Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
USE OF AQUEOUS SOLUTION OF ORGANIC AMMONIUM CARBOXYLATE IN PREVENTING DUSTING OF FINE MATERIAL AND COMBINATION OF AN AQUEOUS SOLUTION OF ORGANIC AMMONIUM CARBOXYLATE AND FINE MATERIAL
Document Type and Number:
WIPO Patent Application WO/2019/122537
Kind Code:
A1
Abstract:
The invention relate to use of aqueous solution of organic ammonium carboxylate of formula (I): [NR1R2R3R4]+n[R5(COO)]-n, in which R1, R2, and R3 are selected from the group composing of hydrogen and methyl, R4 is a C1-C4-alkyl substituted with a hydroxyl group, R5 is hydrogen or methyl and n is 1, as a mist or drops in preventing dusting of fine material and in lowering the freezing point of said aqueous solution on the surface of said fine material or on the surface of dust particles obtained from said fine material by spraying said mist or drops onto fine material or onto dust particles obtained from said fine material to neutralize negatively charged dust particles or by changing negatively charged dust particles into positively charged dust particles, wherein said fine material is selected from the group composing of sand, crushed stone, stone powder, crushed expanded clay, or crushed expanded clay aggregate, crushed cement or concrete, cement or concrete powder, chopped organic material, minerals and metal powder.

Inventors:
AHLNÄS, Thomas (Lehmustie 15, KOTKA, FI-48130, FI)
Application Number:
FI2018/050977
Publication Date:
June 27, 2019
Filing Date:
December 21, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OY GRANULA AB LTD (Rautatienkatu 2, KOTKA, 48100, FI)
International Classes:
B01J2/02; C01C1/26; C07C51/02; C09K3/22
Domestic Patent References:
WO2011056322A12011-05-12
Foreign References:
US4254166A1981-03-03
US2195573A1940-04-02
US20120111583A12012-05-10
Attorney, Agent or Firm:
BERGGREN OY (P.O. Box 16, HELSINKI, 00101, FI)
Download PDF:
Claims:
CLAIMS

1 . The use of aqueous solution of organic ammonium carboxylate of formula (I):

[NR1R2R3R4]+n [R5(COO)] n, (I), in which R1, R2, and R3 are selected from the group composing of hydrogen and methyl, R4 is a Ci-C4-alkyl substituted with a hydroxyl group, R5 is hydrogen or methyl and n is 1 , as a mist or drops in preventing dusting of fine material and in lowering the freezing point of said aqueous solution on the surface of said fine material or on the surface of dust particles obtained from said fine material by spraying said mist or drops onto fine material or onto dust particles ob- tained from said fine material to neutralize negatively charged dust particles or by changing negatively charged dust particles into positively charged dust particles, wherein said fine material is selected from the group composing of sand, crushed stone, stone powder, crushed expanded clay, or crushed expanded clay aggregate, crushed cement or concrete, cement or concrete powder, chopped or- ganic material, minerals and metal powder.

2. The use defined in claim 1 , which additionally comprises controlling the hydro- phobicity and the hydrophilicity of the fine material and dust particles obtained from said fine material which control is based on the concentration of ammonium carbox- ylate in aqueous solution of formula (I).

3. The use defined in claim 1 or 2, wherein the concentration of ammonium car- boxylate in the aqueous solution of formula (I) to be sprayed onto fine material or onto dust particles obtained from said fine material is in the range of 1 -50 %wt, depending on the water content of the fine material or dust particles obtained from said fine material.

4. The use defined in claim 3, wherein the concentration of organic ammonium carboxylate in the aqueous solution of formula I is in the range of 1-10 % wt-%, preferably in the range of 2-5 wt-%.

5. The use defined in claim 3 or 4 wherein the concentration of aqueous organic ammonium carboxylate of formula (I), is selected so, that after the aqueous solution of organic ammonium carboxylate of formula (I) has been absorbed water from the surface of fine material or dust particles obtained from said fine material its water content is 85 wt-% or less.

6. The use defined in claim 5, wherein the concentration of organic ammonium carboxylate of formula I present on the surface of fine material or dust particles ob- tained from said fine material present is in the range of 1-10% wt-%, preferably in the range of 2-5 wt-%.

7. The used defined in any of the previous claims, in which the freezing point of the aqueous solution of organic ammonium carboxylate of formula (I) is in the range of -5 to -50°C.

8. The use defined in any of the previous claims wherein the average particle size of fine material is 0,125 -0,025 mm (125 -25 urn) and aqueous ammonium carbox- ylate solution of formula (I) is applied as a mist onto the surface of fine material or dust particles obtained from said fine material, having average particle size under 1 .5 times of average particle size of said fine material.

9. The use defined in any of the previous claims 1 -7, wherein the average particle size of fine material is over 0,4 mm (400 urn) and aqueous ammonium carboxylate solution is applied as drops onto the surface of fine material.

10. The use defined in any of the previous claims, wherein the surface of the fine material or surface of dust particles obtained from said fine material which have been treated with aqueous solution of organic ammonium carboxylate of formula (I) is hydrophilic.

1 1 . The use defined in any of the previous claims, wherein said fine material is crushed expanded clay, crushed expanded clay aggregate, crushed peat, peat pow- der, wood powder, chopped wood, zink powder or zink dust, nickel powder or nickel dust, cement powder or cement dust, concrete powder or concrete dust.

