Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
USE OF ENZYME PARTICLES IN WATER-SOLUBLE FILMS
Document Type and Number:
WIPO Patent Application WO/2015/086692
Kind Code:
A1
Abstract:
The invention relates to a detergent pouch, formed by an enzymaticwater-soluble film, comprising a detergent; wherein the water-soluble film contains enzyme particles.

Inventors:
HAUGAARD JESPER (DK)
Application Number:
PCT/EP2014/077251
Publication Date:
June 18, 2015
Filing Date:
December 10, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOVOZYMES AS (DK)
International Classes:
C11D3/386; C08J5/18; C11D17/04; C12N9/96
Domestic Patent References:
WO2013148492A12013-10-03
WO2003031637A12003-04-17
WO2009098660A12009-08-13
Foreign References:
DE10053329A12002-05-08
US4115292A1978-09-19
US5558812A1996-09-24
US7754318B22010-07-13
Download PDF:
Claims:
CLAIMS

1 . A detergent pouch, comprising a compartment formed by an enzymatic water-soluble film, and a detergent composition containing a surfactant and/or a detergent builder; wherein the enzyme is present in the water-soluble film as enzyme particles.

2. The detergent pouch of claim 1 , wherein the detergent composition is a laundry or dish wash detergent composition. 3. The detergent pouch of claim 1 or 2, wherein the detergent composition is a liquid detergent composition.

4. The detergent pouch of claim 3, wherein the liquid detergent composition is substantially non-aqueous.

5. The detergent pouch of any of claims 1 to 4, wherein the enzyme particles are enzyme crystals.

6. The detergent pouch of any of claims 1 to 5, wherein the size of the enzyme particles is from 0.5 m to 100 m.

7. The detergent pouch of any of claims 1 to 6, wherein the enzyme is selected from the group consisting of protease, metalloprotease, subtilisin, lipase, cutinase, amylase, carbohydrase, cellulase, pectinase, mannanase, arabinase, galactanase, xylanase, xanthanase, DNAse, laccase, peroxidase, oxidase, haloperoxidase, perhydrolase, and combinations thereof.

8. The detergent pouch of any of claims 1 to 7, wherein the enzyme is a lipase.

9. The detergent pouch of any of claims 1 to 8, wherein the water-soluble film comprises from 35% to 90% of PVOH which has a degree of hydrolysis of from 75% to 99%.

10. The detergent pouch of any of claims 1 to 9, wherein the water-soluble film comprises from 10% to 50% of polyols. 1 1 . The detergent pouch of any of claims 1 to 10, wherein the thickness of the water-soluble film is from 10 m to 500 Mm.

12. A method for preparing the detergent pouch of any of claims 1 to 1 1 , comprising encapsulating a detergent composition with a water-soluble film comprising enzyme particles.

13. The method of claim 12, wherein the detergent composition is a liquid detergent composition.

14. A water-soluble film for encapsulating a detergent composition, comprising enzyme particles.

15. Use of the water-soluble film of claim 14 for improving the storage stability of enzymes in a detergent pouch of any of claims 1 to 1 1 .

16. A method for reducing loss, or improving recovery, of enzymatic activity during production of the water-soluble film of claim 14, comprising adding enzyme particles to a liquid film composition, and casting the water-soluble film.

Description:
USE OF ENZYME PARTICLES IN WATER-SOLUBLE FILMS

Reference to a Sequence Listing

This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a detergent pouch comprising a water-soluble film with enzyme particles.

Background

The use of water-soluble film packages to deliver unit dosage amounts of detergents products for e.g. laundry and automatic dish wash is well known (see e.g., WO 2009/098660 or WO 2010/141301 ). Both granular and liquid detergents have been on the market in this form for several years. It is also well known for decades to use enzymes in laundry detergents. More and more different types of enzymes are used in detergents, and the dosages of the enzymes is also increasing, amongst others due to the benefits coming from the enzymes and the environmental benefits of using biological actives instead of e.g. oil based chemicals like most surfactants.

A potential problem when using enzymes in detergents is the storage stability of the enzymes. Enzymes are large biological molecules that can undergo various forms of degradation. To overcome this problem numerous solutions have been suggested and patented, involving both designing more robust enzymes, and making detergent formulations less harsh to the enzymes. For unit dose systems like detergent pouches or tablets it is often useful to separate the enzymes from more harsh chemicals (e.g., bleach) in different compartments or layers. However, this is complicating the manufacturing processes and increases the cost. It has previously been suggested to incorporate the enzymes into the water-soluble film surrounding a detergent pouch (e.g., US 4,1 15,292).

The present invention provides a solution for increasing the storage stability of enzymes in detergent pouch (unit dose) products by incorporating the enzymes in the water-soluble film as enzyme particles.

SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a detergent pouch, comprising a compartment formed by an enzymatic water-soluble film, and a detergent composition containing a surfactant and/or a detergent builder; wherein the enzyme is present in the water- soluble film as enzyme particles.

Various other aspects and embodiments are apparent from the detailed description, examples and claims. DETAILED DESCRIPTION

The inventors of the present invention have surprisingly found that the storage stability of enzymes incorporated in a detergent pouch (detergent unit dose) can be improved by including the enzymes as enzyme particles in the water-soluble film forming a compartment of the detergent pouch. This makes the enzymes less prone to inactivation by detergent ingredients like bleach, surfactants, chelators etc. This is particularly advantageous for surface-active enzymes, like lipases and cutinases.

Not only are the enzymes more resistant to detergent ingredients in the detergent pouch, but loss of enzymatic activity during production of the water-soluble film can also be reduced. During production, the film is prepared from a hot liquid film forming composition containing the enzymes. Both the heating step and proteolysis by proteases will inactivate some of the enzyme in the hot liquid. By using enzyme particles instead of dissolved enzyme, the enzyme becomes more resistant to inactivation.

Therefore, the invention provides an improved stability of enzymes in a detergent pouch used in, for example, laundry and dish wash. In addition the invention provides for a better recovery of enzymatic activity during production of the detergent pouch.

Enzymes

The enzyme particles used in the invention contain an enzyme such as protease, lipase, cutinase, amylase, carbohydrase, cellulase, pectinase, mannanase, arabinase, galactanase, xylanase, xanthanase, DNAse, perhydrolase, and oxidoreductases, e.g., oxidase, laccase, peroxidase, peroxygenase and/or haloperoxidase; or combinations thereof.

Preferably, the enzyme is a detergent enzyme. Preferred detergent enzymes are protease (e.g., subtilisin or metalloprotease), lipase, amylase, lyase, cellulase, pectinase, mannanase, DNAse, perhydrolase, and oxidoreductases (e.g., laccase, peroxidase, peroxygenase and/or haloperoxidase); or combinations thereof. More preferred detergent enzymes are protease (e.g., subtilisin or metalloprotease), lipase, amylase, cellulase, pectinase, mannanase, DNAse, and perhydrolase; or combinations thereof. Most preferably the enzyme is a lipase, such as a lipase wherein the amino acid sequence of the lipase has at least 70% sequence identity, preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100% sequence identity to the amino acid sequence of SEQ ID NO: 1. In another embodiment, the number of amino acid substitutions, deletions and/or insertions introduced into the amino acid sequence of SEQ ID NO: 1 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10; or up to 5, e.g., 1 , 2, 3, 4, or 5.

The enzyme may be a naturally occurring enzyme of bacterial or fungal origin, or it may be a variant derived from one or more naturally occurring enzymes by gene shuffling and/or by substituting, deleting or inserting one or more amino acids. Chemically modified or protein engineered mutants are included.

Cellulases: Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and

Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757 and WO 89/09259.

Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/1 1262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, US 5,457,046, US 5,686,593, US

5,763,254, WO 95/24471 , WO 98/12307 and PCT/DK98/00299.

Commercially available cellulases include Celluzyme™, Carezyme™, and Celluclean™ (Novozymes A/S), Clazinase™, and Puradax HA™ (Genencor International Inc.), and KAC- 500(B)™ (Kao Corporation).

Proteases: Suitable proteases include those of bacterial, fungal, plant, viral or animal origin, e.g., vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. It may be an alkaline protease, such as a serine protease or a metalloprotease. A serine protease may for example be of the S1 family, such as trypsin, or the S8 family such as subtilisin. A metalloproteases protease may for example be a thermolysin from, e.g., family M4 or other metalloprotease, such as those from M5, M7 or M8 families.

The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 subdivisions, i.e., the Subtilisin family, the Thermitase family, the Proteinase K family, the

Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.

Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.

alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in WO93/18140. Other useful proteases may be those described in W092/175177, WO01/016285, WO02/026024 and WO02/016547.

Examples of trypsin-like proteases are trypsin (e.g., of porcine or bovine origin) and the Fusarium protease described in WO89/06270, W094/25583 and WO05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO05/052161 and

WO05/052146.

A further preferred protease is the alkaline protease from Bacillus lentus DSM 5483, as described for example in W095/23221 , and variants thereof which are described in

WO92/21760, W095/23221 , EP1921 147 and EP1921 148.

Examples of metalloproteases are the neutral metalloprotease as described in

WO07/044993 (Genencor Int.) such as those derived from Bacillus amyloliquefaciens.

Examples of useful proteases are the variants described in: W092/19729,

WO96/034946, WO98/201 15, WO98/201 16, WO99/01 1768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, W01 1/036263, W01 1/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 1 18, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering. More preferred the subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, * 36D, V68A, N76D, N87S,R, * 97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).

Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Duralase Tm , Durazym Tm , Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®,

Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® (Novozymes A/S), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, Preferenz Tm , Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®, Properase®,

Effectenz Tm , FN2®, FN3® , FN4®, Excellase®, Opticlean®, Optimase®, and Excellenz P1000 (Danisco/DuPont), Axapem™ (Gist-Brocases N.V.), BLAP (sequence shown in Figure 29 of US5352604) and variants hereof (Henkel AG) and KAP (Bacillus al alophilus subtilisin) from Kao.

Lipases and Cutinases: Suitable lipases and cutinases include those of bacterial or fungal origin. Chemically modified or protein engineered mutant enzymes are included.

