Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TURBOCHARGER FOR INTERNAL COMBUSTION ENGINES
Document Type and Number:
WIPO Patent Application WO/1981/002444
Kind Code:
A1
Abstract:
A turbocharger for internal combustion engines comprising a undirectional energy converter (26) having a closed, continuous loop passageway (28) containing a plurality of freely-movable, unrestrained bodies (30) which travel around the passage-way in one direction only. In one region of the passageway, successive bodies (30) are propelled in one direction around the passage by exhaust gases from an internal combustion engine. In another region of the passageway, the kinetic energy of the propelled bodies (30) is used to compress a gas, which can be mixed with fuel. This compressed gas is then forced into the cylinders (10) of the internal combustion engine; whereupon the bodies (30) are again propelled around the passageway (28) to repeat the cycle.

Inventors:
FAWCETT S (US)
ANNO J (US)
Application Number:
PCT/US1981/000194
Publication Date:
September 03, 1981
Filing Date:
February 13, 1981
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BATTELLE DEVELOPMENT CORP (US)
International Classes:
F02B33/42; F02B37/00; F02B1/04; (IPC1-7): F02B37/00
Foreign References:
US3859789A1975-01-14
Download PDF:
Claims:
-7- We Claim as our Invention
1. Turbocharger apparatus for an internal combustion engine comprising a continuous, closedloop passageway, a plurality of freelymovable bodies dis 5 posed within said passageway, means in one region of the passageway for propelling said bodies in one di¬ rection around the passageway with the use of exhaust gases from said internal combustion engine, means in another region of the passageway for converting at 10 least a portion of the kinetic energy of the propelled bodies into energy in the form of a compressed gas, and means for conducting said compressed gas to the cylin¬ ders of said internal combustion engine where it is further compressed by movement of pistons within the 15 cylinders.
2. The turbocharger apparatus of claim 1 wherein said compressed gas comprises a mixture of air and fuel derived from a carburetor.
3. The turbocharger apparatus of claim 1 20 wherein said internal combustion engine is a diesel engine and said compressed gas comprises air.
4. The turbocharger apparatus of claim 1 wherein said passageway has four ports spaced around ,... its periphery, one of said ports being connected to a 25 source of exhaust gases under pressure from said in¬ ternal combustion engine, a second of said ports acting to exhaust said exhaust gases from the passageway after said bodies have been propelled, a third of said ports acting to draw gas to be compressed into said passage 30 way, and a fourth of said ports acting to convey compressed gas to the cylinders of said internal com¬ bustion engine.
5. The turbocharger apparatus of claim 1 wherein said bodies are propelled by adiabatic expan 35 sion of said exhaust gases. 8 .
6. The turbocharger apparatus of claim 1 wherein said bodies are separated by gasfilled spaces as they travel around said passageway.
7. Turbocharger apparatus for an internal combustion engine comprising a continuous, closedloop passageway, a plurality of freelymovable bodies dis¬ posed within said passageway, first port means for introducing exhaust gases from said internal combus¬ tion engine into said passageway to thereby propel successive ones of the bodies in one direction around the passageway, second port means in the passageway spaced from the first port means in the direction of movement of said bodies for exhausting said exhaust gases from the passageway, third port means spaced from the second port means in the direction of movement of" the bodies for introducing air into the passageway, and fourth port means intermediate the first and third port means connecting said passageway to the cylinders of said internal combustion engine.
8. The turbocharger apparatus of claim 7 wherein said third port means is connected to a device for mixing air with fuel.
9. The turbocharger apparatus of claim 7 wherein said bodies are in abutment in the region of said passageway between said fourth and first port means but are separated by gas pockets as they travel around the remainder of the passageway.
Description:
DESCRIPTION:

TURBOCHARGER FOR INTERNAL COMBUSTION ENGINES

Background of the Invention 5 As is known, the purpose of supercharging or turbocharging an internal combustion engine is to in¬ crease its horsepower output without increasihg its speed. This is accomplished by increasing the mass flow rate over a naturally aspirated engine by pres-

10 surizing the intake gas. Supercharging uses crankshaft power to drive a compressor to accomplish this task; whereas turbocharging uses the energy of the exhaust gases, via a turbine, to drive a compressor to accom¬ plish the same result. Since a supercharger is para-

15 sitic to engine performance (a gear-driven supercharg¬ er can use more than 20% of the total engine power at sea level) , the turbocharger is considered superior for commercial road vehicles.

