Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TRIAZOLOPYRIDINES AS TYK2 INHIBITORS
Document Type and Number:
WIPO Patent Application WO/2012/000970
Kind Code:
A1
Abstract:
The present invention relates to compounds of Formula (I), wherein R1 to R6 have the meaning as cited in the description and the claims. Said compounds are useful as TYK2 inhibitors for the treatment or prophylaxis of immunological, inflammatory, autoimmune, allergic disorders, and immuno logically-mediated diseases. The invention also relates to pharmaceutical compositions including said compounds as well as their use as medicaments.

Inventors:
ELLARD KATIE (GB)
RAMSDEN NIGEL (GB)
Application Number:
PCT/EP2011/060777
Publication Date:
January 05, 2012
Filing Date:
June 28, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CELLZOME LTD (GB)
ELLARD KATIE (GB)
RAMSDEN NIGEL (GB)
International Classes:
A61K31/4196; A61P35/00; A61P37/02; A61P37/06; A61P37/08; C07D249/20
Domestic Patent References:
WO2010010190A12010-01-28
WO2009047514A12009-04-16
WO2009155565A12009-12-23
WO2008025821A12008-03-06
WO2010010190A12010-01-28
WO2010010191A12010-01-28
WO2009047514A12009-04-16
WO2008025821A12008-03-06
WO2009155551A12009-12-23
WO2001032651A12001-05-10
WO2000047212A12000-08-17
WO1998035985A11998-08-20
WO2001060814A22001-08-23
WO1999002166A11999-01-21
WO2009008992A22009-01-15
WO2007107318A12007-09-27
WO2010039939A12010-04-08
WO2007137867A12007-12-06
WO2006134056A12006-12-21
Other References:
YAMAOKA ET AL.: "The Janus kinases (Jaks", GENOME BIOLOGY, vol. 5, no. 12, 2004, pages 253
MUSSO ET AL., J. EXP. MED., vol. 181, no. 4, 1995, pages 1425 - 31
RODIG ET AL., CELL, vol. 93, no. 3, 1998, pages 373 - 83
NEUBAUER ET AL., CELL, vol. 93, no. 3, 1998, pages 397 - 409
MACCHI ET AL., NATURE, vol. 377, no. 6544, 1995, pages 65 - 68
PAPAGEORGIOU, WIKMAN, TRENDS IN PHARMACOLOGICAL SCIENCES, vol. 25, no. 11, 2004, pages 558 - 62
VELAZQUEZ ET AL., CELL, vol. 70, 1992, pages 313 - 322
KARAGHIOSOFF ET AL., IMMUNITY, vol. 13, 2000, pages 549 - 560
SHIMODA ET AL., IMMUNITY, vol. 13, 2000, pages 561 - 671
MINEGISHI ET AL., IMMUNITY, vol. 25, 2006, pages 745 - 755
SIGURDSSON ET AL., AM. J. HUM. GENET., vol. 76, 2005, pages 528 - 537
GRAHAM ET AL., RHEUMATOLOGY, vol. 46, 2007, pages 927 - 930
HELLQUIST ET AL., J. RHEUMATOL., vol. 36, 2009, pages 1631 - 1638
JARVINEN ET AL., EXP. DERMATOL., vol. 19, 2010, pages 123 - 131
BAN ET AL., EUR. J. HUM. GENET., vol. 17, 2009, pages 1309 - 1313
MERO ET AL., EUR. J. HUM. GENET., vol. 18, 2009, pages 502 - 504
SATO ET AL., J. CLIN. IMMUNOL., vol. 29, 2009, pages 815 - 825
SHAW ET AL., PNAS, vol. 100, 2003, pages 11594 - 11599
SPACH ET AL., J. IMMUNOL., vol. 182, 2009, pages 7776 - 7783
OYAMADA ET AL., J. IMMUNOL., vol. 183, 2009, pages 7539 - 7546
GHORESCHI ET AL., IMMUNOL REV, vol. 228, 2009, pages 273 - 287
GHORESCHI ET AL., NATURE IMMUNOL., vol. 4, 2009, pages 356 - 360
FRIDMAN ET AL., J. IMMUNOLOGY, vol. 184, no. 9, 2010, pages 5298 - 307
BACON ET AL., PNAS, vol. 92, 1995, pages 7307 - 7311
JACKSON, CANADIAN JOURNAL OPHTHALMOLOGY, vol. 44, no. 4, 2009, pages 385 - 394
LEMP: "The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop", THE OCULAR SURFACE, vol. 5, no. 2, 2007, pages 75 - 92
SRIVASTAVA ET AL.: "Uveitis: Mechanisms and recent advances in therapy.", CLINICA CHIMICA ACTA, 2010
FIRESTEIN, NATURE, vol. 423, 2003, pages 356 - 361
ASAKURA ET AL., WORLD J GASTROENTEROL., vol. 13, no. 15, 2007, pages 2145 - 9
SCHON ET AL., NEW ENGL. J. MED., vol. 352, 2005, pages 1899 - 1912
D'CRUZ ET AL., LANCET, vol. 369, no. 9561, 2007, pages 587 - 596
HEMMER ET AL., NAT. REV. NEUROSCIENCE, vol. 3, 2002, pages 291 - 301
HANAHAN, WEINBERG: "The Hallmarks of Cancer", CELL, vol. 100, 2000, pages 57 - 70
SCHUTZ-GESCHWENDENER ET AL.: "Quantitative, two-color Western blot detection with infrared fluorescence", May 2004, LI-COR BIOSCIENCES
Attorney, Agent or Firm:
BÜCHEL, Edwin (EASTSITE ONESeckenheimer Landstraße 4, Mannheim, DE)
Download PDF:
Claims:
Patent Claims

A compound of formula (I)

or a pharmaceutically acceptable salt, prodrug or metabolite thereof, wherein

R1 is H; T1; Ci_6 alkyl; C(0)R7; C(0)OR7; or C(0)N(R7R7a); wherein Ci_6 alkyl is optionally substituted with one or more halogen, which are the same or different;

R7 is Ci_6 alkyl; or T1; wherein Ci_6 alkyl is optionally substituted with one or more halogen, which are the same or different;

R7a is H; or Ci_6 alkyl;

T1 is C3-7 Cycloalkyl; or 3 to 7 membered saturated heterocyclyl; wherein T1 is optionally substituted with one or more halogen, which are the same or different;

R2 is F; CI; CN; OCi_6 alkyl; or Ci_6 alkyl, wherein OCi_6 alkyl and Ci_6 alkyl are optionally substituted with one or more halogen, which are the same or different;

R3 is T2; halogen; OR8 C(0)R8; N(R8R8a); C(0)N(R8R8a); N(R8)C(0)R8a; N(R8)C(0)N(R8aR8b); S(0)2R8; S(0)2N(R8R8a); N(R8)S(0)2R8a; or Ci_6 alkyl, wherein Ci_6 alkyl is optionally substituted with one or more halogen, which are the same or different; 8 8¾ 8b 2

R , R , R are independently selected from the group consisting of H; T ; and Ci_6 alkyl, wherein Ci_6 alkyl is optionally substituted with one or more R9, which are the same or different;

R9 is halogen; T2; or OT2;

R4, R5, R6 are independently selected from the group consisting of H; F; CI; CN; OCi_6 alkyl; or Ci_6 alkyl, wherein OCi_6 alkyl and Ci_6 alkyl are optionally substituted with one or more halogen, which are the same or different;

T2 is phenyl; C3-7 Cycloalkyl; or 3 to 7 membered heterocyclyl, wherein T2 is optionally substituted with one or more R10, which are the same or different;

R10 is halogen; OR11 C(0)Rn; N(RnRl la); C(0)N(RnRl la); N(Rn)C(0)Rl la; N(Rn)C(0)N(Rl laRl lb); S(0)2Rn; S(0)2N(RnRl la); N(Rn)S(0)2Rl la; T3 or Ci_6 alkyl, wherein Ci_6 alkyl is optionally substituted with one or more halogen, which are the same or different;

R11, Rl la, Rl lb are independently selected from the group consisting of H; T3; and Ci_6 alkyl, wherein Ci_6 alkyl is optionally substituted with one or more halogen, which are the same or different;

T3 is phenyl; C3-7 Cycloalkyl; or 3 to 7 membered heterocyclyl, wherein T3 is optionally substituted with one or more halogen, which are the same or different; provided that

(i) when R1 is T1 and T1 is 3 to 7 membered saturated heterocyclyl then T1 is linked to the rest of the molecule via carbon atom; and the following compounds are excluded:

2. A compound of claim 1, wherein

(iii) when R2 is F; R3 is C(0)N(R8R8a); R8a is H then R8 is other than 2-phenylethyl and 2-phenoxyethyl;

(iv) when R2 is F; R3 is C(0)R8 then R8 is other than piperidin-l-yl; and when R2 is OCH3 then R3 is other than OCH3.

3. A compound of claim 1 or 2, wherein R2 is F; CI; CF3; OCH3; or CH3.

4. A compound of any of claims 1 to 3, wherein R2 is F; or CI.

5. A compound of any of claims 1 to 4, wherein R2 is CI.

6. A compound of any of claims 1 to 5, wherein R3 is unsubstituted Ci_6 alkyl; OR8; CI;

S(0)2R8; N(R¾8a); or N(R8)S(0)2R8a.

7. A compound of any of claims 1 to 6, wherein R3 is S(0)2R8; or N(R8)S(0)2R!

8. A compound of any of claims 1 to 7, wherein R3 is N(R8)S(0)2Ri 9. A compound of any of claims 1 to 8, wherein R8a is unsubstituted C3_7 cycloalkyl.