12. The use of aqueous solution of organic ammonium carboxylate of formula (I):

[NR1R2R3R4]+n [R5(COO)] n, (I), in which R1, R2, and R3 are selected from the group composing of hydrogen and methyl, R4 is a Ci-C4-alkyl substituted with a hydroxyl group, R5 is hydrogen or methyl and n is 1 , as a solution in immersing fine material into said solution, wherein said fine material is selected from the group composing of sand, crushed stone, expanded clay, expanded clay aggregate (LECA), crushed cement or concrete, chopped or- ganic material and minerals in lowering the freezing point of said aqueous solution.

13. The use defined in claim 12, wherein said fine material is crushed expanded clay, crushed expanded clay aggregate, crushed peat, zink powder, nickel powder, crushed cement or crushed concrete.

14. The use defined in claim 12 or 13 wherein the concentration of organic ammo- nium carboxylate solution is 5 - 90 % (w/w) preferable 25 -85 % (w/w) calculated from the total weight of aqueous organic ammonium carboxylate solution.

15. The use defined in any of the claims 13-15, wherein the concentration of am- monium carboxylate solution depends on the water content of the fine material.

16. The use defined in any of the previous claims, wherein R1, R2 and R3 are all hydrogen and R4 is an ethyl substituted with a hydroxyl group, preferably 2-hydroxy ethyl.8

17. The use defined in claim any of the previous claims, wherein R1 , R2 and R3 are all methyl and R4 is an ethyl substituted with a hydroxyl group, preferably 2-hydroxy ethyl.

18. The use defined in claim any of the previous claims, wherein the organic am- monium carboxylate of formula (I) is a salt of formic acid and monoethanolamine or a salt of acetic acid and monoethanolamine.

19. The use defined in claim any of the previous claims, wherein the aqueous so- lution of organic ammonium carboxylate of formula (I) contains organic ammonium carboxylate of formula (1 ) and water in a weight ratio in the range of 1 :50-1 : 15, preferably in the range of 1 :33— 1 :20.

20. The use defined in claim any of the previous claims, wherein the aqueous so- lution of organic ammonium carboxylate of formula (I) contains distilled water only.

21 . The use defined in claim any of the previous claims, wherein the concentration of sodium, potassium, calcium and magnesium is 0 M in the aqueous solution of organic ammonium carboxylate of formula (I).

22. The use as defined in any of previous claims, wherein the aqueous solution of organic ammonium carboxylate of formula (I) is additionally admixed with corn- pounds selected from the group comprising glycols, preferably ethylene glycol or propylene glycol, glycerols and viscosity modifying polymers, so that said aqueous organic ammonium carboxylate composition contains 5 to 97.5 wt-% of water.

23. The use as defined in any of the previous claims, wherein aqueous solution of organic ammonium carboxylate of formula (I) is additionally admixed with auxiliary substances such as additional corrosion inhibitors, biocides, fragnance(s), coloring agents, surfactants, and viscosity intensifiers, so that the concentration of auxiliary substances will be in the range of 0.001 to 10 wt-% from the total weight of aqueous solution.

24. The use defined in any of previous claims, wherein the aqueous solution of organic ammonium carboxylate of formula (I) contains formic acid, acetic acid and monoethanolamine or trimethylmonoethanolamine.

25. The use defined in any of the previous claims, wherein aqueous solution of organic ammonium carboxylate of formula (I) is used 1 -2 I per 1000 kg of crushed stone, preferably 1 .2 -1 .5 I per 1000 kg of crushed stone.

26. The use defined in any of the previous claims, wherein freezing point of said aqueous solution of organic ammonium carboxylate of formula (I) is from -3 °C to - 15 °C preferably from -5 °C to -10 °C.

27. The use defined in any of the previous claims, further including a step wherein the solution comprising aqueous solution of organic ammonium carboxylate of for- mula (I) is prepared by diluting, in situ, concentrated solution of water and organic ammonium carboxylate of formula (I) with water, in which said concentrated solution the concentration of organic ammonium carboxylate of formula (I) is 50 wt-% or 85 wt-%

28. The use defined in any of the previous claims 1 to 4, further including a step wherein the solution comprising aqueous organic ammonium carboxylate of formula (I) is prepared by mixing, in situ, an aqueous solution of 1 - 5 wt-% of amine with an aqueous solution of 1 - 5 wt-% of acid

29. A combination of mist or drops of aqueous solution of organic ammonium car- boxylate of formula (I): [NR1R2R3R4]+n [R5(COO)] n, (I) in which R1, R2, and R3 are selected from the group composing of hydrogen and methyl, R4 is a Ci-C4-alkyl substituted with a hydroxyl group, R5 is hydrogen or methyl and n is 1 , and said fine material is selected from the group composing of sand, crushed stone, stone powder, crushed expanded clay, or crushed expanded clay aggregate, crushed cement or concrete, cement or concrete powder, chopped organic material, minerals and metal powder, wherein said aqueous solution of organic ammonium carboxylate of formula (I) have been sprayed as a mist or drops onto the surface of said fine material particles, or onto dust particles obtained from said fine material particles to neutralize negatively charged dust particles or by changing negatively charged dust particles into posi- tively charged dust particles.

