unterscheiden.

Beispielsweise kann das erfindungsgemäße Übertragungssystem in einem ersten Betriebszustand betrieben werden, um Energie von dem Master-Modul über die Zweidrahtleitung zu dem mindestens einen Slave-Modul zu übertragen, was auch als Energieübertragungsphase bezeichnet werden kann.

In diesem ersten Betriebszustand (Energieübertragungsphase) ist bei dem bevorzugten Ausführungsbeispiel der Erfindung keine Datenübertragung von dem Master-Modul zu dem Slave-Modul möglich. Die Erfindung ist jedoch nicht beschränkt auf solche Ausführungsbeispiele, bei denen in dem ersten Betriebszustand ausschließlich eine Energieübertragung erfolgt, aber keine Datenübertragung. Vielmehr ist es grundsätzlich auch möglich, dass während der Energieübertragung von dem Master-Modul zu dem Slave-Modul auch eine Datenübertragung erfolgt. In einem zweiten Betriebszustand des Übertragungssystems kann dagegen eine Datenübertragung von dem Master-Modul über die Zweidrahtleitung zu dem mindestens einen Slave-Modul erfolgen, was auch als „Downlink-Broadcast-Phase" bezeichnet werden kann.

In diesem zweiten Betriebszustand (Downlink-Broadcast-Phase) erfolgt in dem bevorzugten Ausführungsbeispiel der Erfindung keine Energieübertragung von dem Master-Modul zu dem mindestens einen Slave-Modul, so dass die Energieversorgung des Slave-Moduls dann durch einen Energiespeicher in dem Slave-Modul gewährleistet wird, wie noch detailliert beschrieben wird.

In diesem zweiten Betriebszustand (Downlink-Broadcast-Phase) erfolgt bei dem bevorzugten Ausführungsbeispiel der Erfindung die Datenübertragung nur in eine Richtung und zwar von dem Master-Modul zu dem Slave-Modul. Während dieses zweiten Betriebszustands erfolgt dagegen in der Regel keine Datenübertragung in der entgegengesetzten Richtung von dem Slave-Modul zu dem Master-Modul.

Darüber hinaus kann das erfindungsgemäße Übertragungssystem auch in einem dritten Betriebszustand betrieben werden, in dem eine Datenübertragung von dem Slave-Modul zu dem Master- Modul erfolgt, was auch als „Uplink-Phase" bezeichnet werden kann.

In diesem dritten Betriebszustand („Uplink-Phase") kann gleichzeitig auch eine Energieübertragung von dem Master-Modul zu dem mindestens einen Slave-Modul erfolgen. Beispielsweise kann die Datenübertragung von dem Slave-Modul zu dem Master-Modul durch eine sogenannte Lastmodulation des Stroms erfolgen, der von dem Slave-Modul über die Zweidrahtleitung von dem Master- Modul bezogen wird, wobei dieser Laststrom dann auch gleichzeitig die Stromversorgung des Slave- Moduls sicherstellen kann, wie noch detailliert beschrieben wird.

In diesem dritten Betriebszustand („Uplink-Phase") erfolgt dagegen bei dem bevorzugten Ausführungsbeispiel die Datenübertragung nur in einer Richtung, nämlich von dem Slave-Modul zu dem Master-Modul, nicht dagegen in der entgegengesetzten Richtung von dem Master-Modul zu dem Slave-Modul.

Es wurde bereits vorstehend kurz erwähnt, dass sich das erfindungsgemäße Übertragungssystem dadurch von dem eingangs beschriebenen bekannten Übertragungssystem unterscheidet, dass das erfindungsgemäße Übertragungssystem zwischen mehreren Betriebszuständen umschaltbar ist. Bei dem bevorzugten Ausführungsbeispiel der Erfindung kann das Übertragungssystem zwischen den drei verschiedenen Betriebszuständen umgeschaltet werden, die vorstehend beschrieben wurden und auch als Energieübertragungsphase, Downlink-Broadcast-Phase und Uplink-Phase bezeichnet werden können. Die Erfindung beansprucht jedoch auch Schutz für solche Übertragungssysteme, bei denen lediglich zwischen zwei Betriebszuständen umgeschaltet wird, beispielsweise zwischen der Energieübertragungsphase und der Downlink-Broadcast-Phase, zwischen der Energieübertragungsphase und der Uplink-Phase oder zwischen der Downlink-Broadcast-Phase und der Uplink-Phase.

Bei dem bevorzugten Ausführungsbeispiel der Erfindung ist die Energieübertragung von dem Master-Modul zu dem mindestens einen Slave-Modul in dem zweiten Betriebszustand während der Datenübertragung von dem Master-Modul zu dem Slave-Modul vorübergehend unterbrochen, wie vorstehend bereits kurz erwähnt wurde. Während dieser Unterbrechung der Energieübertragung benötigt das Slave-Modul deshalb eine eigene Energieversorgung, um den Betrieb des Slave-Moduls während der Unterbrechung der Energieversorgung durch das Master-Modul aufrecht zu erhalten. Hierzu kann das Slave-Modul einen eigenen Energiespeicher aufweisen, um das Slave-Modul während der Unterbrechung der Energieübertragung von dem Master-Modul in dem zweiten Betriebszustand mit der zum Betrieb erforderlichen Energie zu versorgen. Beispielsweise kann dieser Energiespeicher einen Kondensator aufweisen.

Hierbei ist es vorteilhaft, wenn das Slave-Modul einen Entladeschutz aufweist, um während der Unterbrechung der Energieübertragung von dem Master-Modul in dem zweiten Betriebszustand eine übermäßige Entladung des Energiespeichers zu verhindern. Beispielsweise kann dieser Entladeschutz eine Diode aufweisen, die in Reihe mit dem Energiespeicher (z.B. Kondensator) geschaltet ist.

Die Datenübertragung von dem Slave-Modul zu dem Master-Modul kann beispielsweise durch eine Lastmodulation erfolgen, wie es an sich aus dem Stand der Technik bekannt ist. So zieht das Slave- Modul über die Zweidrahtleitung einen Laststrom von dem Master-Modul, so dass die Modulation dieses Laststroms die Übertragung von Daten von dem Slave-Modul zu dem Master-Modul ermöglicht.

Zur Ermöglichung dieser Lastmodulation weist das Slave-Modul vorzugsweise einen Strommodulator auf, um den über die Zweidrahtleitung von dem Master-Modul bezogenen Laststrom entsprechend den zu übertragenden Daten zu modulieren. Das Master-Modul weist dann entsprechend einen Stromdemodulator auf, um den von dem Slave-Modul über die zwei Drahtleitung bezogenen Laststrom zu demodulieren und die darin enthaltenen Daten zu ermitteln.

Der Lastmodulator in dem Slave-Modul kann beispielsweise einen Stromimpulsgenerator aufweisen, der den über die Zweidrahtleitung bezogenen Laststrom impulsförmig moduliert, so dass der Laststrom entsprechend den zu übertragenden Daten Stromimpulse aufweist.