10. A compound of any of claims 1 to 9, wherein R1 is C(0)R7.

11. A compound of any of claims 1 to 10, wherein R7 is unsubstituted C3_7 cycloalkyl. A compound of any of claims 1 to 11 selected from the group consisting of

N-(5-(2,4-dichlorophenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-fluoro-4-methoxyphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5 -(4-methoxy-2-(trifluoromethyl)phenyl)- [ 1 ,2,4]triazo lo [ 1 ,5 -a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-chloro-4-methoxyphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(4-amino-2-chlorophenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-chloro-4-(methylsulfonamido)phenyl)-[l,2,4]triazolo[l,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(4-amino-2-fluorophenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-fluoro-4-(methylsulfonamido)phenyl)-[l,2,4]triazolo[l,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-fluoro-4-(methylsulfonyl)phenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(4-methoxy-2-methylphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-chloro-4-(cyclopropylsulfonyl)phenyl)-[l,2,4]triazolo[l,5-a]pyridin-2- yl)cyclopropanecarboxamide; and

N-(5-(2,4-dimethylphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide.

A compound of any of claims 1 to 12 or a pharmaceutically acceptable salt thereof.

A compound or a pharmaceutically acceptable salt thereof of any claims 1 to 13 for use as a medicament.

A compound or a pharmaceutically acceptable salt thereof of any of claims 1 to 13 for use in a method for treating or preventing an immunological, inflammatory, autoimmune, or allergic disorder or disease of a transplant rejection or a Graft-versus host disease.

A compound or a pharmaceutically acceptable salt thereof of any of claims 1 to 13 for use in a method of treating or preventing a proliferative disease.

A compound of claim 16, wherein the disease is cancer.

A pharmaceutical composition comprising a compound or a pharmaceutically acceptable salt thereof of any of claims 1 to 13 together with a pharmaceutically acceptable carrier, optionally in combination with one or more other pharmaceutical compositions.

Description:
TRI AZOLOP YRIDINE S AS TYK2 INHIBITORS

The present invention relates to a novel class of kinase inhibitors, including pharmaceutically acceptable salts, prodrugs and metabolites thereof, which are useful for modulating protein kinase activity for modulating cellular activities such as signal transduction, proliferation, and cytokine secretion. More specifically the invention provides compounds which inhibit, regulate and/or modulate kinase activity, in particular TYK2 activity, and signal transduction pathways relating to cellular activities as mentioned above. Furthermore, the present invention relates to pharmaceutical compositions comprising said compounds, for example for the treatment or prevention of an immunological, inflammatory, autoimmune, or allergic disorder or disease or a transplant rejection or a Graft-versus host disease and processes for preparing said compounds.

Kinases catalyze the phosphorylation of proteins, lipids, sugars, nucleosides and other cellular metabolites and play key roles in all aspects of eukaryotic cell physiology. Especially, protein kinases and lipid kinases participate in the signaling events which control the activation, growth, differentiation and survival of cells in response to extracellular mediators or stimuli such as growth factors, cytokines or chemokines. In general, protein kinases are classified in two groups, those that preferentially phosphorylate tyrosine residues and those that preferentially phosphorylate serine and/or threonine residues. The tyrosine kinases include membrane-spanning growth factor receptors such as the epidermal growth factor receptor (EGFR) and cytosolic non-receptor kinases such as Janus kinases (JAK).

Inappropriately high protein kinase activity is involved in many diseases including cancer, metabolic diseases, autoimmune or inflammatory disorders. This effect can be caused either directly or indirectly by the failure of control mechanisms due to mutation, overexpression or inappropriate activation of the enzyme. In all of these instances, selective inhibition of the kinase is expected to have a beneficial effect.

One group of kinases that has become a recent focus of drug discovery is the Janus kinase (JAK) family of non-receptor tyrosine kinases. In mammals, the family has four members, JAK1, JAK2, JAK3 and Tyrosine kinase 2 (TYK2). Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain. The JAK proteins bind to cytokine receptors through their amino -terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. After the binding of cytokines to their receptors, JA s are activated and phosphorylate the receptors, thereby creating docking sites for signalling molecules, especially for members of the signal transducer and activator of transcription (Stat) family (Yamaoka et al, 2004. The Janus kinases (Jaks). Genome Biology 5(12): 253).

In mammals, JAK1 , JAK2 and TYK2 are ubiquitously expressed. By contrast, the expression of JAK3 is predominantly in hematopoietic cells and it is highly regulated with cell development and activation (Musso et al, 1995. J. Exp. Med. 181(4): 1425-31).

The study of JAK-deficient cell lines and gene -targeted mice has revealed the essential, nonredundant functions of JAKs in cytokine signalling. JAK1 knockout mice display a perinatal lethal phenotype, probably related to the neurological effects that prevent them from sucking (Rodig et al, 1998. Cell 93(3):373-83). Deletion of the JAK2 gene results in embryonic lethality at embryonic day 12.5 as a result of a defect in erythropoiesis (Neubauer et al, 1998. Cell 93(3):397-409). Interestingly, JAK3 deficiency was first identified in humans with autosomal recessive severe combined immunodeficiency (SCID) (Macchi et al, 1995. Nature 377(6544):65-68). JAK3 knockout mice too exhibit SCID but do not display non-immune defects, suggesting that an inhibitor of JAK3 as an immunosuppressant would have restricted effects in vivo and therefore presents a promising drug for immunosuppression (Papageorgiou and Wikman 2004, Trends in Pharmacological Sciences 25(11):558-62). The role of TYK2 in the biological response to cytokines was first characterized using a mutant human cell line that was resistant to the effects of Type I interferons (IFNs) and the demonstration that IFNa responsiveness could be restored by genetic complementation of TYK2 (Velazquez et al, 1992. Cell 70, 313-322). Further in vitro studies implicated TYK2 in the signaling pathways of multiple other cytokines involved in both innate and adaptive immunity. Analysis of TYK-2 " " mice however revealed less profound immunological defects than were anticipated (Karaghiosoff et al, 2000. Immunity 13, 549-560; Shimoda et al, 2000. Immunity 13, 561-671). Surprisingly, TYK2 deficient mice display merely reduced responsiveness to IFNa/β and signal normally to interleukin 6 (IL-6) and interleukin 10 (IL- 10), both of which activate TYK2 in vitro. In contrast, TYK2 was shown to be essential for IL-12 signaling with the absence of TYK2 resulting in defective STAT4 activation and the failure of T cells from these mice to differentiate into IFNy- producing Thl cells. Consistent with the involvement of TYK2 in mediating the biological effects of Type I IFNs and IL-12, TYK2-/- mice were more susceptible to viral and bacterial infections.

Thus far only a single patient with an autosomal recessive TYK2 deficiency has been described (Minegishi et al, 2006. Immunity 25, 745-755). The homozygous deletion of four base pairs (GCTT at nucleotide 550 in the TYK2 gene) and consequent frameshift mutation in the patient's coding DNA introduced a premature stop codon and resulted in the truncation of the TYK2 protein at amino acid 90. The phenotype of this null mutation in human cells was much more severe than predicted by the studies in murine cells lacking TYK2. The patient displayed clinical features reminiscent of the primary immunodeficiency hyper-IgE syndrome (HIES) including recurrent skin abscesses, atopic dermatitis, highly elevated serum IgE levels and susceptibility to multiple opportunistic infections. Contrary to reports in TYK2-/- mice, signaling by a wide variety of cytokines was found to be impaired thus highlighting non- redundant roles for human TYK2 in the function of Type I IFNs, IL-6, IL-10, IL-12 and IL- 23. An imbalance in T helper cell differentiation was also observed, with the patient's T cells exhibiting an extreme skew towards the development of IL-4 producing Th2 cells and impaired Thl differentiation. Indeed, these cytokine signaling defects could be reponsible for many of the clinical manifestations described, for example atopic dermatitis and elevated IgE levels (enhanced Th2), increased incidence of viral infections (IFN defect), infection with intracellular bacteria (IL-12/Thl defect) and extracellular bacteria (IL-6 and IL-23/Thl7 defect). Emerging evidence from genome-wide association studies suggests that single nucleotide polymorphisms (SNPs) in the TYK2 gene significantly influence autoimmune disease susceptibility. Less efficient TYK2 variants are associated with protection against systemic lupus erythematosus (SLE) (TYK2 rs2304256 and rsl2720270, Sigurdsson et al, 2005. Am. J. Hum. Genet. 76, 528-537; Graham et al, 2007. Rheumatology 46, 927-930; Hellquist et al, 2009. J. Rheumatol. 36, 1631-1638; Jarvinen et al, 2010. Exp. Dermatol. 19, 123-131) and multiple sclerosis (MS) (rs34536443, Ban et al, 2009. Eur. J. Hum. Genet. 17, 1309-1313; Mero et al, 2009. Eur. J. Hum. Genet. 18, 502-504). Whereas predicted gain-of- function mutations increase susceptibility to inflammatory bowel disease (IBD) (rs280519 and rs2304256, Sato et al, 2009. J. Clin. Immunol. 29, 815-825). In support of the involvement of TYK2 in immunopathologic disease processes, it has been shown that B10.D1 mice harbouring a missense mutation in the pseudokinase domain of TYK2 that results in the absence of encoded TYK2 protein are resistant to both autoimmune arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE) (Shaw et al, 2003. PNAS 100, 11594- 11599; Spach et al, 2009. J. Immunol. 182, 7776-7783). Furthermore, a recent study showed that TYK2 -/- mice were completely resistant to MOG-induced EAE (Oyamada et al, 2009. J. Immunol. 183, 7539-7546). In these mice resistance was accompanied by a lack of CD4 T cells infiltrating the spinal cord, a failure to signal through IL-12R and IL-23R and hence the inability to upregulate encephalitogenic levels of IFNy and IL-17.