In the operation of a typical turbocharger,

20 exhaust gases from the engine drive a turbine which, in turn, drives a compressor. Fresh air is taken from the

9... outdoors, cleaned and mixed with the gasoline in the carburetor. The gasoline/air mixture is then com¬ pressed in the compressor and fed to the -cylinders for

25 combustion. In f el-injection systems (e.g., diesel engines) , on the other hand, the fuel is injected into the compressed air. For typical small passenger cars, the boost pressure is only about 9 pounds per square inch, but this is sufficient to double the peak horse-

30 power.

Turbochargers currently in use suffer at least four main problems. First, when accelerating from a condition where the engine is idling with the vehicle at rest, the response is sluggish. This slug-

gish response has been termed "turbolag". What is needed is instantaneous response to full boost. Sec¬ ondly, current turbochargers operate at some boost at all throttle conditions. What is need is no boost at partial throttle conditions, and instantaneous boost at wide-open throttle, constant for ' all engine speeds. Thirdly, current turbochargers are lubricated with the engine oil. Dirt in the oil causes lubrication prob¬ lems at the high-speed operation of the turbocharger (e.g., 100,000 RPM) . Finally, current turbochargers are " expensive. Conversion kits for nonturbocharged vehicles presently cost in excess of $1000.00.

Summary of the Invention

In accordance with the present invention, a new and improved turbocharger is provided which over¬ comes many of the aforesaid disadvantages of prior art turbochargers. The turbocharger of the invention is low-cost, provides for instantaneous response, and is not subject to dirt in the engine oil. Actually, the invention is not truly a turbocharger in that it does not employ a turbine; but it is somewhat similar to a turbocharger in that it operates on exhaust gases. The invention employs, as a basic component, a unidirec¬ tional energy converter such as that shown and de- scribed in U.S. Patent No. 3,859,789, issued January 14, 1975. High-temperature pressurized exhaust gas from an internal combustion engine is fed into the unidirectional energy converter where the gas energy is initially converted to kinetic energy of pistons. Once expanded, the exhaust gas is discharged from the con¬ verter and a fresh air/fuel mixture is taken into the compressor region, compressed to the d'esired boost pressure by the energy of the pistons, and discharged to the cylinders of the engine. .

OMPI W V.'IIPi'OU

In a specific embodiment of the invention, there is provided a continuous, closed-loop passageway containing a plurality of freely-movable bodies. Means are provided in one region of the passageway for pro- 5 pelling the bodies in one direction around the pas¬ sageway with the use of exhaust gases from an internal combustion engine. In another region of the passageway beyond the first region, means are provided for con¬ verting at least a portion of the kinetic energy of the 0 propelled bodies into energy in the form of a com¬ pressed gas. This compressed gas is then conducted to the cylinders of the internal combustion engine with or without the addition of fuel where it is further com¬ pressed by movement of the pistons within the cyl-

15 inders.

The above and other objects and features of the invention will become apparent from the following detailed description taken in connection with the ac¬ companying drawings which form a part of this specifi-

20 cation, and in which:

Figure 1 is a schematic illustration of one embodiment of the invention; and

Fig. 2 is a perspective view of the freely-

' * - movable bodies utilized in the unidirectional energy

25 converter of Fig. 1.