Examples include lipase from Thermomyces, e.g., from T. lanuginosus (previously named

Humicola lanuginosa) as described in EP258068 and EP305216, cutinase from Humicola, e.g., H. insolens (WO96/13580), lipase from strains of Pseudomonas (some of these now renamed to Burkholderia), e.g., P. alcaligenes or P. pseudoalcaligenes (EP218272), P. cepacia

(EP331376), P. sp. strain SD705 (WO95/06720 & WO96/27002), P. wisconsinensis

(WO96/12012), GDSL-type Streptomyces lipases (W010/065455), cutinase from Magnaport e grisea (W010/107560), cutinase from Pseudomonas mendocina (US5,389,536), lipase from Thermobifida fusca (W01 1/084412), Geobacillus stearothermophilus lipase (W01 1/084417), lipase from Bacillus subtilis (W01 1/084599), and lipase from Streptomyces griseus

(W01 1/150157) and S. pristinaespiralis (W012/137147).

Other examples are lipase variants such as those described in EP407225, WO92/05249, WO94/01541 , W094/25578, W095/14783, WO95/30744, W095/35381 , W095/22615, WO96/00292, WO97/04079, WO97/07202, WO00/34450, WO00/60063, WO01/92502, WO07/87508 and WO09/109500.

Preferred commercial lipase products include include Lipolase™, Lipex™; Lipolex™ and Lipoclean™ (Novozymes A/S), Lumafast (originally from Genencor) and Lipomax (originally from Gist-Brocades).

Still other examples are lipases sometimes referred to as acyltransferases or

perhydrolases, e.g., acyltransferases with homology to Candida antarctica lipase A

(W010/1 1 1 143), acyltransferase from Mycobacterium smegmatis (WO05/56782),

perhydrolases from the CE 7 family (WO09/67279), and variants of the M. smegmatis perhydrolase in particular the S54V variant used in the commercial product Gentle Power Bleach from Huntsman Textile Effects Pte Ltd (W010/100028).

Amylases: Suitable amylases are alpha-amylases or glucoamylases and may be of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g., a special strain of Bacillus licheniformis, described in more detail in GB 1 ,296,839.

Suitable amylases include amylases having SEQ ID NO: 3 in WO 95/10603 or variants having 90% sequence identity to SEQ ID NO: 3 thereof. Preferred variants are described in WO 94/02597, WO 94/18314, WO 97/43424 and SEQ ID NO: 4 of WO 99/019467, such as variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 178, 179, 181 , 188, 190, 197, 201 , 202, 207, 208, 209, 21 1 , 243, 264, 304, 305, 391 , 408, and 444.

Different suitable amylases include amylases having SEQ ID NO: 6 in WO 02/010355 or variants thereof having 90% sequence identity to SEQ ID NO: 6. Preferred variants of SEQ ID NO: 6 are those having a deletion in positions 181 and 182 and a substitution in position 193. Other amylases which are suitable are hybrid alpha-amylase comprising residues 1 -33 of the alpha-amylase derived from B. amyloliquefaciens shown in SEQ ID NO: 6 of WO 2006/066594 and residues 36-483 of the B. licheniformis alpha-amylase shown in SEQ ID NO: 4 of WO 2006/066594 or variants having 90% sequence identity thereof. Preferred variants of this hybrid alpha-amylase are those having a substitution, a deletion or an insertion in one of more of the following positions: G48, T49, G107, H156, A181 , N190, M197, 1201 , A209 and Q264. Most preferred variants of the hybrid alpha-amylase comprising residues 1 -33 of the alpha- amylase derived from B. amyloliquefaciens shown in SEQ ID NO: 6 of WO 2006/066594 and residues 36-483 of SEQ ID NO: 4 are those having the substitutions:

M197T;

H156Y+A181T+N190F+A209V+Q264S; or

G48A+T49I+G107A+H156Y+A181T+N190F+I201 F+A209V+Q264S.

Further amylases which are suitable are amylases having SEQ ID NO: 6 in WO

99/019467 or variants thereof having 90% sequence identity to SEQ ID NO: 6. Preferred variants of SEQ ID NO: 6 are those having a substitution, a deletion or an insertion in one or more of the following positions: R181 , G182, H183, G184, N195, I206, E212, E216 and K269. Particularly preferred amylases are those having deletion in positions R181 and G182, or positions H183 and G184.

Additional amylases which can be used are those having SEQ ID NO: 1 , SEQ ID NO: 3,

SEQ ID NO: 2 or SEQ ID NO: 7 of WO 96/023873 or variants thereof having 90% sequence identity to SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7. Preferred variants of SEQ ID NO: 1 , SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7 are those having a substitution, a deletion or an insertion in one or more of the following positions: 140, 181 , 182, 183, 184, 195, 206, 212, 243, 260, 269, 304 and 476. More preferred variants are those having a deletion in positions 181 and 182 or positions 183 and 184. Most preferred amylase variants of SEQ ID NO: 1 , SEQ ID NO: 2 or SEQ ID NO: 7 are those having a deletion in positions 183 and 184 and a substitution in one or more of positions 140, 195, 206, 243, 260, 304 and 476.

Other amylases which can be used are amylases having SEQ ID NO: 2 of WO

08/153815, SEQ ID NO: 10 in WO 01/66712 or variants thereof having 90% sequence identity to SEQ ID NO: 2 of WO 08/153815 or 90% sequence identity to SEQ ID NO: 10 in WO 01/66712. Preferred variants of SEQ ID NO: 10 in WO 01/66712 are those having a substitution, a deletion or an insertion in one of more of the following positions: 176, 177, 178, 179, 190, 201 , 207, 21 1 and 264.

Further suitable amylases are amylases having SEQ ID NO: 2 of WO 09/061380 or variants having 90% sequence identity to SEQ ID NO: 2 thereof. Preferred variants of SEQ ID NO: 2 are those having a truncation of the C-terminus and/or a substitution, a deletion or an insertion in one of more of the following positions: Q87, Q98, S125, N128, T131 , T165, K178, R180, S181 , T182, G183, M201 , F202, N225, S243, N272, N282, Y305, R309, D319, Q320, Q359, K444 and G475. More preferred variants of SEQ ID NO: 2 are those having the substitution in one of more of the following positions: Q87E,R, Q98R, S125A, N128C, T131 I, T165I, K178L, T182G, M201 L, F202Y, N225E,R, N272E,R, S243Q,A,E,D, Y305R, R309A, Q320R, Q359E, K444E and G475K and/or deletion in position R180 and/or S181 or of T182 and/or G183. Most preferred amylase variants of SEQ ID NO: 2 are those having the substitutions:

N128C+K178L+T182G+Y305R+G475K;

N 128C+K178L+T182G+F202Y+Y305R+D319T+G475K;

S125A+N 128C+K178L+T182G+Y305R+G475K; or

S125A+N128C+T131 I+T165I+K178L+T182G+Y305R+G475K wherein the variants are C- terminally truncated and optionally further comprises a substitution at position 243 and/or a deletion at position 180 and/or position 181.

Other suitable amylases are the alpha-amylase having SEQ ID NO: 12 in WO01/66712 or a variant having at least 90% sequence identity to SEQ ID NO: 12. Preferred amylase variants are those having a substitution, a deletion or an insertion in one of more of the following positions of SEQ ID NO: 12 in WO01/66712: R28, R1 18, N174; R181 , G182, D183, G184, G186, W189, N195, M202, Y298, N299, K302, S303, N306, R310, N314; R320, H324, E345, Y396, R400, W439, R444, N445, K446, Q449, R458, N471 , N484. Particular preferred amylases include variants having a deletion of D183 and G184 and having the substitutions R1 18K, N195F, R320K and R458K, and a variant additionally having substitutions in one or more position selected from the group: M9, G149, G182, G186, M202, T257, Y295, N299, M323, E345 and A339, most preferred a variant that additionally has substitutions in all these positions.

Other examples are amylase variants such as those described in WO201 1/098531 , WO2013/001078 and WO2013/001087.

Commercially available amylases are Duramyl™, Termamyl™, Fungamyl™,

Stainzyme™, Stainzyme Plus™, Natalase™, Liquozyme X and BAN™ (from Novozymes A/S), and Rapidase™ , Purastar™/Effectenz™, Powerase and Preferenz S100 (from Genencor International Inc./DuPont).

Lyase: The lyase may be a pectate lyase of bacterial or fungal origin. Chemically or genetically modified mutants are included. In a preferred embodiment the pectate lyase is derived from Bacillus, particularly Bacillus substilis, B. Iicherniformis or B. agaradhaerens, or a variant derived of any of these, e.g. as described in US 6,124,127, WO 1999/027083, WO

1999/027084, WO 2002/006442, WO 2002/092741 , WO 2003/095638, Commercially available pectate lyases include XPect; Pectawash and Pectaway (Novozymes A/S).

Mannanase: Suitable mannanases include those of bacterial or fungal origin. Chemically or genetically modified mutants are included. The mannanase may be an alkaline mannanase of Family 5 or 26. It may be a wild-type from Bacillus or Humicola, particularly B.

agaradhaerens, B. licheniformis, B. halodurans, B. clausii, or H. insolens. Suitable

mannanases are described in WO 1999/064619. A commercially available mannanase is Mannaway (Novozymes A S).

Deoxyribonuclease (DNase): Suitable deoxyribonucleases (DNases) are any enzyme that catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA. According to the invention, a DNase which is obtainable from a bacterium is preferred; in particular a DNase which is obtainable from a Bacillus is preferred; in particular a DNase which is obtainable from Bacillus subtilis or Bacillus licheniformis is preferred.

Examples of such DNases are described in patent application WO 201 1/098579 or in

PCT/EP2013/075922.

Perhydrolases: Suitable perhydrolases are capable of catalyzing a perhydrolysis reaction that results in the production of a peracid from a carboxylic acid ester (acyl) substrate in the presence of a source of peroxygen (e.g., hydrogen peroxide). While many enzymes perform this reaction at low levels, perhydrolases exhibit a high perhydrolysis:hydrolysis ratio, often greater than 1 . Suitable perhydrolases may be of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included.

Examples of useful perhydrolases include naturally occurring Mycobacterium

perhydrolase enzymes, or variants thereof. An exemplary enzyme is derived from

Mycobacterium smegmatis. Such enzyme, its enzymatic properties, its structure, and variants thereof, are described in WO 2005/056782, WO 2008/063400, US 2008/145353, and

US2007167344.