30. The use defined in claim 1 , wherein preventing of dusting of fine material and in lowering the freezing point of said aqueous solution present on the surface of said fine material or on the surface of dust particles obtained from said fine material, by spraying said mist or drops onto fine material or onto dust particles obtained from said fine material .additionally comprises controlling the hydrophobicity and the hy- drophilicity of the fine material and dust particles obtained from said fine material which control is based on the concentration of ammonium carboxylate in aqueous solution of formula (I).

31 . The combination defined in claim 29 comprising of mist or drops of aqueous solution of organic ammonium carboxylate of formula (I) and fine material or dust particles obtained from said fine material, wherein drying of said neutral combination will lead on the one hand to water loss and on the other hand absorbing of water by way of the organic ammonium carboxylate of formula (I) resulting in keeping the surface of said fine material moist.

32. The combination defined in claim 29, comprising drops of aqueous solution of organic ammonium carboxylate of formula (I) and fine material, wherein organic am- monium carboxylate of formula (I) will absorb water after water content of said aque- ous solution have dropped at or below 15 wt-%.

33. The combination defined in claim 29 comprising drops of aqueous solution of organic ammonium carboxylate of formula (I), and fine material, wherein carboxylate originate from acetic acid, in form of fluid and having BOD (biological oxygen de- mand) of 0.64 mg of O2 at 20 °C for liter of said fluid in 5 days.

34. The combination defined in claim 29 comprising drops of aqueous solution of organic ammonium carboxylate of formula (I), and fine material, wherein carboxylate originate from acetic acid, in form of fluid, and having COD (chemical oxygen de- mand) of 0.64 mg O2 at 20 °C for liter of said fluid in 5 days.

Description:
USE OF AQUEOUS SOLUTION OF ORGANIC AMMONIUM CARBOXYLATE IN PREVENTING DUSTING OF FINE MATERIAL AND COMBINATION OF AN AQUEOUS SOLUTION OF ORGANIC AMMONIUM CARBOXYLATE AND FINE MATERIAL

FIELD OF INVENTION

The invention relates to use of preamble of claim 1 .

The invention relates also to use of preamble of claim 12

The invention relates also to a combination of droplets and fine material defined in claim 29.

The invention relates to use of an aqueous solution of organic of ammonium car- boxylate in controlling dusting of sand, crushed stone, stone powder, crushed ex- panded clay, or crushed expanded clay aggregate, crushed cement or concrete, cement or concrete powder, chopped organic material, minerals, metal powder and the like. The organic ammonium carboxylate which is used as an aqueous solution is especially adapted for controlling dust formation in applications where the biodeg- radation and low BOD is also required. Preferably the present invention relates to the use of environmentally benign freezing point depressant compositions for pre- venting dust formation and for preventing ice formation (anti-icing) within the corn- positions itself.

BACKGROUND OF INVENTION

Mineral dust and street dust (from street rubble) are serious health problems for example in mining industry and cities. There are also other applications wherein dusting of sand, fine crushed stone and soil will cause mineral dust which is a seri- ous health problem. Dusting causes also damage to equipment and vehicle used for example in mining industry, these include vehicles, electric motors, transport bands etc. Specifically in mining industry mineral, dust will intrude itself into ore silos and transportation vehicles and in mining equipment causing freezing in winter time.

It has suggested several ways to reduce mineral dust in mining industry. One alter native is to bind mineral dust by means of aqueous or water-borne solutions. How- ever, none of water-borne solutions have been successful this far. If an aqueous solution is used in dust control, water have a tendency to evaporate after been sprayed onto surface of crushed stone, sand or soil. This requires usage of relatively big amounts of aqueous solution. Using plenty of water in binding dust will then cause other problems, such as mineral puddling.

One important aspect when using aqueous solutions in controlling mineral dust is possible disturbances brought into mining industry processes alongside with said aqueous solution: especially chlorides of potassium, magnesium, calcium and so- dium have a tendency to cause disturbances in ore recovery processes, for example in extraction stages.

One important aspect is also biodegradativity of solutions used for controlling min- eral dust.

Additionally using aqueous solutions to dust binding may also cause freezing of aqueous solution itself. Freezing point depressant compositions are used wide- spreadly for variety of purposes, especially for lowering freezing point of an aqueous system so that ice cannot be formed on surfaces or within the aqueous systems or for melting ice formed in those aqueous systems. However dust control with freezing point depressant compositions are relative rare because the effectiveness of the freezing point depressant compositions depends on the molar freezing point lower- ing effect, the number of ionic species that are made available and to the degree to which the compositions can be dispersed in the liquid phase.

Most freezing point depressant compositions are either based on salts such as so- dium chloride or potassium formate or alcohols such as glycols and methanol. Alkali and alkali-earth metal salts of carboxylic acid such as potassium formate, sodium formate, potassium acetate and sodium acetate have found increasing use in the area of deicing mainly due to their low environment impact and low viscosity at mi- nus temperatures. However, using these compositions for controlling dusting in min- ing industry is not a viable option, because potassium, natrium, magnesium and calcium chlorides may interfere ore recovering process.

GENERAL DESCRIPTION OF THE INVENTION

The above prior art as a starting point, the objection of the present invention was to solve or at least to alleviate above mentioned problems.