Bei der Lastmodulation in dem Slave-Modul besteht auch die Möglichkeit, dass das Slave-Modul mehrere Stromimpulsgeneratoren aufweist, die parallelgeschaltet sind, um unterschiedliche Stromimpulse des Laststroms erzeugen zu können. Beispielsweise können sich die verschiedenen Stromimpulse in ihrer Amplitude unterscheiden. Die einen Stromimpulse können dann zur Datenübertragung eingesetzt werden, während die anderen Stromimpulse beispielsweise ein Warnsignal oder ein Interrupt-Signal bilden können.

Der Stromimpulsgenerator in dem Slave-Modul kann beispielsweise ein steuerbares Schaltelement aufweisen, dass zwischen die beiden Leitungen der Zweidrahtleitung geschaltet ist, um den Laststrom zu modulieren, der über die Zweidrahtleitung von dem Master-Modul bezogen wird. Beispielsweise kann es sich bei dem Schaltelement um einen Transistor handeln, wie beispielsweise einen Bipolartransistor.

Darüber hinaus kann der Stromimpulsgenerator in dem Slave-Modul einen Strombegrenzer aufweisen, um den Laststrom zu begrenzen, wenn das Schaltelement (z.B. Transistor) durchschaltet. Beispielsweise kann der Strombegrenzer aus einem Kollektorwiderstand an dem Transistor bestehen, wodurch der Laststrom begrenzt wird.

Weiterhin umfasst der Stromimpulsgenerator in dem Slave-Modul vorzugsweise einen Mikroprozessor zur Ansteuerung des Schaltelements entsprechend den zu übertragenden Daten.

Der Stromdemodulator in dem Master-Modul weist bei einer impulsförmigen Datenübertragung vorzugsweise einen Stromimpulsdetektor auf, um die Stromimpulse des Laststroms zu detektieren.

Beispielsweise kann der Stromimpulsdetektor in dem Master-Modul ein Filter aufweisen, um die sich schnell ändernden Stromänderungen des Laststroms durchzulassen, die von den informations- haltigen Stromimpulsen verursacht werden, wohingegen die sich langsam ändernden Stromänderungen des Laststroms abgeschwächt werden. Dieses Filter ist vorzugsweise als Hoch- oder Bandpassfilter ausgebildet und gibt ausgangsseitig ein entsprechend gefiltertes Laststromsignal aus.

Darüber hinaus weist der Stromimpulsdetektor in dem Master-Modul vorzugsweise einen Verstärker auf, um das von dem Filter gefilterte Laststromsignal zu verstärken.

Weiterhin kann der Stromimpulsdetektor in dem Master-Modul einen Detektor aufweisen, um das Laststromsignal mit mindestens einem vorgegebenen Pegel zu vergleichen. Der Detektor ist vorzugsweise als digitaler Detektor ausgebildet und enthält vorzugsweise einen Komparator.

Ferner kann der Stromimpulsdetektor in dem Master-Modul einen Vorzustands-Speicher aufweisen, um einen Vorzustand des Laststroms zwischenzuspeichern, wobei der Komparator dann den aktuellen Zustand des Laststromsignals mit dem in dem Vorzustands-Speicher gespeicherten Vorzustand des Laststromsignals vergleicht.

Es wurde vorstehend bereits erwähnt, dass das erfindungsgemäße Übertragungssystem auch eine Datenübertragung von dem Master-Modul zu dem Slave-Modul ermöglicht. Hierzu enthält das Master-Modul vorzugsweise einen steuerbaren Schalter (z.B. Transistor) zum Schalten der Energieübertragung von dem Master-Modul zu dem mindestens einen Slave-Modul während der Datenübertragung von dem Master-Modul zu dem mindestens einen Slave-Modul. Der Schalter kann also die dem Slave-Modul bereitgestellte Versorgungsspannung modulieren, beispielsweise durch ein getaktetes Abschalten, was eine Impulsübertragung von dem Master-Modul zu dem Slave-Modul ermöglicht. Hierbei ist es jedoch nicht erforderlich, dass die Energieübertragung vollständig abgeschaltet wird. Vielmehr besteht auch die Möglichkeit, dass die Energieübertragung von dem Master-Modul zu dem Slave-Modul während der Datenübertragung nur abgeschwächt wird.

Die Datenübertragung von dem Master-Modul zu dem Slave-Modul kann jedoch auch durch eine separate Ausgangsschaltung erfolgen, die Spannungsimpulse auf der Zweidrahtleitung entsprechend den zu übertragenden Daten erzeugt.

Darüber hinaus enthält auch das Master-Modul vorzugsweise einen Mikroprozessor zur Bereitstellung der an das Slave-Modul zu übertragenden Daten und zur Ansteuerung des Transistors bzw. der Ausgangsschaltung entsprechend den an das Slave-Modul zu übertragenden Daten Zum Empfang der Daten von dem Master-Modul weist das Slave-Modul vorzugsweise einen Spannungsdetektor auf, um die von dem Master-Modul über die Zweidrahtleitung übertragenen Spannungsimpulse zu detektieren. Beispielsweise kann dieser Spannungsdetektor einen Transistor aufweisen, wie beispielsweise einen Bipolartransistor mit einem vorgeschalteten Basiswiderstand und einem Emitterwiderstand.

Allgemein ist zu erwähnen, dass bei dem erfindungsgemäßen Übertragungssystem das Master-Modul und das mindestens eine Slave-Modul ein gemeinsames elektrisches Bezugspotenzial haben können.

Ein weiterer Vorteil des erfindungsgemäßen Übertragungssystems besteht darin, dass das Übertragungssystem als Bus-System ausgebildet sein kann, so dass über die Zweidrahtleitung mehrere parallelgeschaltete Slave-Module mit dem Master-Modul verbunden werden können. Dadurch unterscheidet sich das erfindungsgemäße Übertragungssystem auch von dem eingangs beschriebenen bekannten Übertragungssystem, bei dem nur ein einziges Slave-Modul mit dem Master-Modul verbunden werden kann. Die Erfindung ist also hinsichtlich der Anzahl der mit dem Master-Modul verbundenen Slave-Module nicht auf eine bestimmte Anzahl von Slave-Modulen beschränkt.

Vorstehend wurde das erfindungsgemäße Übertragungssystem beschrieben, das sowohl das Master-Modul als auch das Slave-Modul und auch die zwei Drahtleitung zur Verbindung des Master- Moduls mit dem Slave-Modul umfasst. Die Erfindung beansprucht jedoch auch einen eigenständigen Schutz für ein entsprechend ausgebildetes Master-Modul und für ein entsprechend ausgebildetes Slave-Modul. Der Schutzbereich der Erfindung ist also nicht auf das komplette Übertragungssystem einschließlich Master-Modul, Slave-Modul und Zweidrahtleitung beschränkt, sondern umfasst auch deren Einzelkomponenten (Master-Modul und Slave-Modul).

Schließlich umfasst die Erfindung auch ein entsprechendes Übertragungsverfahren, wobei sich die Einzelheiten des erfindungsgemäßen Übertragungsverfahrens bereits aus der vorstehenden Beschreibung des erfindungsgemäßen Übertragungssystems ergeben, so dass auf eine separate Beschreibung des erfindungsgemäßen Übertragungsverfahrens verzichtet werden kann.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Figur 1 zeigt ein eingangs beschriebenes herkömmliches Übertragungssystem.

