Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THE USE OF LOPERAMIDE AND RELATED COMPOUNDS FOR TREATMENT OF RESPIRATORY DISEASE SYMPTOMS
Document Type and Number:
WIPO Patent Application WO/1992/012715
Kind Code:
A2
Abstract:
The subject invention involves compositions and methods of using loperamide and related compounds for treatment of symptoms associated with respiratory diseases.

Inventors:
GILBERT SHERI ANN (US)
MIZOGUCHI HARUKO (US)
CHAREST ROBERT PAUL (US)
O'NEILL TIMOTHY PETER (US)
SMITH RONALD LEE (US)
Application Number:
PCT/US1992/000251
Publication Date:
August 06, 1992
Filing Date:
January 21, 1992
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PROCTER & GAMBLE (US)
International Classes:
A61K9/00; A61K31/445; (IPC1-7): A61K9/08; A61K31/445; C08B37/16
Foreign References:
EP0393909A11990-10-24
EP0465234A11992-01-08
Other References:
European Journal of Pharmacology, volume 190, nos. 1/2, 6 November 1990, Elsevier Science Publishers B.V., J. Tamaoki et al.: "Inhibition by loperamide of chloride transport across canine cultured tracheal epithelium", pages 255-258, see page 255, 257-258 (cited in the application)
Veterinary and Human Toxicology, volume 25, no. 5, October 1983, M.S. Ramirez et al.: "A suspected case of loperamide toxicity", page 341, see the whole article
American Review of Respiratory Disease, volume 143, no. 4, part 2, April 1991; S. Horii et al.: "Effect of loperamide on cholinergic neurotransmission in canine airway smooth muscle", page A750, see the whole abstract
Journal of Chromatography, volume 449, no. 1, 30 September 1988, Elsevier Science Publishers B.V. (NL) C.P. Leung et al.: "High-performance liquid chromatographic determination of loperamide hydrochloride in pharmaceutical preparations", pages 341-344, see page 341, first paragraph
International Journal of Pharmaceutics, volume 51, no. 2, 15 April 1989, Elsevier Science Publishers B.V. (NL) Yu-Hsing Tu et al.: "Stability of loperamide hydrochloride in acqueous solutions as determined by high performance liquid chromatography", pages 157-160, see pages 157,158
European Journal of Drug Metabolism and Pharmacokinetics, volume 14, no. 4, October-December 1989, A. Tekle et al.: "Assessment of pharmacokinetic interaction between theophylline and loperamide in the rat", pages 283-286, see the whole article
The Merck Manual of Diagnosis and Therapy, Merck & Co. Inc., 1987 (Rahway, N.J.) "Airways Obstruction; Bronchial Asthma", pages 623-634, see page 630
Download PDF:
Claims:
1. The use of a compound for manufacture of a medicament for treatment of symptoms associated with respiratory diseases, of humans and lower animals, the compound having the structure: R2NC(0)C(A)2 (1) wherein each R is independently hydrogen or lower alkyl, or the two Rs are connected to form a cyclic lower alkyl, preferably each R is CxC* alkyl; each A is independently phenyl or halophenyl; B is CH2CH2 or CH2CH(CH3); R' is hydrogen or methyl, preferably R' is hydrogen; and A' is phenyl or substituted phenyl, preferably A' is 4halo phenyl; or Noxide thereof, or a pharmaceuticallyacceptable salt thereof.
2. The use of Claim 1 characterized in that the compound is loperamide or Noxide thereof, or a salt thereof; preferably the compound is loperamide hydrochloride.
3. The use of Claim 1 or 2 characterized in that the medicament comprises a quantity of compound in an amount of from 1 μg to 4 mg per dose, preferably from 20 μg to 2 mg per dose, more preferably from 40 μg to 1 mg per dose.
4. A composition in the form of an aqueous solution comprising: (a) a safe and effective amount of a compound having the structure: R' wherein each R is independently hydrogen or lower alkyl, or the two Rs are connected to form a cyclic lower alkyl, preferably each R is CiC4 alkyl; each A is independently phenyl or halophenyl; B is CH2CH2 or CH2CH(CH3); R' is hydrogen or methyl, preferably R' is hydrogen; and A' is phenyl or substituted phenyl, preferably A' is 4halophenyl ; more preferably the compound is loperamide; or Noxide thereof, or a pharmaceuticallyacceptable salt thereof; and (b) a safe and effective amount of a preservative selected from the group consisting of benzalkonium chloride, thimerosal, and phenylmercuric acetate.
5. A composition in the form of an aqueous solution comprising: (a) a safe and effective amount of a compound having the structure: R' wherein each R is independently hydrogen or lower alkyl, or the two Rs are connected to form a cyclic lower alkyl, preferably each R is CiC4 alkyl; each A is independently phenyl or halophenyl; B is CH2CH2 or CH2CH(CH3); R' is hydrogen or methyl, preferably R' is hydrogen; and A' is phenyl or substituted phenyl, preferably A' is 4halophenyl ; more preferably the compound is loperamide; or Noxide thereof, or a pharmaceuticallyacceptable salt thereof; and (b) a safe and effective amount of a hydroxyCxCg alkyl cyclodextrin solubilizing agent, preferably 2hydroxy propylj8cyclodextrin.
6. A composition in the form of an aqueous solution comprising: (a) a safe and effective amount of loperamide or a salt thereof; and (b) a safe and effective amount of another drug active selected from the group consisting of antihistamines, decongestants, expectorants, bronchodilators, and antitussives.
7. A composition in the form of an aqueous solution compr sing: (a) a safe and effective amount of loperamide or a salt thereof; and (b) a safe and effective amount of a steroidal or non steroidal antiinflammatory drug agent.
8. A composition in the form of an aqueous solution comprising: (a) a safe and effective amount of loperamide or a salt thereof; and (b) a safe and effective amount of an anticholinergic drug agent.
9. A combination comprising: (a) a container comprising a means for topical application selected from dropper means, spray means, and inhalation mist means, the container containing: (b) a composition in the form of an aqueous solution comprising a safe and effective amount of a compound having the structure: (1) wherein each R is independently hydrogen or lower alkyl, or the two Rs are connected to form a cyclic lower alkyl, preferably each R is CxC4 alkyl; each A is independently phenyl or halophenyl; B is CH2CH2 or CH2CH(CH3); R' is hydrogen or methyl, preferably R' is hydrogen; and A' is phenyl or substituted phenyl, preferably A' is 4halo phenyl ; preferably the compound is loperamide; or Noxide thereof, or a pharmaceuticallyacceptable salt thereof.
Description:
THE USE OF LOPERAMIDE AND RELATED COMPOUNDS FOR TREATMENT OF RESPIRATORY DISEASE SYMPTOMS