Thus, the general objection of the present invention was to provide an aqueous so- lution which could be used as a combined freezing point depressant and an aqueous solution for controlling dusting and which is also environmentally benign and which do not form chlorides which may interfere mining process.

The ideal dusting control agent and freezing point depressant composition adapted to use for mining industry would have following properties:

-it should prevent effectively formation of mineral dust from grounded stones, sand and soil,

-it should be free of mining process disturbing halides such as chlorides of alkali and alkali-earth metals especially chlorides of potassium, sodium, magnesium and cal- cium,

-it should have relatively low biological (BOD) and chemical oxygen demand (COD),

- it should be effective at low temperatures, i.e. it should have low viscosity and low freezing point,

-it should not cause mineral puddling, that is, it should be effective when used also as relatively small amounts.

The present inventors have surprisingly found that the ideal solution for above men- tioned problems relating to reducing mineral dust in air with an aqueous solution and in the same time lowering the freezing point of said aqueous solution itself is to use specific aqueous solution of organic ammonium carboxylate of formula (I), as defined in claim 1 :

[NR 1 R 2 R 3 R 4 ] + n [R 5 (COO)] n , (I), in which R 1 , R 2 , and R 3 are selected from the group composing of hydrogen and methyl, R 4 is a Ci-C 4 -alkyl substituted with a hydroxyl group, R 5 is hydrogen or methyl and n is 1 , as a mist or drops in preventing dusting of fine material and in lowering the freezing point of said aqueous solution on the surface of said fine material or on the surface of dust particles obtained from said fine material.

Organic ammonium carboxylate stands for a salt or a complex formed of an ammo- nium cation and a carboxylic anion. Hence one or more ammonium ions of the salt or complex may be primary (RNH3 + ), secondary (R2NH2 + ), tertiary (RsNH + ) or qua- ternary (R 4 N + ). The carboxylate ion of the salt or complex may be monovalent (RCOO ) or polyvalent (R(COO ) n>i ), and in that case it may also comprise unneutralised carboxyl groups (-COOH). In the latter case, R 5 is defined as being substituted with carboxyl.

Since the group R 5 is associated with a carboxylate group of formic acid or acetic acid, the ammonium carboxylate of formula (I) is based on formic acid or acetic acid and it can be prepared from such an acid or its salt.

In formula (I), n is 1 . Consequently, organic ammonium carboxylates used for con- trolling mineral dust are based on lower fatty acids.

As mentioned above, the ammonium ion of formula (I) may be primary (RNH3 + ), secondary (R2NH2 + ), tertiary (RsNhT) or quaternary (R 4 N. Typical ammonium ions containing unsubstituted alkyls have been formed from water-soluble amines such as methylamine (g), dimethylamine, trimethylamine, ethylamine, diethylamine, etc.

Ammonium ions containing substituted alkyls have typically been formed from wa- ter-soluble amines, whose alkyl(s) may have been substituted with one or more hy- droxyl groups. In formula (1 ), Ri is preferably hydrogen and R2 and R3 have been selected from the group comprising hydrogen and methyl. R 4 is Ci-C 4 -alkyl substi- tuted with a hydroxyl group.

Organic ammonium carboxylates formed of lower alkanolamines are hence particu- larly useful. Among lower alkanolamines we may cite monoethanolamine. Prefrable aqueous solutions of ammonium carboxylates of formula (I) contain formic acid, acetic acid and monoethanolamine or trimethylmonoethanolamine. Trimethylmo- noethanolamine is also called as acetylcholine.

One important group of useful alkanolamines comprises lower alkyl alkanolamines, such as methyl ethanolamine, dimethylethanolamine. Additional information about useful alkanolamines can be found in the book Kirk-Othmer, Encyclopedia of Chem- ical Technology 3rd Ed., Vol. 1 , p. 944, which is incorporated in this disclosure.

It is particularly recommendable that R1 is hydrogen, R2 and Rs are selected from the group comprising of hydrogen and methyl and R 4 is ethyl substituted with a hy- droxyl group, preferably 2-hydroxy ethyl. In the most advantageous embodiment, the organic ammonium carboxylate of formula (I) is selected from the group corn- prising of a salt or a complex of formic acid or acetic acid and monoethanolamine or trimethylethanolamine.

In the practice, ammonium carboxylate of formula (I) is prepared e.g. by mixing an ammonium cation source and a carboxyl anion source in the desired molar ratio, either without a medium or by using an appropriate solvent such as water as a me- dium. When the starting materials are an amine and an acid, they are simply mixed during gentle heating, if necessary. When the starting materials consist of salts, they are typically dissolved separately in water, and then the solutions are combined. If a salt or a complex thus formed is hydrophobic, it will separate from the water phase as an unctuous or paste-like deposit or a wax-like precipitate, and it can be sepa- rated from the water phase by any known methods. When both the starting materials and the formed product are hydrophobic, the preparation can be carried out in an organic solvent instead of water. The freezing point depressant composition used in the invention comprises either fluid composing of ammonium carboxylate of formula (I) without solvent or ammonium carboxylate of formula (I) with appropriate solvent. Preferably solvent is an aqueous solution or a dispersion. Chemical stability: Pre- liminary results indicate that for instance a fluid pair: ethylene amide - formic acid could under special circumstances react and form amid when no solvent is present. Increasing the temperature favours amid formation. Nearly no esters are formed.