Figur 2 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Übertragungssystems.

Figur 3 zeigt den zeitlichen Verlauf von Spannungen und Strömen bei dem Ausführungsbeispiel gemäß Figur 2.

Figur 4 zeigt eine schematische Darstellung eines Stromimpulsdetektors in dem Master-Modul.

Figur 5 zeigt die angedeuteten Signalverläufe bei dem Stromimpulsdetektor gemäß Figur 4.

Figur 6 zeigt eine schematische Darstellung des erfindungsgemäßen Übertragungssystems.

Figur 7 zeigt ein abgewandeltes Ausführungsbeispiel.

Figur 8 zeigt ein Zeitdiagramm mit den Spannungsverläufen bei dem Ausführungsbeispiel gemäß Figur 7.

Figur 9 zeigt ein weiteres abgewandeltes Ausführungsbeispiel.

Im Folgenden wird nun das in Figur 2 dargestellte Ausführungsbeispiel eines erfindungsgemäßen Übertragungssystems beschrieben, das ein Master-Modul 8, eine Zweidrahtleitung 9 und mehrere Slave-Module 10-12 umfasst, wobei nur das Slave-Modul 10 detailliert dargestellt ist, während die anderen Slave-Module 11, 12 nur schematisch angedeutet sind.

Das Master-Modul 8 wird über zwei Eingangsanschlüsse 13, 14 („Master Eingang +" und „Master Eingang -") mit einer Versorgungsspannung Uo versorgt. Eine Masse kann intern an den Eingangsanschluss 14 („Master Eingang -") angeschlossen werden.

Über einen Spannungsregler 15 kann das Master-Modul 8 eine interne Spannung U02 erzeugen.

Die Slave-Module 10-12 weisen jeweils zwei Eingangsanschlüsse 16, 17 („Slave +" und „Slave -") auf, die jeweils über eine Versorgungsleitung 18, 19 der Zweidrahtleitung 9 mit zwei Ausgangsanschlüssen 20, 21 des Master-Moduls 8 verbunden sind. Die anderen Slave-Module 11, 12 sind parallelgeschaltet. Die Kernfunktion der Erfindung ist nun, dass über die aus den beiden Versorgungsleitungen 18, 19 bestehende Zweidrahtleitung 9 sowohl eine Energieversorgung von dem Master-Modul 8 zu den Slave-Modulen 10-12 als auch eine bidirektionale digitale Datenübertragung zwischen dem Master- Modul 8 und den Slave-Modulen 10-12 stattfinden kann, was wie folgt gelöst wird.

Der zeitliche Betrieb des Übertragungssystems über die aus den beiden Versorgungsleitungen 18, 19 bestehende Zweidrahtleitung 9 kann in drei Phasen (Betriebszustände) unterteilt werden:

• Phase A: Energieübertragungsphase, d.h. Energieübertragung von dem Master-Modul 8 zu den Slave-Modulen 10-12.

• Phase B: Eine Master-zu-Slave-Kommunikationsphase (Downlink-Broadcast-Phase), d.h. eine Datenübertragung von dem Master-Modul 8 zu mindestens einem der Slave-Module 10-12.

• Phase C: Eine Slave-zu-Master-Kommunikationsphase (Uplink-Phase), d.h. eine Datenübertragung von einem der Slave-Module 10-12 zu dem Master-Modul 8.

Das Master-Modul 8 beinhaltet einen Mikroprozessor 22, der einen Schalter 23 ansteuern kann, beispielsweise einen Bipolartransistor, mit dem die Versorgungsspannung Uo oder eine intern generierte Spannung (z.B. U02) an den Ausgangsanschluss 20 weitergeleitet werden kann.

In der Phase A und in der Phase C ist der Schalter 23 angesteuert, d.h. geschlossen. In der Phase A findet keine Datenübertragung statt. Die Slave-Module 10-12 beinhalten einen Energiespeicher 24 (z.B. Kondensator), der in der Phase A geladen und zu Beginn der Phase C nachgeladen werden kann. Ein Spannungsregler 25, der in den Slave-Modulen 10-12 enthalten ist, kann die zeitveränderliche Spannung UH des Energiespeichers 24 in eine stabilisierte Spannung U12 umwandeln, welche dem Mikroprozessor 27 und weiterer in den Slave-Modulen 10-12 enthaltener Elektronik 27' bereitgestellt wird.

In der Phase B wird der Schalter 23 in dem Master-Modul 8 für einen bestimmten Zeitraum geöffnet. Der Mikroprozessor 22 kann nun über den ansteuerbaren Schalter 23 und/oder direkt von einem Ausgangschaltkreis des Mikroprozessors über eine Ausgangsschaltung 26 Spannungsimpulse an den Ausgangsanschluss 20 des Master-Moduls 8 senden. Die Spannung UH der Energiespeicher 24 in den Slave-Modulen 10-12 sinkt abhängig von der Stromaufnahme der Slave-Module 10-12 und der daraus resultierenden Entladung des Energiespeichers 24 in dieser Phase mit zunehmender Zeit ab. Zwischen dem Ausgang des Mikroprozessors 22 und dem Ausgangsanschluss 20 des Master-Moduls 8 wird die Ausgangsschaltung 26 vorgesehen, um über diesen Pfad Daten übertragen zu können.

Die Slave-Module 10-12 enthalten einen Mikroprozessor 27, der mit einem Spannungsdetektor 28 verbunden ist. Der Spannungsdetektor 28 hat die Aufgabe, die von dem Master-Modul 8 ausgesendeten Spannungsimpulse zu erkennen, wenn diese einen Schwellwert über- bzw. unterschreiten, und deren Pegel auf eine von dem Mikroprozessor 27 verarbeitbaren Wert anzupassen. Der Spannungsdetektor 28 kann beispielsweise aus einem Spannungsteiler oder einem NPN-Bipolartransis- tor mit vorgeschaltetem Basiswiderstand und Emitter-Widerstand, der mit einer internen Versorgungsspannung Ui2 verbunden ist, bestehen. Um ein schnelles Entladen des in dem Slave-Modul 8 enthaltenen Energiespeichers 24 in dieser Phase B zu verhindern, kann ein Entladeschutz 29, beispielsweise in Form einer Diode, vorgesehen werden.

In Phase C, der Slave-zu-Master-Kommunikationsphase, ist der in dem Master-Modul 8 enthaltene steuerbare Schalter 23 geschlossen, so dass von dem Master-Modul 8 Energie für die Slave-Module 10-12 bereitgestellt werden kann. Die in einer möglicherweise vorangegangenen Master-zu-Slave- Kommunikationsphase teilweise entladenen Energiespeicher 24 der Slave-Module 10-12 werden zu Beginn der Phase C nachgeladen.

