Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TREATED INORGANIC CORE PARTICLES HAVING IMPROVED DISPERSABILITY
Document Type and Number:
WIPO Patent Application WO/2013/062779
Kind Code:
A1
Abstract:
This disclosure relates to a process for preparing a treated inorganic core particle having improved dispersability comprising: (a) heating a slurry comprising porous silica treated inorganic core particle and water at a temperature of at least about 90C; and (b) adding a soluble alumina source to the slurry from step (a) while maintaining the pH at about 8.0 to 9.5 to form an alumina treatment on the porous silica treated inorganic core particle; wherein the treated inorganic core particle does not comprise dense silica or alumina treatments, and has silica present in the amount of at least about 7% up to about 14% and alumina present in the amount of about 4.0% to about 8.0%; and wherein the particle to particle surface treatments are substantially homogeneous.

Inventors:
DIEBOLD MICHAEL PATRICK (US)
RUSNAK ERIC (US)
SHIH AGINGU (TW)
Application Number:
PCT/US2012/059760
Publication Date:
May 02, 2013
Filing Date:
October 11, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DU PONT (US)
International Classes:
C09C1/02; C09C1/36; C09C3/06
Domestic Patent References:
WO2003037995A12003-05-08
WO2012121801A12012-09-13
Foreign References:
US4075031A1978-02-21
EP0245984A11987-11-19
US5753025A1998-05-19
US5992120A1999-11-30
US5562764A1996-10-08
US7029648B22006-04-18
Other References:
"The Pigment Handbook", vol. 1, 1988, JOHN WILEY & SONS
Attorney, Agent or Firm:
FICKES, Daphne P. (Legal Patent Records Center4417 Lancaster Pik, Wilmington Delaware, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1 . A process for preparing a treated inorganic core particle having improved dispersability comprising:

(a) heating a slurry comprising porous silica treated inorganic core particle and water at a temperature of at least about 90°C; and

(b) adding a soluble alumina source to the slurry from step (a) while maintaining the pH at about 8.0 to 9.5 to form an alumina treatment on the porous silica treated inorganic core particle; wherein the treated inorganic core particle does not comprise dense silica or alumina treatments, and has silica present in the amount of at least about 7% up to about 14% and alumina present in the amount of about 4.0% to about 8.0%; and wherein the particle to particle surface treatments are substantially homogeneous.

2. The process of claim 1 wherein the inorganic core particle is an oxide of titanium, aluminum, zinc, copper or iron; a sulfate of calcium, strontium or barium; zinc sulfide; copper sulfide, zeolite; mica; talc; kaolin, mullite, calcium carbonate, or silica.

3. The process of claim 2 wherein the inorganic core particle is titanium dioxide, TiO2 or barium sulfate.

4. The process of claim 3 wherein the inorganic core particle is titanium dioxide, TiO2.

5. The process of claim 1 wherein the slurry in step (a) is heated to a temperature of about 93 to about 97°C.

6. The process of claim 5 wherein the slurry in step (a) is heated to a temperature of about 95 to about 97°C.

7. The process of claim 1 wherein the soluble alumina source is an alkali metal salt of an aluminate anion.

8. The process of claim 7 wherein the soluble alumina source is sodium aluminate or potassium aluminate.

9. The process of claim 1 wherein the treated inorganic core particle is completely dispersed in the water to form a slurry in less than 10 minutes.

10. The process of claim 1 wherein the the silica in the porous silica treated ionorganic core particle is applied by deposition of pyrogenic silica onto pyrogenic inorganic core particle, by co-oxygenation of silicon tetrachloride with titanium tetrachloride, or by deposition via condensed phase aqueous oxide precipitation onto the inorganic core particle.

1 1 . The process of claim 10 wherein the silica is applied by deposition via condensed phase aqueous oxide precipitation onto the inorganic core particle.