Peroxidases/Oxidases: Suitable peroxidases include those comprised by the enzyme classification EC 1.1 1 .1.7, as set out by the Nomenclature Committee of the International

Union of Biochemistry and Molecular Biology (IUBMB), or any fragment derived therefrom, exhibiting peroxidase activity.

Suitable peroxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinopsis, e.g., from C. cinerea (EP 179,486), and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.

A peroxidase according to the invention also include a haloperoxidase enzyme, such as chloroperoxidase, bromoperoxidase and compounds exhibiting chloroperoxidase or bromoperoxidase activity. Haloperoxidases are classified according to their specificity for halide ions. Chloroperoxidases (E.C. 1 .1 1.1 .10) catalyze formation of hypochlorite from chloride ions.

In an embodiment, the haloperoxidase of the invention is a chloroperoxidase. Preferably, the haloperoxidase is a vanadium haloperoxidase, i.e., a vanadate-containing haloperoxidase. In a preferred method of the present invention the vanadate-containing haloperoxidase is combined with a source of chloride ion.

Haloperoxidases have been isolated from many different fungi, in particular from the fungus group dematiaceous hyphomycetes, such as Caldariomyces, e.g., C. fumago,

Alternaria, Curvularia, e.g., C. verruculosa and C. inaequalis, Drechslera, Ulocladium and Botrytis.

Haloperoxidases have also been isolated from bacteria such as Pseudomonas, e.g., P. pyrrocinia and Streptomyces, e.g., S. aureofaciens.

In an preferred embodiment, the haloperoxidase is derivable from Curvularia sp., in particular Curvularia verruculosa or Curvularia inaequalis, such as C. inaequalis CBS 102.42 as described in WO 95/27046; or C. verruculosa CBS 147.63 or C. verruculosa CBS 444.70 as described in WO 97/04102; or from Drechslera hartlebii as described in WO 01/79459, Dendryphiella salina as described in WO 01/79458, Phaeotrichoconis crotalarie as described in WO 01/79461 , or Geniculosporium sp. as described in WO 01/79460.

An oxidase according to the invention include, in particular, any laccase enzyme comprised by the enzyme classification EC 1.10.3.2, or any fragment derived therefrom exhibiting laccase activity, or a compound exhibiting a similar activity, such as a catechol oxidase (EC 1.10.3.1 ), an o-aminophenol oxidase (EC 1.10.3.4), or a bilirubin oxidase (EC 1 .3.3.5).

Preferred laccase enzymes are enzymes of microbial origin. The enzymes may be derived from plants, bacteria or fungi (including filamentous fungi and yeasts).

Suitable examples from fungi include a laccase derivable from a strain of Aspergillus, Neurospora, e.g., N. crassa, Podospora, Botrytis, Collybia, Fomes, Lentinus, Pleurotus,

Trametes, e.g., T. villosa and T. versicolor, Rhizoctonia, e.g., R. solani, Coprinopsis, e.g., C. cinerea, C. comatus, C. friesii, and C. plicatilis, Psathyrella, e.g., P. condelleana, Panaeolus, e.g., P. papilionaceus, Myceliophthora, e.g., M. thermophila, Schytalidium, e.g., S.

thermophilum, Polyporus, e.g., P. pinsitus, Phlebia, e.g., P. radiata (WO 92/01046), or Coriolus, e.g., C. hirsutus (JP 2238885).

Suitable examples from bacteria include a laccase derivable from a strain of Bacillus.

A laccase derived from Coprinopsis or Myceliophthora is preferred; in particular a laccase derived from Coprinopsis cinerea, as disclosed in WO 97/08325; or from

Myceliophthora thermophila, as disclosed in WO 95/33836.

Amino acid changes in the lipase amino acid sequence shown as SEQ ID NO: 1 , as referenced above, may be of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of 1 -30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain. Examples of conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine). Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H.

Neurath and R.L. Hill, 1979, In, The Proteins, Academic Press, New York. Common

substitutions are Ala/Ser, Val/lle, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/lle, Leu/Val, Ala/Glu, and Asp/Gly.

Essential amino acids in a polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081 -1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for enzyme activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271 : 4699-4708. The active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver ei a/., 1992, FEBS Lett. 309: 59-64. The identity of essential amino acids can also be inferred from an alignment with a related polypeptide.

Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241 : 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156;

WO 95/17413; or WO 95/22625. Other methods that can be used include error-prone PCR, phage display (e.g., Lowman et al., 1991 , Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204), and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner ei a/., 1988, DNA 7: 127).

The relatedness between two amino acid sequences is described by the parameter

"sequence identity". For purposes of the present invention, the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the

EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et a/., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows: (Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment).

Enzyme particles

Enzyme particles are contained in the water-soluble film used for forming a compartment of the detergent pouch. The enzyme particles may contain one or more of the enzymes described above. Different enzymes can be mixed or separated (such as arranged in layers) in the enzyme particle.

Enzyme particles are any form of enzyme in a solid particulate form. That can be as enzyme crystals, enzyme precipitate, spray or freeze-dried enzyme or any form of granulated enzyme, either as a powder or a suspension in liquid. Typically the particle size, measured as equivalent spherical diameter (volume based average particle size), of the enzyme particles is below 2 mm, preferably below 1 mm, below 0.5 mm, below 0.25 mm, or below 0.1 mm; and above 0.05 μηι, preferably above 0.1 μηι, above 0.5 μηι, above 1 μηι, above 5 μηη or above 10 μηι.

In a preferred embodiment, the particle size of the enzyme particles is from 0.5 μηη to 100 μηι.

The enzyme particles contain at least 1 % w/w enzyme protein, preferably at least 5% w/w enzyme protein, at least 10% w/w enzyme protein, at least 20% w/w enzyme protein, at least 30% w/w enzyme protein, at least 40% w/w enzyme protein, at least 50% w/w enzyme protein, at least 60% w/w enzyme protein, at least 70% w/w enzyme protein, at least 80% w/w enzyme protein, or at least 90% w/w enzyme protein.

In a preferred embodiment, the enzyme particles are enzyme crystals, or the enzyme protein is on a crystalline form.

Enzyme crystallization may be carried out in a number of ways, as known in the art (e.g., as described in WO 91/09943 or WO 94/22903).

The enzyme may be formulated in the enzyme particle as known in the art for solid enzyme formulations, such as formulations for reducing dust, improving stability and/or modifying relase rate of the enzyme. The enzyme particle may also be formulated in a matrix or coated with agents suppressing dissolution of the enzyme particle in the PVOH/film solution used for preparing the water-soluble film.

The enzyme molecules on the surface of the enzyme particles may also be cross-linked, like CLECs (Cross-Linked Enzyme Crystals) or CLEA (Cross-Linked Enzyme Aggregate).

Water-soluble film

The detergent pouch of the invention comprises a compartment formed by a water- soluble film. The water-soluble film contains enzyme particles as described above. Water-soluble films, optional ingredients for use therein, and methods of making the same are well known in the art. In one class of embodiments, the water-soluble film includes PVOH. PVOH is a synthetic resin generally prepared by the alcoholysis, usually termed hydrolysis or saponification, of polyvinyl acetate. Fully hydrolyzed PVOH, wherein virtually all the acetate groups have been converted to alcohol groups, is a strongly hydrogen-bonded, highly crystalline polymer which dissolves only in hot water - greater than about 140°F (60°C). If a sufficient number of acetate groups are allowed to remain after the hydrolysis of polyvinyl acetate, the PVOH polymer then being known as partially hydrolyzed, it is more weakly hydrogen-bonded and less crystalline and is soluble in cold water - less than about 50°F (10°C). An intermediate cold/hot water-soluble film can include, for example, intermediate partially-hydrolyzed PVOH (e.g., with degrees of hydrolysis of about 94% to about 98%), and is readily soluble only in warm water - e.g., rapid dissolution at temperatures of about 40°C and greater. Both fully and partially hydrolyzed PVOH types are commonly referred to as PVOH homopolymers although the partially hydrolyzed type is technically a vinyl alcohol-vinyl acetate copolymer.

The degree of hydrolysis of the PVOH included in the water-soluble films of the present disclosure can be about 75% to about 99%. As the degree of hydrolysis is reduced, a film made from the resin will have reduced mechanical strength but faster solubility at temperatures below about 20°C. As the degree of hydrolysis increases, a film made from the resin will tend to be mechanically stronger and the thermoformability will tend to decrease. The degree of hydrolysis of the PVOH can be chosen such that the water-solubility of the resin is temperature dependent, and thus the solubility of a film made from the resin, compatibilizing agent, and additional ingredients is also influenced. In one class of embodiments the film is cold water- soluble. A cold water-soluble film, soluble in water at a temperature of less than 10°C, can include PVOH with a degree of hydrolysis in a range of about 75% to about 90%, or in a range of about 80% to about 90%, or in a range of about 85% to about 90%. In another class of embodiments the film is hot water-soluble. A hot water-soluble film, soluble in water at a temperature of at least about 60°C, can include PVOH with a degree of hydrolysis of at least about 98%.

Other film-forming resins for use in addition to or in an alternative to PVOH can include, but are not limited to, modified polyvinyl alcohols, polyacrylates, water-soluble acrylate copolymers, polyacrylates, polyacryamides, polyvinyl pyrrolidone, pullulan, water-soluble natural polymers including, but not limited to, guar gum, xanthan gum, carrageenan, and starch, water-soluble polymer derivatives including, but not limited to, ethoxylated starch and hydroxypropylated starch, poly(sodium acrylamido-2-methylpropane sulfonate),

polymonomethylmaleate, copolymers thereof, and combinations of any of the foregoing. In one class of embodiments, the film-forming resin is a terpolymer consisting of vinyl alcohol, vinyl acetate, and sodium acrylamido-2-methylpropanesulfonate. Unexpectedly, water-soluble films based on a vinyl alcohol, vinyl acetate, and sodium acrylamido-2-methylpropanesulfonate terpolymer have demonstrated a high percent recovery of enzyme.

The water-soluble resin can be included in the water-soluble film in any suitable amount, for example an amount in a range of about 35 wt% to about 90 wt%. The preferred weight ratio of the amount of the water-soluble resin as compared to the combined amount of all enzymes, enzyme stabilizers, and secondary additives can be any suitable ratio, for example a ratio in a range of about 0.5 to about 5, or about 1 to 3, or about 1 to 2.