Während oder im Anschluss an diese Nachladephase können die Slave-Module 10-12 ihre Stromaufnahme über einen Stromimpulsgenerator 30 verändern. Der Stromimpulsgenerator 30 kann aus einem Bipolartransistor mit Basiswiderstand bestehen, der von dem in den Slave-Modulen 10-12 enthaltenen Mikroprozessor 27 angesteuert werden kann. Durch einen Strombegrenzer 31 (im einfachsten Fall ein Kollektorwiderstand), welche von dem Transistor des Stromimpulsgenerators 30 an- und ausgeschaltet wird, kann die Amplitude des Stroms beeinflusst werden, der von dem Master-Modul 8 zu den Slave-Modulen 10-12 fließt.

Darüber hinaus kann ein weiterer Stromimpulsgenerator 32 parallelgeschaltet werden, um verschiedene Stromimpulspegel zu erzeugen. Auch der Stromimpulsgenerator 32 kann einen möglicherweise anderen Strombegrenzer 33 aufweisen.

Das Master-Modul 8 enthält einen Stromdetektor, z.B. in Form eines Strommesswiderstandes 34 und eines Impulsdetektors 35, um die von den Slave-Modulen 10-12 erzeugten Stromimpulse in dem Laststrom in ein Signal umzuwandeln, das von dem in dem Master-Modul 8 enthaltenen Mikroprozessor 22 ausgewertet werden kann. Der Stromdetektor misst den Summenstrom aus normaler Energieversorgung und den Stromimpulsen für die Kommunikation, der von dem Impulsdetektor 35 entsprechend zu trennen und aufzubereiten ist. Das Verfahren ist in der Literatur auch als Lastmodulation bekannt, da die Strombelastung von den Slave-Modulen 10-12 verändert wird, was wiederum in dem Master-Modul 8 detektiert werden kann.

Damit das Master-Modul 8 die Kommunikation der Slave-Module 10-12 eindeutig zuordnen kann, kann auf ein geeignetes Antikollisionsverfahren zurückgegriffen werden.

In Figur 3 ist der schematische zeitliche Verlauf verschiedener Spannungen und Ströme exemplarisch dargestellt, die an verschiedenen Positionen des Übertragungssystems zur Energie- und Datenübertragung über die aus den Versorgungsleitungen 18, 19 bestehende Zweidrahtleitung 9 auftreten können. Allen zeitlichen Verläufen liegt die gleiche Zeitbasis zugrunde.

Im Zeitraum zwischen to und ti findet eine Energieübertragungsphase (Phase A), im Zeitraum ti bis t 4 eine Master-zu-Slave-Kommunikationsphase (Phase B) und im Zeitraum t 4 bis tg eine Slave-zu- Master-Kommunikation (Phase C) statt. Daran anschließend erfolgt ab dem Zeitpunkt tg eine neue Energieübertragungsphase (Phase A).

Das Signal Uoc stellt den zeitlichen Verlauf der Spannung zwischen den Eingangsanschlüssen 16, 17 des Slave-Moduls 10 (Slave+ und Slave-) dar und entspricht zwischen den Zeitpunkten to und ti der Eingangsspannung Uo abzüglich eines möglichen Spannungsabfalls über dem steuerbaren Schalter 23 in dem Master-Modul 8 sowie einem Spannungsabfall über den Versorgungsleitungen 18, 19 und der Verdrahtung. Alternativ dazu kann die anliegende Spannung auch über einen internen Spannungsregler auf einen anderen Wert eingestellt sein.

Zum Zeitpunkt ti wird der steuerbare Schalter 23 in dem Master-Modul 8 geöffnet und die Spannung sinkt auf einen niedrigen Wert, z.B. 0V ab.

Zwischen den Zeitpunkten t 2 bis tg werden Spannungsimpulse erzeugt, die entweder direkt von dem Mikroprozessor 22 des Master-Moduls 8 mittels der Ausgangsschaltung 26 erzeugt werden können oder mit Hilfe des steuerbaren Schalters 23 erzeugt werden. Da während dieser Zeitspanne keine (bzw. keine große) Kapazität direkt am Signalpfad angeschlossen ist, bleiben die steilen Flanken der Spannungspulse erhalten. Der Spannungspegel der Spannungsimpulse zwischen t 2 und t 3 kann dabei optional einen anderen Wert als in dem Zeitraum zwischen to und ti aufweisen. Die Spannungsimpulse können Informationen enthalten, die von dem Master-Modul 8 an alle angeschlossenen Slave-Module 10-12 übermittelt werden. Ein Beispiel einer solchen Information kann ein Anforderungsbefehlspaket für ein Datenpaket eines der Slave-Module 10-12 sein. Ein Datenpaket kann dabei aus verschiedenen Teilen bestehen, wie einer Zieladresse, den zu übertragenen Daten und einem CRC-Fehlererkennungsteil (CRC: Cyclic Redundancy Check).

Zum Zeitpunkt t 4 wird der steuerbare Schalter 23 wieder geschlossen, so dass der Pegel dem Wert im Zeitraum zwischen to und ti entspricht.

Eine andere Option ist, dass die Spannung Uoc zwischen ti und t 4 zwischenzeitlich nicht komplett auf 0V abgesenkt wird, sondern z.B. nur leicht reduziert wird, z.B. von 10V auf 5V oder von 24V auf 22V. Das kann den Vorteil haben, dass eine kontinuierliche Energieübertragung ermöglicht wird und die Zeitspanne zwischen t 2 und t 3 , in der eine Datenübertragung möglich ist, verlängert werden kann.

Die Spannung UH an dem Energiespeicher 24 des Slave-Moduls 10 steigt zunächst abhängig von dem Ladezustand des Energiespeichers 24 ab dem Zeitpunkt to an, bis diese schließlich einen mehr oder weniger konstanten Wert annimmt. Da zum Zeitpunkt ti der steuerbare Schalter 23 geöffnet wird, sinkt die Spannung des Energiespeichers 24 abhängig von der Stromaufnahme des Slave-Moduls 10 ab.

Zum Zeitpunkt t 4 wird der steuerbare Schalter 23 in dem Master-Modul 8 geschlossen und der Energiespeicher 24 wird nachgeladen. Bei einem konstanten Ladestrom, der z.B. durch eine dem Energiespeicher 24 vorgeschaltete Strombegrenzerschaltung 40 realisiert werden kann, steigt die Spannung an dem Energiespeicher 24 linear an. Die Strombegrenzerschaltung 40 bietet den Vorteil, dass der Ladestrom zum Zeitpunkt t 4 begrenzt wird, wodurch die Belastung des steuerbaren Schalters 23 des Master-Moduls 8, durch den der Summenstrom aller angeschlossenen Slave-Module 10-12 fließt, begrenzt wird. Die Spannung an dem Energiespeicher 24 erreicht zum Zeitpunkt t5 einen maximalen Wert und bleibt ab diesem Zeitpunkt mehr oder weniger konstant.

Der mit dem Signal Usdin gekennzeichnete Spannungsverlauf entspricht der dem Mikroprozessor 27 in dem Slave-Modul 8 bereitgestellten Spannungsimpulsdetektorsignal. Das Signal kann durch eine optionale Inverter- und Pegelbegrenzerschaltung in dem Spannungsdetektor 28 beispielsweise eine invertierte und pegelangepasste Version des Spannungssignals Uoc sein.