The non-receptor tyrosine kinase TYK2 plays essential roles in both innate and adaptive immunity. A lack of TYK2 expression manifests in the attenuated signaling of multiple proinflammatory cytokines and a profound imbalance in T helper cell differentiation. Furthermore, evidence from genetic association studies supports that TYK2 is a shared autoimmune disease susceptibility gene. Taken together, these reasons suggest TYK2 as a target for the treatment of inflammatory and auto-immune diseases.

Several JAK family inhibitors have been reported in the literature which may be useful in the medical field (Ghoreschi et al, 2009. Immunol Rev, 228:273-287). It is expected that a selective TYK2 inhibitor that inhibits TYK2 with greater potency than JAK2 may have advantageous therapeutic properties, because inhibition of JAK2 can cause anemia (Ghoreschi et al, 2009. Nature Immunol. 4, 356-360).

Triazolopyridine derivatives useful for the treatment of degenerative and inflammatory diseases are described in WO-A 2010/010190 and WO- A 2010/010191.

Similar compounds are described for the treatment of proliferative conditions in WO-A 2009/047514. Similar triazolopyridine compounds as Itk/PI3k inhibitors are described in WO- A 2008/025821.

Even though TYK2 inhibitors are known in the art there is a need for providing additional TYK2 inhibitors having at least partially more effective pharmaceutically relevant properties, like activity, selectivity especially over JAK2 kinase, and ADMET properties. Thus, an object of the present invention is to provide a new class of compounds as TYK2 inhibitors which preferably show selectivity over JAK2 and may be effective in the treatment or prophylaxis of disorders associated with TYK2. Accordingly, the present invention provides compounds of formula (I)

or a pharmaceutically acceptable salt, prodrug or metabolite thereof, wherein

R 1 is H; T 1 ; Ci_ 6 alkyl; C(0)R 7 ; C(0)OR 7 ; or C(0)N(R 7 R 7a ); wherein Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different;

R 7 is Ci_6 alkyl; or T 1 ; wherein Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different;

R 7a is H; or Ci_ 6 alkyl;

T 1 is C3-7 Cycloalkyl; or 3 to 7 membered saturated heterocyclyl; wherein T 1 is optionally substituted with one or more halogen, which are the same or different;

R 2 is F; CI; CN; OCi_ 6 alkyl; or Ci_ 6 alkyl, wherein OCi_ 6 alkyl and Ci_ 6 alkyl are optionally substituted with one or more halogen, which are the same or different; R 3 is T 2 ; halogen; OR 8 C(0)R 8 ; N(R 8 R 8a ); C(0)N(R 8 R 8a ); N(R 8 )C(0)R 8a ; N(R 8 )C(0)N(R 8a R 8b ); S(0) 2 R 8 ; S(0) 2 N(R 8 R 8a ); N(R 8 )S(0) 2 R 8a ; or Ci_ 6 alkyl, wherein Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different; 8 8¾ 8b 2

R , R , R are independently selected from the group consisting of H; T ; and Ci_ 6 alkyl, wherein Ci_ 6 alkyl is optionally substituted with one or more R 9 , which are the same or different; R 9 is halogen; T 2 ; or OT 2 ;

R 4 , R 5 , R 6 are independently selected from the group consisting of H; F; CI; CN; OCi_ 6 alkyl; or Ci_6 alkyl, wherein OCi_ 6 alkyl and Ci_ 6 alkyl are optionally substituted with one or more halogen, which are the same or different;

T 2 is phenyl; C3-7 Cycloalkyl; or 3 to 7 membered heterocyclyl, wherein T 2 is optionally substituted with one or more R 10 , which are the same or different;

R 10 is halogen; OR 11 C(0)R n ; N(R n R l la ); C(0)N(R n R l la ); N(R n )C(0)R l la ; N(R n )C(0)N(R l la R l lb ); S(0) 2 R n ; S(0) 2 N(R n R l la ); N(R n )S(0) 2 R l la ; T 3 or Ci_ 6 alkyl, wherein Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different;

R 11 , R l la , R l lb are independently selected from the group consisting of H; T 3 ; and Ci_ 6 alkyl, wherein Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different;

T 3 is phenyl; C3-7 Cycloalkyl; or 3 to 7 membered heterocyclyl, wherein T 3 is optionally substituted with one or more halogen, which are the same or different; provided that

(i) when R 1 is T 1 and T 1 is 3 to 7 membered saturated heterocyclyl then T 1 is linked to the rest of the molecule via carbon atom; and

(ii) the following compounds are excluded:

The first three compounds excluded from the scope of the present invention are disclosed in WO-A 2010/010190 as compound examples 89, 100, 111. The fourth compound (dimethoxy derivative) is disclosed in WO-A 2009/047514 as example 10 on page 54.

In case a variable or substituent can be selected from a group of different variants and such variable or substituent occurs more than once the respective variants can be the same or different.

Within the meaning of the present invention the terms are used as follows:

"Alkyl" means a straight-chain or branched hydrocarbon chain. Each hydrogen of an alkyl carbon may be replaced by a substituent as further specified.

"Ci_4 alkyl" means an alkyl chain having 1 - 4 carbon atoms, e.g. if present at the end of a molecule: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, or e.g. - CH 2 -, -CH2-CH2-, -CH(CH 3 )-, -CH2-CH2-CH2-, -CH(C 2 H 5 )-, -C(CH 3 ) 2 -, when two moieties of a molecule are linked by the alkyl group. Each hydrogen of a Ci_ 4 alkyl carbon may be replaced by a substituent as further specified.

"Ci_6 alkyl" means an alkyl chain having 1 - 6 carbon atoms, e.g. if present at the end of a molecule: Ci_ 4 alkyl, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl; tert-butyl, n-pentyl, n-hexyl, or e.g. -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -CH 2 -CH 2 -CH 2 -, -CH(C 2 H 5 )-, - C(CI¾) 2 -, when two moieties of a molecule are linked by the alkyl group. Each hydrogen of a Ci_6 alkyl carbon may be replaced by a substituent as further specified.

"C3_7 cycloalkyl" or "C3_ 7 cycloalkyl ring" means a cyclic alkyl chain having 3 - 7 carbon atoms, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl. Preferably, cyloalkyl refers to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or cycloheptyl. Each hydrogen of a cycloalkyl carbon may be replaced by a substituent as further specified. The term "C3-5 cycloalkyl" or "C3-5 cycloalkyl ring" is defined accordingly. "Halogen" means fluoro, chloro, bromo or iodo. It is generally preferred that halogen is fluoro or chloro. "4 to 7 membered heterocyclyl" or "4 to 7 membered heterocycle" means a ring with 4, 5, 6 or 7 ring atoms that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or un-saturated) wherein at least one ring atom up to 4 ring atoms are replaced by a heteroatom selected from the group consisting of sulfur (including -S(O)-, -S(0) 2 -), oxygen and nitrogen (including =N(0)-) and wherein the ring is linked to the rest of the molecule via a carbon or nitrogen atom. Examples for a 4 to 7 membered heterocycles are azetidine, oxetane, thietane, furan, thiophene, pyrrole, pyrroline, imidazole, imidazoline, pyrazole, pyrazoline, oxazole, oxazoline, isoxazole, isoxazoline, thiazole, thiazoline, isothiazole, isothiazoline, thiadiazole, thiadiazoline, tetrahydro furan, tetrahydrothiophene, pyrrolidine, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine, thiadiazolidine, sulfolane, pyran, dihydropyran, tetrahydropyran, imidazolidine, pyridine, pyridazine, pyrazine, pyrimidine, piperazine, piperidine, morpholine, tetrazole, triazole, triazolidine, tetrazolidine, diazepane, azepine or homopiperazine. The term "5 to 6 membered heterocyclyl" or "5 to 6 membered heterocycle" is defined accordingly. "4 to 7 membered saturated heterocyclyl" or "4 to 7 membered saturated heterocycle" means a saturated 4 to 7 membered heterocyclyl or heterocycle. Examples are azetidine, oxetane, thietane, tetrahydro furan, tetrahydrothiophene, pyrrolidine, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine, thiadiazolidine, sulfolane, tetrahydropyran, imidazolidine, pyrimidine, piperazine, piperidine, morpholine, triazolidine, tetrazolidine or homopiperazine.

Preferred compounds of formula (I) are those compounds in which one or more of the residues contained therein have the meanings given below, with all combinations of preferred substituent definitions being a subject of the present invention. With respect to all preferred compounds of the formula (I) the present invention also includes all tautomeric and stereoisomeric forms and mixtures thereof in all ratios, and their pharmaceutically acceptable salts. In preferred embodiments of the present invention, the substituents mentioned below independently have the following meaning. Hence, one or more of these substituents can have the preferred or more preferred meanings given below. Preferred compounds are those, wherein

(iii) when R 2 is F; R 3 is C(0)N(R 8 R 8a ); R 8a is H then R 8 is other than 2-phenylethyl and 2-phenoxyethyl; and (iv) when R 2 is F; R 3 is C(0)R 8 then R 8 is other than piperidin-l-yl; and

(v) when R 2 is OCH 3 then R 3 is other than OCH 3 .

8 2 9 2 2

Also preferred compounds are those wherein R is other than T , R is other than T or OT .

Preferably, R 2 is F; CI; CF 3 ; OCH 3 ; or CH 3 . More preferably, R 2 is F; or CI. Also more preferred for R 2 is CI; also more preferred is CF 3 ; also more preferred is CH 3 .