12. The process of claim 1 1 wherein the slurry comprising porous silica treated inorganic core particle and water is prepared by a process comprising:

(a1 ) providing a slurry of inorganic core particle in water;

(a2) heating the slurry to about 30 to about 40 °C and adjusting the pH to about 3.5 to about 7.5;

(a3) adding a soluble silicate solution to the slurry while maintaining the pH between about 3.5 and about 7.5; and

(a4) stirring for at least about 5 mins.

13. The process of claim 12 wherein the slurry is heated to a temperature of about 33 to about 37 °C.

14. The process of claim 13 wherein the soluble silicate is sodium silicate or potassium silicate.

15. The process of claim 4 wherein the T1O2 is present in the amount of at least about 30% by weight, based on the total weight of the slurry.

Description:
TITLE

TREATED INORGANIC CORE PARTICLES HAVING IMPROVED DISPERSABILITY

BACKGROUND OF THE DISCLOSURE

Field of the Disclosure:

The present disclosure relates to a process for preparing treated inorganic core particles, typically titanium dioxide particles, and in particular to the preparation of treated inorganic oxide core particles, typically titanium dioxide particles, having improved dispersability.

Background of the Disclosure:

Titanium dioxide particles such as pigment and nanoparticles are prepared using either the chloride process or the sulfate process. In the preparation of titanium dioxide pigments by the vapor phase chloride process, titanium tetrachloride, TiCI 4 , is reacted with an oxygen containing gas at temperatures ranging from about 900 °C to about 1600 °C, the resulting hot gaseous suspension of T1O2 particles and free chlorine is discharged from the reactor and must be quickly cooled below about 600 °C, for example, by passing it through a conduit, i.e., flue, where growth of the titanium dioxide pigment particles and agglomeration of said particles takes place.

It is known to add various substances, such as silicon compounds and aluminum compounds, to the reactants in order to improve hiding power and durability of the final product. Aluminum trichloride added during the process has been found to increase rutile in the final product, and silicon tetrachloride that becomes silica in the final product has been found to improve carbon black undertone (CBU), particle size and pigment abrasion. However the treatments added and the process used for the addition of these treatments result in treated titanium dioxide particles that do not disperse well.

A need exists for a efficient approach for adding elements to an inorganic core particle, typically a pyrogenically prepared metal oxide particle, and more particularly a titanium dioxide particle, to form a treated inorganic core particle having improved dispersability.

SUMMARY OF THE DISCLOSURE

In a first aspect, the disclosure provides process for preparing treated inorganic core particle, in particular treated titanium dioxide (T1O2) particle, having improved dispersability comprising:

(a) heating a slurry comprising porous silica treated inorganic core particle and water at a temperature of at least about 90°C, more typically about 93 to about 97°C, still more typically about 95 to about 97°C; and

(b) adding a soluble alumina source to the slurry from step (a) while maintaining the pH at about 8.0 to 9.5 to form an alumina treatment on the porous silica treated inorganic core particle; wherein the treated inorganic core particle does not comprise dense silica or alumina treatments, and has silica present in the amount of at least about 7% up to about 14% and alumina present in the amount of about 4.0% to about 8.0%; and wherein the particle to particle surface treatments are substantially

homogeneous.

In the first aspect, the disclosure provides a process wherein the treated inorganic core particle, in particular treated titanium dioxide (T1O2) particle, is completely dispersed in the water to form a slurry in less than 10 minutes.

By "homogeneous" we mean that each core particle has attached to its surface an amount of alumina and silica such that the variability in treatment levels among particles is so low as to make all particles interact with water, organic solvent or dispersant molecules in the same manner (that is, all particles interact with their chemical environment in a common manner and to a common extent).

By "completely dispersed" we mean that all agglomerates formed in the wet-treatment and/or drying processes have been reduced to individual particles or small groups of particles (aggregates) that are created during the particle formation stage in pigment manufacture.

In the first aspect, the silica is applied by deposition of pyrogenic silica onto pyrogenic inorganic core particle, in particular pyrogenic titanium dioxide (TiO 2 ) particle, or by co-oxygenation of silicon

tetrachloride with titanium tetrachloride, or by deposition via condensed phase aqueous oxide precipitation onto the inorganic core particle, in particular titanium dioxide (ΤΊΟ2) particle, as described below.