Pegelwechsel auf diesem Signal laufen typischerweise synchron mit Pegelwechseln der Spannung Uoc- Dabei ist der Schwellwert für den Pegelwechsel so gering zu wählen, dass auch während Phasen kleinerer Amplituden der Spannung Uoc die Wechsel korrekt erkannt werden können. Dieses Signal kann dem Mikroprozessor 27 zugeführt und dort ausgewertet werden, so dass die gesendeten Informationen vom Master-Modul 8 erkannt und entsprechend darauf reagiert werden kann.

Der zeitliche Verlauf des durch den Stromdetektor bzw. durch den Strommesswiderstand 34 fließenden Stromes ist mit dem Signal loc gekennzeichnet. Zum Zeitpunkt to ist der Strom abhängig von dem Ladezustand der Energiespeicher 24 der angeschlossenen Slave-Module 10-12 typischerweise hoch. Durch die optionale Ladestrombegrenzung wird der Strom begrenzt. Erreichen die Spannungen der Energiespeicher 24 der angeschlossenen Slave-Module 10-12 ein bestimmtes Niveau, unterschreitet der Strom den Begrenzungsstrom und der Strom nimmt zeitlich ab, bis er einen konstanten Wert erreicht und alle Energiespeicher geladen sind. Der sich dann typischerweise einstellende mehr oder weniger konstante Wert ist durch den Strombedarf der angeschlossenen Slave- Module 10-12 gegeben, der in diesem Beispiel zugunsten einer übersichtlichen Darstellung als konstant angenommen wird.

Zwischen den Zeitpunkten ti und t 4 ist der steuerbare Schalter 23 geöffnet und der erforderliche Betriebsstrom der Slave-Module 10-12 wird aus den jeweiligen Energiespeichern 24 bereitgestellt, so dass durch den Strommesswiderstand 34 kein Strom fließt.

Zum Zeitpunkt t 4 wird der steuerbare Schalter 23 geschlossen und die in den angeschlossenen Slave-Modulen 10-12 enthaltenen Energiespeicher 24 werden nachgeladen. Der Ladestrom kann wie zuvor beschrieben begrenzt werden und nimmt ab, wenn ein bestimmtes Spannungsniveau der Energiespeicher 24 erreicht wird.

Zum Zeitpunkt t5 sind die Energiespeicher 24 vollständig geladen und es fließt ein mehr oder weniger konstanter Strom durch den Strommesswiderstand 34, der durch den als konstant angenommenen Betriebsstrom der Slave-Module 10-12 gegeben ist.

Zwischen den Zeitpunkten t 6 bis t 7 werden Stromimpulse durch den Stromimpulsgenerator 30 eines der Slave-Module 10-12 erzeugt. Die Stromimpulse erhöhen kurzzeitig und steilflankig den Strom in dem Strommesswiderstand 34 gegenüber einem Grundwert, der durch den mehr oder weniger konstanten Betriebsstrom der Slave-Module 10-12 gegeben ist. Die Höhe des Stromwertes während der aktiven Stromimpulse kann durch den Strombegrenzer 31 eingestellt werden. Hierbei wird in der Regel ein guter Kompromiss zwischen einem ausreichenden Signalpegel auf der einen und einer Minimierung der Verlustleistung auf der anderen Seite gewählt.

Durch eine geeignete Pufferung der Versorgungsspannung der Slave-Module 10-12 und den Strombegrenzer 40 kann die zeitliche Änderung des Betriebsstroms der Slave-Module 10-12 nur langsam erfolgen, während die Stromimpulse eine zeitlich schnelle Änderung des Stroms in dem Strommesswiderstand 34 hervorrufen kann. Somit können die Stromimpulse auch bereits während des Nachladens der Puffer-Kapazität übertragen werden, da die schnelle Stromänderung, die mit den Impulsen einhergeht, leicht von den schwachen bzw. langsamen Stromänderungen oder dem Konstantstrom, die/der durch das Nachladen der Energiespeicher 24 entstehen, zu trennen ist. Eine nach dem Ein- bzw. Ausschalten der Energieversorgung abrupte Stromänderung bis auf das Niveau der Strombegrenzung ist zeitlich definiert begrenzt und muss von dem Master-Modul 8 ignoriert werden. Die Stromimpulse können binäre Informationen enthalten, die von dem Mikroprozessor 27 in dem Slave-Modul 10 an das Master-Modul 8 übermittelt werden können. Ein Beispiel kann eine Antwort auf einen Anfragebefehl des Master-Moduls 8 sein. Ein erfindungsgemäßer Vorteil ist, dass auch während der Phase C eine Energieübertragung von dem Master-Modul 8 zu den Slave-Modulen 10-12 möglich ist. Insofern können über einen längeren Zeitraum Informationen von den Slave- Modulen 10-12 zu dem Master-Modul 8 übertragen werden. Dies ist insbesondere dann von Vorteil, wenn viele Informationen von den Slave-Modulen 10-12 zu dem Master-Modul 8 übertragen werden müssen und nur relativ wenige Informationen von dem Master-Modul 8 zu den Slave-Modulen 10-12 übertragen werden sollen.

In dem Zeitraum zwischen den Zeitpunkten t 7 und tg werden keine Stromimpulse erzeugt. Zwischen den Zeitpunkten tg und tg werden Stromimpulse mit höherer Amplitude und kürzerer Intervallbreite als im Zeitraum tg bis t 7 erzeugt, die durch den zweiten Stromimpulsgenerator 32 erzeugt werden können. Durch die höhere Amplitude des Stroms, die in einer beispielhaften Ausführungsform höher ist (der Strombegrenzer 33 ist anders gewählt als der Strombegrenzer 31), als die Stromaufnahme zu Beginn des Nachladens der Energiespeicher 24 zum Zeitpunkt to und t 4 , können andere Informationen, z.B. zeitkritische Informationen wie ein Fehlerindikator, störungssicherer übertragen werden, als dies bei der Übertragung der Daten im Zeitintervall zwischen tg bis t 7 der Fall ist. Durch das Verwenden einer Intervallbreite, die sich von der in dem Zeitintervall tg bis t 7 unterscheidet, kann zudem die Fehlerinformation schnell und effizient erkannt werden, ohne beispielsweise Datenpakete zu rekonstruieren oder eine Fehlererkennung durchzuführen. Beispielsweise können hier nur ein oder wenige Impulse übertragen werden, die die Notwendigkeit eines sofortigen Handelns signalisieren.

Der von dem Impulsdetektor 35 erzeugte und dem Mikroprozessor 22 in dem Master-Modul 8 bereitgestellte Spannungsverlauf wird in der Figur 2 mit U M din beschrieben. Der Spannungsverlauf weist binäre Pegel auf, einen hohen Pegel, der idealerweise der Versorgungsspannung des Mikroprozessors 22 in dem Master-Modul 8 entspricht und einen niedrigen Pegel, der idealerweise 0V entspricht.