*

TECHNICAL FIELD The subject invention relates to the use of loperamide and 10 related compounds for the treatment of symptoms such as nasal congestion, runny nose, sneezing, itchy nose, itchy eyes, watery eyes, cough, bronchoconstriction and post-nasal drip. Such symptoms are associated with respiratory diseases such as colds, flu, allergic and vasomotor rhinitis, asthma and bronchitis. 15 BACKGROUND OF THE INVENTION

Loperamide is an opiate agonist used for the treatment of diarrhea; see "5396. Loperamide", The Merck Index. Tenth Edition,

M. Windholz, ed., p. 797; and Physicians' Desk Reference for

Nonorescription Drugs. 11th Ed. (1990), E.R. Barnhart, pub., pp.

20 593-594. Loperamide is one of a class of compounds disclosed in

U.S. Patent No. 3,714,159 issued to Janssen, Niemegeers,

Stokbroekx & Vandenberk on January 30, 1973. Lomeramide N-oxide is disclosed in "Drug Compendium", Comprehensive Medicinal

Chemistry. Vol. 6 (1990), C. Hansch, P.G. Sam es, J.B. Taylor &

25 C.J. Drayton, eds., Perga on Press, N.Y., p. 629, and in

Niemegeers, C.J.E., F. Awouters, F.M. Lenaerts, K.S.K. Artois &

J. Vermeire, "Antidiarrheal Specificity and Safety of the N-Oxide of Loperamide (R 58 425) in Rats", Drug Development Research,

Vol. 8 (1986), pp. 279-286. The above references are hereby

30 incorporated herein by reference.

Loperamide is similar to other opiate agonists in having binding affinities at mu and delta opiate receptors. See, e.g., Mackerer, C.R., G.A. Clay & E.Z. Dajani, "Loperamide Binding to Opiate Receptor Sites of the Brain and Myenteric Plexus", Journal 35 of Pharmacology and Experimental Therapeutics, Vol. 199, No. 1 (1976), pp. 131-140; Stahl , K.D., W. Van Bever, P. Janssen & E.J.