In the first aspect, the disclosure provides a process wherein the slurry comprising silica treated inorganic core particle, in particular treated titanium dioxide (T1O2) particle, and water is prepared by a process comprising:

(a1 ) providing a slurry of an inorganic core particle in water; (a2) heating the slurry to about 30 to about 40 °C, more typically 33-37 °C and adjusting the pH to about 3.5 to about 7.5;

(a3) adding a soluble silicate solution to the slurry while maintaining the pH between about 3.5 and about 7.5; and

(a4) stirring for at least about 5 mins. DETAILED DESCRIPTION OF THE DISCLOSURE

In this disclosure "comprising" is to be interpreted as specifying the presence of the stated features, integers, steps, or components as referred to, but does not preclude the presence or addition of one or more features, integers, steps, or components, or groups thereof. Additionally, the term "comprising" is intended to include examples encompassed by the terms "consisting essentially of and "consisting of." Similarly, the term "consisting essentially of is intended to include examples encompassed by the term "consisting of."

In this disclosure, when an amount, concentration, or other value or parameter is given as either a range, typical range, or a list of upper typical values and lower typical values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or typical value and any lower range limit or typical value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the disclosure be limited to the specific values recited when defining a range.

In this disclosure, terms in the singular and the singular forms "a," "an," and "the," for example, include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "TiO 2 particle", "the T1O 2 particle", or "a T1O 2 particle" also includes a plurality of T1O 2 particles.

This disclosure relates to an inorganic core particle, typically inorganic metal oxide or mixed metal oxide pigment particles, more typically a titanium dioxide particle that may be a pigment or a

nanoparticle, wherein the inorganic core particles, typically inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide particles have improved dispersability.

Inorganic core particle:

It is contemplated that any inorganic core particle, and in particular titanium dioxide particles are treated as per this disclosure. By inorganic core particle it is meant an inorganic particulate material that becomes dispersed throughout a final product such as a polymer melt or coating or laminate composition and imparts color and opacity to it. The inorganic core particle may be oxides of titanium, aluminum, zinc, copper, iron; the sulfates of calcium, strontium, barium; zinc sulfide; copper sulfide, zeolites; mica; talc; kaolin, mullite, calcium carbonate, or silica. Lead or mercury compound are contemplated equivalent core materials but may be undesirable due to their toxicity. More typical core materials are titanium dioxide, TiO 2 and barium sulfate, and most typically titanium dioxide, TiO 2 .

In particular, titanium dioxide is an especially useful particle in the processes and products of this disclosure. Titanium dioxide (TiO 2 ) particles useful in the present disclosure may be in the rutile or anatase crystalline form. They are commonly made by either a chloride process or a sulfate process. In the chloride process, TiCI 4 is oxidized to TiO 2 particles. In the sulfate process, sulfuric acid and ore containing titanium are dissolved, and the resulting solution goes through a series of steps to yield TiO 2 . Both the sulfate and chloride processes are described in greater detail in "The Pigment Handbook", Vol . 1 , 2nd Ed., John Wiley & Sons, NY (1988), the teachings of which are incorporated herein by reference. The particle may be a pigment or nanoparticle.

By "pigment" it is meant that the titanium dioxide particles have an average size of less than 1 micron. Typically, the particles have an average size of from about 0.020 to about 0.95 microns, more typically, about 0.050 to about 0.75 microns and most typically about 0.075 to about 0.50 microns. By "nanoparticle" it is meant that the primary titanium dioxide particles typically have an average particle size diameter of less than about 100 nanometers (nm) as determined by dynamic light scattering that measures the particle size distribution of particles in liquid suspension. The particles are typically agglomerates that may range from about 3 nm to about 6000 nm.