Zwischen den Zeitpunkten to und ti hängt der Spannungspegel von dem Ladezustand der Energiespeicher 24 und damit der Stromänderung des Stroms im Messwiderstand dloc/dt ab. Das genaue Verfahren wird in den Figuren 3und 4 beschrieben. Im gezeigten Beispiel ist die Stromänderung zum Zeitpunkt to stark positiv und führt zu einem hohen Pegel des Impulsdetektors 35, ist dann konstant und wird dann negativ, was zu einem niedrigen Pegel des Impulsdetektors 35 führt.

Zum Zeitpunkt t 4 ist die Stromänderung hoch, ist dann konstant und daraufhin negativ, was ebenfalls zu einem Signal mit wechselndem Pegel führt. Beide Pegelwechsel von U M din sind für die Daten- bzw. Informationsübertragung nicht relevant und können bzw. müssen vom Mikroprozessor ignoriert werden.

Im Zeitraum tg bis t 7 wird die Stromänderung, hervorgerufen durch die Stromimpulsgeneratoren 30, 32 der Slave-Module 10-12 in entsprechende Signalpegel umgewandelt. In dem Zeitraum zwischen den Zeitpunkten t8 und t9 werden die Stromimpulse erzeugt von dem zweiten Stromimpulsgeneratoren der Slave-Module 10-12 mit anderer Flankenbreite in Signalpegel umgewandelt. Die unterschiedliche Stromimpulsamplitude wird dabei in diesem Ausführungsbeispiel nicht unterschieden. Für die Kommunikation von dem Slave-Modul 8 zu dem Master-Modul 8 enthalten nur die Zeiträume tg bis t 7 und tg bis tg Informationen. Pegelwechsel der Spannung U M din in anderen Zeitabschnitten enthalten keine für die Kommunikation zwischen dem Master-Modul 8 und Slave- Modulen 10-12 relevanten Informationen. Der Zeitpunkt, zu dem der ansteuerbare Schalter 23 geschlossen und geöffnet wird, ist dem Mikroprozessor 22 in dem Master-Modul 8 bekannt. Das Schließen und Öffnen des steuerbaren Schalters 23 hat jedes Mal eine hohe Stromänderung dloc/dt zur Folge, hervorgerufen durch das Nachladen der Energiespeicher 24 in den Slave-Modulen 10-12, die sich in Pegeländerungen auf der Spannung U M din bemerkbar macht. Die Dauer des entstandenen Pegels ist von dem Master-Modul 8 und den Slave-Modulen 10-12 abzuschätzen und darf nicht für die Kommunikation berücksichtigt werden.

Figur 4 enthält eine schematische Darstellung eines Impulsdetektors 35 und Figur 5 angedeutete Signalverläufe hierzu.

Der Strom loc (Block 41) entspricht dem Strom, der in dem Master-Modul 8 durch den Strommesswiderstand 34 fließt.

Die Spannung U Rm (Block 42), die differenziell über dem Strommesswiderstand 34 abfällt, ist direkt zum Strom proportional.

Durch eine Hoch- oder Bandpassfilterung und Verstärkung der Spannung U Rm (Block 43) wird der langsam veränderliche Teil der Spannungsänderung, die durch die zeitveränderliche Stromaufnahme der Slave-Module 10-12 hervorgerufen werden kann, stärker gedämpft als zeitlich schnelle Änderungen. Eine zeitlich schnelle Erhöhung des Stroms durch den Strommesswiderstand 34, wie sie durch das Einschalten eines geeigneten Stromimpulsgenerators in einem an das Master-Modul 8 angeschlossenen Slave-Modul 10 hervorgerufen werden kann, führt dabei zu einem positiven Spannungsimpuls der Spannung U F .

Überschreitet die Spannung U F einen positiven Schwellwert (Block 44), kann einer Spannung U D ein hoher Pegel zugewiesen werden. Eine zeitlich schnelle Reduzierung des Stroms, der durch den Strommesswiderstand 34 fließt, die durch das Abschalten eines Stromimpulsgenerators 30, 32 in einem an das Master-Modul 8 angeschlossenen Slave-Modul 10 erfolgen kann, führt zu einem negativen Spannungsimpuls der Spannung U F . Unterschreitet die Spannung U F einen negativen Schwellwert, kann einer Spannung U D ein niedriger Pegel zugewiesen werden. Da in einer Realisierung der Schaltung die Stromimpulsgeneratoren 30, 32 eine Stromänderung mit endlicher Geschwindigkeit erzeugen können, der zeitliche Verlauf der Stromaufnahme der Slave-Module 10-12 nicht konstant ist und die Filterung nur eine begrenzte Dämpfung aufweist, kann nur ein endlicher Spannungshub der Spannung U F erzeugt werden. Ist der Spannungshub nicht ausreichend, so dass die Spannung U F einen Schwellwert auch zu Zeitpunkten erreicht, an denen einer der Stromimpulsgenerator 30, 32 nicht an- bzw. abgeschaltet wird, kann es vorteilhaft sein, eine Flankendetektion des zeitlichen Verlaufs der Spannung U F durchzuführen. Hierzu kann beispielsweise der aktuelle Wert der Spannung U F mit einem vergangenen Wert vergleichen werden und eine Flanke dann erkannt werden, wenn ein Schwellwert der Differenz beider Spannungen überschritten wird. Der in der Figur 5 mit t 4 gekennzeichnete Zeitpunkt entspricht der Zeit, zu der der steuerbare Schalter 23 in dem Master-Modul 8 geschlossen wird. Der Strom steigt zum Zeitpunkt t 4 stark an, da die in den an das Master-Modul 8 angeschlossenen Slave-Module 10-12 enthaltenen Energiespeicher 24 nachgeladen werden. Durch den in den Slave-Modulen 10-12 enthaltenen Strombegrenzer 40 kann der Strom auf einen maximalen, von der Anzahl an angeschlossenen Slave-Modulen 10-12 abhängigen Wert beschränkt werden. Der schnelle Stromanstieg zum Zeitpunkt t 4 führt zu einem Spannungsimpuls der Spannung U F . Die Spannung U M din nimmt einen hohen Pegel an. Zum Zeitpunkt t 5 ist der Ladevorgang abgeschlossen und der Strom verringert sich zeitlich schnell. Dies kann als negativer Spannungsimpuls der Spannung U F entnommen werden und führt zu einem niedrigen Spannungspegel der Spannung U M din-

Zwischen den Zeitpunkten tg bis t 7 werden Stromimpuls von einem der Stromimpulsgeneratoren 30, 32 in einem der angeschlossenen Slave-Module 10, 12 erzeugt. Zwischen den Zeitpunkten tg und tg werden Spannungsimpulse durch den zweiten in einem angeschlossenen Slave-Modul 10-12 enthaltenen Stromimpulsgenerator 32 erzeugt. Die Stromimpulse können sich dabei in Amplitude und/oder Frequenz unterscheiden.