Simon, "Receptor Affinity and Pharmacological Potency of a Series of Narcotic Analgesic, Anti-Diarrhea! and Neuroleptic Drugs", European Journal of Pharmacology. Vol. 46 (1977), pp. 199-205; Wuster, M. & A. Herz, "Opiate Agonist Action of Antidiarrheal Agents Jjn Vitro and In Vivo - Findings in Support for Selective Action", Naunvn-Schmiedeberg's Archives of Pharmacology. Vol. 301 (1978), pp. 187-194; and Giagnoni, G., L. Casiraghi, R. Senini, L. Revel, D. Parolaro, M. Sala & E. Gori, "Loperamide: Evidence of Interaction with μ and δ Opioid Receptors", Life Sciences. Vol. 33, Suppl. 1 (1983), pp. 315-318. It is generally accepted that mu and/or delta opioid agonists bind to opioid receptors on the presynaptic terminals of peripheral parasy pathetic nerves or sensory nerves and inhibit the release of neurotransmitters from these nerve terminals in a number of model systems. See, e.g., Mudge, A.W., S.E. Leeman & G.D. Fischbach, "Enkephaline Inhibits Release of Substance P from Sensory Neurons in Culture and Decreases Action Potential Duration", Proceedings of the National Academy of Science. USA. Vol. 76, No. 1 (Jan. 1979), pp. 526-530; Frossard, N. & P.J. Barnes, "μ-Opioid Receptors Modulate Non- cholinergic Constrictor Nerves in Guinea-Pig Airways", European Journal of Pharmacology. Vol. 141 (1987), pp. 519-522; Burleigh, D.E., "Opioid and Non-opioid Actions of Loperamide on Cholinergic Nerve Function in Human Isolated Colon", European Journal of Pharmacology. Vol. 152 (1988), pp. 39-46; Belvisi, M.G., D.F. Rogers & P.J. Barnes, "Neurogenic Plasma Extravasation: Inhibi¬ tion by Morphine in Guinea Pig Airways In Vivo". Journal of Applied Physiology. Vol. 66 (1989), pp. 268-272; and Matran, R., C.-R. Martling & J. Lundberg, "Inhibition of Cholinergic and Non-adrenergic, Non-cholinergic Bronchoconstriction in the Guinea Pig Mediated by Neuropeptide Y and α 2 -adrenoceptors and Opiate Receptors", European Journal of Pharmacology. Vol. 163 (1989), pp. 15-23. This inhibition is prevented or reversed by the mu and delta selective opioid antagonist naloxone.

References which disclose the biological and chemical activity of loperamide include the following: Balkovetz, D.F., Y. Miyamoto, C. Tiruppathi, V.B. Mahesh, F.H. Leibach & V. Ganapathy, "Inhibition of Brush-border Membrane Na + -H + Exchanger

by Loperamide", Journal of Pharmacology and Experimental Thera¬ peutics. Vol. 243, No. 1 (Oct. 1987), pp. 150-154; Beubler, E. & P. Badhri, "Comparison of the Antisecretory Effects of Loperamide and Loperamide Oxide in the Jejunum and the Colon of Rats 5 In-vivo", J. Pharm. Pharmacol., Vol. 42 (1990), pp. 689-692; Chang, E.B., D.R. Brown, N.S. Wang & M. Field, "Secretagogue- induced Changes in Membrane Calcium Permeability in Chicken and Chincilla Heal Mucosa. Selective Inhibition by Loperamide", J__ Clin. Invest.. Vol. 78, No. 1 (July, 1986), pp. 281-287; 10 Haag, K., R. Lubcke, H. Knauf, E. Berger & W. Gerok, "Deter¬ mination of Rheogenic Ion Transport in Rat Proximal Colon Jn Vivo". Pfluoers Arch.. Vol. 405, Suppl. 1 (1985), pp. S67-S70; Hantz, E., A. Cao, R.S. Phadke & E. Taillandier, "The Effect of Loperamide on the Thermal Behavior of Di yristoylphosphatidyl- 15 choline Large Unilamellar Vesicles", Che . Phvs. Lioids (Ireland). Vol. 51, No. 2 (Oct. 1989), pp. 75-82; Hardcastle, J., P.T. Hardcastle & J. Cookson, "Inhibitory Actions of Loperamide on Absorptive Processes in Rat Small Intestine", Gut, Vol. 27, No. 6 (June 1986), pp. 686-694; Hardcastle, J., P.T. Hardcastle & 20 J. Goldhill, "The Effect of Loperamide Oxide on Prostaglandin- Sti ulated Fluid Transport in Rat Small Intestine", J. Pharm. Pharmacol .. Vol. 42, No. 5 (May, 1990), pp. 364-366; Hardcastle, J., P.T. Hardcastle, N.W. Read & J.S. Redfern, "The Action of Loperamide in Inhibiting Prostaglandin-induced Intestinal Secre- 25 tion in the Rat", British Journal of Pharmacology. Vol. 74, No. 3 (Nov. 1981), pp. 563-569; Hughes, S., N.B. Higgs & L.A. Turnberg, "Antidiarrhoeal Activity of Loperamide: Studies of its Influence on Ion Transport Across Rabbit Heal Mucosa In Vitro". Gut. Vol. 23, No. 11 (Nov. 1982), pp. 974-979; Kachur, J.F., D.W. Morgan & 30 T.S. Gaginella, "Effect of Dextromethorphan on Guinea Pig Heal Contractility In Vitro: Comparison with Levomethorphan, Loperamide and Codeine", Journal of Pharmacology and Experimental ' Therapeutics. Vol. 239, No. 3 (Dec. 1986), pp. 661-667; Knauf, H.