Preferably, R 3 is unsubstituted Ci_ 6 alkyl; OR 8 ; CI; S(0) 2 R 8 ; N(R 8 R 8a ); or N(R 8 )S(0) 2 R 8a . More preferably, R 3 is S(0) 2 R 8 ; or N(R 8 )S(0) 2 R 8a . Preferably, R 3 is OR 8 ; CI; S(0) 2 R 8 ; N(R 8 R 8a ); or N(R 8 )S(0) 2 R 8a . More preferably, R 3 is unsubstituted Ci_ 6 alkyl; N(R 8 R 8a ); CI; S(0) 2 R 8 ; or N(R 8 )S(0) 2 R 8a . More preferably, R 3 is S(0) 2 R 8 ; or N(R 8 )S(0) 2 R 8a . Even more preferably, R 3 is N(R 8 )S(0) 2 R 8a . Preferably, R 8a is unsubstituted C 3 _ 7 cycloalkyl.

Preferably, R 3 is OCH 3 ; CI; S(0) 2 CH 3 ; NH 2 ; NHS(0) 2 CH 3 ; NHS(0) 2 -cyclopropyl; or CH 3 . More preferably, R 3 is CI; S(0) 2 CH 3 ; NH 2 ; NHS(0) 2 CH 3 ; NHS(0) 2 -cyclopropyl; or CH 3 . More preferably, R 3 is S(0) 2 CH 3 ; NHS(0) 2 CH 3 ; or NHS(0) 2 -cyclopropyl.

Preferably, R 4 , R 5 , R 6 are H.

Preferably, R 1 is C(0)R 7 . Preferably, R 7 is unsubstituted C3-7 cycloalkyl, especially cyclopropyl.

Compounds of formula (I) in which some or all of the above-mentioned groups have the preferred meanings are also an object of the present invention.

Further preferred compounds of the present invention are selected from the group consisting of

N-(5-(2,4-dichlorophenyl)-[l,2,4]triazolo[l,5-a]pyridin-2 -yl)cyclopropanecarboxamide;

N-(5-(2-fluoro-4-methoxyphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5 -(4-methoxy-2-(trifluoromethyl)phenyl)- [ 1 ,2,4]triazo lo [ 1 ,5 -a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-chloro-4-methoxyphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(4-amino-2-chlorophenyl)-[l,2,4]triazolo[l,5-a]pyridin- 2-yl)cyclopropanecarboxamide;

N-(5-(2-chloro-4-(methylsulfonamido)phenyl)-[l,2,4]triazo lo[l,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(4-amino-2-fluorophenyl)-[l,2,4]triazolo[l,5-a]pyridin- 2-yl)cyclopropanecarboxamide; N-(5-(2-fluoro-4-(methylsulfonamido)phenyl)-[l,2,4]triazolo[ l,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-fluoro-4-(methylsulfonyl)phenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(4-methoxy-2-methylphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide;

N-(5-(2-chloro-4-(cyclopropylsulfonyl)phenyl)-[l,2,4]triazol o[l,5-a]pyridin-2- yl)cyclopropanecarboxamide; and

N-(5-(2,4-dimethylphenyl)-[l,2,4]triazolo[l,5-a]pyridin-2-yl )cyclopropanecarboxamide.

Prodrugs of the compounds of the present invention are also within the scope of the present invention.

"Prodrug" means a derivative that is converted into a compound according to the present invention by a reaction with an enzyme, gastric acid or the like under a physiological condition in the living body, e.g. by oxidation, reduction, hydrolysis or the like, each of which is carried out enzymatically. Examples of a prodrug are compounds, wherein the amino group in a compound of the present invention is acylated, alkylated or phosphorylated to form, e.g., eicosanoylamino, alanylamino, pivaloyloxymethylamino or wherein the hydroxyl group is acylated, alkylated, phosphorylated or converted into the borate, e.g. acetyloxy, palmitoyloxy, pivaloyloxy, succinyloxy, fumaryloxy, alanyloxy or wherein the carboxyl group is esterified or amidated. These compounds can be produced from compounds of the present invention according to well-known methods. Metabolites of compounds of formula (I) are also within the scope of the present invention.

The term "metabolites" refers to all molecules derived from any of the compounds according to the present invention in a cell or organism, preferably mammal. Preferably the term relates to molecules which differ from any molecule which is present in any such cell or organism under physiological conditions.

The structure of the metabolites of the compounds according to the present invention will be obvious to any person skilled in the art, using the various appropriate methods.

Where tautomerism, e.g. keto-enol tautomerism, of compounds of general formula (I) may occur, the individual forms, e.g. the keto and enol form, are comprised separately and together as mixtures in any ratio. The same applies for stereoisomers, e.g. enantiomers, cis/trans isomers, conformers and the like.

If desired, isomers can be separated by methods well known in the art, e.g. by liquid chromatography. The same applies for enantiomers by using e.g. chiral stationary phases. Additionally, enantiomers may be isolated by converting them into diastereomers, i.e. coupling with an enantiomerically pure auxiliary compound, subsequent separation of the resulting diastereomers and cleavage of the auxiliary residue. Alternatively, any enantiomer of a compound of formula (I) may be obtained from stereoselective synthesis using optically pure starting materials. The compounds of formula (I) may exist in crystalline or amorphous form. Furthermore, some of the crystalline forms of the compounds of formula (I) may exist as polymorphs, which are included within the scope of the present invention. Polymorphic forms of compounds of formula (I) may be characterized and differentiated using a number of conventional analytical techniques, including, but not limited to, X-ray powder diffraction (XPvPD) patterns, infrared (IR) spectra, Raman spectra, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and solid state nuclear magnetic resonance (ssNMR). In case the compounds according to formula (I) contain one or more acidic or basic groups, the invention also comprises their corresponding pharmaceutically or toxicologically acceptable salts, in particular their pharmaceutically utilizable salts. Thus, the compounds of the formula (I) which contain acidic groups can be used according to the invention, for example, as alkali metal salts, alkaline earth metal salts or as ammonium salts. More precise examples of such salts include sodium salts, potassium salts, calcium salts, magnesium salts or salts with ammonia or organic amines such as, for example, ethylamine, ethanolamine, triethanolamine or amino acids. Compounds of the formula (I) which contain one or more basic groups, i.e. groups which can be protonated, can be present and can be used according to the invention in the form of their addition salts with inorganic or organic acids. Examples for suitable acids include hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acids, oxalic acid, acetic acid, tartaric acid, lactic acid, salicylic acid, benzoic acid, formic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, malic acid, sulfaminic acid, phenylpropionic acid, gluconic acid, ascorbic acid, isonicotinic acid, citric acid, adipic acid, and other acids known to the person skilled in the art. If the compounds of the formula (I) simultaneously contain acidic and basic groups in the molecule, the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions). The respective salts according to the formula (I) can be obtained by customary methods which are known to the person skilled in the art like, for example by contacting these with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange with other salts. The present invention also includes all salts of the compounds of the formula (I) which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of pharmaceutically acceptable salts.

Throughout the invention, the term "pharmaceutically acceptable" means that the corresponding compound, carrier or molecule is suitable for administration to humans. Preferably, this term means approved by a regulatory agency such as the EMEA (Europe) and/or the FDA (US) and/or any other national regulatory agency for use in animals, preferably in humans. The present invention furthermore includes all solvates of the compounds according to the invention.

According to the present invention "JAK" comprises all members of the JAK family (e.g. JAK1, JAK2, JAK3, and TYK2).

According to the present invention, the expression "JAK1" or "JAK1 kinase" means "Janus kinase 1". The human gene encoding JAK1 is located on chromosome lp31.3.

According to the present invention, the expression "JAK2" or "JAK2 kinase" means "Janus kinase 2". The human gene encoding JAK2 is located on chromosome 9p24.

According to the present invention, the expression "JAK3" or "JAK3 kinase" means "Janus kinase 3". The gene encoding JAK3 is located on human chromosome 19p 13.1 and it is predominantly in hematopoietic cells.

According to the present invention, the expression "TYK2" or "TYK2 kinase" means "Protein-Tyrosine kinase 2". The JAK3 and TYK2 genes are clustered on chromosome 19p 13.1 and 19pl3.2, respectively. As shown in the examples, compounds of the invention were tested for their selectivity for TYK2 over JAK2 kinases. As shown, all tested compounds bind TYK2 more selectively than, JAK2 (see table 5 below).

Consequently, the compounds of the present invention as mentioned above are considered to be useful for the prevention or treatment of diseases and disorders associated with TYK2, for example immunological, inflammatory, autoimmune, or allergic disorders, transplant rejection, Graft-versus-Host-Disease or proliferative diseases such as cancer.

In a preferred embodiment, the compounds of the present invention are selective TYK2 inhibitors.

The compounds of the present invention may be further characterized by determining whether they have an effect on TYK2, for example on its kinase activity (Fridman et al 2010. J. Immunology 2010 184(9):5298-307).

A cell-based assay was described to assess the inhibitory activity of small molecule drugs toward TYK2-dependent signal transduction (Bacon et al 1995. PNAS 92, 7307-731 1; WO2009155551). The present invention provides pharmaceutical compositions comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof as active ingredient together with a pharmaceutically acceptable carrier, optionally in combination with one or more other pharmaceutical compositions. "Pharmaceutical composition" means one or more active ingredients, and one or more inert ingredients that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients. Accordingly, the pharmaceutical compositions of the present invention encompass any composition made by admixing a compound of the present invention and a pharmaceutically acceptable carrier.

The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, including but not limited to peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered orally. Saline and aqueous dextrose are preferred carriers when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions are preferably employed as liquid carriers for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained- release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the therapeutic, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

A pharmaceutical composition of the present invention may comprise one or more additional compounds as active ingredients like one or more compounds of formula (I) not being the first compound in the composition or other JAK inhibitors. Further bioactive compounds may be steroids, leukotriene antagonists, cyclosporine or rapamycin.