Figur 6 beschreibt eine mögliche Realisierung der Kommunikation von den Slave-Modulen 10-12 zu dem Master-Modul 8. Insbesondere liegt hier der Fokus auf dem Aufbau des Impulsdetektors 35, der hier in detaillierterer Form als Blockschaltbild aufgezeichnet ist. Außerdem sind nochmals die für die Kommunikation per Lastmodulation erforderlichen Bestandteile aus dem Slave-Modul 8 dargestellt.

Ein sich durch die veränderbare Stromsenke abrupt ändernder Strom I wird zusammen mit dem kontinuierlich zu dem Slave-Modul 8 fließenden Versorgungsstrom k als Summenstrom loc über den Strommesswiderstand 34 in dem Master-Modul 8 gemessen und dabei in eine Spannung U Rm umgewandelt. Über geeignete Filter- und Verstärker-Elemente 36 können die sich schnell ändernden Stromänderungen von den langsamen herausgefiltert werden. Es entsteht das Spannungssignal U F . Anschließend werden die gefilterten Impulse über einen Komparator 37 auf eine für einen Empfänger 38 verarbeitbare Form gebracht, wobei das Signal U M din entsteht. Ein optionaler Vorzustands- Speicher 39 kann dabei helfen, zuverlässigere Pegel aus dem gefilterten Signal U F zu extrahieren. In Figur 7 ist der grundsätzliche Aufbau der Datenübertragungsstrecke gemäß einem weiteren Ausführungsbeispiel zu sehen. Teilweise stimmt dieses Ausführungsbeispiel mit den vorstehend beschriebenen Ausführungsbeispielen überein, so dass zur Vermeidung von Wiederholungen auch auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden.

Die Datenübertragungsstrecke besteht aus einem Master-Modul 8, welches über eine Zweidrahtleitung 9 (Versorgungsleitung) mit einem Slave-Modul 10 verbunden ist. Das Master-Modul 8 kann über die Zweidrahtleitung 9 das Slave-Modul 10 mit Energie versorgen und mit diesem kommunizieren.

In der Versorgungsphase steht ein Umschalter 47 auf Stellung (a) und ein Schalter 46 ist geschlossen.

Während einer Datensendung von dem Master-Modul 8 zu dem Slave-Modul 10 bleibt der Umschalter 47 auf Stellung (a) und der Schalter 46 wird im Takt der Daten ein- und ausgeschaltet. Dies hat eine Potentialänderung auf der Zweidrahtleitung 9 zur Folge, die sich ebenfalls im Takt der Daten einstellt und mit dem Spannungsdetektor 28 in dem Slave-Modul 10 ausgewertet werden kann.

Wenn das Master-Modul 8 eine Antwort erwartet, wird der Umschalter 47 auf Stellung (b) gebracht, so dass eine Strombegrenzung 45 den Strom, welcher durch das Slave-Modul 10 bezogen wird, begrenzt. Durch den Stromimpulsgenerator 30 kann das Slave-Modul 10 eine Potentialänderung auf der Zweidrahtleitung 9 erzeugen, wenn der zusätzlich durch den Stromimpulsgenerator 30 bezogene Strom über dem Begrenzungsstrom durch die Strombegrenzung 45 liegt. Mit anderen Worten wird durch das Zuschalten des Stromimpulsgenerators 30 mehr Strom von dem Master- Modul 8 gefordert als durch die Strombegrenzung 45 bereitgestellt werden kann. Das hat einen Spannungsabfall bzw. Potentialänderung an der Zweidrahtleitung 9 zur Folge. Durch einen Spannungsdetektor 49 in dem Master-Modul 8 kann diese Potentialänderung in dem Master-Modul 8 ausgewertet werden. Durch zyklisches Schalten des Stromimpulsgenerators 30 können somit Daten von dem Slave-Modul 10 zu dem Master-Modul 8 gesendet werden.

Während einer Datensendung von dem Slave-Modul 10 zu dem Master-Modul 8 kann das Slave-

Modul 10 die Zweidrahtleitung 9 intern mit einem Schalter 48 trennen, um durch ungewollte Ein- flösse der nachfolgenden Schaltungsteile (z.B. Energieversorgung) keinen Einfluss auf die Kommunikation zu haben. Diese Phase muss das Slave-Modul 10 durch z.B. einen Energiespeicher überbrücken können, um den eigenen Energiebedarf zu gewährleisten.

Figur 8 beschreibt die Spannungssignale an den Potentialen Uoc (Signal zwischen dem Master-Modul 8 und dem Slave-Modul 10 an der Zweidrahtleitung 9) und Uu (Spannung am Energiespeicher eines Slaves) während einer Kommunikationssequenz zwischen beiden Geräten. Dabei wird ein abgewandeltes Verfahren zu dem bisher beschriebenen Ablauf verwendet:

In Phase 1 („Versorgung") wird das Slave-Modul 10 durch das Master-Modul 8 über das Potential Uoc mit Energie versorgt, die auch im Energiespeicher mit dem Potential Uu gespeichert wird.

Es folgt Phase 2 („Master -> Slave"), in der das Master-Modul 8 Daten über Uoc an das Slave-Modul 10 sendet. Die Besonderheit ist hieran, dass während der Übertragung einer definierten Menge an Daten die Spannung am Energiespeicher signifikant abgefallen ist, so dass nicht der gesamte Dateninhalt übertragen werden kann, ohne dass ein sich das Slave-Modul 10 zwischenzeitlich ausschalten würde, da die Versorgungsspannung irgendwann zum Betrieb des Gerätes nicht mehr ausreichend sein würde. Abhilfe schaffen Übertragungspausen zwischen zwei der oben erwähnten definierten Menge an übertragenen Daten, in denen eine kurze Versorgungsphase der Länge Ati eingeschoben wird, in denen sich der Energiespeicher wieder aufladen kann. So wäre hier theoretisch eine Übertragung von beliebig vielen Daten von dem Master-Modul 8 zu dem Slave-Modul 10 möglich.

Die Rückkommunikation von dem Slave-Modul 10 zu dem Master-Modul 8 läuft wie bereits in Figur

7 beschrieben anders ab, als in den bisherigen Ausführungen beschrieben. Wenn das Master-Modul

8 Daten vom Slave-Modul 10 nach der Zeitdauer Atz erwartet, schaltet dieses eine Strombegrenzung für das Potential Uoc hinzu (Umschalter 47). Somit kann das Slave-Modul 10 nicht mehr beliebig viel Strom beziehen, ohne dass die Spannung Uoc einbricht. Dieses Prinzip wird für die Datenübertragung von dem Slave-Modul 10 zu dem Master-Modul 8 genutzt, indem das Slave-Modul 10 eine Last im Takt der zu übertragenen Daten zu- und abschaltet, die so dimensioniert ist, dass die Spannung Uoc bei zugeschalteter Last ausreichend einbricht. Das Master-Modul 8 kann die modulierte Spannung dann einlesen (über den Spannungsdetektor 49) und entsprechend auswerten.