I & K. Haag, "Modelling of Colonic Cl" and K + Transport Under

35 Resting and Secreting Conditions", Pfluoers Arch.. Vol. 407, Supplement 2 (1986), pp. S85-S89; Marcais-Collado, H., G. Uchida, J. Costentin, J.C. Schwartz & J.M. Lecompte, "Naloxone-reversible

Antidiarrheal Effects of Enkephalinase Inhibitors", European Journal of Pharmacology. Vol. 144, No. 2 (December 1, 1987), pp. 125-132; Marsboom, R., V. Herin, A. Verstraeten, R. Vandesteene & J. Fransen, "Loperamide, a Novel Type of Antidiarrheal Agent. Part 3: In Vitro Studies on the Peristaltic Reflex and Other Experiments on Isolated Tissues", Arzneimittelforschung, Vol. 24, No. 10 (Oct. 1974), pp. 1641-1645; Marsboom, R., V. Herin, A. Verstraeten, R. Vandesteene & J. Fransen, "Loperamide, a Novel Type of Antidiarrheal Agent. Part 4: Studies on Subacute and Chronic Toxicity and the Effect on Reproductive Processes in Rats, Dogs and Rabbits", Arzneimittelforschung. Vol. 24, No. 10 (Oct. 1974), pp. 1645-1649; Megens, A.A., L.L. Canters, F.H. Awouters & C.J. Niemegeers, "Is In Vivo Dissociation Between the Antipropulsive and Antidiarrheal Properties of Opioids in Rats Related to Gut Selectivity?", Arch. Int. Pharmacodvn. Ther.. Vol. 298 (March-April, 1989), pp. 220-229; Megens, A.A., L.L. Canters, F.H. Awouters & C.J. Niemegeers, "Normalization of Small Intestinal Propulsion with Loperamide-like Antidiarrheals in Rats", European Journal of Pharmacology. Vol. 178, No. 3 (March 27, 1990), pp. 357-364; Mellstrand, T., "Loperamide — An Opiate Receptor Agonist with Gastrointestinal Motility Effects", Scand. J. Gastroenterol . SUPDI.. Vol. 130 (1987), pp. 65-66; Miller, R.J., D.R. Brown, E.B. Change & D.D. Friel, "The Pharma¬ cological Modification of Secretory Responses", Ciba Found. Svmp.. Vol. 112 (1985), pp. 155-174; Nakayama, S., T. Yamasato & M. Mitzutani, "Effects of Loperamide on the Motility of the Isolated Intestine in Guinea Pigs, Rats and Dogs", Nippon Heikatsukin Gakkai Zasshi. Vol. 13, No. 2 (June, 1977), pp. 69-74; Niemegeers, C.J., F.M. Lenaerts & P.A. Janssen, "Loper- amide, a Novel Type of Antidiarrheal Agent. Part 2: In Vivo Parenteral Pharmacology and Acute Toxicity in Mice. Comparison with Morphine, Codeine and Diphenoxylate", Arzneimittelforschung, Vol. 24, No. 10 (Oct. 1974), pp. 1636-1641; Niemegeers, C.J., F.M. Lenaerts & P.A. Janssen, "Loperamide, a Novel Type of Antidiarrheal Agent. Part 1: In Vivo Oral Pharmacology and Acute Toxicity. Comparison with Morphine, Codeine, Diphenoxylate and Difenoxine", Arzneimittelforschung. Vol. 24, No. 10 (Oct. 1974),