With reference now to the drawings, and par¬ ticularly to Fig. 1, a cylinder 10 of an internal combustion engine is shown having a piston 12 recip- rocable therein and connected through piston rod 14 to

30 a crankshaft 16. It will be assumed, for purposes of illustration, that the engine is a gasoline engine which operates on the Otto cycle and is provided with a sparkplug 18. Conventional valves 20 interconnect the top of the cylinder 10 with an intake manifold 22

35 and an exhaust manifold 24, as is conventional.

Both the intake and exhaust manifolds 22 and

24 are connected to a unidirectional energy converter, generally indicated by the reference numeral 26. The energy converter comprises a continuous, closed-loop

5 circular passageway 28 (schematically shown in cross section) having a plurality of freely-movable bodies or pistons 30 therein. The pistons 30 may, for example, appear as in Fig. 2 and comprise cylindrical metal plugs which have a radius of curvature corresponding to

10 the radius of curvature of the closed-loop passageway 28. Alternatively, the pistons 30 may comprise spheres or other geometries conforming to the passageway. The tolerance or clearance between the surfaces of the pistons 30 and the inside walls, of the closed-loop

15 passageway 28 is such as to permit the pistons to move freely through the passageway. However, fluid flow past the pistons within the passageway is substantially prevented. Additionally, the pistons may be equipped with conventional piston rings. The continuous,

20 closed-loop passageway 28 is provided with four ports 32, 34, 36 and 38 spaced around the passageway 28 at intervals of about 90°. Port 32 is connected to the exhaust manifold 24 as shown; whereas port 38 is con-

'" - nec ' ted to the intake manifold 22. Port 34 is connected

25 to an exhaust pipe 40 which discharges into the atmo¬ sphere; while port 36 is connected to the outlet side of a conventional carburetor 42.

The continuous, closed-loop passageway 28 is divided into regions or zones, the region between ports

30 32 and 34 comprising an expander section wherein ex¬ haust gases entering port 32 cause successive ones of the pistons 30 to be propelled around the passageway 28 in a counterclockwise direction as viewed in Fig. 1. That is, the hot exhaust gases from the engine enter the

35 passageway 28 and expand adiabatically, imparting ki¬ netic energy in the form of increased forward velocity

to each piston 30 while the gas between successive ones of the pistons is- reduced in temperature. As the pistons pass port 34, the cooler exhaust gases which have been adiabatically expanded exit to the at o- 5 sphere; while the pistons 30 continue on to the port 36 where they draw in a mixture of fuel and air from the carburetor 42. Between ports 36 and 38, the air/fuel mixture is compressed, the compressed gas exiting through port 38 to the intake manifold 22. Between 0 ports 38 and 32, the pistons 30 in a thruster region move downwardly under gravity and in abutment to the point where they are again propelled in a counter¬ clockwise direction by the exhaust gases to repeat the cycle. In the thruster region-, the force of gravity

15 acting on the pistons balances the forces around the passageway. Other means, such as a ratchet-type latch, can be used in the thruster region to prevent backward movement of the pistons under the influence of the entering exhaust gases. Thus, exhaust 'gases entering

20 port 32 propel the pistons 30 around the closed-loop passageway 28 while the compressed mixture of fuel and air entering port 36 is compressed and exits through port 38 to the manifold 22 where it is forced into the

,... cylinder 10 on the down stroke of the piston 12 in a

25 conventional Otto cycle. It is, of course, also pos¬ sible to utilize the turbocharger of the invention with a diesel engine, in which case fuel is injected into the air entering port 36 or fuel is injected directly into the cylinder 10 as is conventional. At high engine

30 speeds and powers, the exhaust gas energy may be exces¬ sive to run the turbocharger. In this case, part of the waste gas must be bypassed by the use of a conventional "wastegate" .

Although the invention has been shown in

35 connection with a certain specific embodiment, it will

be readily apparent to those skilled in the art that various changes in form and arrangement of parts may be made to suit requirements without departing from the spirit and scope of the invention.