Während die Strombegrenzung in dem Master-Modul 8 aktiv ist (Umschalter 47 auf Stellung (b)), wird keine zusätzliche Energie für den Betrieb des Slave-Moduls 10 bereitgestellt (Schalter 48 zum Trennen der Versorgung aus Figur 7 ist geöffnet). Entsprechend fällt die Spannung UH am Energiespeicher des Slave-Moduls 10 in dieser Phase kontinuierlich ab. Auch hier gibt es nach einer definierten Menge an übertragenen Daten eine entsprechend zeitlich dimensionierte Übertragungspause der Länge At 4 , in der das Master-Modul 8 die Versorgung wieder für Ata einschaltet, also den Umschalter 51 auf den Zustand (a) schaltet. Der Energiespeicher kann während dieser Phase nachgeladen werden. Anschließend schaltet das Master-Modul 8 die Strombegrenzung wieder hinzu und erwartet das nächste Datenpaket vom Slave-Modul 10. Auch hier können theoretisch beliebig viele Daten von dem Slave-Modul 10 zu dem Master-Modul 8 übertragen werden.

Das Ausführungsbeispiel gemäß Figur 9 stimmt teilweise mit dem Ausführungsbeispiel gemäß Figur 7 überein, so dass zur Vermeidung von Wiederholungen ergänzend auf die vorstehende Beschreibung verwiesen wird, wobei für entsprechende Einzelheiten dieselben Bezugszeichen verwendet werden.

In Figur 9 ist der grundsätzliche Aufbau der Datenübertragungsstrecke zu sehen. Diese besteht aus einem Master-Modul 8, welches über eine Zweidrahtleitung 9 (Versorgungsleitung) mit einem Slave-Modul 10 verbunden ist. Das Master-Modul 8 kann über die Zweidrahtleitung 9 das Slave- Modul 10 mit Energie versorgen und mit diesem kommunizieren.

In der Versorgungsphase ist ein Schalter 50 geschlossen und vorzugsweise ein Schalter 51 geöffnet, so dass Pfad (a) in Benutzung ist.

Während einer Datensendung von dem Master-Modul 8 zu dem Slave-Modul 10 wird der Schalter

50 im Takt der Daten ein- und ausgeschaltet. Dies hat eine Potentialänderung auf der Zweidrahtleitung 9 zur Folge, die sich ebenfalls im Takt der Daten einstellt und mit dem Spannungsdetektor 28 in dem Slave-Modul 10 ausgewertet werden kann. Während der Schalter 50 ausgeschaltet ist, muss sich das Slave-Modul 10 z.B. über einen Energiespeicher selbst versorgen.

Wenn das Master-Modul 8 eine Antwort erwartet, wird der Schalter 50 geöffnet und der Schalter

51 geschlossen. Somit ist Pfad (b) in Benutzung, so dass durch eine Strombegrenzung 52 der Strom, welcher durch das Slave-Modul 10 bezogen wird, begrenzt wird. Durch den Stromimpulsgenerator 30 kann das Slave-Modul 10 eine Potentialänderung auf der Zweidrahtleitung 9 erzeugen, wenn der zusätzlich durch den Stromimpulsgenerator 30 bezogene Strom über dem Begrenzungsstrom durch die Strombegrenzung 52 liegt. Durch einen Spannungsdetektor 49 in dem Master-Modul 8 kann diese Potentialänderung in dem Master-Modul 8 ausgewertet werden.

Während einer Datensendung von dem Slave-Modul 10 zu dem Master-Modul 8 kann das Slave- Modul 10 die Zweidrahtleitung 9 intern mit dem Schalter 48 trennen, um durch ungewollte Einflüsse der nachfolgenden Schaltungsteile (z.B. Energieversorgung) keinen Einfluss auf die Kommunikation zu haben. Diese Phase muss das Slave-Modul 10 durch z.B. einen Energiespeicher überbrücken können, um den eigenen Energiebedarf zu gewährleisten. Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen. Insbesondere beansprucht die Erfindung auch Schutz für den Gegenstand und die Merkmale der Unteransprüche unabhängig von den jeweils in Bezug genommenen Ansprüchen und insbesondere auch ohne die Merkmale des Hauptanspruchs. Die Erfindung umfasst also verschiedene Erfindungsaspekte, die unabhängig voneinander Schutz genießen.

Bezugszeichenliste

1 Master-Modul

2 Slave-Modul

3 Zweidrahtleitung

4 Energiequelle des Master-Moduls

5 Datenschnittstelle des Master-Moduls

6 Energiesenke des Slave-Moduls

7 Datenschnittstelle des Slave-Moduls

8 Mastermodul

9 Zweidrahtleitung

10-12 Slave-Module

13 Eingangsanschluss des Master-Moduls an High-Side

14 Eingangsanschluss des Master-Moduls an Low-Side

15 Spannungsregler im Master-Modul

16 Eingangsanschluss des Slave-Moduls an High-Side

17 Eingangsanschluss des Slave-Moduls an Low-Side

18, 19 Versorgungsleitungen zwischen Master-Modul und Slave-Modul

20 Ausgangsanschluss des Master-Moduls an High-Side

21 Ausgangsanschluss des Master-Moduls an Low-Side

22 Mikroprozessor im Master-Modul

23 Schalter im Master-Modul

24 Energiespeicher im Slave-Modul

25 Spannungsregler im Slave-Modul

26 Ausgangsschaltung im Master-Modul

27 Mikroprozessor im Slave-Modul

27' Weitere Elektronik im Slave-Modul

28 Spannungsdetektor im Slave-Modul

29 Entladeschutz im Slave-Modul

30 Stromimpulsgenerator 1 im Slave-Modul

31 Strombegrenzer des Stromimpulsgenerators 1 im Slave-Modul

32 Stromimpulsgenerator 2 im Slave-Modul

33 Strombegrenzer des Stromimpulsgenerators 2 im Slave-Modul

34 Strommesswiderstand im Master-Modul

35 Impulsdetektor im Master-Modul 36 Filter- und Verstärkerelemente im Master-Modul

37 Komparator

38 Empfänger

39 Vorzustandsspeicher

40 Strombegrenzerschaltung im Slave-Modul

41 Block „Bereitstellung Strom loc"

42 Block „Bereitstellung Spannung U RM "

43 Block „Filterung und Verstärkung"

44 Block „Pegelwechsel Detektion"

45 Strombegrenzung

46 Schalter

47 Umschalter

48 Schalter

49 Spannungsdetektor

50 Schalter

51 Schalter

52 Strombegrenzung

Uo Versorgungsspannung des Master-Moduls

U02 Interne Spannung im Master-Modul

Un Spannung des Energiespeichers (Kondensator) im Slave- Modul

Ui2 Interne Versorgungsspannung im Slave- Modul

Usdin Spannung am Daten-Eingang des Mikroprozessors im Slave-Modul

Uoc Spannung an dem Eingangs-Anschluss des Slave-Moduls an der High-Side

U M din Spannung am Daten-Eingang des Mikroprozessors im Master-Modul loc Strom durch den Strommesswiderstand im Master-Modul li Versorgungsstrom zu den Slave-Modulen

U Rm Spannung über dem Strommesswiderstand im Master-Modul

U F Spannungsimpuls am Eingang des Komparators