pp. 1633-1636; Sandhu, B.K., P.J. Milla & J.T. Harries, "Mechanisms of Action of Loperamide", Scand. J. Gastroenterol . SUPPI.. Vol. 84 (1983), pp. 85-92; Stahl , K.D., W. van Bever, P. Janssen & E.J. Simon, "Receptor Affinity and Pharmacological Potency of a Series of Narcotic Analgesic, Anti-diarrheal and Neuroleptic Drugs", European Journal of Pharmacology. Vol. 46, No. 3 (December 1, 1977), pp. 199-205; Stoll, R., H. Stern, H. Ruppin & W. Domschke, "Effect of Two Potent Calmodulin Antagonists on Calcium Transport of Brush Border and Basolateral Vesicles for Human Duodenum", Ailment. Pharmacol. Ther.. Vol. 1, No. 5 (1987), pp. 415-424; Stoll, R., H. Ruppin & w. Domschke, "Cal odulin-mediated Effects of Loperamide on Chloride Transport by Brush Border Membrane Vesicles from Human Ileu ", Gastro¬ enteroloov. Vol. 95, No. 1 (July 1988), pp. 69-76; Turnberg, L.A., "Antisecretory Activity of Opiates In Vitro and In Vivo in Man", Scand. J. Gastroenterol. SUPPI.. Vol. 84 (1983), pp. 79-83; Turnheim, K., "Antidiarrheal Agents: Tools and Therapeutic Agents", Z. Gastroenterol. (West Germany), Vol. 27, No. 2 (Feb. 1989), pp. 112-119; Verhaeren, E.H., M.J. Dreessen & J.A. Lemli, "Influence of 1,8-Dihydroxyanthraquinone and Loperamide on the Paracellular Permeability Across Colonic Mucosa", J. Pharm. Pharmacol .. Vol. 33, No. 8 (Aug. 1981), pp. 526-528; Wehner, F., "Membrane Effects of Loperamide in Absorbing and Secreting Guinea-Pig Gallbladder Epithelium", Naunvn-Schmiedebero 's Archives of Pharmacology. Vol. 335, Supplement (1987), p. R45; Wehner, F., J.M. Winterhager & K.U. Peterson, "Selective Blockage of Cell Membrane K Conductance by an Antisecretory Agent in Guinea-Pig Gallbladder Epithelium", Pfluoers Arch. (West Germany), Vol 414, No. 3 (July 1989), pp. 331-339. Ta aski, J., N. Sakai, K. Isono & T. Takizawa, "Inhibition by Loperamide of Chloride Transport Across Canine Cultured Trachea! Epithelium", European Journal of Pharmacology. Vol. 190 (1990), pp. 255-258, speculates that the inhalation of loperamide could be of value in the treatment of patients with excessive airway surface fluid.

Evidence suggests that sensory C-fiber activation is important in the induction of symptoms associated with rhinitis;

see, e.g., Saria, A., "Ne ' uroimmune Interactions in the Airways: Implications for Asthma, Allergy and Other Inflammatory Airway Diseases", Brain. Behavior, and Immunity. Vol. 2 (1988), pp. 318-321; Wolf, G. "New Aspects in the Pathogenesis and Therapy of Hyperreactive Rhinopathy", Larvno. Rhino! . Otol.. Vol. 67 (1988), pp. 438-445; and Stjarne, P., L. Lundblad, J.M. Lundberg & A. Anggard, "Capsaicin and Nicotine-Sensitive Afferent Neurons and Nasal Secretion in Healthy Human Volunteers and in Patients with Vaso otor Rhinitis", British Journal of Pharmacology. Vol. 96 (1989), pp. 693-710. In respiratory tissue, C-fiber activation causes the local release of inflammatory neuropeptides and also initiates a parasympathetic reflex. Both of these actions produce physiologic changes that can result in the symptoms of rhinorrhea and congestion; see, e.g., St.iarne. et a! . and Geppetti, P., B.M. Fusco, S. Marabini, C.A. Maggi, M. Fanciullacci & F. Sicuteri, "Secretion, Pain and Sneezing Induced by the Appl cation of Capsaicin in the Nasal Mucosa in Man", British Journal of Pharmacology. Vol. 93 (1988), pp. 509-514.