Water-soluble resins for use in the films described herein (including, but not limited to PVOH resins) can be characterized by any suitable viscosity for the desired film properties, optionally a viscosity in a range of about 5.0 to about 30.0 cP, or about 10.0 cP to about 25 cP. The viscosity of a PVOH resin is determined by measuring a freshly made solution using a Brookfield LV type viscometer with UL adapter as described in British Standard EN ISO 15023- 2:2006 Annex E Brookfield Test method. It is international practice to state the viscosity of 4% aqueous polyvinyl alcohol solutions at 20°C. All PVOH viscosities specified herein in cP should be understood to refer to the viscosity of 4% aqueous polyvinyl alcohol solution at 20°C, unless specified otherwise.

It is well known in the art that the viscosity of a PVOH resin is correlated with the weight average molecular weight (MW) of the same PVOH resin, and often the viscosity is used as a proxy for Mw. Thus, the weight average molecular weight of the water-soluble resin optionally can be in a range of about 35,000 to about 190,000, or about 80,000 to about 160,000. The molecular weight of the resin need only be sufficient to enable it to be molded by suitable techniques to form a thin plastic film.

The water-soluble films according to the present disclosure may include other optional additive ingredients including, but not limited to, plasticizers, surfactants, defoamers, film formers, antiblocking agents, internal release agents, anti-yellowing agents and other functional ingredients, for example in amounts suitable for their intended purpose.

Water is recognized as a very efficient plasticizer for PVOH and other polymers;

however, the volatility of water makes its utility limited since polymer films need to have at least some resistance (robustness) to a variety of ambient conditions including low and high relative humidity. Glycerin is much less volatile than water and has been well established as an effective plasticizer for PVOH and other polymers. Glycerin or other such liquid plasticizers by themselves can cause surface "sweating" and greasiness if the level used in the film

formulation is too high. This can lead to problems in a film such as unacceptable feel to the hand of the consumer and even blocking of the film on the roll or in stacks of sheets if the sweating is not mitigated in some manner, such as powdering of the surface. This could be characterized as over plasticization. However, if too little plasticizer is added to the film the film may lack sufficient ductility and flexibility for many end uses, for example to be converted into a final use format such as pouches.

Plasticizers for use in water-soluble films of the present disclosure include, but are not limited to, sorbitol, glycerol, diglycerol, propylene glycol, ethylene glycol, diethyleneglycol, triethylene glycol, tetraethyleneglycol, polyethylene glycols up to MW 400, 2 methyl 1 , 3 propane diol, lactic acid, monoacetin, triacetin, triethyl citrate, 1 ,3-butanediol,

trimethylolpropane (TMP), polyether triol, and combinations thereof. Polyols, as described above, are generally useful as plasticizers. As less plasticizer is used, the film can become more brittle, whereas as more plasticizer is used the film can lose tensile strength. Plasticizers can be included in the water-soluble films in an amount in a range of about 25 phr to about 50 phr, or from about 30 phr to about 45 phr, or from about 32 phr to about 42 phr, for example.

Surfactants for use in water-soluble films are well known in the art. Optionally, surfactants are included to aid in the dispersion of the resin solution upon casting. Suitable surfactants for water-soluble films of the present disclosure include, but are not limited to, dialkyl sulfosuccinates, lactylated fatty acid esters of glycerol and propylene glycol, lactylic esters of fatty acids, sodium alkyl sulfates, polysorbate 20, polysorbate 60, polysorbate 65, polysorbate 80, alkyl polyethylene glycol ethers, lecithin, acetylated fatty acid esters of glycerol and propylene glycol, sodium lauryl sulfate, acetylated esters of fatty acids, myristyl dimethylamine oxide, trimethyl tallow alkyl ammonium chloride, quaternary ammonium compounds, salts thereof and combinations of any of the forgoing. Thus, surfactants can be included in the water-soluble films in an amount of less than about 2 phr, for example less than about 1 phr, or less than about 0.5 phr, for example.

One type of secondary component contemplated for use is a defoamer. Defoamers can aid in coalescing of foam bubbles. Suitable defoamers for use in water-soluble films according to the present disclosure include, but are not limited to, hydrophobic silicas, for example silicon dioxide or fumed silica in fine particle sizes, including Foam Blast® defoamers available from Emerald Performance Materials, including Foam Blast® 327, Foam Blast® UVD, Foam Blast® 163, Foam Blast® 269, Foam Blast® 338, Foam Blast® 290, Foam Blast® 332, Foam Blast® 349, Foam Blast® 550 and Foam Blast® 339, which are proprietary, non-mineral oil defoamers. In embodiments, defoamers can be used in an amount of 0.5 phr, or less, for example, 0.05 phr, 0.04 phr, 0.03 phr, 0.02 phr, or 0.01 phr. Preferably, significant amounts of silicon dioxide will be avoided, in order to avoid stress whitening.

Processes for making water-soluble articles, including films, include casting, blow- molding, extrusion and blown extrusion, as known in the art. One contemplated class of embodiments is characterized by the water-soluble film described herein being formed by casting, for example, by admixing the ingredients described herein with water to create an aqueous mixture, for example a solution with optionally dispersed solids, applying the mixture to a surface, and drying off water to create a film. Similarly, other compositions can be formed by drying the mixture while it is confined in a desired shape.

In one contemplated class of embodiments, the water-soluble film is formed by casting a water-soluble mixture wherein the water-soluble mixture is prepared according to the steps of: (a) providing a mixture of water-soluble resin, water, and any optional additives excluding plasticizers;

(b) boiling the mixture for 30 minutes;

(c) degassing the mixture in an oven at a temperature of at least 40°C; optionally in a range of 40°C to 70°C, e.g., about 65°C;

(d) adding one or more enzymes, plasticizer, and additional water to the mixture at a temperature of 65°C or less; and

(e) stirring the mixture without vortex until the mixture appears substantially uniform in color and consistency; optionally for a time period in a range of 30 minutes to 90 minutes, optionally at least 1 hour; and

(f) casting the mixture promptly after the time period of stirring (e.g., within 4 hours, or 2 hours, or 1 hour).

If the enzyme is added to the mixture too early, e.g., with the secondary additives or resin, the activity of the enzyme may decrease. Without intending to be bound by any particular theory, it is believed that boiling of the mixture with the enzyme leads to the enzyme denaturing and storing in solution for extended periods of time also leads to a reduction in enzyme activity.

By controlling pH, temperature and/or additives (like NaCI or other salts) dissolution of the enzyme particles in the film-forming liquid can be avoided. As known in the art, the conditions and materials to keep enzyme out of solution varies from enzyme to enzyme, but in general they can be salted out by (any) salt, ammonium sulfate is often used, but others can be used. Also precipitants like PEG (polyethyleneglycol) and alcohols are frequently used. Keeping pH close to the pi of the enzyme often reduces the solubility of the enzyme, and in general the solubility is decreased by decreasing temperature. It is an advantage to add the enzyme particles to the film-forming liquid when the water activity is as low as possible, while still allowing a uniform distribution of the enzyme particles in the film-forming liquid.

In one class of embodiments, high enzyme activity is maintained in the water-soluble films according to the present disclosure by drying the films quickly under moderate to mild conditions. As used herein, drying quickly refers to a drying time of less than 24 hours, optionally less than 12 hours, optionally less than 8 hours, optionally less than 2 hours, optionally less than 1 hour, optionally less than 45 minutes, optionally less than 30 minutes, optionally less than 20 minutes, optionally less than 10 minutes, for example in a range of about 6 minutes to about 10 minutes, or 8 minutes. As used herein, moderate to mild conditions refer to drying temperatures of less than 170°F (77°C), optionally in a range of about 150°F to about 170°F (about 66°C to about 77°C), e.g., 165°F (74°C). As the drying temperature increases, the enzymes tend to denature faster, whereas as the drying temperature decreases, the drying time increases, thus exposing the enzymes to solution for an extended period of time.

The film is useful for creating a packet to contain a composition, for example laundry or dishwashing compositions, thereby forming a pouch. The film described herein can also be used to make a packet with two or more compartments made of the same film or in

combination with films of other polymeric materials. Additional films can, for example, be obtained by casting, blow-molding, extrusion or blown extrusion of the same or a different polymeric material, as known in the art. In one type of embodiment, the polymers, copolymers or derivatives thereof suitable for use as the additional film are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, polyacrylic acid, cellulose, cellulose ethers, cellulose esters, cellulose amides, polyvinyl acetates, polycarboxylic acids and salts, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatin, natural gums such as xanthan, and

carrageenans. For example, polymers can be selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and combinations thereof, or selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof.

The pouches and/or packets of the present disclosure comprise at least one sealed compartment. Thus the pouches may comprise a single compartment or multiple

compartments. The pouches may have regions with and without enzymes. In embodiments including multiple compartments, each compartment may contain identical and/or different compositions. In turn, the compositions may take any suitable form including, but not limited to liquid, solid and combinations thereof (e.g., a solid suspended in a liquid). In some

embodiments, the pouches comprises a first, second and third compartment, each of which respectively contains a different first, second and third composition. In some embodiments, the compositions may be visually distinct as described in EP 2258820.

The compartments of multi-compartment pouches and/or packets may be of the same or different size(s) and/or volume(s). The compartments of the present multi-compartment pouches can be separate or conjoined in any suitable manner. In some embodiments, the second and/or third and/or subsequent compartments are superimposed on the first compartment. In one embodiment, the third compartment may be superimposed on the second compartment, which is in turn superimposed on the first compartment in a sandwich configuration. Alternatively the second and third compartments may be superimposed on the first compartment. However it is also equally envisaged that the first, second and optionally third and subsequent compartments may be attached to one another in a side by side relationship. The compartments may be packed in a string, each compartment being individually separable by a perforation line. Hence each compartment may be individually torn- off from the remainder of the string by the end-user,

In some embodiments, multi-compartment pouches and/or packets include three compartments consisting of a large first compartment and two smaller compartments. The second and third smaller compartments are superimposed on the first larger compartment. The size and geometry of the compartments are chosen such that this arrangement is achievable. The geometry of the compartments may be the same or different. In some embodiments the second and optionally third compartment each has a different geometry and shape as compared to the first compartment. In these embodiments, the second and optionally third compartments are arranged in a design on the first compartment. The design may be decorative, educative, or illustrative, for example to illustrate a concept or instruction, and/or used to indicate origin of the product. In some embodiments, the first compartment is the largest compartment having two large faces sealed around the perimeter, and the second compartment is smaller covering less than about 75%, or less than about 50% of the surface area of one face of the first compartment. In embodiments in which there is a third

compartment, the aforementioned structure may be the same but the second and third compartments cover less than about 60%, or less than about 50%, or less than about 45% of the surface area of one face of the first compartment.