To be exact the invention relates the use defined in claim 1 or in claim 1 1 and also a combination defined in claim 29 comprising of drops of aqueous solution of organic ammonium carboxylate and fine material.

In the use according to present invention aqueous solution of organic ammonium carboxylate of formula (I):

[NR 1 R 2 R 3 R 4 ] + n [R 5 (COO)] n , (I), in which R 1 , R 2 , and R 3 are selected from the group composing of hydrogen and methyl, R 4 is a Ci-C 4 -alkyl substituted with a hydroxyl group, R 5 is hydrogen or methyl and n is 1 , as a mist or drops in preventing dusting of fine material and in lowering the freezing point of said aqueous solution on the surface of said fine material or on the surface of dust particles obtained from said fine material, by spraying said mist or drops onto fine material or onto dust particles obtained from said fine material to neutralize negatively charged dust particles or by changing neg- atively charged dust particles into positively charged dust particles, wherein said fine material is selected from the group composing of sand, crushed stone, stone powder, crushed expanded clay, or crushed expanded clay aggregate, crushed cement or concrete, cement or concrete powder, chopped or- ganic material, minerals and metal powder.

The use defined in claim 1 , usually comprises also controlling the hydrophobicity and the hydrophilicity of the fine material and dust particles obtained from said fine material which control is based on the concentration of ammonium carboxylate in aqueous solution of formula (I). preferable th concentration of ammonium carboxylate in the aqueous solution of formula (I) to be sprayed onto fine material or onto dust particles obtained from said fine material is in the range of 1 -50 %wt, depending on the water content of the fine material or dust particles obtained from said fine material.

More preferably the concentration of organic ammonium carboxylate in the aqueous solution of formula I is in the range of 1-7% wt-%, still more preferably in the range of 2-5 wt-%.

Prefereble the concentration of organic ammonium carboxylate of formula I which is then present on the surface of fine material or dust particles obtained from said fine material present is in the range of 1-7% wt-%, preferably in the range of 2-5 wt-%. The freezing point of the aqueous solution of organic ammonium carboxylate of formula (I) is then in the range of -5 to -50°C. formed from said fine material selected from the group composing of sand, ex- panded clay, crushed stone, stone powder, crushed concrete, concrete powder, chopped organic material, minerals and metal powder and in lowering the freezing point of said aqueous solution.

The invention also relate to the use of aqueous solution of organic ammonium car- boxylate of formula (I) defined in claim 12:

[NR 1 R 2 R 3 R 4 ] + n [R 5 (COO)] n , (I), in which R 1 , R 2 , and R 3 are selected from the group composing of hydrogen and methyl, R 4 is a Ci-C 4 -alkyl substituted with a hydroxyl group, R 5 is hydrogen or methyl and n is 1 , as a solution in immersing fine material into said solution, wherein said fine material is selected from the group composing of sand, crushed stone, expanded clay, expanded clay aggregate (LECA), crushed cement or concrete, chopped or- ganic material and minerals in lowering the freezing point of said aqueous solution. In the combination according to present invention according to claim 29 there exists droplets of aqueous solution of organic ammonium carboxylate of formula (I) ):

In a combination of mist or drops of aqueous solution of organic ammonium carboxylate of formula (I) defined in claim 29:

[NR 1 R 2 R 3 R 4 ] + n [R 5 (COO)] n , (I), in which R 1 , R 2 , and R 3 are selected from the group composing of hydrogen and methyl, R 4 is a Ci-C 4 -alkyl substituted with a hydroxyl group, R 5 is hydrogen or methyl and n is 1 , and said fine material is selected from the group composing of sand, crushed stone, stone powder, crushed expanded clay, or crushed expanded clay aggregate, crushed cement or concrete, cement or concrete powder, chopped organic material, minerals and metal powder, wherein said aqueous solution of organic ammonium carboxylate of formula (I) have been sprayed as a mist or drops onto the surface of said fine material particles, or onto dust particles obtained from said fine material particles to neutralize negatively charged dust particles or by changing negatively charged dust particles into posi- tively charged dust particles.

Preferably the ammonium carboxylate solution to be sprayed as a mist is an aque- ous solution containing 1 -10 % w/w preferable 2 -5 % w/w of ammonium carbox- ylate, for example 3 -4 % ammonium carboxylate in water. However, this amount may be modified on the basis of moisture content of the fine material or dust parti- cles originated on this dust particles. The exact concentration of ammonium car- boxylate, present on the surface of fine material or dust cannot be measured exactly because water is evaporating continuously from the surface of fine material or dust.

In a case fine material already exists as a coarse dust it, which tends to form an aerosol with the surrounding air, it has usually a negative charge. Typical coarse dust is mineral dust (for example zink or nickel dust), sement or concrete dust, sand dust, stone dust, organic material dust (for example peat dust or wood dust. By using aqueous ammonium carboxylate solution as a fine mist, the negative charge of coarse dust particles can be neutralized and/or converted due to effect of positive charged ammonium ion to dust particles. By using mist of aqueous ammonium carboxylate solution neutralized dust particles from air will then be settled down onto ground.