Process for Preparing Treated Titanium Dioxide Particles

The process for preparing a treated inorganic core particle, in particular a treated titanium dioxide (T1O2) particle, having improved dispersability comprises heating a slurry comprising porous silica treated inorganic core particle and water at a temperature of at least about 90°C, more typically about 93 to about 97°C, still more typically about 95 to about 97°C. The silica application is by deposition of pyrogenic silica onto pyrogenic inorganic core particle, in particular pyrogenic titanium dioxide (TiO 2 ) particle, or by co-oxygenation of silicon tetrachloride with titanium tetrachloride, or by deposition via condensed phase aqueous oxide.

In one embodiment, the slurry comprising silica treated inorganic core particle, in particular treated titanium dioxide (T1O2) particle, and water is prepared by a process comprising the following steps that include providing a slurry of inorganic core particle in water; wherein typically T1O2 is present in the amount of 25 to about 35% by weight, more typically about 30% by weight, based on the total weight of the slurry. This is followed by heating the slurry to about 30 to about 40 °C, more typically 33-37 °C, and adjusting the pH to about 3.5 to about 7.5, more typically about 5.0 to about 6.5. Soluble silicates such as sodium or potassium silicate are then added to the slurry while maintaining the pH between about 3.5 and about 7.5, more typically about 5.0 to about 6.5 ; followed by stirring for at least about 5 mins and typically at least about 10 minutes, but no more than 15 minutes, to facilitate precipitation onto the inorganic core particle, in particular titanium dioxide (ΤΊΟ 2 ) particle. Commercially available water soluble sodium silicates with SiO 2 Na 2 O weight ratios from about 1 .6 to about 3.75 and varying from 32 to 54% by weight of solids, with or without further dilution are the most practical. To apply a porous silica to the inorganic core particle, the slurry should typically be acidic during the addition of the effective portion of the soluble silicate. The acid used may be any acid, such as HCI, H 2 SO , HNO 3 or H 3 PO having a dissociation constant sufficiently high to precipitate silica and used in an amount sufficient to maintain an acid condition in the slurry. Compounds such as TiOSO 4 or TiCI 4 which hydrolyze to form acid may also be used. Alternative to adding all the acid first, the soluble silicate and the acid may be added simultaneously so long as the acidity of the slurry is typically maintained at a pH of below about 7.5. After addition of the acid, the slurry should be maintained at a temperature of no greater than 50° C. for at least 30 minutes before proceeding with further additions.

The treatment corresponds to about 7 to about 14% by weight of silica, more typically about 9.5 to about 12.0%, based on the total weight of the inorganic core particle, and in particular the titanium dioxide core particle. Control of the isoelectric point between 5.0 and 7.0 can be beneficial in facilitating the dispersion and/or flocculation of the particulate compositions during plant processing and in their end use applications.

An alternate method of adding a silica treatment to the T1O 2 particle is by deposition of pyrogenic silica onto pyrogenic inorganic core particle, in particular pyrogenic titanium dioxide (T1O 2 ) particle, as described in US5,992,120, or by co-oxygenation of silicon tetrachloride with titanium tetrachloride, as described in US5,562,764, and U .S. Patent 7,029,648 which are incorporated herein by reference.

The slurry comprising porous silica treated inorganic core particles and water is heated at a temperature of at least about 90°C, more typically about 93 to about 97°C, still more typically about 95 to about 97°C. The second treatment comprises precipitated aluminum oxide or alumina. This treatment is porous, and is typically applied from a solution of soluble alumina source, such as a soluble aluminate, using techniques known to one skilled in the art. In a specific embodiment, a soluble alumina source, such as a soluble aluminate, is added to the slurry comprising silica treated titanium dioxide while maintaining the pH at about 7.0 to 10.0, more typically 8.5 to about 9.5 to form an alumina treatment on the porous silica treated inorganic core particle. By "soluble alumina source" is meant alkali metal salts of aluminate anions, for example, sodium or potassium aluminate. Alternatively, the soluble alumina source may be acidic, such as for example aluminum chloride, in which case the pH is controlled using a base rather than an acid. The treated inorganic core particle does not comprise dense silica or alumina treatments.