It has been reported that the opioid antagonist nalmefene is useful for the treatment of rhinitis; see, e.g., U.S. Patent No.

4,880,813 issued to Frost on November 14, 1989, and PCT Patent

Application Publication No. WO 87/02586 of Key Pharmaceuticals,

Inc., inventor: Tuttle, published May 7, 1987.

It is an object of the subject invention to provide novel methods for the treatment of rhinitis.

It is a further object of the subject invention to provide novel methods for the topical, intranasal treatment of rhinitis.

SUMMARY OF THE INVENTION The subject invention involves the use of compounds, or N-oxide thereof, or pharmaceutically-acceptable salts thereof, having the structure:

R'

R 2 N-C(0)-C(A) 2 -B-N V (1)

wherein each -R is independently selected from hydrogen and lower alkyl, or the two -Rs are connected to form a cyclic

lower alkyl; each -A is independently selected from phenyl and halophenyl; -B- is selected from -CH 2 CH 2 - and -CH 2 CH(CH 3 )-; -R' is hydrogen or methyl; and -A' is phenyl or substituted phenyl; for treatment of symptoms associated with respiratory diseases.

DETAILED DESCRIPTION OF THE INVENTION As used herein, "lower alkyl" means alkyl which is prefer¬ ably unsubstituted Cχ-C 6 straight or branched alkyl, preferably saturated, more preferably C x -C 4 , more preferably still ethyl, and especially methyl.

As used herein, "lower alkoxy" means -0-lower alkyl. As used herein, "cyclic lower alkyl" means cyclic alkyl which is preferably unsubstituted C 3 -C 8 , preferably unsaturated, more preferably C 5 -C 6 . As used herein, "substituted phenyl" means phenyl which is preferably mono-, di- or trisubstituted, more preferably mono-substituted, especially in the 4-position. Preferred phenyl substituents include lower alkyl, lower alkoxy, halo and tri- f1uoro ethyl . As used herein, "halophenyl" means substituted phenyl which is substituted with fluoro, chloro, bromo, and/or iodo. Preferred halo substituents are fluoro and chloro.

The subject invention involves a new use of compounds, or N-oxide thereof, or pharmaceutically-acceptable salts thereof, having the structure:

(1)

In Structure (1), each -R is independently selected from hydrogen and lower alkyl, or the two -Rs are connected to form a cyclic lower alkyl.

In Structure (1), each -A is independently selected from phenyl or halophenyl; preferred are 4-F-phenyl and especially phenyl . In Structure (1), -B- is -CH 2 CH 2 - or -CH Z CH(CH 3 )-, prefer¬ ably -CH 2 CH 2 - .

In Structure (1), -R' is hydrogen or methyl, preferably hydrogen.

In Structure (1), -A' is phenyl or substituted phenyl; especially preferred is 4-C1-phenyl. Preferred salts of the compounds of Structure (1) include hydrochloride, hydrobromide, acetate, citrate, lactate, tartrate, succinate and aleate.

A preferred compound of Structure (1) is loperamide, 4-(4- chlorophenyl)-4-hydroxy-N,N-dimethyl-α,α-diphenyl-l-piperd ine- butanamide, or the N-oxide thereof, and especially the hydro¬ chloride salt of loperamide or its N-oxide.

The subject invention involves the use of a safe and effec¬ tive amount of the above compounds for treatment of symptoms associated with respiratory diseases, such as colds, flu, allergic and vasomotor rhinitis, asthma and bronchitis, of humans and lower animals, especially humans. Such symptoms can include, for example, one or more of nasal congestion, runny nose, sneezing, itchy nose, itchy eyes, watery eyes, cough, broncoconstriction and post-nasal drip. The subject invention particularly involves the treatment with the above compounds of upper respiratory nasal symptoms, such as nasal congestion, runny nose, sneezing, and post-nasal drip. The subject invention also particularly involves the treatment with the above compounds of lower respiratory symptoms, such as bronchoconstriction and cough. Relief of the above symptoms can be achieved by the methods of the subject invention with minimal or no side effects often associated with therapies for such symptoms, such as drowsiness, central nervous system excitation, or rebound conges¬ tion. A preferred mode of administering the above compounds in the methods of the subject invention is topical, intranasal administration, e.g., with nose drops, nasal spray or nasal mist inhalation. Another preferred mode of administering the above compounds in the methods of the subject invention is topical, bronchial administration by inhalation of vapor and/or mist or powder. Such modes of topical administration minimize or prevent any gastrointestinal effects of the compounds.