The compounds of the present invention or pharmaceutically acceptable salt(s) thereof and the other pharmaceutically active agent(s) may be administered together or separately and, when administered separately, this may occur separately or sequentially in any order. When combined in the same formulation it will be appreciated that the two compounds must be stable and compatible with each other and the other components of the formulation. When formulated separately they may be provided in any convenient formulation, conveniently in such manner as are known for such compounds in the art.

It is further included within the present invention that the compound of formula (I), or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising a compound of formula (I) is administered in combination with another drug or pharmaceutically active agent and/or that the pharmaceutical composition of the invention further comprises such a drug or pharmaceutically active agent. In this context, the term "drug or pharmaceutically active agent" includes a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician. "Combined" or "in combination" or "combination" should be understood as a functional coadministration, wherein some or all compounds may be administered separately, in different formulations, different modes of administration (for example subcutaneous, intravenous or oral) and different times of administration. The individual compounds of such combinations may be administered either sequentially in separate pharmaceutical compositions as well as simultaneously in combined pharmaceutical compositions.

For example, in rheumatoid arthritis therapy, combination with other chemotherapeutic or antibody agents is envisaged. Suitable examples of pharmaceutically active agents which may be employed in combination with the compounds of the present invention and their salts for rheumatoid arthritis therapy include: immunosuppresants such as amtolmetin guacil, mizoribine and rimexolone; anti-TNFa agents such as etanercept, infliximab, Adalimumab, Anakinra, Abatacept, Rituximab; tyrosine kinase inhibitors such as leflunomide; kallikrein antagonists such as subreum; interleukin 11 agonists such as oprelvekin; interferon beta 1 agonists; hyaluronic acid agonists such as NRD-101 (Aventis); interleukin 1 receptor antagonists such as anakinra; CD8 antagonists such as amiprilose hydrochloride; beta amyloid precursor protein antagonists such as reumacon; matrix metalloprotease inhibitors such as cipemastat and other disease modifying anti-rheumatic drugs (DMARDs) such as methotrexate, sulphasalazine, cyclosporin A, hydroxychoroquine, auranofm, aurothioglucose, gold sodium thiomalate and penicillamine.

In particular, the treatment defined herein may be applied as a sole therapy or may involve, in addition to the compounds of the invention, conventional surgery or radiotherapy or chemotherapy. Accordingly, the compounds of the invention can also be used in combination with existing therapeutic agents for the treatment proliferative diseases such as cancer. Suitable agents to be used in combination include:

(i) antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology such as alkylating agents (for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan and nitrosoureas); antimetabolites (for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea and gemcitabine); antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids like paclitaxel and taxotere); and topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan and camptothecins);

(ii) cytostatic agents such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene and iodoxyfene), oestrogen receptor down regulators (for example fulvestrant), antiandrogens (for example bicalutamide, flutamide, nilutamide and cyproterone acetate), LHRH antagonists or LHRH agonists (for example goserelin, leuprorelin and buserelin), progestogens (for example megestrol acetate), aromatase inhibitors (for example as anastrozole, letrozole, vorazole and exemestane) and inhibitors of 5a-reductase such as finasteride;

(iii) anti-invasion agents (for example c-Src kinase family inhibitors like 4-(6-chloro- 2,3 - methylenedioxyanilino)-7- [2-(4-methylpiperazin- 1 -yl)ethoxy] -5 -tetrahydropyran- 4-yloxy- quinazoline (AZD0530) and N-(2-chloro-6-methylphenyl)-2-{6-[4-(2- hydroxyethyl)piperazin-l-yl] -2-methylpyrimidin- 4-ylamino } thiazo le-5 -carboxamide

(dasatinib, BMS-354825), and metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function);

(iv) inhibitors of growth factor function: for example such inhibitors include growth factor antibodies and growth factor receptor antibodies (for example the anti-erbB2 antibody trastuzumab [Herceptin™] and the anti-erbBl antibody cetuximab [C225]); such inhibitors also include, for example, tyrosine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example EGFR family tyrosine kinase inhibitors such as N-(3- chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy)quin azolin-4-amine (gefitinib, ZD 1839), A/-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-am ine (erlotinib, OSI-774) and 6-acrylamido-A/-(3-chloro-4-fluorophenyl)-7-(3- morpholinopropoxy)- quinazolin-4-amine (CI 1033) and erbB2 tyrosine kinase inhibitors such as lapatinib), inhibitors of the hepatocyte growth factor family, inhibitors of the platelet-derived growth factor family such as imatinib, inhibitors of serine/threonine kinases (for example Ras/Raf signalling inhibitors such as farnesyl transferase inhibitors, for example sorafenib (BAY 43- 9006)) and inhibitors of cell signalling through MEK and/or Akt kinases;

(v) antiangiogenic agents such as those which inhibit the effects of vascular endothelial growth factor, for example the anti-vascular endothelial cell growth factor antibody bevacizumab (Avastin™) and VEGF receptor tyrosine kinase inhibitors such as 4-(4-bromo- 2-fiuoroanilino)-6-methoxy-7-( 1 -methylpiperidin-4-ylmethoxy)quinazoline (ZD6474; Example 2 within WO 01/32651), 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3- pyrrolidin-l-ylpropoxy)quinazoline (AZD2171; Example 240 within WO 00/47212), vatalanib (PTK787; WO 98/35985) and SU1 1248 (sunitinib; WO 01/60814), and compounds that work by other mechanisms (for example linomide, inhibitors of integrin ανβ3 function and angio statin);

(vi) vascular damaging agents such as combretastatin A4 and compounds disclosed in International Patent Application WO 99/02166;

(vii) antisense therapies, for example those which are directed to the targets listed above, such as ISIS 2503, an anti-ras antisense agent; (viii) gene therapy approaches, including approaches to replace aberrant genes such as aberrant p53 or aberrant BRCA1 or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches such as those using cytosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme and approaches to increase patient tolerance to chemotherapy or radiotherapy such as multi-drug resistance gene therapy; and (ix) immunotherapeutic approaches, including ex- vivo and in- vivo approaches to increase the immunogenicity of patient tumour cells, such as transfection with cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor, approaches to decrease T-cell anergy, approaches using transfected immune cells such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumour cell lines and approaches using anti-idiotypic antibodies.

Further combination treatments are described in WO-A 2009/008992 and WO-A 2007/107318, incorporated herein by reference. Accordingly, the individual compounds of such combinations may be administered either sequentially in separate pharmaceutical compositions as well as simultaneously in combined pharmaceutical compositions. The pharmaceutical compositions of the present invention include compositions suitable for oral, rectal, topical, parenteral (including subcutaneous, intramuscular, and intravenous), ocular (ophthalmic), pulmonary (nasal or buccal inhalation), or nasal administration, although the most suitable route in any given case will depend on the nature and severity of the conditions being treated and on the nature of the active ingredient. They may be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy.

In practical use, the compounds of formula (I) can be combined as the active ingredient in intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral (including intravenous). In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as powders, hard and soft capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or non-aqueous techniques. Such compositions and preparations should contain at least 0.1 percent of active compound. The percentage of active compound in these compositions may, of course, be varied and may conveniently be between about 2 percent to about 60 percent of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that an effective dosage will be obtained. The active compounds can also be administered intranasally, for example, as liquid drops or spray. The tablets, pills, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin. When a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as fatty oil.

Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar or both. A syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.

Compounds of formula (I) may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant such as hydroxypropyl-cellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.

Any suitable route of administration may be employed for providing a mammal, especially a human, with an effective dose of a compound of the present invention. For example, oral, rectal, topical, parenteral, ocular, pulmonary, nasal, and the like may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like. Preferably compounds of formula (I) are administered orally. The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration, the condition being treated and the severity of the condition being treated. Such dosage may be ascertained readily by a person skilled in the art.

A therapeutically effective amount of a compound of the present invention will normally depend upon a number of factors including, for example, the age and weight of the animal, the precise condition requiring treatment and its severity, the nature of the formulation, and the route of administration. However, an effective amount of a compound of formula (I) for the treatment of an inflammatory disease, for example rheumatoid arthritis (RA), will generally be in the range of 0.1 to 100 mg/kg body weight of recipient (mammal) per day and more usually in the range of 1 to 10 mg/kg body weight per day. Thus, for a 70 kg adult mammal, the actual amount per day would usually be from 70 to 700 mg and this amount may be given in a single dose per day or more usually in a number (such as two, three, four, five or six) of sub-doses per day such that the total daily dose is the same. An effective amount of a pharmaceutically acceptable salt, prodrug or metabolite thereof, may be determined as a proportion of the effective amount of the compound of formula (I) per se. It is envisaged that similar dosages would be appropriate for treatment of the other conditions referred to above. As used herein, the term "effective amount" means that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought, for instance, by a researcher or clinician.

Furthermore, the term "therapeutically effective amount" means any amount which, as compared to a corresponding subject who has not received such amount, results in improved treatment, healing, prevention, or amelioration of a disease, disorder, or side effect, or a decrease in the rate of advancement of a disease or disorder. The term also includes within its scope amounts effective to enhance normal physiological function. Another aspect of the present invention is a compound of the present invention or a pharmaceutically acceptable salt thereof for use as a medicament as mentioned above. Another aspect of the present invention is a compound of the present invention or a pharmaceutically acceptable salt thereof for use in a method of treating or preventing a disease or disorder associated with TYK2 as mentioned above. In the context of the present invention, a disease or disorder associated with TYK2 is defined as a disease or disorder where TYK2 is involved.