The porous alumina treatment is present in the amount of about 4.0% to about 8.0%; more typically about 5.0% to about 7.5%, based on the total weight of the inorganic core particle, and in particular the titanium dioxide core particle. Because substantially all of the alumina that is precipitated finds its way to a treatment on the inorganic core particles, it typically is only necessary to provide that amount of soluble alumina source, such as a soluble aluminate, to the slurry liquid which will result, after precipitation, in the appropriate degree of treatment.

Typically, the particle to particle surface treatments are substantially homogenous. By this we mean that each core particle has attached to its surface an amount of alumina and silica such that the variability in alumina and silica levels among particles is so low as to make all particles interact with water, organic solvent or dispersant molecules in the same manner (that is, all particles interact with their chemical environment in a common manner and to a common extent). Typically, the treated inorganic core particle, in particular treated titanium dioxide (TiO 2 ) particle, is completely dispersed in the water to form a slurry in less than 10 minutes, more typically less than about 5 minutes. By "completely dispersed" we mean that the dispersion is composed of individual particles or small groups of particles created during the particle formation stage (hard aggregates) and that all soft agglomerates have been reduced to individual particles.

After treatment according to this process the pigment is recovered by known procedures including neutralization of the slurry if necessary, filtration, washing, drying and frequently a dry grinding step such as micronizing.

Drying is not necessary, however, as a thick slurry of the product can be used directly in preparing emulsion paints where water is the liquid phase.

The process provides a method for easily and efficiently obtaining a high solids water slurry of completely dispersed particles.

While the disclosure is not intended to be bound by a theory of operation, it is believed that the improved dispersability of the porous treated

T1O2 pigments of the disclosure is due to the nature of the treatments and application thereof.

Applications

The treated inorganic core particles, typically inorganic metal oxide or mixed metal oxide particles, more typically titanium dioxide, may be used in coating compositions such as paints, plastic parts such as shaped articles or films, or paper laminates. The paper laminates of this disclosure are useful as flooring, furniture, countertops, artificial wood surface, and artificial stone surface.

The following Examples illustrate the present disclosure. All parts, percentages and proportions are by weight unless otherwise indicated.

EXAMPLES

Example 1

2000 g of TiO 2 oxidation base was slurried in 4520 ml de-ionized water to provide a concentration of 400 g T1O2 / liter (30.7 wt% T1O2). This slurry was heated to 35 °C and the pH was adjusted to 5.5. Sodium silicate solution (1210 grams) was added with enough HCI to maintain pH between 4 and 6. After curing (with mixing) for 5 minutes, the slurry was heated to 55 °C. 695 grams of sodium aluminate were added with enough HCI to maintain pH at 6. The slurry was stirred for an additional 30 minutes, maintaining pH and temperature, then filtered, washed, dried and steam micronized. The resulting sample has a percent SiO 2 value of 14% and a percent alumina value of 7.6%.

Example 2

The procedure described in Example 1 was used except:

• After the 5 minute silica cure, the slurry was heated to 95 °C.

• During and after the aluminate addition, the slurry pH was

maintained at 9.0 and the temperature at 95 °C.

Sample Evaluation

Ease of Slurry Make-up: In latex paint production it is generally desireable to prepare a high solids water slurry of a T1O2 pigment that can then be mixed or otherwise incorporated into a slurry containing the other paint ingredients. Typically this T1O2 pigment slurry is made in a separate dispersion step with equipment specifically designed to disperse sub- micron particles (for example, a Hockmeyer disperser, a Katy mill, or a Dispermat disperser). For sample evaluation, a slurry of each pigment example was made on a Hockmeyer dispersor with the following amounts of ingredients:

• 3000 g TiO 2 pigment

· 1953 g Water

• 0.9 g TKPP (potassium tripolyphosphate) dispersant

• 0.5 g Proxel® (a biocide)