The pouches and/or packets of the present disclosure may comprise one or more different films. For example, in single compartment embodiments, the packet may be made from one wall that is folded onto itself and sealed at the edges, or alternatively, two walls that are sealed together at the edges. In multiple compartment embodiments, the packet may be made from one or more films such that any given packet compartment may comprise walls made from a single film or multiple films having differing compositions. In one embodiment, a multi-compartment pouch comprises at least three walls: an outer upper wall; an outer lower wall; and a partitioning wall. The outer upper wall and the outer lower wall are generally opposing and form the exterior of the pouch. The partitioning wall is interior to the pouch and is secured to the generally opposing outer walls along a seal line. The partitioning wall separates the interior of the multi-compartment pouch into at least a first compartment and a second compartment. In one class of embodiments, the partitioning wall may be the only enzyme containing film thereby minimizing the exposure of the consumer to the enzymes.

Pouches and packets may be made using any suitable equipment and method. For example, single compartment pouches may be made using vertical form filling, horizontal form filling, or rotary drum filling techniques commonly known in the art. Such processes may be either continuous or intermittent. The film may be dampened, and/or heated to increase the malleability thereof. The method may also involve the use of a vacuum to draw the film into a suitable mold. The vacuum drawing the film into the mold can be applied for about 0.2 to about 5 seconds, or about 0.3 to about 3, or about 0.5 to about 1.5 seconds, once the film is on the horizontal portion of the surface. This vacuum can be such that it provides an under-pressure in a range of 10 mbar to 1000 mbar, or in a range of 100 mbar to 600 mbar, for example.

The molds, in which packet s may be made, can have any shape, length, width and depth, depending on the required dimensions of the pouches. The molds may also vary in size and shape from one to another, if desirable. For example, the volume of the final pouches may be about 5 ml to about 300 ml, or about 10 to 150 ml, or about 20 to about 100 ml, and that the mold sizes are adjusted accordingly.

In one embodiment, the packet includes a first and a second sealed compartment. The second compartment is in a generally superposed relationship with the first sealed

compartment such that the second sealed compartment and the first sealed compartment share a partitioning wall interior to the pouch.

In one embodiment, the packet including a first and a second compartment further includes a third sealed compartment. The third sealed compartment is in a generally superposed relationship with the first sealed compartment such that the third sealed compartment and the first sealed compartment share a partitioning wall interior to the pouch.

In various embodiments, the first composition and the second composition are selected from one of the following combinations: liquid, liquid; liquid, powder; powder, powder; and powder, liquid.

In various embodiments, the first, second and third compositions are selected from one of the following combinations: solid, liquid, liquid and liquid, liquid, liquid.

In one embodiment, the single compartment or plurality of sealed compartments contains a composition. The plurality of compartments may each contain the same or a different composition. The composition is selected from a liquid, solid or combination thereof.

Heat can be applied to the film in the process commonly known as thermoforming. The heat may be applied using any suitable means. For example, the film may be heated directly by passing it under a heating element or through hot air, prior to feeding it onto a surface or once on a surface. Alternatively, it may be heated indirectly, for example by heating the surface or applying a hot item onto the film. The film can be heated using an infrared light. The film may be heated to a temperature of at least 50°C, for example about 50 to about 150°C, about 50 to about 120°C, about 60 to about 130°C, about 70 to about 120°C, or about 60 to about 90°C.

Alternatively, the film can be wetted by any suitable means, for example directly by spraying a wetting agent (including water, a solution of the film composition, a plasticizer for the film composition, or any combination of the foregoing) onto the film, prior to feeding it onto the surface or once on the surface, or indirectly by wetting the surface or by applying a wet item onto the film.

Once a film has been heated and/or wetted, it may be drawn into an appropriate mold, preferably using a vacuum. The film can be thermoformed with a draw ratio of at least about 1 .5, for example, and optionally up to a draw ratio of 2, for example. The filling of the molded film can be accomplished by utilizing any suitable means. In some embodiments, the most preferred method will depend on the product form and required speed of filling. In some embodiments, the molded film is filled by in-line filling techniques. The filled, open packets are then closed forming the pouches, using a second film, by any suitable method. This may be accomplished while in horizontal position and in continuous, constant motion. The closing may be accomplished by continuously feeding a second film, preferably water-soluble film, over and onto the open packets and then preferably sealing the first and second film together, typically in the area between the molds and thus between the packets.

Any suitable method of sealing the packet and/or the individual compartments thereof may be utilized. Non-limiting examples of such means include heat sealing, solvent welding, solvent or wet sealing, and combinations thereof. The water-soluble packet and/or the individual compartments thereof can be heat sealed at a temperature of at least 200°F (93°C), for example in a range of about 220°F (about 105°C) to about 290°F (about 145°C), or about 230°F (about 1 10°C) to about 280°F (about 140°C). Typically, only the area which is to form the seal is treated with heat or solvent. The heat or solvent can be applied by any method, typically on the closing material, and typically only on the areas which are to form the seal. If solvent or wet sealing or welding is used, it may be preferred that heat is also applied.

Preferred wet or solvent sealing/welding methods include selectively applying solvent onto the area between the molds, or on the closing material, by for example, spraying or printing this onto these areas, and then applying pressure onto these areas, to form the seal. Sealing rolls and belts as described above (optionally also providing heat) can be used, for example.

The formed pouches may then be cut by a cutting device. Cutting can be accomplished using any known method. It may be preferred that the cutting is also done in continuous manner, and preferably with constant speed and preferably while in horizontal position. The cutting device can, for example, be a sharp item, or a hot item, or a laser, whereby in the latter cases, the hot item or laser 'burns' through the film/ sealing area.

The different compartments of a multi-compartment pouches may be made together in a side-by-side style wherein the resulting, cojoined pouches may or may not be separated by cutting. Alternatively, the compartments can be made separately.

In some embodiments, pouches may be made according to a process including the steps of: a) forming a first compartment (as described above);

b) forming a recess within some or all of the closed compartment formed in step (a), to generate a second molded compartment superposed above the first compartment;

c) filling and closing the second compartments by means of a third film;

d) sealing the first, second and third films; and

e) cutting the films to produce a multi-compartment pouch.

The recess formed in step (b) may be achieved by applying a vacuum to the

compartment prepared in step (a).

In some embodiments, second, and/or third compartment(s) can be made in a separate step and then combined with the first compartment as described in EP 2088187 or WO 2009/152031 .

In other embodiments, pouches may be made according to a process including the steps of:

a) forming a first compartment, optionally using heat and/or vacuum, using a first film on a first forming machine;

b) filling the first compartment with a first composition;

c) on a second forming machine, deforming a second film, optionally using heat and vacuum, to make a second and optionally third molded compartment;

d) filling the second and optionally third compartments;

e) sealing the second and optionally third compartment using a third film;

f) placing the sealed second and optionally third compartments onto the first compartment; g) sealing the first, second and optionally third compartments; and

h) cutting the films to produce a multi-compartment pouch.

The first and second forming machines may be selected based on their suitability to perform the above process. In some embodiments, the first forming machine is preferably a horizontal forming machine, and the second forming machine is preferably a rotary drum forming machine, preferably located above the first forming machine.

It should be understood that by the use of appropriate feed stations, it may be possible to manufacture multi-compartment pouches incorporating a number of different or distinctive compositions and/or different or distinctive liquid, gel or paste compositions.

Detergent composition

A detergent composition is comprised (encapsulated) in a compartment formed by an enzyme particle containing water-soluble film, according to the invention.

The detergent composition may be a solid or a liquid detergent composition. Preferably, the detergent composition is a liquid detergent composition having a physical form, which is not solid (or gas). It may be a pourable liquid, a pourable gel or a non-pourable gel. It may be either isotropic or structured, preferably isotropic. It may be a formulation useful for washing in automatic washing machines or for hand washing.

Liquids, including without limitation, alkanols, amines, diols, ethers and polyols may be included in a liquid detergent. A liquid detergent may contain from 0-30% organic solvent. A liquid detergent may even be non-aqueous, or substantially non-aqueous, wherein the water content is below 15%, preferably below 10%, more preferably below 6%, more preferably below 4%, more preferably below 2%, and most preferably below 1 %.

Detergent ingredients can be separated physically from each other by compartments in water dissolvable pouches. Thereby negative storage interaction between components can be avoided. Different dissolution profiles of each of the compartments can also give rise to delayed dissolution of selected components in the wash solution.

The detergent composition may take the form of a unit dose product. A unit dose product is the packaging of a single dose in a non-reusable container. It is increasingly used in detergents for laundry and dish wash. A detergent unit dose product is the packaging (e.g., in a pouch made from a water soluble film) of the amount of detergent used for a single wash.

Pouches can be of any form, shape and material which is suitable for holding the composition, e.g., without allowing the release of the composition from the pouch prior to water contact. The pouch is made from water soluble film which encloses an inner volume. Said inner volume can be divided into compartments of the pouch. Preferred films are polymeric materials preferably polymers which are formed into a film or sheet. Preferred polymers, copolymers or derivates thereof are selected polyacrylates, and water soluble acrylate copolymers, methyl cellulose, carboxy methyl cellulose, sodium dextrin, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, malto dextrin, poly methacrylates, most preferably polyvinyl alcohol copolymers and, hydroxypropyl methyl cellulose (HPMC).

Preferably the level of polymer in the film for example PVA is at least about 60%. Preferred average molecular weight will typically be about 20,000 to about 150,000. Films can also be a blend compositions comprising hydrolytically degradable and water soluble polymer blends such as polyactide and polyvinyl alcohol plus plasticizers like glycerol, ethylene glycerol, Propylene glycol, sorbitol and mixtures thereof. The pouches can comprise a solid laundry cleaning composition or part components and/or a liquid cleaning composition or part components separated by the water soluble film. The compartment for liquid components can be different in composition than compartments containing solids (see e.g., US 2009/001 1970).