In a preferred embodiment, wherein the diseases or disorder is associated with TYK2 is an immunological, inflammatory, autoimmune, or allergic disorder or disease of a transplant rejection or a Graft-versus host disease.

Consequently, another aspect of the present invention is a compound or a pharmaceutically acceptable salt thereof of the present invention for use in a method of treating or preventing an immunological, inflammatory, autoimmune, or allergic disorder or disease of a transplant rejection or a Graft-versus host disease.

Inflammation of tissues and organs occurs in a wide range of disorders and diseases and in certain variations, results from activation of the cytokine family of receptors. Exemplary inflammatory disorders associated with activation of TYK2 include, in a non- limiting manner, skin inflammation due radiation exposure, asthma, allergic inflammation and chronic inflammation.

In a preferred embodiment, the inflammatory disease is an eye disease. Dry eye syndrome (DES, also known as keratoconjunctivitis sicca) is one of the most common problems treated by eye physicians. Sometimes DES is referred to as dysfunctional tear syndrome (Jackson, 2009. Canadian Journal Ophthalmology 44(4), 385-394). DES affects up to 10% of the population between the ages of 20 to 45 years, with this percentage increasing with age. Although a wide variety of artificial tear products are available, these products provide only transitory relief of symptoms. As such, there is a need for agents, compositions and therapeutic methods to treat dry eye.

As used herein, "dry eye disorder" is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolality of the tear film and inflammation of the ocular surface." (Lemp, 2007. "The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop", The Ocular Surface, 5(2), 75-92). Dry eye is also sometimes referred to as keratoconjunctivitis sicca. In some embodiments, the treatment of the dry eye disorder involves ameliorating a particular symptom of dry eye disorder, such as eye discomfort, visual disturbance, tear film instability, tear hyperosmolarity, and inflammation of the ocular surface.

Uveitis is the most common form of intraocular inflammation and remains a significant cause of visual loss. Current treatments for uveitis employs systemic medications that have severe side effects and are globally immunosuppressive. Clinically, chronic progressive or relapsing forms of non-infectious uveitis are treated with topical and/or systemic corticosteroids. In addition, macro lides such as cyclosporine and rapamycin are used, and in some cases cytotoxic agents such as cyclophosphamide and chlorambucil, and antimetabolites such as azathioprine, methotrexate, and leflunomide (Srivastava et al, 2010. Uveitis: Mechanisms and recent advances in therapy. Clinica Chimica Acta, doi: 10.1016/j.cca.2010.04.017). Further eye diseases, combination treatments and route of administration are described for example in WO-A 2010/039939, which is hereby incorporated herein by reference.

According to the present invention, an autoimmune disease is a disease which is at least partially provoked by an immune reaction of the body against own components, for example proteins, lipids or DNA. Examples of organ-specific autoimmune disorders are insulin- dependent diabetes (Type I) which affects the pancreas, Hashimoto's thyroiditis and Graves' disease which affect the thyroid gland, pernicious anemia which affects the stomach, Cushing's disease and Addison's disease which affect the adrenal glands, chronic active hepatitis which affects the liver; polycystic ovary syndrome (PCOS), celiac disease, psoriasis, inflammatory bowel disease (IBD) and ankylosing spondylitis. Examples of non-organ- specific autoimmune disorders are rheumatoid arthritis, multiple sclerosis, systemic lupus and myasthenia gravis. Type I diabetes ensues from the selective aggression of autoreactive T-cells against insulin secreting beta-cells of the islets of Langerhans.

In a preferred embodiment, the autoimmune disease is selected from the group consisting of rheumatoid arthritis (RA), inflammatory bowel disease (IBD; Crohns's disease and ulcerative colitis), psoriasis, systemic lupus erythematosus (SLE), and multiple sclerosis (MS).

Rheumatoid arthritis (RA) is a chronic progressive, debilitating inflammatory disease that affects approximately 1% of the world's population. RA is a symmetric polyarticular arthritis that primarily affects the small joints of the hands and feet. In addition to inflammation in the synovium, the joint lining, the aggressive front of tissue called pannus invades and destroys local articular structures (Firestein 2003, Nature 423:356-361).

Inflammatory bowel disease (IBD) is characterized by a chronic relapsing intestinal inflammation. IBD is subdivided into Crohn's disease and ulcerative colitis phenotypes. Crohn disease involves most frequently the terminal ileum and colon, is transmural and discontinuous. In contrast, in ulcerative colitis, the inflammation is continuous and limited to rectal and colonic mucosal layers. In approximately 10% of cases confined to the rectum and colon, definitive classification of Crohn's disease or ulcerative colitis cannot be made and are designated 'indeterminate colitis.' Both diseases include extraintestinal inflammation of the skin, eyes, or joints. Neutrophil-induced injuries may be prevented by the use of neutrophils migration inhibitors (Asakura et al., 2007, World J Gastroenterol. 13(15):2145-9).

Psoriasis is a chronic inflammatory dermatosis that affects approximately 2% of the population. It is characterized by red, scaly skin patches that are usually found on the scalp, elbows, and knees, and may be associated with severe arthritis. The lesions are caused by abnormal keratinocyte proliferation and infiltration of inflammatory cells into the dermis and epidermis (Schon et al, 2005, New Engl. J. Med. 352: 1899-1912). Systemic lupus erythematosus (SLE) is a chronic inflammatory disease generated by T cell- mediated B-cell activation, which results in glomerulonephritis and renal failure. Human SLE is characterized at early stages by the expansion of long-lasting autoreactive CD4+ memory cells (D'Cruz et al, 2007, Lancet 369(9561):587-596). Multiple sclerosis (MS) is an inflammatory and demyelating neurological disease. It has bee considered as an autoimmune disorder mediated by CD4+ type 1 T helper cells, but recent studies indicated a role of other immune cells (Hemmer et al, 2002, Nat. Rev. Neuroscience 3, 291-301).

Transplant rejection (allograft transplant rejection) includes, without limitation, acute and chronic allograft rejection following for example transplantation of kidney, heart, liver, lung, bone marrow, skin and cornea. It is known that T cells play a central role in the specific immune response of allograft rejection. Hyperacute, acute and chronic organ transplant rejection may be treated. Hyperacute rejection occurs within minutes of transplantation. Acute rejection generally occurs within six to twelve months of the transplant. Hyperacute and acute rejections are typically reversible where treated with immunosuppressant agents. Chronic rejection, characterized by gradual loss of organ function, is an ongoing concern for transplant recipients because it can occur anytime after transplantation.

Graft-versus-host disease (GVDH) is a major complication in allogeneic bone marrow transplantation (BMT). GVDH is caused by donor T cells that recognize and react to recipient differences in the histocompatibility complex system, resulting in significant morbidity and mortality.

In a further preferred embodiment, the disease or disorder associated with TYK2 is a proliferative disease, especially cancer as mentioned above.

Diseases and disorders associated especially with TYK2 are proliferative disorders or diseases, especially cancer.

Therefore, another aspect of the present invention is a compound or a pharmaceutically acceptable salt thereof of the present invention for use in a method of treating or preventing a proliferative disease, especially cancer.

Cancer comprises a group of diseases characterized by uncontrolled growth and spread of abnormal cells. All types of cancers generally involve some abnormality in the control of cell growth, division and survival, resulting in the malignant growth of cells. Key factors contributing to said malignant growth of cells are independence from growth signals, insensitivity to anti-growth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion and metastasis, and genome instability (Hanahan and Weinberg, 2000. The Hallmarks of Cancer. Cell 100, 57-70). Typically, cancers are classified as hematological cancers (for example leukemias and lymphomas) and solid cancers such as sarcomas and carcinomas (for example cancers of the brain, breast, lung, colon, stomach, liver, pancreas, prostate, ovary).

The TYK2 inhibitors of the present invention may also be useful in treating certain malignancies, including skin cancer and hematological malignancy such as lymphomas and leukemias.

Yet another aspect of the present invention is the use of a compound of the present invention or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment or prophylaxis of diseases and disorders associated with TYK2.

Yet another aspect of the present invention is the use of a compound of the present invention or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing an immunological, inflammatory, autoimmune, or allergic disorder or disease or a transplant rejection or a Graft-versus host disease.

Yet another aspect of the present invention is the use of a compound of the present invention or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing a proliferative disease, especially cancer.

In the context of these uses of the invention, diseases and disorders associated with TYK2 are as defined above.

Yet another aspect of the present invention is a method for treating, controlling, delaying or preventing in a mammalian patient in need thereof one or more conditions selected from the group consisting of diseases and disorders associated with TYK2, wherein the method comprises the administration to said patient a therapeutically effective amount of a compound according to present invention or a pharmaceutically acceptable salt thereof. Yet another aspect of the present invention is a method for treating, controlling, delaying or preventing in a mammalian patient in need thereof one or more conditions selected from the group consisting of an immunological, inflammatory, autoimmune, or allergic disorder or disease or a transplant rejection or a Graft-versus host disease, wherein the method comprises the administration to said patient a therapeutically effective amount of a compound according to present invention or a pharmaceutically acceptable salt thereof.

Yet another aspect of the present invention is a method for treating, controlling, delaying or preventing in a mammalian patient in need thereof a proliferative disease, especially cancer, wherein the method comprises the administration to said patient a therapeutically effective amount of a compound according to present invention or a pharmaceutically acceptable salt thereof.

In the context of these methods of the invention, diseases and disorders associated with TYK2 are as defined above.

As used herein, the term "treating" or "treatment" is intended to refer to all processes, wherein there may be a slowing, interrupting, arresting, or stopping of the progression of a disease, but does not necessarily indicate a total elimination of all symptoms.