Slurry was made by adding the T1O2 pigment incrementally, into a mixing pot that contains all of the water, TKPP and Proxel®, while being sheared at 1 ,000 rpm. Dispersibility (or ease of dispersion) was quantified by the time required to fully incorporate the entire mass of pigment into the slurry. For Example 2, this time was less than 1 minute. Example 1 sample did not fully incorporate into the slurry at all, despite the introduction of an additional 9 grams of dispersant (TKPP) into the slurry under sheer conditions of 2,000 rpm. The advantages of the sample of this disclosure are therefore clearly seen. Tinting Strength: Tinting strength is a measure of the scattering ability of a white pigment. Since white pigments are added to a paint, plastic or paper laminate to scatter visible light, high tinting strength is desired. In this test a standard white paint of the T1O2 of interest was made using a polymeric binder (trade name AC-347) and with a TiO 2 content of 26% PVC.

Diluted green tint (GW-951 P) was made by combining 1 part tint with 2 parts de-ionized water. The green tint was added to the white paint at a level of 3 g tint per 100 g paint. At this level, measured Y values for the dried paint were close to 50%.

Each paint was drawn down on a uniformly white card using a 0.004 inch clearance blade and allowed to air dry. After drying, a second coat of the same paint was applied to a portion of the card using a paint brush, and the resulting wet paint was vigorously brushed to give a "brush out" section on the panel. Y color values are determined in triplicate for each drawdown, both for the undisturbed drawdown area and, separately, the brushed-out area. A drawdown was also made using paint made with a standard T1O2 for the purpose of comparing the samples of interest to a known pigment.

K/S values are calculated for each drawdown area using the

Tristimulus Y value as follows:

K/S = [(1 -Y) 2 ]/[2 * Y]

Tint Strength values are reported as the ratio of K/S values for the standard paint divided by the K/S values for the paint made with pigment of interest, and are reported as a percentage. Shear strength uniformity, which is a measure of pigment dispersion stability as the paint dries, was determined by comparing the K/S values of the undisturbed areas of the drawdown to the K/S values of the brushed out area. The draw down tinting strength, the brush out tinting strength, and the shear strength unifornnity of Example 1 were defined as 100. The draw down tinting strength, the brush out tinting strength, and the shear strength uniformity of Example 2 were measured as 103, 104 and 101 . The fact that the values for Example 2 were greater than those for Example 1 show that Example 2 gave higher tinting strength, which is desired in a white pigment.

Weighed Hiding (Spread Rate): Weighed hiding (spread rate) is a measure of the ability of a white pigment to obscure the surface

appearance of a substrate. This was determined using contrast ratio and was based on the theory of dependent light scattering. Paints were made with different T1O2 pigments as detailed in the Tinting Strength test description except that no colorant was added (that is, the paint was white). Spread rate was measured on these paints through a series of steps. First, the correct blade clearance was determined by drawing the paint of interest down over black and white cards using several different blades that have clearances between 0.0025 and 0.0035 mil. Contrast ratios for these draw downs were determined by taking the ratio of light (Tristimulus Y) reflected over the black area of the panel divided by the Y value measured over the white area of the panel. A draw down blade was then selected such that the contrast ratio was between 92 and 95.

Next, four charts were drawn down over black and white cards for each paint of interest and for a control paint. Draw down weights were immediately measured, from which the total amount of applied paint was determined. The painted cards were then allowed to air dry overnight. After this, an average Y value was calculated from four values measured from each part (black or white) of the card.

The contrast ratio of the paint was determined by dividing the reflectance value measured on the black portion of the card by the reflectance value measured over the white portion of the card. Contrast ratio and reflectance over black values were then entered into a computer program that uses Kebulka-Munk equations to predict the number of square feet that a gallon of the paint would cover at complete hiding (complete hiding is defined as when the contrast ratio exceeds 0.98). This number of square feet was referred to as the "spread rate" of the pigment. Higher spread rates are indicative of greater hiding power and are therefore preferred. The spread rate for Example 1 was determined to be 308.4 square feet per gallon and the spread rate for Example 2 was determined to be 337.0 square feet per gallon, an increase in scattering efficiency of nearly 10%.