The choice of detergent components may include, for textile care, the consideration of the type of textile to be cleaned, the type and/or degree of soiling, the temperature at which cleaning is to take place, and the formulation of the detergent product. Although components mentioned below are categorized by general header according to a particular functionality, this is not to be construed as a limitation, as a component may comprise additional functionalities as will be appreciated by the skilled artisan.

The choice of additional components is within the skill of the artisan and includes conventional ingredients, including the exemplary non-limiting components set forth below. Surfactants

The detergent composition may comprise one or more surfactants, which may be anionic and/or cationic and/or non-ionic and/or semi-polar and/or zwitterionic, or a mixture thereof. In a particular embodiment, the detergent composition includes a mixture of one or more nonionic surfactants and one or more anionic surfactants. The surfactant(s) is typically present at a level of from about 0.1 % to 60% by weight, such as about 1 % to about 40%, or about 3% to about 20%, or about 3% to about 10%. The surfactant(s) is chosen based on the desired cleaning application, and includes any conventional surfactant(s) known in the art. Any surfactant known in the art for use in detergents may be utilized.

When included therein the detergent will usually contain from about 1 % to about 40% by weight, such as from about 5% to about 30%, including from about 5% to about 15%, or from about 20% to about 25% of an anionic surfactant. Non-limiting examples of anionic surfactants include sulfates and sulfonates, in particular, linear alkylbenzenesulfonat.es (LAS), isomers of LAS, branched alkylbenzenesulfonat.es (BABS), phenylalkanesulfonat.es, alpha- olefinsulfonates (AOS), olefin sulfonates, alkene sulfonates, alkane-2,3-diylbis(sulfates), hydroxyalkanesulfonat.es and disulfonates, alkyl sulfates (AS) such as sodium dodecyl sulfate (SDS), fatty alcohol sulfates (FAS), primary alcohol sulfates (PAS), alcohol ethersulfates (AES or AEOS or FES, also known as alcohol ethoxysulfates or fatty alcohol ether sulfates), secondary alkanesulfonates (SAS), paraffin sulfonates (PS), ester sulfonates, sulfonated fatty acid glycerol esters, alpha-sulfo fatty acid methyl esters (alpha-SFMe or SES) including methyl ester sulfonate (MES), alkyl- or alkenylsuccinic acid, dodecenyl/tetradecenyl succinic acid

(DTSA), fatty acid derivatives of amino acids, diesters and monoesters of sulfo-succinic acid or soap, and combinations thereof.

When included therein the detergent will usually contain from about 0.1 % to about 10% by weight of a cationic surfactant. Non-limiting examples of cationic surfactants include alklydimethylethanolamine quat (ADMEAQ), cetyltrimethylammonium bromide (CTAB), dimethyldistearylammonium chloride (DSDMAC), and alkylbenzyldimethylammonium, alkyl quaternary ammonium compounds, alkoxylated quaternary ammonium (AQA) compounds, and combinations thereof.

When included therein the detergent will usually contain from about 0.2% to about 40% by weight of a non-ionic surfactant, for example from about 0.5% to about 30%, in particular from about 1 % to about 20%, from about 3% to about 10%, such as from about 3% to about 5%, or from about 8% to about 12%. Non-limiting examples of non-ionic surfactants include alcohol ethoxylates (AE or AEO), alcohol propoxylates, propoxylated fatty alcohols (PFA), alkoxylated fatty acid alkyl esters, such as ethoxylated and/or propoxylated fatty acid alkyl esters, alkylphenol ethoxylates (APE), nonylphenol ethoxylates (NPE), alkylpolyglycosides (APG), alkoxylated amines, fatty acid monoethanolamides (FAM), fatty acid diethanolamides (FADA), ethoxylated fatty acid monoethanolamides (EFAM), propoxylated fatty acid monoethanolamides (PFAM), polyhydroxy alkyl fatty acid amides, or /V-acyl /V-alkyl derivatives of glucosamine (glucamides, GA, or fatty acid glucamide, FAGA), as well as products available under the trade names SPAN and TWEEN, and combinations thereof.

When included therein the detergent will usually contain from about 0.1 % to about 20% by weight of a semipolar surfactant. Non-limiting examples of semipolar surfactants include amine oxides (AO) such as alkyldimethylamineoxide, /V-(coco alkyl)-/V,/V-dimethylamine oxide and /V-(tallow-alkyl)-/V,/V-bis(2-hydroxyethyl)amine oxide, fatty acid alkanolamides and ethoxylated fatty acid alkanolamides, and combinations thereof.

When included therein the detergent will usually contain from about 0.1 % to about 10% by weight of a zwitterionic surfactant. Non-limiting examples of zwitterionic surfactants include betaine, alkyldimethylbetaine, sulfobetaine, and combinations thereof.

Hydrotropes

A hydrotrope is a compound that solubilises hydrophobic compounds in aqueous solutions (or oppositely, polar substances in a non-polar environment). Typically, hydrotropes have both hydrophilic and a hydrophobic character (so-called amphiphilic properties as known from surfactants); however the molecular structure of hydrotropes generally do not favor spontaneous self-aggregation, see for example review by Hodgdon and Kaler (2007), Current Opinion in Colloid & Interface Science 12: 121 -128. Hydrotropes do not display a critical concentration above which self-aggregation occurs as found for surfactants and lipids forming miceller, lamellar or other well defined meso-phases. Instead, many hydrotropes show a continuous-type aggregation process where the sizes of aggregates grow as concentration increases. However, many hydrotropes alter the phase behavior, stability, and colloidal properties of systems containing substances of polar and non-polar character, including mixtures of water, oil, surfactants, and polymers. Hydrotropes are classically used across industries from pharma, personal care, food, to technical applications. Use of hydrotropes in detergent compositions allow for example more concentrated formulations of surfactants (as in the process of compacting liquid detergents by removing water) without inducing undesired phenomena such as phase separation or high viscosity.

The detergent may contain 0-5% by weight, such as about 0.5 to about 5%, or about 3% to about 5%, of a hydrotrope. Any hydrotrope known in the art for use in detergents may be utilized. Non-limiting examples of hydrotropes include sodium benzene sulfonate, sodium p- toluene sulfonate (STS), sodium xylene sulfonate (SXS), sodium cumene sulfonate (SCS), sodium cymene sulfonate, amine oxides, alcohols and polyglycolethers, sodium

hydroxynaphthoate, sodium hydroxynaphthalene sulfonate, sodium ethylhexyl sulfate, and combinations thereof.

Builders and Co-Builders

The detergent composition may contain about 0-65% by weight, such as about 5% to about 50% of a detergent builder or co-builder, or a mixture thereof. In a dish wash detergent, the level of builder is typically 40-65%, particularly 50-65%. The builder and/or co-builder may particularly be a chelating agent that forms water-soluble complexes with Ca and Mg ions. Any builder and/or co-builder known in the art for use in laundry detergents may be utilized. Non- limiting examples of builders include citrates, zeolites, diphosphates (pyrophosphates), triphosphates such as sodium triphosphate (STP or STPP), carbonates such as sodium carbonate, soluble silicates such as sodium metasilicate, layered silicates (e.g., SKS-6 from Hoechst), ethanolamines such as 2-aminoethan-1-ol (MEA), diethanolamine (DEA, also known as iminodiethanol), triethanolamine (TEA, also known as 2,2',2"-nitrilotriethanol), and carboxymethyl inulin (CMI), and combinations thereof.

The detergent composition may also contain 0-50% by weight, such as about 5% to about 30%, of a detergent co-builder, or a mixture thereof. The detergent composition may include a co-builder alone, or in combination with a builder, for example a citrate builder. Non- limiting examples of co-builders include homopolymers of polyacrylates or copolymers thereof, such as poly(acrylic acid) (PAA) or copoly(acrylic acid/maleic acid) (PAA PMA). Further non- limiting examples include citrate, chelators such as aminocarboxylates, aminopolycarboxylates and phosphonates, and alkyl- or alkenylsuccinic acid. Additional specific examples include 2,2',2"-nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA),

diethylenetriaminepentaacetic acid (DTPA), iminodisuccinic acid (IDS), ethylenediamine-/V,/V'- disuccinic acid (EDDS), methylglycinediacetic acid (MGDA), glutamic acid-N,N-diacetic acid (GLDA), 1 -hydroxyethane-1 ,1 -diphosphonic acid (HEDP),

ethylenediaminetetra(methylenephosphonic acid) (EDTMPA),

diethylenetriaminepentakis(methylenephosphonic acid) (DTMPA or DTPMPA), N-(2- hydroxyethyl)iminodiacetic acid (EDG), aspartic acid-/V-monoacetic acid (ASMA), aspartic acid-/V,/V-diacetic acid (ASDA), aspartic acid-/V-monopropionic acid (ASMP), iminodisuccinic acid (IDA), /V-(2-sulfomethyl)-aspartic acid (SMAS), /V-(2-sulfoethyl)-aspartic acid (SEAS), N- (2-sulfomethyl)-glutamic acid (SMGL), /V-(2-sulfoethyl)-glutamic acid (SEGL), N- methyliminodiacetic acid (Ml DA), oalanine-/V, /V-diacetic acid (a-ALDA), serine-/V, /V-diacetic acid (SEDA), isoserine-/V, /V-diacetic acid (ISDA), phenylalanine-^, /V-diacetic acid (PHDA), anthranilic acid-/V, /V-diacetic acid (ANDA), sulfanilic acid-/V, /V-diacetic acid (SLDA) , taurine- N, /V-diacetic acid (TUDA) and sulfomethyl-/V, /V-diacetic acid (SMDA), /V-(2-hydroxyethyl)- ethylidenediamine-/V, N', Λ/'-triacetate (HEDTA), diethanolglycine (DEG), diethylenetriamine penta(methylenephosphonic acid) (DTPMP), aminotris(methylenephosphonic acid) (ATMP), and combinations and salts thereof. Further exemplary builders and/or co-builders are described in, e.g., WO 09/102854, US 5977053.

Polymers

The detergent may contain 0-10% by weight, such as 0.5-5%, 2-5%, 0.5-2% or 0.2-1 % of a polymer. Any polymer known in the art for use in detergents may be utilized. The polymer may function as a co-builder as mentioned above, or may provide antiredeposition, fiber protection, soil release, dye transfer inhibition, grease cleaning and/or anti-foaming properties. Some polymers may have more than one of the above-mentioned properties and/or more than one of the below-mentioned motifs. Exemplary polymers include (carboxymethyl)cellulose (CMC), polyvinyl alcohol) (PVA), poly(vinylpyrrolidone) (PVP), poly(ethyleneglycol) or poly(ethylene oxide) (PEG), ethoxylated poly(ethyleneimine), carboxymethyl inulin (CMI), and polycarboxylates such as PAA, PAA/PMA, poly-aspartic acid, and lauryl methacrylate/acrylic acid copolymers , hydrophobically modified CMC (HM-CMC) and silicones, copolymers of terephthalic acid and oligomeric glycols, copolymers of poly(ethylene terephthalate) and poly(oxyethene terephthalate) (PET-POET), PVP, poly(vinylimidazole) (PVI),

poly(vinylpyridine-N-oxide) (PVPO or PVPNO) and polyvinylpyrrolidone-vinylimidazole

(PVPVI). Further exemplary polymers include sulfonated polycarboxylates, polyethylene oxide and polypropylene oxide (PEO-PPO) and diquaternium ethoxy sulfate. Other exemplary polymers are disclosed in, e.g., WO 2006/130575 and US 5,955,415. Salts of the above- mentioned polymers are also contemplated.

Fabric hueing agents

The detergent compositions of the present invention may also include fabric hueing agents such as dyes or pigments, which when formulated in detergent compositions can deposit onto a fabric when said fabric is contacted with a wash liquor comprising said detergent compositions and thus altering the tint of said fabric through absorption/reflection of visible light. Fluorescent whitening agents emit at least some visible light. In contrast, fabric hueing agents alter the tint of a surface as they absorb at least a portion of the visible light spectrum. Suitable fabric hueing agents include dyes and dye-clay conjugates, and may also include pigments. Suitable dyes include small molecule dyes and polymeric dyes. Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.I.) classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof, for example as described in WO 2005/03274, WO 2005/03275, WO 2005/03276 and EP 1876226 (hereby incorporated by reference). The detergent composition preferably comprises from about 0.00003 wt% to about 0.2 wt%, from about 0.00008 wt% to about 0.05 wt%, or even from about 0.0001 wt% to about 0.04 wt% fabric hueing agent. The composition may comprise from 0.0001 wt% to 0.2 wt% fabric hueing agent, this may be especially preferred when the composition is in the form of a unit dose pouch. Suitable hueing agents are also disclosed in, e.g., WO 2007/087257 and WO 2007/087243.

(Additional) Enzymes

Enzyme(s) which may be comprised in the detergent composition include one or more enzymes such as protease, lipase, cutinase, an amylase, carbohydrase, cellulase, pectinase, mannanase, arabinase, galactanase, xylanase, oxidase, e.g., laccase, and/or peroxidase. Examples of these enzymes are the same as those included as enzyme particles in the water- soluble film, as described above in the "Enzymes" section.

Such enzyme(s) may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4- formylphenyl boronic acid, and the composition may be formulated as described in, for example, WO 92/19709 and WO 92/19708. Other stabilizers and inhibitors as known in the art can be added.

The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i.e., a separate additive or a combined additive, can be formulated, for example, as a liquid, slurry, or even a granulate, etc.

Adjunct materials

Any detergent components known in the art for use in laundry detergents may also be utilized. Other optional detergent components include anti-corrosion agents, anti-shrink agents, anti-soil redeposition agents, anti-wrinkling agents, bactericides, binders, corrosion inhibitors, disintegrants/disintegration agents, dyes, enzyme stabilizers (including boric acid, borates, CMC, and/or polyols such as propylene glycol), fabric conditioners including clays,

fillers/processing aids, fluorescent whitening agents/optical brighteners, foam boosters, foam (suds) regulators, perfumes, soil-suspending agents, softeners, suds suppressors, tarnish inhibitors, and wicking agents, either alone or in combination. Any ingredient known in the art for use in laundry detergents may be utilized. The choice of such ingredients is well within the skill of the artisan. Dispersants - The detergent compositions of the present invention can also contain dispersants. In particular powdered detergents may comprise dispersants. Suitable water- soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Suitable dispersants are for example described in Powdered Detergents, Surfactant science series volume 71 , Marcel Dekker, Inc.

Dye Transfer Inhibiting Agents - The detergent compositions of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N- oxide polymers, copolymers of /V-vinylpyrrolidone and /V-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. When present in a subject composition, the dye transfer inhibiting agents may be present at levels from about 0.0001 % to about 10%, from about 0.01 % to about 5% or even from about 0.1 % to about 3% by weight of the composition.

Fluorescent whitening agent - The detergent compositions of the present invention will preferably also contain additional components that may tint articles being cleaned, such as fluorescent whitening agent or optical brighteners. Where present the brightener is preferably at a level of about 0.01 % to about 0.5%. Any fluorescent whitening agent suitable for use in a laundry detergent composition may be used in the composition of the present invention. The most commonly used fluorescent whitening agents are those belonging to the classes of diaminostilbene-sulfonic acid derivatives, diarylpyrazoline derivatives and bisphenyl-distyryl derivatives. Examples of the diaminostilbene-sulfonic acid derivative type of fluorescent whitening agents include the sodium salts of: 4,4'-bis-(2-diethanolamino-4-anilino-s-triazin-6- ylamino) stilbene-2,2'-disulfonate, 4,4'-bis-(2,4-dianilino-s-triazin-6-ylamino) stilbene-2.2'- disulfonate, 4,4'-bis-(2-anilino-4-(/V-methyl-/V-2-hydroxy-ethylamino)-s- triazin-6-ylamino) stilbene-2,2'-disulfonate, 4,4'-bis-(4-phenyl-1 ,2,3-triazol-2-yl)stilbene-2,2'-disulfonate and sodium 5-(2H-naphtho[1 ,2-c/][1 ,2,3]triazol-2-yl)-2-[(£)-2-phenylvinyl]benzenesulfonate.

Preferred fluorescent whitening agents are Tinopal DMS and Tinopal CBS available from Ciba- Geigy AG, Basel, Switzerland. Tinopal DMS is the disodium salt of 4,4'-bis-(2-morpholino-4- anilino-s-triazin-6-ylamino) stilbene-2,2'-disulfonate. Tinopal CBS is the disodium salt of 2,2'- bis-(phenyl-styryl)-disulfonate. Also preferred are fluorescent whitening agents is the commercially available Parawhite KX, supplied by Paramount Minerals and Chemicals, Mumbai, India. Other fluorescers suitable for use in the invention include the 1 -3-diaryl pyrazolines and the 7-alkylaminocoumarins.

Suitable fluorescent brightener levels include lower levels of from about 0.01 , from 0.05, from about 0.1 or even from about 0.2 wt % to upper levels of 0.5 or even 0.75 wt%.

Soil release polymers - The detergent compositions of the present invention may also include one or more soil release polymers which aid the removal of soils from fabrics such as cotton and polyester based fabrics, in particular the removal of hydrophobic soils from polyester based fabrics. The soil release polymers may for example be nonionic or anionic terephthalte based polymers, polyvinyl caprolactam and related copolymers, vinyl graft copolymers, polyester polyamides see for example Chapter 7 in Powdered Detergents, Surfactant science series volume 71 , Marcel Dekker, Inc. Another type of soil release polymers are amphiphilic alkoxylated grease cleaning polymers comprising a core structure and a plurality of alkoxylate groups attached to that core structure. The core structure may comprise a polyalkylenimine structure or a polyalkanolamine structure as described in detail in WO 2009/087523 (hereby incorporated by reference). Furthermore random graft co-polymers are suitable soil release polymers. Suitable graft co-polymers are described in more detail in WO 2007/138054, WO 2006/108856 and WO 2006/1 13314 (hereby incorporated by reference). Other soil release polymers are substituted polysaccharide structures especially substituted cellulosic structures such as modified cellulose deriviatives such as those described in EP 1867808 or WO 2003/040279 (both are hereby incorporated by reference). Suitable cellulosic polymers include cellulose, cellulose ethers, cellulose esters, cellulose amides and mixtures thereof. Suitable cellulosic polymers include anionically modified cellulose, nonionically modified cellulose, cationically modified cellulose, zwitterionically modified cellulose, and mixtures thereof. Suitable cellulosic polymers include methyl cellulose, carboxy methyl cellulose, ethyl cellulose, hydroxyl ethyl cellulose, hydroxyl propyl methyl cellulose, ester carboxy methyl cellulose, and mixtures thereof.

Anti-redeposition agents - The detergent compositions of the present invention may also include one or more anti-redeposition agents such as carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyoxyethylene and/or polyethyleneglycol (PEG), homopolymers of acrylic acid, copolymers of acrylic acid and maleic acid, and ethoxylated polyethyleneimines. The cellulose based polymers described under soil release polymers above may also function as anti-redeposition agents.

Rheology Modifiers are structurants or thickeners, as distinct from viscosity reducing agents. The rheology modifiers are selected from the group consisting of non-polymeric crystalline, hydroxy-fu notional materials, polymeric rheology modifiers which impart shear thinning characteristics to the aqueous liquid matrix of a liquid detergent composition. The rheology and viscosity of the detergent can be modified and adjusted by methods known in the art, for example as shown in EP 2169040.

Other suitable adjunct materials include, but are not limited to, anti-shrink agents, anti- wrinkling agents, bactericides, binders, carriers, dyes, enzyme stabilizers, fabric softeners, fillers, foam regulators, hydrotropes, perfumes, pigments, sod suppressors, solvents, and structurants for liquid detergents and/or structure elasticizing agents. Bleaching Systems

The detergent compositions of the present invention may also include a bleaching system. Due to the incompatibility of the components there are still only few examples of liquid detergents combining bleach and enzymes (e.g., US 5,275,753 or WO 99/00478). The enzyme particles described in this invention can be used to separate bleach from enzyme in liquid detergents. The detergent may contain 0-50% of a bleaching system. Any bleaching system known in the art for use in laundry detergents may be utilized. Suitable bleaching system components include bleaching catalysts, photobleaches, bleach activators, sources of hydrogen peroxide such as sodium percarbonate and sodium perborates, preformed peracids and mixtures thereof. Suitable preformed peracids include, but are not limited to,

peroxycarboxylic acids and salts, percarbonic acids and salts, perimidic acids and salts, peroxymonosulfuric acids and salts, for example, Oxone (R), and mixtures thereof. Non- limiting examples of bleaching systems include peroxide-based bleaching systems, which may comprise, for example, an inorganic salt, including alkali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate), percarbonate, persulfate, perphosphate, persilicate salts, in combination with a peracid-forming bleach activator. The term bleach activator is meant herein as a compound which reacts with peroxygen bleach like hydrogen peroxide to form a peracid. The peracid thus formed constitutes the activated bleach. Suitable bleach activators to be used herein include those belonging to the class of esters amides, imides or anhydrides. Suitable examples are tetracetylethylene diamine (TAED), sodium 4-[(3,5,5- trimethylhexanoyl)oxy]benzene sulfonate (ISONOBS), diperoxy dodecanoic acid, 4- (dodecanoyloxy)benzenesulfonate (LOBS), 4-(decanoyloxy)benzenesulfonate, 4- (decanoyloxy)benzoate (DOBS), 4-(nonanoyloxy)-benzenesulfonate (NOBS), and/or those disclosed in WO 98/17767. A particular family of bleach activators of interest was disclosed in EP624154 and particulary preferred in that family is acetyl triethyl citrate (ATC). ATC or a short chain triglyceride like triacetin has the advantage that it is environmental friendly as it eventually degrades into citric acid and alcohol. Furthermore acetyl triethyl citrate and triacetin has a good hydrolytical stability in the product upon storage and it is an efficient bleach activator. Finally ATC provides a good building capacity to the laundry additive. Alternatively, the bleaching system may comprise peroxyacids of, for example, the amide, imide, or sulfone type. The bleaching system may also comprise peracids such as 6- (phthalimido)peroxyhexanoic acid (PAP). The bleaching system may also include a bleach catalyst. In some embodiments the bleach component may be an organic catalyst selected from the group consisting of organic catalysts having the following formulae:

and mixtures thereof; wherein each R 1 is independently a branched alkyl group containing from 9 to 24 carbons or linear alkyl group containing from 1 1 to 24 carbons, preferably each R 1 is independently a branched alkyl group containing from 9 to 18 carbons or linear alkyl group containing from 1 1 to 18 carbons, more preferably each R 1 is independently selected from the group consisting of 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n- tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl. Other exemplary bleaching systems are described, e.g. , in WO 2007/087258, WO

2007/087244, WO 2007/087259 and WO 2007/087242. Suitable photobleaches may for example be sulfonated zinc phthalocyanine.

Formulation of detergent products

The detergent composition of the invention may be in any convenient form, e.g. , a bar, a homogenous tablet, a tablet having two or more layers, a pouch having one or more compartments, a regular or compact powder, a granule, a paste, a gel, or a regular, compact or concentrated liquid.

The detergent pouch of the present invention is configured as single or multi

compartments (see e.g. , WO 2009/098660 or WO 2010/141301 ). It can be of any form, shape and material which is suitable for holding the detergent composition, e.g. , without allowing release of the composition from the pouch prior to water contact. The pouch is made from water-soluble film which encloses the inner volume (detergent composition). Said inner volume can be divided into compartments of the pouch. The water-soluble film is described above under "Water-soluble film". The pouch can comprise a solid laundry cleaning (detergent) composition or selected components thereof, and/or a liquid cleaning composition or selected components thereof, separated by the water-soluble film. The pouch may include

compartments having any combination of solids and liquids, both in one or more separate compartments, and in shared compartments containing both solid and liquid ingredients. The pouch may include regions or compartments formed by different water-soluble films, which can be with or without enzymes. Accordingly, detergent ingredients can be separated physically from each other in different compartments, or in different layers of a tablet if the detergent is in that physical form. Thereby negative storage interaction between components can be avoided. Different dissolution profiles of each of the compartments can also give rise to delayed dissolution of selected components in the wash solution. A liquid or gel detergent , which is not unit dosed, may be aqueous, typically containing at least 20% by weight and up to 95% water, such as up to about 70% water, up to about 65% water, up to about 55% water, up to about 45% water, up to about 35% water. Other types of liquids, including without limitation, alkanols, amines, diols, ethers and polyols may be included in an aqueous liquid or gel. An aqueous liquid or gel detergent may contain from 0-30% organic solvent. A liquid or gel detergent may be non-aqueous.

Compositions, methods and uses

The present invention provides a water-soluble film useful for encapsulating a detergent composition, comprising enzyme particles. The enzyme particles improve storage stability of the enzyme when contacted with the detergent composition.

In a preferred embodiment, the invention provides a water-soluble film useful for encapsulating a liquid detergent composition, comprising enzyme particles. The enzyme particles improve storage stability of the enzyme when contacted with the liquid detergent composition. The enzyme particles also improve recovery of the enzyme activity after production of the water-soluble film, as compared to a water-soluble film prepared using a dissolved enzyme.

In an embodiment, the water-soluble film covers an area of at least 1 cm 2 , preferably 2 cm 2 , more preferably 5 cm 2 , and most preferably 10 cm 2 .

The invention also provides a method for preparing a detergent pouch, comprising encapsulating the detergent composition with the water-soluble film comprising enzyme particles.

In a preferred embodiment, the invention provides a method for preparing a detergent pouch, comprising encapsulating the liquid detergent composition with the water-soluble film comprising enzyme particles.

The invention also provides a detergent pouch, comprising a compartment formed by the enzymatic water-soluble film, and a detergent composition containing a surfactant and/or a detergent builder; wherein the enzyme is present in the water-soluble film as enzyme particles.

In a preferred embodiment, the invention provides a detergent pouch, comprising a compartment formed by the enzymatic water-soluble film, and a liquid detergent composition containing a surfactant and/or a detergent builder; wherein the enzyme is present in the water- soluble film as enzyme particles.

In embodiments, the liquid detergent composition is substantially non-aqueous.

Preferably, the detergent composition (such as liquid detergent composition) is a laundry or dish wash detergent composition.

In embodiments, the size of the enzyme particles is from 0.5 μηη to 100 μηη. Preferably, the enzyme particles are enzyme crystals. In embodiments, the enzyme particles contain at least 1 % w/w enzyme protein.

In embodiments, the enzyme is selected from the group consisting of protease, lipase, cutinase, an amylase, carbohydrase, cellulase, pectinase, mannanase, arabinase,

galactanase, xylanase, xanthanase, DNAse, perhydrolase, and oxidoreductases, e.g., oxidase, laccase, peroxidase, peroxygenase and/or haloperoxidase; or combinations thereof.

Preferably, the enzyme is a lipase; such as a lipase wherein the amino acid sequence of the lipase has at least 70% sequence identity, preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100% sequence identity to the amino acid sequence of SEQ ID NO: 1. In another embodiment, the number of amino acid substitutions, deletions and/or insertions introduced into the amino acid sequence of SEQ ID NO: 1 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10; or up to 5, e.g., 1 , 2, 3, 4, or 5.

In embodiments, the water-soluble film comprises from 35% to 90% of PVOH which has a degree of hydrolysis of from 75% to 99%.

In embodiments, the water-soluble film comprises from 10% to 50% of polyols.

In embodiments, the thickness of the water-soluble film is from 10 μηι to 500 μηι, preferably from 10 μηι to 300 μηι, more preferably from 20 μηι to 200 μηι, and most preferably from 25 μηι to 150 μηι.

The invention also provides a method for preparing the water-soluble film, comprising adding enzyme particles to a liquid film composition, and casting the water-soluble film. The method reduces loss, or improves recovery, of enzymatic activity during production of the water-soluble film, as compared to a water-soluble film produced using a dissolved enzyme.

The invention also provides for use of the methods and compositions above for improving enzymatic storage stability, and/or improving residual enzymatic activity (recovery of enzymatic activity) after preparing the water-soluble film described above.

The present invention is further described by the following examples which should not be construed as limiting the scope of the invention. EXAMPLES

Chemicals used as buffers and substrates were commercial products of at least reagent grade. The lipase has the amino acid sequence shown in SEQ ID NO: 1 (also described in WO 2000/060063). EXAMPLE 1

Improved storage stability of water-soluble film containing crystallized lipase

Two water-soluble films were prepared as described in WO 2013/138288, Example 1 (without protease, amylase, and protease substrate) as follows.

Film A

Casting solution:

· 2308 g PVA Resin including plasticizers and minor amounts of processing aids

• 820 g Lipase concentrate (solution with 37% solids)

Film was casted and dried as described in WO 2013/138288, Example 1.

Film B

Preparation of lipase crystal suspension:

The lipase concentrate used for film A was dia-washed with several volumes deionized water using ultrafiltration to reduce ionic strength and subsequently adjusted to pH 5 with acetic acid and left cold for crystallization (low ionic strength and pH 5 is favorable for crystallizing the lipase) for more than 5 hours.

Casting solution:

• 2308 g PVA Resin including plasticizers and minor amounts of processing aids

• 820 g Lipase crystal suspension (37% solids)

Film was casted and dried as described in WO 2013/138288, Example 1

Recovery of lipase activity

Recovery of lipase activity after production of the lipase containing water-soluble films was higher when using a lipase crystal suspension (Film B) than when using a lipase concentrate (Film A). Recovery of lipase activity was 29% higher after production of Film B than after production of Film A. Film A had a lipase recovery of only 77% compared to the lipase recovery in Film B.

Per Se storage stability of lipase in water-soluble film

Small sheets of film was placed in closed glass vials and stored for 4 weeks at the temperatures given in the table. After storage lipase activity was measured, and residual activity was calculated relative to samples stored in freezer at -18°C. The data are shown in Table 1 .

Table 1.

The per se stability of the lipase film was improved when using crystallized lipase.

In-Detergent storage stability of lipase in water-soluble film

Small sheets of film were immersed in the opaque white liquid from commercial Tide

Pods bought in the U.S. in 2013 and placed in closed glass vials. The vials were stored for 2 weeks at 30°C. After storage, lipase activity was measured and residual activity was calculated relative to samples stored in freezer at -18°C. The data are shown in Table 2. Table 2.

-detergent stability of the lipase film was improved when using crystallized lipase.