The methods and compositions of the subject invention involve a safe and effective amount of the above compounds. The phrase "safe and effective amount", as used herein for the above compounds or other substances, means an amount of the substance high enough to provide a significant positive modification of the condition to be treated, but low enough to avoid serious side effects (at a reasonable benefit/risk ratio), within the scope of sound medical judgement. A safe and effective amount of the substance will vary with the particular condition being treated, the age and physical condition of the patient being treated, the severity of the condition, the duration of the treatment, the nature of concurrent therapy and like factors.

Each administration of a dose of a composition comprising a compound according to the methods of the subject invention preferably administers a dose within the range of from about 1 μg to about 4 mg of a compound, more preferably from about 20 μg to about 2 mg, more preferably still from about 40 μg to about 1 mg. The frequency of administration of a composition comprising a compound according to the subject invention is preferably from once to about 6 times daily, more preferably from about 2 times to about 4 times daily.

Another aspect of the subject invention is pharmaceutical compositions for topical administration of the above compounds to the eyes, nasal passages and sinuses, or bronchial passages and lungs. Preferred compositions for topical administration to eyes include eye drops. Preferred compositions for topical administration to the nasal passages and sinuses include nasal drops, nasal sprays, and vapors and/or mists for nasal inhala¬ tion. Preferred compositions for topical administration to the bronchial passages and lungs include vapors and/or mists or powders for inhalation.

The above topical compositions of the subject invention preferably comprise an above compound at a concentration of from about 0.002% to about 1%, more preferably from about 0.02% to about 0.2%, more preferably still from about 0.05% to about 0.1%. Preferred topical compositions of the subject invention are

powder mixtures or aqueous-based solutions or suspensions; especially preferred are aqueous solutions.

Other ingredients which may be incorporated in such composi¬ tions include safe and effective amounts of preservatives, e.g., benzalkonium chloride, thi erosal, phenylmercuric acetate; and acidulants, e.g., acetic acid, citric acid, lactic acid, tartaric acid. Such compositions preferably include safe and effective amounts of isotonicity agents, e.g., salts such as sodium chlor¬ ide; more preferred are non-electrolyte isotonicity agents, e.g., sorbitol, annitol, lower molecular weight polyethylene glycol.

A particularly preferred ingredient of the compositions of the subject invention is a safe and effective amount of a solu¬ bilizing agent. Loperamide and its salts are sparingly soluble in water. A suitable solubilizing agent increases the solubility of loperamide and/or its salts in the aqueous compositions. Such solubilizing agents can also provide isotonicity for the aqueous compositions. Preferred solubilizing agents are modified cyclo- dextrins, preferably hydroxy-C ! -C 6 alkyl derivatives, especially hydroxypropyl derivatives. A particularly preferred solubilizing agent is 2-hydroxypropyl-0-cyclodextrin. Solubilizing agents are preferably present in the compositions of the subject invention at a concentration of from about 0.1% to about 10%, more prefer¬ ably from about 0.5% to about 5%.

The compositions of the subject invention also may comprise safe and effective amounts of one or more other active drug agents useful for treating the respiratory diseases of interest. Such other active drug agents and typical amounts dosed are disclosed in Physician's Desk Reference. 44th Edition (1990), E.R. Barnhardt, publisher, and Physician's Desk Reference for Nonorescription Drugs. 11th Edition (1990), E.R. Barnhardt, publisher, both of which are incorporated herein by reference.

The topical nasal compositions of the subject invention may include one or more of the following such other active drug agents: antihistamines, e.g., chlorpheniramine maleate, pyrilamine maleate, diphenhydramine hydrochloride, promethazine hydrochloride, doxylamine succinate, terfenadine, astemizole; decongestants, e.g., pseudoephedrine hydrochloride, phenyl-

propanolamine hydrochloride, phenylephrine hydrochloride, oxy- etazoline hydrochloride, xylo etazoline hydrochloride; steroidal anti-inflammatories, e.g., beclomethasone dipropionate, fluni- solide; mast cell stabilizers, e.g., cromolyn sodium, nedocromil; anticholinergics, e.g., ipratropiu bromide.