Exemplary routes for the preparation of compounds of the present invention are described below. It is clear to a practitioner in the art to combine or adjust such routes especially in combination with the introduction of activating or protective chemical groups.

A general route for the preparation of compounds according to present invention is outlined in Schemes 1 and 2, where - by way of example only - R 4 , R 5 , R 6 are H, R = R 1 and Ar =

Scheme 1

^— NH 2

Ar

Scheme 2 It will be appreciated that novel intermediates described herein form another embodiment of the present invention.

EXAMPLES Analytical Methods

NMR spectra were obtained on a Brucker dpx400.

LCMS (Method A) was carried out on a uPLC-SQD using a Waters Acquity UPLC BEH CI 8, 2.1 x 30 mm, 1.7 microns column. Column flow was 0.5 mL/min and solvents used were water and acetonitrile (0.1% formic acid) with photodiode array detection between 210 and 400 nm. Time (min) %A %B

0.00 95.0 5.0

0.20 95.0 5.0

1.00 5.0 95.0

1.50 5.0 95.0

1.70 95.0 5.0

2.70 STOP

Alternatively LCMS (Method B) was carried out on an Agilent 1100 using a Gemini CI 8, 4.6 x 150 mm, 5 microns column. Column flow was 1.2 mL/min and solvents used were water and acetonitrile (0.1% formic acid). Detection wavelengths were 254 and 210 nm.

Table 1: Abbreviations

Boc tert. -Butyloxycarbonyl

CH 3 CN Acetonitrile

d Doublet

dd Doubledoublet

DCM Dichloromethane

DIPEA N,N-Diisopropylethylamine

DME 1 ,2-Dimethoxyethane

DMF N,N-Dimethylformamide

EDCI l-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride)

EtOAc Ethyl acetate

EtOH Ethanol

h Hours

H 2 0 Water

L Litre

m Multiplet

MeOH methanol

mL Millilitres

br Broad NEt 3 Triethyl amine

NH 2 OH HCI Hydroxylamine hydrochloride

Pd(dppf)(Cl) 2 [l, bis(diphenylphosphino)ferrocene] dichloro-palladium (II) q Quartet

quin Quintet

rt Room temperature

RT Retention time

s Singlet

sept Septet

t Triplet

THF Tetrahydrofuran

The following methods were used for the preparation of compounds of formula (I).

Example 1 : N-(5-(2-fluoro-4-methoxyphenyl)-[ 1,2, 4]triazolo[ 1, 5-a]pyridin-2- yl) cyclopropane carboxamide

Step (i)

To a solution of 2-amino-6-bromo pyridine (1) (50g, 289mmol) in EtOAc (250mL) cooled to 5°C was added ethoxycarbonyl isothiocyanate (49mL, 434mmol) dropwise over 15min. The reaction mixture was then warmed to 50°C and stirred for 24h. Addition of hexane (250mL) resulted in precipitation of a white solid. The solid was then collected by filtration, thoroughly washed with petrol (3 x lOOmL) and air-dried to afford the desired product as a white solid (74.7g, 85%). LCMS (method A), (M+H + ) 304/306, RT = 1.13min. Step (ii)

To a suspension of hydroxylamine hydrochloride (85.5g, 1230mmol) in EtOH/MeOH (1 : 1, 400mL) was added DIPEA (129mL, 738mmol) and the mixture was stirred at rt (20°C) for lh. l-(6-Bromo-pyridin-2-yl)-3-carboethoxy-thiourea (74.7g, 246mmol) was then added and the mixture slowly heated to reflux (Note: bleach trap required to quench H 2 S evolved). After 3h at reflux the mixture was allowed to cool overnight. The resulting precipitate was removed by filtration and washed thoroughly with water followed by diethylether and air-dried to afford the desired compound as a white solid (41g, 78%). LCMS (method A), (M+H + ) 213/215, RT = 0.70min. Step (Hi)

5-bromo-[l,2,4]triazolo[l,5-a]pyridin-2-amine (10.7g, 50mmol) was suspended in acetonitrile (200mL) and DIPEA (9.6mL, 55mmol). Cyclopropanecarbonyl chloride (5.0mL, 55mmol) and 4-(Dimethylamino)pyridine (287mg, 2.35mmol) were added in one portion and the suspension heated at 80°C for 18h. After this time the solvents were removed in vacuo and the resulting solid was stirred in ammonia/methanol (2M) for 2h at rt. The solvents were removed in vacuo and the resulting solid was triturated, filtered and washed with diethyl ether (3 x lOOmL) to afford the desired compound as a white solid (8.12g, 58% ). LCMS (method A), (M+H + ) 281/283, RT = 0.78min. Step (iv)

N-(5-bromo-[l,2,4]triazolo[l,5-a]pyridin-2-yl)cyclopropaneca rboxamide (150mg, 0.53mmol), (2-fluoro-4-methoxyphenyl)boronic acid (91mg, 0.53mmol) and [l,l 'bis(diphenylphosphino)ferrocene] dichloro-palladium (II) complex with DCM (4mg, 0.005 mmol) were heated, under microwave irradiation at 115 °C for 15 minutes in 2M Na 2 C0 3 (1.06mL), EtOH (0.75mL) and 1,4-dioxane (3mL). After this time the solvent was removed in vacuo and the residue portioned between DCM and 1M HC1. The phases were separated and the aqueous phase washed with further DCM. The combined organic extracts were washed with brine, dried over MgS0 4 and the solvent removed in vacuo to afford the title compound as a white solid. 1H NMR (d 6 -DMSO) δ 10.99 (s, 1H), 7.76-7.62 (m, 3H), 7.17 (dd 1H), 7.05 (dd, 1H), 6.97 (dd, 1H), 3.87 (s, 3H), 1.99 (br s, 1H), 0.79 (d, 4H); LCMS (method B), (M+H + ) 327, RT = 8.19min.

Example 2: N-(5-(2,4-dichlorophenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using 2,4-dichlorobenzene boronic acid. 1H NMR (d 6 - DMSO) δ 11.03 (s, 1H), 7.88 (d, 1H), 7.82-7.62 (m, 4H), 7.19 (dd, 1H), 1.96 (br s, 1H), 0.78 (d, 4H); LCMS (method B), (M+H + ) 347, RT = 9.16min. Example 3: N-(5-(4-methoxy-2-(trifluoromethyl)phenyl)-[l,2,4]triazolo[l ,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using (2-trifluoromethyl-4-methoxyphenyl)boronic acid. 1H NMR (dg-DMSO) δ 11.00 (s, 1H), 7.77-7.68 (m, 2H), 7.62 (d, 1H), 7.49-7.31 (m, 2H), 7.08 (dd, 1H), 3.94 (s, 3H), 1.95 (br s, 1H), 0.77 (d, 4H); LCMS (method B), (M+H + ) 377, RT = 8.89min.

Example 4: N-(5-(2-chloro-4-methoxyphenyl)-[l,2,4]triazolo[l,5-a]pyridi n-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using (2-chloro-4-methoxyphenyl)boronic acid. 1H NMR (de-DMSO) δ 10.99 (s, 1H), 7.76-7.62 (m, 3H), 7.17 (dd, 1H), 7.05 (dd, 1H), 6.97 (dd, 1H), 3.87 (s, 3H), 1.99 (br s, 1H), 0.79 (d„ 4H); LCMS (method B), (M+H + ) 343, RT = 8.54min.

Example 5: N-(5-(2-fluoro-4-(methylsulfonyl)phenyl)-[l,2,4]triazolo[l,5 -a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using (2-fluoro-4-(methylsulfonyl)phenyl)boronic acid, the title compound was purified by preparative LCMS. 1H NMR (d 6 -DMSO) δ 11.01 (s, 1H), 10.39 (s, 1H), 7.81 - 7.62 (m, 3H), 7.19 (dd, 3H), 3.18 (s, 3H), 1.99 (br s, 1H), 0.79 (d, 4H); LCMS (method B), (M+H + ) 375, RT = 6.90min.

Example 6: N-(5-(4-amino-2-chlorophenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- l)cyclopropanecarboxamide

Prepared according to Example 1 using 4-amino-2-chloro-phenyl boronic acid, pinacol ester The title compound was purified by preparative LCMS. 1H NMR (d 6 -DMSO) δ 10.95 (s, 1H), 7.69 - 7.63 (m, 2H), 7.21 (d, 1H), 7.07 - 7.00 (m, 1H), 6.75 (d, 1H), 6.62 (dd, 1H), 5.77 (d, 2H), 1.99 (br s, 1H), 0.84 - 0.71 (m, 4H); LCMS (method B), (M+H + ) 328, RT = 7.19min.

Example 7: N-(5-(4-amino-2-fluorophenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using 4-amino-2-fluorophenyl boronic acid pinacol ester. The title compound was purified by preparative LCMS. 1H NMR (d 6 -DMSO) δ 11.06 (s, 1H), 8.07-7.95 (m, 3H), 7.85-7.75 (m, 2H), 7.33 (dd, 1H), 3.40 (s, 3H), 1.97 (br s, 1H), 0.83- 0.76 (m, 4H); LCMS (method B), (M+H + ) 312, RT = 6.78min.

Example 8: N-(5-(2-chloro-4-(methylsulfonamido)phenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide

N-(5-(4-amino-2-chlorophenyl)-[l,2,4]triazolo[l,5-a]pyrid in-2-yl)cyclopropanecarboxamide (Example 6) (60mg, 0.18mmol) was suspended in pyridine (2mL), methanesulfonyl chloride (Ιόμί, 0.20mmol) was added and the reaction was stirred at rt for 6h. Water (lOmL) was added and the resulting precipiate was collected by filtration and washed with water (2 x 5mL) and diethyl ether (2 x lOmL) to afford the title compound as a white solid. 1H NMR (de-DMSO) δ 11.01 (s, 1H), 10.33 (s, 1H), 7.78-7.69 (m, 2H), 7.59 (d, 1H), 7.41 (d, 1H), 7.31 (dd, 1H), 7.14 (dd, 1H), 3.17 (s, 3H), 1.97 (br s, 1H), 0.78 (d, 4H); LCMS (method B), (M+H + ) 406, RT = 7.26min. Example 9: N-(5-(2-fluoro-4-(methylsulfonamido)phenyl)-[l,2,4]triazolo[ l,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 8 using N-(5-(4-amino-2-fluorophenyl)-[l,2,4]triazolo[l,5- a]pyridin-2-yl)cyclopropanecarboxamide (Example 8). 1H NMR (d 6 -DMSO) δ 11.01 (s, 1H), 10.39 (s, 1H), 7.81-7.62 (m, 3H), 7.19 (dd, 3H), 3.18 (s, 3H), 1.99 (br s, 1H), 0.79 (d, 4H); LCMS (method B), (M+H + ) 390, RT = 6.96min.

Example 10: N-(5-(4-methoxy-2-methylphenyl)-[ 1 ,2,4]triazolo[ 1 ,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using (2-methyl-4-methoxyphenyl)boronic acid. The title compound was purified by preparative HPLC. 1H NMR (d 6 -DMSO) δ 7.68 (dd, 1H), 7.62 (dd, 1H), 7.27 (d, 1H), 7.00 (dd, 1H), 6.88 (d, 1H), 6.85 (dd, 1H), 3.82 (s, 3H), 2.08 (s, 3H), 1.83 (s, 1H), 0.99 - 0.78 (m, 4H); LCMS (method B), (M+H + ) 323, RT = 7.94min. Example 11: N-(5-(2-chloro-4-(cyclopropylsulfonyl)phenyl)-[l,2,4]triazol o[l,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 8 using cyclopropanesulfonyl chloride. The title compound was purified by preparative HPLC. LCMS (method B), (M+H + ) 432, RT = 7.80 min.

Example 12: N-(5-(2,4-dimethylphenyl)-[l,2,4]triazolo[l,5-a]pyridin-2- yl)cyclopropanecarboxamide

Prepared according to Example 1 using (2,4-dimethylphenyl)boronic acid. The title compound was purified by preparative HPLC. LCMS (method B), (M+H + ) 307, RT = 9.02 min.

Biology Assays

Determination of the effect of the compounds according to the invention on TYK2

The compounds of the present invention as described in the previous examples were tested in a Kinobeads™ assay as described for ZAP-70 (WO-A 2007/137867). Briefly, test compounds (at various concentrations) and the affinity matrix with the immobilized aminopyrido- pyrimidine ligand 24 were added to cell lysate aliquots and allowed to bind to the proteins in the lysate sample. After the incubation time the beads with captured proteins were separated from the lysate. Bound proteins were then eluted and the presence of TYK2 and JAK2 was detected and quantified using specific antibodies in a dot blot procedure and the Odyssey infrared detection system. Dose response curves for individual kinases were generated and IC 50 values calculated. Kinobeads™ assays have been previously described (WO-A 2007/137867; WO-A 2006/134056).

Protocols

Washing of affinity matrix

The affinity matrix was washed two times with 15mL of lx DP buffer containing 0.2% NP40 (IGEPAL® CA-630, Sigma, #13021) and then resuspended in lxDP buffer containing 0.2% NP40 (3% beads slurry).

5xDP buffer: 250mM Tris-HCl pH 7.4, 25% Glycerol, 7.5mM MgCl 2 , 750mM NaCl, 5mM Na 3 V0 4 ; filter the 5xDP buffer through a 0.22μιη filter and store in aliquots at -80°C. The 5xDP buffer is diluted with H 2 0 to lxDP buffer containing ImM DTT and 25mM NaF. Preparation of test compounds

Stock solutions of test compounds were prepared in DMSO. In a 96 well plate 30μΙ, solution of diluted test compounds at 5mM in DMSO were prepared. Starting with this solution a 1 :3 dilution series (9 steps) was prepared. For control experiments (no test compound) a buffer containing 2% DMSO was used.

Cell culture and preparation of cell lysates

Molt4 cells (ATCC catalogue number CRL-1582) and Ramos cells (ATCC catalogue number CRL-1596) were grown in 1L Spinner flasks (Integra Biosciences, #182101) in suspension in RPMI 1640 medium (Invitrogen, #21875-034) supplemented with 10% Fetal Bovine Serum (Invitrogen) at a density between 0.15 x 10 6 and 1.2 x 10 6 cells/mL. Cells were harvested by centrifugation, washed once with 1 x PBS buffer (Invitrogen, #14190-094) and cell pellets were frozen in liquid nitrogen and subsequently stored at -80°C. Cells were homogenized in a Potter S homogenizer in lysis buffer: 50mM Tris-HCl, 0.8% NP40, 5% glycerol, 150mM NaCl, 1.5mM MgCl 2 , 25 mM NaF, ImM sodium vanadate, lmM DTT, pH 7.5. One complete EDTA-free tablet (protease inhibitor cocktail, Roche Diagnostics, 1873580) per 25mL buffer was added. The material was dounced 10 times using a mechanized POTTER S, transferred to 50mL falcon tubes, incubated for 30 minutes on ice and spun down for 10 minutes at 20,000 g at 4°C (10,000 rpm in Sorvall SLA600, precooled). The supernatant was transferred to an ultracentrifuge (UZ)-polycarbonate tube (Beckmann, 355654) and spun for lhour at lOO.OOOg at 4°C (33.500 rpm in ΤΪ50.2, precooled). The supernatant was transferred again to a fresh 50mL falcon tube, the protein concentration was determined by a Bradford assay (BioRad) and samples containing 50mg of protein per aliquot were prepared. The samples were immediately used for experiments or frozen in liquid nitrogen and stored frozen at -80°C.

Dilution of cell lysate

Cell lysate (approximately 50mg protein per plate) was thawed in a water bath at room temperature and then stored on ice. To the thawed cell lysate lxDP 0.8% NP40 buffer containing protease inhibitors (1 tablet for 25mL buffer; EDTA-free protease inhibitor cocktail; Roche Diagnostics 1873580) was added in order to reach a final protein concentration of lOmg/mL total protein. The diluted cell lysate was stored on ice. Mixed Molt4/Ramos lysate was prepared by combining one volume of Molt4 lysate and two volumes of Ramos lysate (ratio 1 :2). Incubation of lysate with test compound and affinity matrix

To a 96 well filter plate (Multiscreen HTS, BV Filter Plates, Millipore #MSBVN1250) were added per well: ΙΟΟμί affinity matrix (3% beads slurry), 3μί of compound solution, and 50μί of diluted lysate. Plates were sealed and incubated for 3 hours in a cold room on a plate shaker (Heidolph tiramax 1000) at 750rpm. Afterwards the plate was washed 3 times with 230μί washing buffer (lxDP 0.4% NP40). The filter plate was placed on top of a collection plate (Greiner bio-one, PP-microplate 96 well V-shape, 65120) and the beads were then eluted with 20μΙ. of sample buffer (100 mM Tris, pH 7.4, 4% SDS, 0.00025% bromophenol blue, 20%) glycerol, 50 mM DTT). The eluate was frozen quickly at -80°C and stored at -20°C.

Detection and quantification of eluted kinases

The kinases in the eluates were detected and quantified by spotting on nitrocellulose membranes and using a first antibody directed against the kinase of interest and a fluorescently labelled secondary antibody (anti-rabbit IRDye™ antibody 800 (Licor, # 926- 32211). The Odyssey Infrared Imaging system from LI-COR Biosciences (Lincoln, Nebraska, USA) was operated according to instructions provided by the manufacturer (Schutz-Geschwendener et al., 2004. Quantitative, two-color Western blot detection with infrared fluorescence. Published May 2004 by LI-COR Biosciences, www.licor.com).

After spotting of the eluates the nitrocellulose membrane (BioTrace NT; PALL, #BTNT30R) was first blocked by incubation with Odyssey blocking buffer (LICOR, 927-40000) for 1 hour at room temperature. Blocked membranes were then incubated for 16 hours at the temperature shown in table 4 with the first antibody diluted in Odyssey blocking buffer (LICOR #927-40000). Afterwards the membrane was washed twice for 10 minutes with PBS buffer containing 0.2% Tween 20 at room temperature. The membrane was then incubated for 60 minutes at room temperature with the detection antibody (anti-rabbit IRDye™ antibody 800, Licor, # 926-32211) diluted in Odyssey blocking buffer (LICOR #927-40000). Afterwards the membrane was washed twice for 10 minutes each with 1 x PBS buffer containing 0.2% Tween 20 at room temperature. Then the membrane was rinsed once with PBS buffer to remove residual Tween 20. The membrane was kept in PBS buffer at 4°C and then scanned with the Odyssey instrument. Fluorescence signals were recorded and analysed according to the instructions of the manufacturer. Table 4: Sources and dilutions of antibodies

Results

Table 5: Inhibition values (IC 50 in μΜ) as determined in the Kinobeads™ assay (Activity level: A < Ο. ΙμΜ; Ο. ΙμΜ < B < ΙμΜ; ΙμΜ < C < 10μΜ; D >10μΜ).

Example No. TYK2 IC50 (μΜ) JAK2 IC50 (μΜ)

1

B D

2 B D

3 C D

4 B D

5 B D

6 B D

7 B D

8 B D

9 B D

10 B D

11 A D

12 B D