The average particle size of coarse dust which is treated with the mist of aqueous ammonium carboxylate solution is so called coarse dust P10. Coarse dust P10 has an average particle size typically between 0,125 -0,025 mm (125 -25 urn) and most ofparticles have diameter over 10 urn (over 0,010 mm). The mist of aqueous ammo- nium carboxylate solution should have particle size under 1 .5 times of average par- ticle size of coarse dust. More preferable the average particle size of aqueous am- monium carboxylate solution mist is about the same as the average particle size of coarse dust.

Mist is understood herein to mean droplets or drops having average diameter under 40 urn (under 0,04 mm).

The neutralized coarse dust have then lowered freezing point because an aqueous ammonium carboxylate mist will act as an a freezing point depressant on a surface neutralized dust particles.

In a case most fine material (sand, crushed stone, crushed concrete, crushed ce ment minerals, chopped organic material, metal powder etc.) have mostly a bigger particle size than coarse dust, the aqueous solution of organic ammonium carbox- ylate can also be applied using other application methods, than spraying as a mist. Possible application methods for aqueous solution of organic ammonium carbox- ylate are: spraying aqueous ammonium carboxylate solution as drops onto fine material, immersion of fine material into ammonium carboxylate solution.

The aqueous ammonium carboxylate solution drops are understood here to have average diameter of 40 -500 urn (0,4 -5 mm).

The aqueous solution of organic ammonium carboxylate (3 -5 % solution) have a freezing point from -3 °C to -15 °C preferably -from 5 to -10 °C. However, after applied the solution as a mist or drops onto surface of fine material (for example crushed stone) the water will evaporate from said aqueous solution. This will auto- matically lower the freezing point of remaining water in said combination of water and organic ammonium carboxylate: as can be seen later from (table IV) freezing point of aqueous solution of organic ammonium carboxylate of formula (I) will be considerably lowered when water leaves and rest of fluid comes more concentrated. In one preferably use, aqueous solution of organic ammonium carboxylate of for- mula (I) is used as a mist or drops 1 .0 - 2.0 I per 1000 kg of crushed stone, prefer- ably 1 .2 -1 .5 I per 1000 kg of crushed stone.

One important use of the present invention relate to immersion of fine material into aqueous solution of organic ammonium carboxylate of formula (I):

[NR 1 R 2 R 3 R 4 ] + n [R 5 (COO)] n , (I), in which R 1 , R 2 , and R 3 are selected from the group composing of hydrogen and methyl, R 4 is a Ci-C 4 -alkyl substituted with a hydroxyl group, R 5 is hydrogen or methyl and n is 1 . Fine material is selected from the group composing of sand, crushed stone, expanded clay, expanded clay aggregate (LECA), crushed cement or concrete, chopped organic material and minerals in lowering the freezing point of said aqueous solution.

Advantageously said fine material is crushed expanded clay, crushed expanded clay aggregate, crushed peat, zink powder, nickel powder, crushed cement or crushed concrete.

In the combination according to present invention according to claim 29 there exists droplets of aqueous solution of organic ammonium carboxylate of formula (I) ):

The aqueous solution of organic ammonium carboxylate is compatible with an am- monium salts of C1-C6 monocarboxyl ic acids or carboxylates of urea or ethylene glycol or propylene glycol, or glycerol or a mixture thereof. We include in the inven- tion the use of combinations of the ammonium carboxylate of formula (I) with an ammonium salts of C1-C6 monocarboxylic acids or urea or ethylene glycol or propyl- ene glycol, or glycerol or a mixture thereof carboxylates. By using aqueous solution of organic ammonium carboxylate with freezing point depressant composition with urea for de-icing or anti icing applications one can lower oxygen demand on the environment.

The aqueous solution of organic ammonium carboxylate of formula (I) may contain auxiliary substances as well. Typical auxiliary substances comprise such as addi- tional corrosion inhibitors, biocides, coloring agents, surfactants, and viscosity in- tensifiers. The concentration of auxiliary substances will be in the range of 0.001 to 10 wt-% from the total weight of aqueous solution. In a preferred embodiment of the invention the aqueous solution of organic ammo- nium carboxylate of formula (I) have concentration of sodium, potassium, calcium and magnesium 0 M. This means that there will be no chlorides formation from these cations after said aqueous solution have been applied for controlling dusting in mines.

Once applied onto surface of above defined fine material, drying of said combination will lead on the one hand to water loss and on the other hand absorbing of water by way of the organic ammonium carboxylate of formula (I) resulting in keeping the surface of said fine material moist. Actually organic ammonium carboxylate of for- mula (I) will absorb water after water content of said aqueous solution have dropped at or below 15 wt-%. This is a very important aspect of the present invention, be- cause it will reduce drastically the amount of aqueous solution of organic ammonium carboxylate of formula (I) needed to keep dusting in control after applied onto fine material surface.

Biodegradativity of aqueous solutions of the invention used for controlling dusting is relativelt low: droplets of aqueous solution of organic ammonium carboxylate of formula (I), and fine material, wherein carboxylate originate from acetic acid, in form of fluid have BOD (biological oxygen demand) of 0.64 mg of O2 at 20 °C for liter of said fluid in 5 days. COD (chemical oxygen demand) for the same combination 0.64 mg O2 at 20 °C for liter of said fluid in 5 days.

DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

The invention is described below in more greater details with the help of examples. Person skilled in the art will recognize that the properties of the compositions studied are such that they will make ideal mineral dust control aqueous solutions having also freezing point depressant properties for binding dusting of streets, ore mines, horse tracks etc.

In the following non-restricting examples we have presented some specific applica- tions and properties of aqueous solutions comprising organic ammonium carbox- ylate of formula (I) as well as combinations comprising aqueous solution of organic ammonium carboxylate of formula (I) and fine material selected from the group corn- posing of sand, crushed stone, minerals and metal powder. Example 1

An ionogenic solution for controlling mineral dust formation was prepared by mixing 1 mole of formic acid (99%) with 1 mole of monoethanolamine (99%). Distilled water was added to the fluid mixture in order to made 3- 5 % by weight aqueous solution.

The freezing point of the solution was below -5°C, the electrical conductivity of the fluid was 61 mS/cm at 26°C, and pH of the fluid was 7.55 (measured directly from the solution).

Example 2

An aqueous solutions was prepared by mixing 1 mole of formic acid (99%) with 1 mole of monoethanolamine (99%). Distilled water was added to the fluid mixture in order to made 3 - 5 by weight solution in water.

The freezing point of the solution was below -5°C, the Brookfield DV-I viscosity (20 rpm) was 10 mPas at -20°C, 10 mPas at -10°C, 10 mPas at 0°C, and Bohlin VOR viscosity (shear rate 23.1 1/s) was 4 mPas at 10°C, 3 mPas at 20°C, 2 mPas at 40°C, and 1 .5 mPas at 60°C. The electrical conductivity of the fluid was 65 mS/cm at 26°C, and pH of the fluid was 7.54 (measured directly from the solution).

Example 3A

Aqueous ammonium carboxylate solution mixture presented in examples 6 and 7 (below) was used in controlling dusting of crushed stone. This mixture comprises of ethanolamine in acetic acid and ethanolamine in formic acid (1 :1 ). This mixture was sprayed as a 3 -5 % (w/w) aqueous solution in a form of mist or as drops onto sur- face of crushed stone and crushed stone dust. The sprayed mixture bind some moisture and prevented mineral dust and stone dust forming aerosol with surround- ing air thus effectively preventing dusting by preventing forming charged dust parti- cles. Additionally it lowered freezing of mineral dust and crushed stone/stone dust.

Crushed stone can be, for example, ore mineral originated from mining industry or rubble which have been gathered from town streets. Instead of above mentioned mixture comprising ethanolamine in acetic acid and ethanolamine in formic acid, one can also use aqueous ammonium carboxylate solution from example 2 (mo- noethanolamine and formic acid) or cholineamine in acetic acid or cholineamine in formic acid.

Committed peat material /peat dust and wood dust can also be treated in a similar way as crushed stone. Depending on the particle size of wood dust or committed peat / peat dust the aqueous ammonium carboxylate will be sprayed as a mist or as drops onto surface of peat/ peat dust or wood dust. Ammonium carboxylate was sprayed as a 3 -5 % (w/w) aqueous solution. The concentration present in the sur- face of committed peat material /peat dust and wood dust cannot be measured ex- actly because water is evaporating from the surface of fine material or dust. .

Example 4

Aqueous ammonium carboxylate solution mixture presented in examples 6 and 7 (below) was used in controlling dusting of crushed stone (street rubble) in situ. For this reason said aqueous ammonium carboxylate solution mixture was sprayed as drops onto pavement or city street. The concentration of ammonium carboxylate can be from 3 % w/w up to 85 %w/w calculated from the weight of the total aqueous ammonium carboxylate solution.

The sprayed mixture binded moisture and prevented crushed stone dust of forming gas-solid-particle-aerosol with surrounding air by neutralizing charged crushed stone dust particles. Additionally, this mixture lowered freezing point of crushed stone dust particles. This melts ice and snow which otherwise would have formed on crushed stone.

Example 5A

Aqueous ammonium carboxylate solution mixture presented in examples 6 and 7 or example 2 was used in controlling dusting of crushed stone gathered from town street (street rubble): crushed stone was immersed into aqueous ammonium car- boxylate solution (ammonium carboxylate concentration was 3 -5 % w/w). After this treatment the crushed stone can be reused.

Example 5B

Aqueous ammonium carboxylate solution mixture presented in examples 6 and 7 or example 2 was used as a concentrated solution 50 % w/w or 85 %w/w by immers- ing crushed stone into said aqueous ammonium carboxylate solution (immersion solution). The actual concentration of immersion solution changed continuously dur- ing the immersion treatment because the fine material absorbs different amount am- monium carboxylate and water. Actual concentration of immersion solution varied from 5 % w/w to 85 %w/w.

After this treatment the crushed stone was applied onto frozen street. The ammo- nium carboxylate solution on the surface of crushed stone melted the ice and was diluted by means of melted water. After freezing crushed stone formed an excellent grit onto frozen street.

Instead of crushed stone also expanded clay, or expanded clay aggregate can also be treated in a similar way. Expanded clay or expanded clay aggregate can be ap- plied onto pavements in a similar way as crushed stone in city streets.

Examples 6 and 7

Solutions in examples 6 and 7 have been made in the same way as presented in examples 1-2, that is, by mixing 1 mole of an ammonium cation source and 1 mole of a carboxyl anion source (unless otherwise shown) together for obtaining a con- centrated fluid and then adding water to the concentrated fluid, for obtaining diluted solutions.

Table 1

o

In table 1 has been shown formation of possible precipitates from fluids and diluted solutions obtained from fluids. Temperature O was 20-25°C.

fluid Wt-% from

solution 100 90 80 60 40 20 5

pH of 2%

solution

fluid

ethanolamine /

acetic acid Clear Clear Clear Clear Clear Clear Clear 6.8

ethanolamine /

formic acid Clear Clear Clear Clear Clear Clear Clear 3.7

Table 2

The fluid and solution samples from selected examples of table 1 were subjected to chilling to a temperature of +4 °C

and then to further cooling to a temperature of -20 °C. In these temperatures the possible

turbidity, precisipation of these samples was observed.

As can be seen from table 1 and table 2 water based solutions of organic of ammonium carboxylates are clear solutions inde- pendent whether they are diluted or not. This means that when they are used in controlling mineral dust they have no tendency

to salt out after sprayed onto surface of crushed stones, sand, soil or metal. Therefore they do not interfere for example vehicle

brakes or transport belts used in mining processes.

Table 3

In table 3 has been given results from viscosity measurements compositions of examples 6 and 7. Viscocity was measured with

Bohlin method (bold numbers) at shear rate 23.1 1/s and with Brookefield method (normal numbers) at shear rate 20 rpm. Addi

tionally electrical conductivity, ph and redox potential was measured for these compositions comprising fluids and solutions pre- n pared from these fluids by adding distilled water. H

— fluid Wt-%

from solu- o monoethanolamine / acetic acid tion 100 90 80 60 40 20 5

water water wt-% 0 10 20 40 60 80 95

VISCOBohlin shear

SITY VOR rate

°c mPas viscosity 23.1 1/s

Brookfield

DV-I 20 rpm viscosity sp3

-20

viscosity mPas / (repeat) >20000 >20000 12450 170 35 X X

-20 >20000 16740 1700 80 20 X X

-10 >20000 5150 700 60 15 10 5

0 27850 2160 330 40 10 10 5

10 15250 1152 210 23 6 2 1.7

20 5665 556 118 15 5 2 1.3

40 1220 154 41 8 3 1.5 1.1

60 345 63 20 5 2 1 0.7 conductivity mS /cm 0.534 2.24 7.1 25.9 46.9 47.8 20.2 T °C 25.4 25.9 26 25.6 25.4 25.1 24.9 pH °C 22 7.96 7.81 7.68 7.34 7.07 6.87 6.79 REDOX +31 +54 +69 +107 + 146 + 179 +216

fluid Wt-%

Composition: from

monoethanolamine / formic acid solution 100 90 80 60 40 20 5 water water wt-% 0 10 20 40 60 80 95 pale oily

light liquid

Bohlin

VISCO- VOR visshear rate

°C SITY mPas cosity 23.1 1/s

Brookfield

DV-I viscosity 20 rpm sp3 viscosity mPas / -30

-20 4350 680 230 30 10 X X

-10 2830 410 130 20 10 5 X

0 1335 240 75 15 10 5 5

10 646 123 41 9 4 2 1.5

20 325 72 26 6 3 1.7 1.2

40 119 31 13 4 2 1.2 0.95

60 47 17 7 3 1.5 1.1 0.9 conductivity mS /cm 15.9 27.3 40.4 61 65 46.9 16

T °C 26.1 25.9 25.8 25.6 25.5 25.5 25.8 pH / 22°C 7.75 7.67 7.6 7.55 7.54 7.53 7.51 REDOX potential -321 -244 -164 -110 -75 -48 +4

o

As can be seen from table 3 the viscosity of compositions varies considerably depending on the quality of the fluid in a composition

and fluid - solvent proportion (w/w). No solid crystals will be formed for instance if one uses combination ethanol amine / formic - 4 acid. Avoiding solid crystals is also a beneficial property for instance for an aqueous solution used for dust control.

Table 4A.

The freezing points of aqueous solutions of organic ammonium carboxylate of formula (I), wherein R 5 = H (formiate):

o

- - 4

Table 4B.

The freezing points of selected aqueous solutions of organic ammonium carboxylate of formula (I), wherein R 5 = H (formiate) is o given in table 4B. Samples of organic ammonium carboxylate of formula (I) in water and their freezing points :

n

H

— o o

As can be seen form tables 4A and 4B as the concentration of water solutions of organic ammonium carboxylate of formula (I) o increases it will readily lead to lower freezing points. For example those aqueous solutions of organic ammonium carboxylate of formula (I) presented in tables 4A and 4B having concentration about 10 wt -% have a freezing point about -5 °C. However when the concentration of organic ammonium carboxylate of formula (I) in the aqueuos solution increases, the freezing point of the aqueous solutions falls considerably , for example when the concentration of aqueuos solution is 30 (wt-%) the freezing point of said aqueous solution is about -20 °C. When the concentration of aqueuos solution is 60 wt-%) the freezing point of said aqueous solution is about -85 °C. The freezing point of -5 °C corresponds the freezing point of aqueous solutions of organic ammonium

carboxylate of formula (I) which is ready-to -use ( 1 -7 wt % aqueuos solution ). The freezing point of -30 C and -85 % corresponds the freezing point of the aqueous solution of organic ammonium carboxylate of formula (I) which have been sprayed onto surface of fine material when water has been evaporated.

n

H

— o