The topical bronchial compositions of the subject invention may include one or more of the following such other active drug agents: antitussives, e.g., dextromethorphan base or hydro- bromide; bronchodilators, e.g., theophylline, metaproterenol, albuterol; steroidal anti-infl mmatories, e.g., beclomethasone; mast cell stabilizers, e.g., cromolyn sodium.

Oral compositions of the subject invention may include one or more of the following such other active drug agents: anti- histamines, e.g., chlorpheniramine maleate, pyrilamine maleate, diphenhydramine hydrochloride, promethazine hydrochloride, doxylamine succinate, terfenadine, astemizole; decongestants, e.g., pseudoephedrine hydrochloride, phenylpropanolamine hydro¬ chloride, phenylephrine hydrochloride; antitussives, e.g., dextromethorphan base or hydrobromide; nonsteroidal anti-inflam- atories, e.g., aspirin, aceto inophen, ibuprofen, naproxen; expectorants, e.g., guaifenesin; bronchodilators, e.g., theo¬ phylline, metaproterenol, albuterol; antibiotics.

Another aspect of the subject invention is a combination of a composition comprising an above compound in a container co - prising a means for topical application of the composition to the eyes, nasal passages and sinuses, or bronchial passages and lungs. Preferred containers useful in such combinations include those comprising dropper means, spray means, or inhalation mist or powder means. Containers comprising dropper means are useful for applying, as a liquid, either eye drops or nose drops topically to the eye or nasal passages, respectively. Such containers are well-known and commonly have such dropper means attached permanently or removably to the body of the container so that drops can be administered by inverting the container and/or by squeezing the container (the container being flexible). Another well-known dropper means is attached to a closure for the container and

comprises a tube with a small hole in one end, the other end being open and attached to a flexible (e.g., rubber) bulb.

Containers comprising spray means are useful for applying a spray of liquid droplets topically directly to nasal passages. Well-known examples of such containers are flexible plastic containers having a spray nozzle fixedly attached thereto, the spray nozzle being designed for insertion into the nasal opening. When the container is squeezed, solution in the container is forced through the nozzle and emerges as a spray of droplets. Other well-known containers with spray means, e.g. pump sprays or aerosol sprays, can also be used in a similar manner.

Containers comprising inhalation mist means are useful for applying a fine mist or powder topically to nasal passages and/or bronchial passages and lungs. Such inhalers provide a fine mist or powder which can be inhaled either through the nose or the mouth, depending on the design of the inhaler. Inhalers designed for providing a mist or powder to be inhaled through the nose are useful for topical administration of compositions to nasal passages and/or bronchial passages and lungs. Inhalers designed for providing a mist or powder to be inhaled through the mouth are useful for topical administration of compositions to bronchial passages and lungs. Various containers having inhala¬ tion mist or powder means as a part of or fixedly attached to the containers are well-known, e.g., squeeze containers, pump containers, and aerosols.

The following non-limiting examples exemplify compositions and methods useful in the subject invention.

Example 1 Intranasal Composition Amount

One-fifth ml of the composition of Example 1 is applied as drops from a dropper into each nostril of a patient with nasal congestion. The congestion is substantially diminished.

Example 2 Intranasal Composition

Amount Ingredient (weight/volume %)

Loperamide hydrochloride, U.S.P. 0.100 Benzalkonium chloride 0.020 d-Sorbitol 5.000

Glycine 0.350

Acetic acid (0.35 M) 0.075

Purified water q.s.

One-tenth ml of the composition of Example 2 is sprayed through a nozzle into each nostril of a patient with a runny nose. Nasal secretion is substantially reduced.

Example 3 Intranasal Composition

Amount Ingredient (weight/volume %)

Loperamide hydrochloride, U.S.P. 0.200 Benzalkonium chloride 0.020

2-Hydroxypropyl-0-cyclodextrin 5.000 Purified water q.s. One-tenth ml of the composition of Example 3 is sprayed through a nozzle into each nostril of a patient with post-nasal drip. The post-nasal drip substantially ceases.

While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit of the scope of the invention. It is intended to cover, in the appended claims, all such modifications that are within the scope of this invention.

WHAT IS CLAIMED IS: