Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
USE OF A PARAFFINIC HYDROCARBON-BASED FUEL COMPOSITION FOR CLEANING THE INTERNAL PARTS OF DIESEL ENGINES
Document Type and Number:
WIPO Patent Application WO/2020/156941
Kind Code:
A1
Abstract:
The present invention relates to the use of a fuel composition comprising at least 85% by weight of one or more hydrocarbon fractions consisting of one or more hydrotreated vegetable oils, said fraction(s) having a distillation range between 100 and 400°C and having a paraffin content greater than or equal to 90% by weight, for reducing the deposits present in the internal parts of a compression ignition engine (or diesel engine). The present invention also relates to a method for cleaning the deposits present in the internal parts of a compression ignition engine using such a composition.

Inventors:
DELORME GÉRALDINE (FR)
DAUPHIN ROLAND (BE)
Application Number:
PCT/EP2020/051740
Publication Date:
August 06, 2020
Filing Date:
January 24, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TOTAL MARKETING SERVICES (FR)
International Classes:
C10L1/183; C10G75/04; C10L1/08; C10L1/222; C10L1/2383; C10L10/06
Domestic Patent References:
WO2019007857A12019-01-10
WO2003091364A22003-11-06
WO2015011505A12015-01-29
WO2016107889A22016-07-07
WO2016185046A12016-11-24
WO2016185047A12016-11-24
WO2007015080A12007-02-08
WO2010132259A12010-11-18
WO1998004656A11998-02-05
WO2014029770A12014-02-27
Foreign References:
US20180155636A12018-06-07
US20130125849A12013-05-23
EP0565285A11993-10-13
EP1344785A12003-09-17
US3361673A1968-01-02
US3018250A1962-01-23
US3172892A1965-03-09
GB949981A1964-02-19
EP1254889A12002-11-06
US20060272597A12006-12-07
EP0680506A11995-11-08
EP0860494A11998-08-26
EP0915944A11999-05-19
FR2772783A11999-06-25
FR2772784A11999-06-25
EP0861882A11998-09-02
EP0663000A11995-07-19
EP0736590A21996-10-09
Other References:
HANNU AATOLA ET AL: "Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NO x , Particulate Emission, and Fuel Consumption of a Heavy Duty Engine", 6 October 2008 (2008-10-06), XP055105376, Retrieved from the Internet [retrieved on 20140304], DOI: 10.4271/2008-01-2500
Attorney, Agent or Firm:
MARTIN-CHARBONNEAU, Virginie et al. (FR)
Download PDF:
Claims:
REVENDICATIONS

1 . Utilisation, pour réduire les dépôts présents dans les parties internes d’un moteur à allumage par compression, d’une composition de carburant comprenant au moins 85% en poids d’une ou plusieurs coupes d’hydrocarbures paraffiniques constituée(s) d’une ou plusieurs huile(s) végétale(s) hydrotraitée(s), ladite (lesdites) coupe(s) ayant une gamme de distillation comprise dans la gamme allant de 100 à 400°C et ayant une teneur en paraffines supérieure ou égale à 90% en poids.

2. Utilisation selon la revendication précédente, caractérisée en ce que la gamme de di stillation de ladite coupe d’hydrocarbures paraffiniques est comprise dans la gamme allant de 130 à 350°C, de préférence de 150 à 320°C.

3. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la teneur en paraffines de ladite coupe d’hydrocarbures paraffiniques est supérieure ou égale à 95% en poids, de préférence supérieure ou égale à 99% en poids, plus préférentiellement supérieure ou égale à 99, 5% en poids, mieux supérieure ou égale à 99,9% en poids, par rapport au poids total de ladite coupe.

4. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que ladite coupe d’hydrocarbures paraffiniques contient au moins 50% en poids d’iso-paraffines, de préférence au moins 70% en poids, et mieux encore au moins 90% en poids d’i so-paraffines, par rapport au poids de ladite coupe.

5. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la composition de carburant comprend au moins 90% en poids de la ou des coupes d’hydrocarbures paraffiniques, de préférence au moins 93% en poids, plus préférentiellement au moins 95% en poids, encore plus préférentiellement au moins 99% en poids, et mieux encore au moins 99, 5% en poids.

6. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la composition de carburant contient en outre au moins un premier additif constitué d’un sel d’ammonium quaternaire, obtenu par réaction avec un agent de quaternarisation d’un composé azoté comprenant une fonction amine tertiaire, ce composé étant le produit de la réaction d’un agent d’acylation substitué par un groupement hydrocarboné et d’un composé comprenant au moins un groupement amine tertiaire et au moins un groupement choisi parmi les amines primaires, les amines secondaires et les alcools.

7. Utilisation selon la revendication précédente, caractérisée en ce que l’agent d'acylation substitué par un groupement hydrocarboné est un anhydride polyi sobutényl-succinique.

8. Utilisation selon l’une quelconque des revendications 6 et 7, caractéri sée en ce que ledit composé comprenant au moins un groupement amine tertiaire et au moins un groupement choisi parmi les amines primaires, les amines secondaires et les alcools est choisi parmi les amines de formule (I) ou (II) suivantes :

(II)

dans lesquelles :

R6 et R7 sont identiques ou différents et représentent, indépendamment l’un de l’autre, un groupement alkyle ayant de 1 à 22 atomes de carbone;

X est un groupement alkylène ayant de 1 à 20 atomes de carbone ; m est un nombre entier compris entre 1 et 5 ;

n est un nombre entier compris entre 0 et 20 ; et

R8 est un atome d’hydrogène ou un groupement alkyle de C l à C22 ; et de préférence parmi les amines de formule (I).

9. Utilisation selon l’une quelconque des revendications 6 à 8, caractéri sée en ce que la composition de carburant comprend le ou les premiers additifs à une teneur allant de 5 à 1000 ppm, de préférence de 10 à 500 ppm, et plus préférentiellement de 50 à 200 ppm en poids, par rapport au poids total de la composition.

10. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la composition de carburant comprend en outre au moins un second additif constitué d’un agent anti oxydant choisi parmi les composés comprenant un groupement phénol, de préférence choisi parmi les alkyl-phénols, en une teneur allant de 2 à 500 ppm, de préférence de 5 à 250 ppm, et plus préférentiellement de 10 à 150 ppm en poids, par rapport au poids total de la composition.

1 1 . Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la composition de carburant comprend en outre :

- un ou plusieurs agents anti-oxydants aminés choisis parmi les amines aliphatiques, cycloaliphatiques et aromatiques, et de préférence la dicyclohexylamine, en une teneur allant de 0, 5 à 25 ppm, par rapport au poids total de la composition ; et/ou

un ou plusieurs agents passivateurs de métaux choisis parmi les amines sub stituées par des groupements triazole, et plus préférentiellement parmi la N,N-bi s(2-éthylhexyl)-[( l ,2,4-triazol- l -yl)méthyl]amine et la N,N'-bis- (2 éthylhexyl)-4-méthyl- lH-benzotriazole amine, seules ou en mélange, en une teneur allant de 0, 5 à 25. ppm, par rapport au poids total de la composition ; et/ou

- un ou plusieurs agents chélatants, de préférence choisis parmi les amines sub stituées par des groupements N,N'-disalicylidène, et plus préférentiellement le N,N'-disalicylidène 1 ,2-diaminopropane, présents en une teneur allant de 0,2 à 50 ppm, par rapport au poids total de la composition.

12. Utilisation selon l’une quelconque des revendications précédentes, pour réduire les dépôts présents dans les parties internes d’un moteur choisies parmi les suivantes : la chambre de combustion et le système d’inj ection de carburant, et de préférence le système d’inj ection de carburant.

13 . Utilisation selon l’une quelconque des revendications précédentes, caractérisé en ce que le moteur à allumage par compression est un moteur équipant un véhicule ou un engin stationnaire, et notamment un véhicule choi si parmi les véhicules suivants : les véhicules légers, les poids lourds (camions de différentes charges dits « medium duty » et « heavy duty », bennes à ordures ménagères, bus, cars ... ) et les véhicules non routiers (par exemple les engins de chantier ou de/ travaux publics, tracteurs, trains, bateaux).

14. Utilisation selon la revendication précédente, caractérisée en ce que le moteur est un moteur diesel de véhicule automobile, de préférence un moteur Diesel à inj ection directe, en particulier un moteur Diesel à système d’inj ection Common-Rail .

15. Méthode de nettoyage des dépôts présents dans les parties internes d’un moteur à allumage par compression, consistant à effectuer la combustion dans ledit moteur d’une composition de carburant telle que définie dans l’une quelconque des revendications 1 à 1 1 .

Description:
DE SCRIPTION

TITRE : Utilisation d’une composition de carburant à base d’hydrocarbures paraffiniques pour nettoyer les parties internes des moteurs diesels

La présente invention porte sur l’utilisation d’une composition de carburant à base d’une ou plusieurs coupes riches en paraffines constituées d’huiles végétales hydrotraitées, pour réduire les dépôts présents dans les parties internes d’un moteur à allumage par compression (ou moteur Diesel).

La présente invention porte également sur une méthode de nettoyage des dépôts présents dans les parties internes d’un moteur à allumage par compression, mettant en œuvre une telle composition. ETAT DE L'ART ANTERIEUR

Les carburants liquides de moteurs à combustion interne contiennent des composants pouvant se dégrader au cours du fonctionnement du moteur. La problématique des dépôts dans les parties internes des moteurs à combustion est bien connue des motoristes. Il a été montré que la formation de ces dépôts a des conséquences sur les performances du moteur et notamment a un impact négatif sur la consommation et les émissions de polluants.

Pour répondre à cette problématique, de nombreux additifs dits « détergents » ont été développés, c’est-à-dire des composés chimiques particuliers qui, aj outés en très faible teneur (de l’ordre de 1 à 1000 ppm en poids), permettent de réduire les dépôts dans les parties internes des moteurs. Des additifs détergents ont été proposés pour maintenir la propreté du moteur en limitant les dépôts (effet « keep-clean » en anglais) ou en rédui sant les dépôts déj à présents dans les parties internes du moteur à combustion (effet « clean-up » en anglais).

Néanmoins, la technologie des moteurs évolue sans cesse et les exigences sur les carburants doivent évoluer pour faire face à ces avancées technologiques. En particulier, les nouveaux systèmes d’inj ection directe Diesel exposent les inj ecteurs à des conditions plus sévères en pression et en température, ce qui favorise la formation de dépôts. En outre, ces nouveaux systèmes d’inj ection présentent des géométries plus complexes pour optimiser la pulvérisation, notamment des trous plus nombreux ayant des diamètres plus petits mais qui, en revanche, indui sent une plus grande sensibilité aux dépôts. La présence de dépôts peut altérer les performances de la combustion, notamment augmenter les émissions polluantes et les émissions de particules. D’autres conséquences de la présence excessive de dépôts sont en particulier l’augmentation de la consommation de carburant et les problèmes de maniabilité.

De plus, les solutions actuellement disponibles visent essentiellement la prévention des dépôts (effet « keep clean »), et il existe relativement peu de solutions qui permettent de nettoyer les parties internes de moteurs qui sont déj à encrassées notamment du fait de l’utilisation de carburants dont les propriétés détergentes sont insuffisantes par exemple en raison de la trop faible teneur ou des performances médiocres des additifs détergents présents dans ces carburants.

Or, non seulement la prévention mais également la réduction des dépôts dans les moteurs sont essentielles pour un fonctionnement optimal des moteurs diesels actuels.

De plus, il serait souhaitable de pouvoir disposer de solutions alternatives à l’emploi d’additifs détergents, qui s’avère souvent relativement coûteux et augmente les prix des carburants pour les consommateurs.

Par ailleurs, la plupart des additifs détergents utilisés actuellement ont tendance à dégrader la désémulsion des carburants liquides pour moteurs à combustion interne, en particulier des gazoles. De manière connue en soi, de par les procédés mis en œuvre pour l’extraction du pétrole brut mais aussi en raison de la condensation d’eau au sein du carburant froid lors de son transport et de son stockage, les carburants comprennent une quantité variable d’eau pouvant aller de quelques parties par million à quelques pourcents en masse par rapport à la masse totale du carburant. La présence de cette eau résiduelle aboutit généralement à la formation d’émul sions stables qui, étant en suspension au sein du carburant, sont la cause de nombreux problèmes survenant lors du transport et/ou lors de la combustion de ces carburants. Par exemple, ces émulsions peuvent provoquer l’obstruction des filtres du moteur ou encore accélérer la corrosion du moteur.

De plus, l’emploi en quantité sub stantielle d’additifs détergents est susceptible de dégrader les caractéristiques de lubrifiance de la composition de carburant.

Il existe donc un besoin de proposer de nouvelles solutions pour nettoyer efficacement les dépôts présents dans les moteurs diesels encrassés, qui permettent de réduire la quantité d’additifs détergents utilisés, voire de se passer entièrement de tels additifs.

Ces solutions doivent permettre de rétablir un fonctionnement optimal des moteurs moteur à allumage par compression quelle que soit la technologie du moteur, y compris pour les nouvelles technologies moteur telles que l’inj ection directe Diesel .

Ces solutions doivent pouvoir être utilisées de manière universelle, c’est-à-dire tant pour les moteurs de véhicules routiers (notamment les véhicules automobiles et les poids lourds tels que par exemple les camions, les bennes à ordures, les bus et cars) que pour les moteurs de véhicules et engins non routiers (notamment les engins destinés aux chantiers et/ou aux travaux publics tel s que les buldozers, les camions tout terrain ; les engins de manutention ; les tracteurs et machines agricoles; les bateaux ; les locomotives, etc ... ).

La demande de brevet WO 2016/107889 décrit l’utilisation d’au moins un alcane en C 7 - C 30 dans une composition de carburant diesel pour réduire les dépôts sur les inj ecteurs de carburant.

Ces alcanes sont aj outés au carburant en quantité variable, en général de quelques pourcents, afin de réduire le caractère encrassant du carburant, c’est-à-dire pour un effet de prévention des dépôts sur les inj ecteurs (effet de type « keep clean »). Ce document ne concerne pas le problème de réduire les dépôts déj à présents sur les inj ecteurs, c’est- à-dire de nettoyer des inj ecteurs encrassés. OBJET DE L’INVENTION

La Demanderesse a maintenant découvert que l’utilisation d’une composition de carburant particulière, telle que définie ci-après, permettait de remédier de manière efficace aux problèmes précités, et notamment de réduire les dépôts présents dans les parties internes d’un moteur à allumage par compression (effet dit « clean up »).

Ainsi, la présente invention a pour obj et l’utilisation, pour réduire les dépôts présents dans les parties internes d’un moteur à allumage par compression, d’une composition de carburant comprenant au moins 85% en poids d’une ou plusieurs coupes d’hydrocarbures paraffiniques constituée(s) d’une ou plusieurs huile(s) végétale(s) hydrotraitée(s), ladite (lesdites) coupe(s) ayant une gamme de distillation comprise dans la gamme allant de 100 à 400°C et ayant une teneur en paraffines supérieure ou égale à 90% en poids.

De manière surprenante, a Demanderesse a constaté que l’utilisation d’une telle composition dans un moteur diesel encrassé permettait de nettoyer celui-ci, c’est-à-dire l’éliminer de manière très importante l’encrassement généré par l’utilisation préalable de carburants diesel s classiques.

Cet effet « clean up » est obtenu y compris en l’absence de tout additif détergent dans la composition. Il est donc possible de formuler des compositions de carburant soit totalement dépourvues d’additif détergent, soit dont la teneur en additif détergent est réduite par rapport à des compositions de gazole classique.

De plus, les compositions selon l’invention présentent l’avantage d’avoir de très bonnes propriétés intrinsèques, et notamment un faible niveau de moussage et de désémulsion, un bon indice de cétane, une bonne tenue à froid dans le cas de coupes riches en iso- paraffines (température limite de filtrabilité et point d’écoulement). Ainsi, l’utilisation d’une telle composition permet de limiter voire d’éviter entièrement l’emploi d’additifs pour améliorer les propriétés ci-avant. La composition selon l’invention peut être directement employée comme carburant dans les véhicules et engins équipés d’un moteur diesel, y compris les moteurs les plus perfectionnés tels que les moteurs diesels à inj ection directe à très haute pression.

Les avantages additionnels associés à l’utilisation de la composition de carburant selon l’invention sont :

- un fonctionnement optimal du moteur,

- une réduction de la consommation massique de carburant,

- des émissions de CO2 et de polluants réduites, et

- une économie due à moins d'entretien du moteur.

Selon un premier mode de réalisation préféré, la composition comprend en outre au moins un premier additif constitué d’un sel d’ammonium quaternaire, obtenu par réaction avec un agent de quaternarisation d’un composé azoté comprenant une fonction amine tertiaire, ce composé étant le produit de la réaction d’un agent d’acylation substitué par un groupement hydrocarboné et d’un composé comprenant au moins un groupement amine tertiaire et au moins un groupement choisi parmi les amines primaires, les amines secondaires et les alcools.

Selon un second mode de réalisation préféré, la composition comprend en outre au moins un second additif constitué d’un agent anti oxydant choisi parmi les composés comprenant un groupement phénol .

Selon un troisième mode de réalisation particulièrement préféré, la composition contient lesdits premiers et seconds additifs ci-avant.

La composition de carburant selon les trois modes de réali sation ci-avant présente en outre d’excellentes performances anti-corrosion, et son utilisation permet d’éviter les phénomènes de corrosion tant en présence d’eau douce que d’eau salée. Elle présente également un excellent niveau de stabilité et notamment une bonne stabilité au stockage, une bonne stabilité thermique, et de manière plus générale une bonne résistance à l’oxydation.

La présente invention a également pour obj et une méthode de nettoyage des dépôts présents dans les parties internes d’un moteur à allumage par compression, consistant à effectuer la combustion dans ledit moteur d’une composition de carburant telle que définie dans la présente demande.

D’autres obj ets, caractéristiques, aspects et avantages de l’invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent.

Dans ce qui va suivre, et à moins d’une autre indication, les bornes d’un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions « compris entre » et « allant de ... à ... » .

Par ailleurs, les expressions « au moins un » et « au moins » utilisées dans la présente description sont respectivement équivalentes aux expressions « un ou plusieurs » et « supérieur ou égal » .

Enfin, de manière connue en soi, on désigne par composé ou groupe en CN un composé ou un groupe contenant dans sa structure chimique N atomes de carbone.

DE SCRIPTION DETAILLEE

La coupe d’hydrocarbures paraffiniques

La composition utilisée conformément à la présente invention comprend une ou plusieurs coupes d’hydrocarbures ayant une gamme de distillation comprise dans la gamme allant de 100 à 400°C et ayant une teneur en paraffines supérieure ou égale à 90% en poids, ci-après dénommée « coupe d’hydrocarbures paraffiniques » .

La gamme de distillation de ladite coupe d’hydrocarbures paraffiniques est déterminée conformément à la norme NF EN ISO 3405. De préférence, elle est comprise dans la gamme allant de 130 à 350°C, et plus préférentiellement de 150 à 320°C.

La teneur en paraffines de cette coupe est supérieure ou égale à 90% en poids, de préférence supérieure ou égale à 95% en poids, plus préférentiellement encore supérieure ou égale à 99% en poids, mieux encore supérieure ou égale à 99,5% en poids, et mieux encore supérieure ou égale à 99,9% en poids, par rapport au poids total de ladite coupe. Par « paraffines » on désigne de manière connue en soi, les alcanes ramifiés (également dénommés iso-paraffines ou i so-alcanes) et les alcanes non ramifiés (également dénommés n-paraffines ou n- alcanes).

Les paraffines présentes dans la ou les coupes d’hydrocarbures paraffiniques selon l’invention comprennent avantageusement de 10 à 20 atomes de carbone. De préférence, elles sont constituées à au moins 60% en poids, plus préférentiellement à au moins 80% en poids et mieux encore à au moins 90% en poids de paraffines comprenant de 12 à 18 atomes de carbone, de préférence de 14 à 18 atomes de carbone, et encore plus préférentiellement de 15 à 18 atomes de carbone.

Selon un mode de réalisation préféré, la ou les coupes d’hydrocarbures paraffiniques utilisées dans la composition selon l’invention contiennent au moins 50% en poids, de préférence au moins 70% en poids d’iso-paraffines, par rapport à leur poids total . Selon un mode de réalisation particulièrement préféré, elles contiennent au moins 90% en poids d’iso-paraffines.

La ou les coupes d’hydrocarbures paraffiniques présentent une teneur en composés aromatiques de préférence inférieure ou égale à 10000 ppm en poids, plus préférentiellement inférieure ou égale à 1500 ppm en poids, encore plus préférentiellement inférieure ou égale à 1000 ppm en poids.

Leur teneur en composés naphténiques est de préférence inférieure ou égale à 20000 ppm en poids, plus préférentiellement inférieure ou égale à 10000 ppm en poids, et mieux encore inférieure ou égale à 1500 ppm en poids.

Leur teneur en soufre est avantageusement inférieure ou égale à 10 ppm en poids, et mieux encore inférieure ou égale à 5 ppm en poids. De manière particulièrement préférée, cette coupe est totalement exempte de soufre.

La ou les coupes d’hydrocarbures paraffiniques employées dans la présente invention sont des huiles végétales hydrotraitées, également connues sous l’appellation HVO (de l’anglais « hydrotreated vegetable oils »). Il s’agit d’huiles d’origine végétale qui ont subi des traitements successifs incluant un hydrotraitement puis une éventuelle isomérisation.

Des exemples de matières premières végétales appropriées comprennent l’huile de colza, l’huile de canola, l’huile de tournesol, l’huile de soj a, l’huile de chanvre, l’huile d’olive, l’huile de lin, l’huile de moutarde, l’huile de palme, l’huile de ricin, l’huile de coco.

Les demandes de brevet WO2016/1 85046 et WO2016/185047 décrivent des huiles végétales hydrotraitées et leur préparation, qui constituent des exemples de coupes d’hydrocarbures iso-paraffiniques particulièrement appropriées pour les compositions obj et de la présente invention.

La composition utilisée conformément à la présente invention comprend au moins 85% en poids d’une ou plusieurs coupes d’hydrocarbures paraffiniques telles que décrites ci-avant. De préférence, elle contient au moins 90% en poids d’une ou plusieurs coupes d’hydrocarbures paraffiniques, plus préférentiellement au moins 93% en poids.

Selon un mode de réalisation, la composition contient au moins 95% en poids, de préférence au moins 99% en poids, et mieux encore au moins 99,5% en poids d’une ou plusieurs coupes d’hydrocarbures paraffiniques telles que décrites ci-avant.

Le premier additif (sel d’ammonium quaternaire) optionnel :

De préférence, la composition de carburant utilisée conformément à la présente invention comprend en outre un additif (ci- après dénommé « premier additif ») constitué d’un sel d’ammonium quaternaire, obtenu par réaction avec un agent de quaternarisation d’un composé azoté comprenant une fonction amine tertiaire, ce composé azoté étant le produit de la réaction d’un agent d’acylation substitué par un groupement hydrocarboné et d’un composé comprenant au moins un groupement amine tertiaire et au moins un groupement choisi parmi les amines primaires, les amines secondaires et les alcools.

Ledit composé azoté est le produit de la réaction d'un agent d'acylation substitué par un groupement hydrocarboné et d'un composé comprenant à la fois un atome d'oxygène ou un atome d'azote capable de se condenser avec ledit agent d'acylation et un groupement amine tertiaire.

L'agent d'acylation est, avantageusement, choisi parmi les acides mono-ou poly-carboxyliques et leurs dérivés, notamment leurs dérivés ester, amides ou anhydrides. L'agent d'acylation est préférentiellement choisi parmi les acides succiniques, phtaliques et propioniques et les anhydrides correspondants.

L’agent d’acylation est substitué par un groupement hydrocarboné. On entend par groupement "hydrocarboné" , tout groupement ayant un atome de carbone directement fixé au reste de la molécule (ie à l’agent d’acylation) et ayant principalement un caractère hydrocarboné aliphatique.

Des groupements hydrocarbonés selon l’invention peuvent également contenir des groupements non hydrocarbonés. Par exemple, ils peuvent contenir jusqu'à un groupement non-hydrocarboné pour dix atomes de carbone à condition que le groupement non-hydrocarboné ne modifie pas de façon significative le caractère principalement hydrocarboné du groupement. On peut citer à titre d’exemple de tels groupements bien connus de l'homme de l'art, les groupements hydroxyle, les halogènes (en particulier les groupements chloro- et fluoro-), les groupements alcoxy, alkylmercapto, alkyle sulfoxy.

On préférera néanmoins les substituants hydrocarbonés ne contenant pas de tels groupements non-hydrocarbonés et ayant un caractère purement d'hydrocarbure aliphatique.

Le substituant hydrocarboné de l’agent d'acylation comprend, de préférence, au moins 8, de préférence, au moins 12 atomes de carbone. Ledit substituant hydrocarboné peut comprendre jusqu'à environ 200 atomes de carbone.

Le substituant hydrocarboné de l'agent d'acylation a, de préférence, une masse moléculaire moyenne en nombre (Mn) comprise entre 170 à 2800, par exemple entre 250 à 1500, plus préférentiellement entre 500 à 1500 et, encore plus préférentiellement entre de 500 à 1 100. Une gamme de valeur de M n comprise entre 700 et 1300 est particulièrement préférée, par exemple de 700 à 1000.

A titre d’exemple de groupements hydrocarbonés substituant l'agent d'acylation, on peut citer les groupements n-octyle, n-décyle, n- dodécyle, tétrapropényle, n-octadécyle, oléyle, octadecyle ou triacontyle.

Le substituant hydrocarboné de l'agent d'acylation peut également être obtenu à partir d'homo- ou d'inter-polymères (par exemple de copolymères, terpolymères) de mono-et di-oléfines ayant de 2 à 10 atomes de carbone, par exemple à partir d'éthylène, de propylène, de 1 -butène, d'isobutène, de butadiène, d'isoprène, de 1 -hexène ou de 1 - octène. De préférence, ces oléfines sont des 1 -mono-oléfines.

Le substituant hydrocarboné de l'agent d'acylation peut également être choisi parmi les dérivés d’analogues halogénés (par exemple chlorés ou bromés) de ces homo-ou inter-polymères.

Selon une variante, le substituant hydrocarboné de l'agent d'acylation peut être obtenu à partir d'autres sources, par exemple à partir de monomères d’alcènes à haut poids moléculaire (par exemple, 1 -tétracontène) et leurs analogues chlorés ou hydrochlorés, de fractions de pétrole aliphatiques, par exemple les cires de paraffine, leurs analogues craqués, chlorés et/ou hydrochlorés, d’huiles blanches, d’alcènes synthétiques, par exemple produits par procédé Ziegler-Natta (par exemple les graisses de polyéthylène) et d'autres sources connues de l'homme de l'art.

Toute insaturation présente dans le groupement hydrocarboné de l'agent d'acylation peut éventuellement être réduite ou éliminée par hydrogénation selon tout procédé connu.

Le substituant hydrocarboné de l'agent d'acylation est, de préférence, essentiellement saturé, c'est-à-dire qu'il ne contient pas plus d'une liaison insaturée carbone-carbone pour chaque tranche de dix liai sons simples carbone-carbone présentes.

Le substituant hydrocarboné de l'agent d'acylation ne contient, avantageusement, pas plus d'une liai son insaturée carbone-carbone non- aromatique tous les 50 liaisons carbone-carbone présentes. Selon un mode de réalisation préféré, le substituant hydrocarboné de l'agent d'acylation est un groupement polyisobutène (PIB). On préfère tout particulièrement les polyisobutènes (PIB) dits hautement réactifs. On entend par polyisobutènes (PIB) hautement réactifs des polyisobutènes (PIB) dans lesquel s au moins 50% en moles, de préférence au moins 70% en moles ou plus, des doubles liai sons oléfiniques terminales sont du type vinylidène comme décrit dans le document EP0565285. En particulier, les PIB préférés sont ceux ayant plus de 80% en moles et jusqu’à 100% en moles de groupements terminaux vinylidène tel que décrits dans le document EP 1344785.

Selon un mode de réalisation particulièrement préféré, l’agent d'acylation sub stitué par un groupement hydrocarbyle est un anhydride polyisobutényl-succinique (PIB SA).

La préparation d’anhydrides polyisobutényl-succiniques est connue en soi, et largement décrite dans la littérature. On peut citer à titre d’exemple les procédés comprenant la réaction entre des polyi sobutènes (PIB) et de l'anhydride maléique décrits dans les documents US3361673 et US3018250 ou le procédé comprenant la réaction d'un polyi sobutène (PIB) halogéné, en particulier chloré, avec de l'anhydride maléique (US3 172892).

Selon une variante, l'anhydride polyisobutényl-succinique peut être préparé en mélangeant une polyoléfine avec de l'anhydride maléique puis en passant du chlore à travers le mélange (GB949981 ).

D'autres groupements hydrocarbonés comprenant une oléfine interne, par exemple tels que ceux décrits dans la demande W02007/015080, peuvent également être utilisés comme substituant de l'agent d'acylation. On entend par oléfine interne, toute oléfine contenant principalement une double liaison non-alpha, qui est une oléfine bêta ou de position supérieure.

De préférence, ces matériaux sont essentiellement des bêta- oléfines ou des oléfines de position supérieure, par exemple contenant moins de 10% massique d'alpha-oléfine, de manière avantageuse moins de 5% massique ou moins de 2% massique. Les oléfines internes peuvent être préparées par isomérisation d’alpha-oléfines selon tout procédé connu.

Le composé comprenant à la fois un atome d'oxygène ou un atome d'azote capable de se condenser avec l’agent d'acylation et un groupement amine tertiaire peut, par exemple, être choisi parmi le groupe consistant en : la N, N- diméthylaminopropylamine, la N,N- diéthylaminopropylamine, la N, N- diméthylamino- éthylamine. Ledit composé peut en outre être choi si parmi les composés hétérocycliques substitués par des alkylamines tel s que la l -(3 -aminopropyl)-imidazole et 4-(3 -aminopropyl)morpholine, 1 -(2-aminoéthyl)pipéridine, la 3 ,3 - diamino-N-methyldipropylamine, et le 3 '3 -bisamino(N,N- diméthylpropy lamine).

Le composé comprenant à la fois un atome d'oxygène ou un atome d'azote capable de se condenser avec l’agent d'acylation et un groupement amine tertiaire peut également être choisi parmi les alcanolamines, y compris, mais sans s'y limiter, la triéthanolamine, la triméthanolamine, le N,N-diméthylaminopropanol, le N,N- diméthylaminoéthanol, N,N-diéthylaminopropanol, le N,N- diéthylaminoéthanol, N,N-diethylaminobutanol, la N,N,N- tris(hydroxyéthyl)amine, la N, N, N- tris(hydroxyméthyl)amine, la

N, N, N tris(aminoéthyl)amine, la N,N-dibutylaminopropylamine et le N,N,N'-triméthyl-N'-hydroxyéthyl-bisaminoéthyléther, la N,N-bis(3 - diméthylamino-propyl)-N-isopropanol amine, la N-(3 -diméthylamino- propyl)-N,N-diisopropanol amine, la N'-(3 -(Diméthylamino)propyl)- N,N-diméthyl- l ,3 - propanediamine; le 2-(2- diméthylaminoéthoxy)éthanol et la N,N,N’- tri m éthyl ami noéthyl éthanol ami ne.

Selon un mode de réalisation préféré, ledit composé comprenant au moins un groupement amine tertiaire et au moins un groupement choisi parmi les amines primaires, les amines secondaires et les alcool s est choisi parmi les amines de formule (I) ou (II) suivantes :

(II)

dans lesquelles :

R6 et R7 sont identiques ou différents et représentent, indépendamment l’un de l’autre, un groupement alkyle ayant de 1 à 22 atomes de carbone; X est un groupement alkylène ayant de 1 à 20 atomes de carbone ;

m est un nombre entier compris entre 1 et 5 ;

n est un nombre entier compris entre 0 et 20 ; et

R8 est un atome d’hydrogène ou un groupement alkyle de C l à C22.

Lorsque le composé azoté comprend une amine de formule (I), R8 est avantageusement un atome d’hydrogène ou un groupement alkyle en C l à C 16, de préférence un groupement alkyle en C l à C I O, encore plus préférentiellement un groupement alkyle en C l à C6. R8 peut, par exemple, être choi si parmi le groupe consi stant en l’hydrogène, méthyle, éthyle, propyle, butyle and leurs i somères. De manière préférée R8 est un atome d'hydrogène.

Lorsque le composé azoté comprend une amine de formule (II), m est de préférence égal à 2 ou 3 , plus préférentiellement égal à 2 ; n est de préférence un entier compri s entre 0 à 15, plus préférentiellement entre 0 à 10, encore plus préférentiellement entre 0 à 5. Avantageusement, n vaut 0.

Selon un mode de réalisation préférentiel, ledit composé azoté est le produit de la réaction de l’agent d'acylation substitué par un groupement hydrocarboné et d’une diamine de formule (I).

Dans ce mode de réalisation :

- R6 et R7 peuvent représenter, indépendamment l’un de l’autre, un groupement alkyle en C l à C 16 , de préférence un groupement alkyle en C l à C I O ;

- R6 et R7 peuvent représenter, indépendamment l’un de l’autre, un groupement méthyle, éthyle, propyle, butyle, pentyle, hexyle, heptyle, octyle ou leurs isomères. Avantageusement, R6 et R7 représentent indépendamment l’un de l’autre, un groupement en C l à C4, de préférence un groupement méthyle ;

- X représente un groupement alkylène ayant 1 à 16 atomes de carbone, de préférence de 1 à 12 atomes de carbone, plus préférentiellement de 1 à 8 atomes de carbone, par exemple de 2 à 6 atomes de carbone ou de 2 à 5 atomes de carbone. X représente de manière particulièrement préférée un groupement éthylène, propylène ou butylène, en particulier un groupe propylène.

Selon un mode de réalisation particulièrement préféré, le composé azoté est le produit de réaction d'un dérivé d'acide succinique substitué par un groupement hydrocarboné, de préférence un anhydride polyisobutényl-succinique, et d'un alcool ou d'une amine comportant également un groupe amine tertiaire, notamment un composé de formule (I) ou (II) telle que décrite ci-avant et plus préférentiellement un composé de formule (I).

Selon une première variante, le dérivé d'acide succinique substitué par un groupement hydrocarboné réagit avec l’amine comprenant également un groupement amine tertiaire sous certaines conditions pour former un succinimide (forme fermée). La réaction du dérivé d'acide succinique et de l'amine peut également aboutir sous certaines conditions à un succinamide c’est-à-dire, un composé comprenant un groupe amide et un groupe acide carboxylique (forme ouverte).

Selon une seconde variante, un alcool comprenant également un groupement amine tertiaire réagit avec le dérivé de l'acide succinique pour former un ester comprenant également un groupement carboxyle - CO2H libre (forme ouverte). Ainsi, dans certains modes de réalisation le composé azoté peut être le produit de réaction d'un dérivé d'acide succinique et d'une amine ou un alcool qui est un ester ou un amide et qui comprend en outre également un groupement carboxyle -C02H n'ayant pas réagi (forme ouverte).

Le sel d'ammonium quaternaire formant le deuxième additif selon la présente invention est directement obtenu par réaction entre le composé azoté décrit ci-dessus comprenant une fonction amine tertiaire et un agent de quaternarisation.

Selon un mode de réalisation particulier, l'agent de quaternarisation est choisi parmi le groupe constituant en les dialkyle sulfates, les esters d'acide carboxylique; les halogénures d'alkyle, les halogénures de benzyle, les carbonates hydrocarbonés, et les époxydes hydrocarbonés éventuellement en mélange avec un acide, seuls ou en mélange.

Pour les applications de carburant, il est souvent souhaitable de réduire la teneur en halogène, soufre et les composés contenant du phosphore.

Ainsi, si un agent de quaternarisation contenant un tel élément est utilisé, il peut être avantageux d'effectuer une réaction ultérieure pour échanger le contre-ion. Par exemple, un sel d'ammonium quaternaire formé par réaction avec un halogénure d'alkyle peut ensuite être mis en réaction avec de l'hydroxyde de sodium et le sel d'halogénure de sodium éliminé par filtration.

L'agent de quaternarisation peut comprendre des halogénures tels que les chlorure, iodure ou bromure; des hydroxydes; des sulfonates; des bi sulfites; des alkylsulfates tels que le sulfate de diméthyle; des sulfones; des phosphates; des alkylphosphates en C l - C 12 ; des dialkylphosphates en C 1 -C 12; des borates; des alkylborates en C 1 -C 12; des nitrites; des nitrates; des carbonates; des

bicarbonates; des alcanoates; les 0,0-dialkyldithiophosphates en C I CI ^, seuls ou en mélange.

Selon un mode de réalisation particulier, l'agent de quaternarisation peut être choisi parmi les dérivés de dialkylsulfates tels que le sulfate de diméthyle, de N-oxydes, de sulfones tel s que le propane- et butane- sulfone, d’halogénures d’alkyle, d’acyle ou d’aralkyle tels que le chlorure de méthyle et éthyle, le bromure, iodure ou chlorure de benzyle, et les carbonates hydrocarbonés (ou alkylcarbonates).

Si l'halogénure d'acyle est le chlorure de benzyle, le noyau aromatique est éventuellement substitué par un ou plusieurs groupements alkyle ou alcényle.

Les groupements hydrocarbonés (alkyles) des carbonates hydrocarbonés peuvent contenir de 1 à 50, de 1 à 20, de 1 à 10 ou 1 à 5 atomes de carbone par groupement. Selon un mode de réalisation, les carbonates hydrocarbonés contiennent deux groupements hydrocarbonés qui peuvent être identiques ou différents. A titre d’exemple de carbonates hydrocarbonés, on peut citer le carbonate de diméthyle ou de diéthyle.

Selon un mode de réalisation préféré, l'agent de quaternarisation est choi si parmi les époxydes hydrocarbonés représentés par la formule (III) suivante:

R9 R11

R1 k O7 12

(III)

dans laquelle R9, RI O, RI 1 et R12 peuvent être identiques ou différentes et représentent indépendamment les uns des autres un atome d’hydrogène ou un groupement hydrocarboné en C i à Cso. A titre d’exemple non limitatif, on peut citer l'oxyde de styrène, l'oxyde d'éthylène, l’oxyde de propylène, l’oxyde de butylène, l'oxyde de stilbène et les époxydes en en Ci à Cso. L'oxyde de styrène et l’oxyde de propylène sont particulièrement préférés.

De tels époxydes hydrocarbonés peuvent être utilisés comme agent de quaternarisation en combinaison avec un acide, par exemple avec l'acide acétique. Les époxydes hydrocarbonés peuvent également être utilisés seuls comme agent de quaternarisation, notamment sans acide supplémentaire. Sans être lié par cette hypothèse, il semblerait que la présence de la fonction acide carboxylique dans la molécule favorise la formation du sel d'ammonium quaternaire. Dans un tel mode de réalisation n’utilisant pas acide supplémentaire, un solvant protique est utilisé pour la préparation du sel d'ammonium quaternaire. A titre d’exemple, les solvants protiques comme l'eau, les alcools (y compris les alcools polyhydriques) peuvent être utilisés seul ou en mélange. Les solvants protiques préférés ont une constante diélectrique supérieure à 9.

Des sels d'ammonium quaternaire correspondants préparés à partir d'amides ou esters et des dérivés d'acide succinique sont décrits dans WO2010/132259.

Selon un autre mode de réalisation, l'agent de quaternarisation est choisi parmi les composés de formule (IV): o

R13 JL 14

r

(IV)

dans laquelle R13 est un groupement alkyle, alcényle, aryle et aralkyle éventuellement substitué, et R14 est un groupement alkyle, aryle ou alkylaryle en C i à C22.

Le composé de formule (IV) est un ester d'acide carboxylique apte à réagir avec une amine tertiaire pour former un sel d'ammonium quaternaire. Des composés de formule (IV) sont choisis, par exemple parmi les esters d'acides carboxyliques ayant un pKa de 3 , 5 ou moins. Le composé de formule (IV) est, de préférence, choisi parmi les esters d'acide carboxylique aromatique sub stitué, d’acide alpha- hydroxycarboxylique et d’acide polycarboxylique.

Selon un mode de réalisation, l’ester est un ester d'acide carboxylique aromatique substitué de formule (IV) dans laquelle R13 est un groupement aryle sub stitué. De préférence, R13 est un groupement aryle substitué ayant 6 à 10 atomes de carbone, de préférence un groupement phényle ou naphtyle, plus préférentiellement un groupement phényle. R13 est avantageusement substitué par un ou plusieurs groupements choisis parmi les radicaux carboalcoxy, nitro, cyano, hydroxy, SR1 5 et NR1 5R16. Chacun des groupements R1 5 et Riô peut être un atome d’hydrogène ou un groupement alkyle, alcényle, aryle ou carboalcoxy éventuellement substitué. Chacun des groupements R15 et Ri 6 représente, avantageusement, l'atome d’hydrogène ou un groupement alkyle en C l à C22 éventuellement substitué, de préférence l'atome d’hydrogène ou un groupement alkyle en C l à C 16, plus préférentiellement l'atome d’hydrogène ou un groupement alkyle en C l à C I O, encore plus préférentiellement l'atome d’hydrogène ou un groupement alkyle en C l à C4. Ris est de préférence un atome d’hydrogène et RI un atome d’hydrogène ou un groupement en C l à C4. Avantageusement, Ris et RI sont tous les deux un atome d’hydrogène.

Selon un mode de réalisation, R13 est un groupe aryle substitué par un ou plusieurs groupements choi sis parmi les radicaux hydroxyle, carboalcoxy, nitro, cyano et NH2. R13 peut être un groupement aryle polysubstitué, par exemple trihydroxyphényle. Avantageusement, R13 est un groupement aryle monosubstitué, de préférence, substitué en ortho. R13 est, par exemple, substitué par un groupement choisi parmi les radicaux OH, NH2, NO2 ou COOMe, de préférence OH ou NH2. R13 est, de préférence, un groupement hydroxy-aryle, en particulier le 2- hydroxyphényle.

Selon un mode de réalisation particulier, R14 est un groupement alkyle ou alkylaryle. R14 peut être un groupement alkyle en C l à C 16, de préférence en C l à C I O, avantageusement en C l à C8. R14 peut être un groupement alkylaryle en C l à C 16, de préférence en C l à cio, avantageusement en C l à C8. R14 peut par exemple être choisi parmi les groupements méthyle, éthyle, propyle, butyle, pentyle, benzyle ou leurs isomères. De préférence, R14 est un groupement benzyle ou méthyle, plus préférentiellement méthyle.

Un composé particulièrement préféré est le salicylate de méthyle.

Selon un mode de réalisation particulier, le composé de formule (IV) est un ester d'un acide alpha-hydroxycarboxylique répondant à la formule (V) suivante :

dans laquelle R17 et RI 8 sont identiques ou différents et sont indépendamment choisis parmi le groupe consistant en l’atome d'hydrogène, les groupements alkyle, alcényle, aryle ou aralkyle. De tels composés sont par exemple décrits dans le document EP 1254889.

Des exemples de composés de formule (IV) dans laquelle R13 COO est le résidu d'un acide alpha-hydroxycarboxylique comprennent les méthyl-, éthyl-, propyl-, butyl-,pentyl-, hexyl-, phényl- , benzyl- ou allyl-esters d’acide 2-hydroxy-isobutyrique; les méthyl-, éthyl-, propyl-, butyl-, pentyl-, hexyl-, benzyl-, phényl- ou allyl-esters d’acide 2-hydroxy-2-méthylbutyrique; les méthyl-, éthyl-, propyl-, butyl-, pentyl-, hexyl-, benzyl-, phényl- ou allyl-esters d’acide 2- hydroxy-2-éthylbutyrique; les méthyl-, éthyl-, propyl-, butyl-, pentyl-, hexyl-, benzyl-, phényl- ou allyl-esters d’acide lactique et les méthyl-, éthyl-, propyl-, butyl-, pentyl-, hexyl-, allyl-, benzyl-ou phényl-esters d’acide glycolique. De ce qui précède, le composé préféré est le méthyl- 2-hydroxyi sobutyrate.

Selon un mode de réalisation particulier, le composé de formule (IV) est un ester d'un acide polycarboxylique choisi parmi les acides dicarboxyliques et les acides carboxyliques ayant plus de deux fonctions acides. Les fonctions carboxyliques sont de préférence toutes sous forme estérifiée. Les esters préférés sont les esters d’alkyle en C l à C4.

Le composé de formule (IV) peut être choisi parmi les diesters d’acide oxalique, les diesters d'acide phtalique, les diesters d'acide maléique, les diesters d'acide malonique ou les diesters d'acide citrique. De préférence, le composé de formule (IV) est l'oxalate de diméthyle.

Selon une variante préférée, le composé de formule (IV) est un ester d'acide carboxylique ayant un pKa inférieur à 3 ,5. Pour les cas où le composé comprend plus d'un groupe acide, on se référera à la première constante de dissociation. Le composé de formule (IV) peut être choisi parmi un ou plusieurs esters d'acide carboxylique choisi parmi l'acide oxalique, l'acide phtalique, l'acide salicylique, l'acide maléique, l'acide malonique, l'acide citrique, l'acide nitrobenzoïque, l'acide aminobenzoïque et le 2,4,6-acide trihydroxybenzoïque. Les composés préférés de formule (IV) sont l'oxalate de diméthyle, le 2-nitrobenzoate de méthyle et le salicylate de méthyle.

Selon un mode de réalisation particulièrement préféré, le sel d'ammonium quaternaire employé dans l’invention est formé par réaction d’un époxyde hydrocarboné, de préférence choisi parmi ceux de formule (III) ci-avant et plus préférentiellement l’oxyde de propylène, avec le produit de la réaction d'un anhydride polyisobutényl- succinique dont le groupement polyisobutylène (PIB) a une masse moléculaire moyenne en nombre (Mn) comprise entre 700 et 1000 et de la diméthyl-aminopropylamine.

La composition de carburant utilisée selon l’invention peut avantageusement comprendre le ou les premiers additifs tel s que décrits ci-avant à une teneur préférentielle allant de 5 à 1000 ppm, de préférence de 10 à 500 ppm, et plus préférentiellement de 50 à 200 ppm en poids, par rapport au poids total de la composition.

Le second additif (agent anti-oxydant phénolique) optionnel :

De préférence, la composition de carburant utilisée conformément à la présente invention comprend en outre un additif (ci- après dénommé « second additif ») constitué d’un agent anti-oxydant choisi parmi les composés comprenant dans leur structure un groupement phénol .

La dénomination « second additif » est employée dans la présente demande uniquement aux fins de différencier celui-ci du premier additif décrit ci-avant. Cette expression ne doit pas être interprétée de manière limitative, comme signifiant que la composition contenant ledit second additif contient obligatoirement aussi ledit premier additif. En d’autres termes, la composition utilisée conformément à la présente invention peut contenir l’un et/ou l’autre desdits premier et second additifs.

Selon un mode de réali sation particulièrement préférés, la composition de carburant contient au moins un premier et au moins un second additif tels que décrits dans la présente demande.

Des agents anti-oxydants utilisables comme second additif sont choisis parmi le di-t-butyl-2,6 méthyl-4 phénol (BHT), la t-butyl hydroquinone (TBHQ), le 2,6 et le 2,4 di-t-butyl phénol, le 2,4- diméthyl-6-t-butyl phénol, le pyrogallol, le tocophérol, le 4,4'- méthylène bis (2,6-di-t-butyl phénol) (N° CAS 1 18-82- 1 ), seuls ou en mélange.

Les agents anti-oxydants particulièrement préférés sont choisis parmi les alkyl-phénols tel qu’en particulier le di-t-butyl-2,6 méthyl-4 phénol (BHT).

La composition de carburant utilisée selon l’invention peut avantageusement comprendre le ou les seconds additifs tel s que décrits ci-avant à une teneur préférentielle allant de 2 à 500 ppm, de préférence de 5 à 250 ppm, et plus préférentiellement de 10 à 150 ppm en poids, par rapport au poids total de la composition.

Les autres additifs :

La composition de carburant utilisée conformément à la présente invention peut également comprendre un ou plusieurs additifs additionnels, différents des premiers et seconds additifs tels que décrits ci-avant.

Selon un mode de réalisation préféré, la composition comprend en outre un ou plusieurs agents anti-oxydants aminés, qui peuvent être notamment choisis parmi les amines aliphatiques, cycloaliphatiques et aromatiques. La dicyclohexylamine est particulièrement préférée.

Le ou les agents anti-oxydants aminés peuvent être présents en une teneur allant de 0,2 à 50 ppm, de préférence de 0, 5 à 25 ppm, et plus préférentiellement de 1 à 20 ppm en poids, par rapport au poids total de la composition. Selon un autre mode de réalisation préféré, la composition comprend en outre un ou plusieurs agents passivateurs de métaux, choisis parmi les dérivés du triazole, seuls ou en mélange.

On entend par « dérivés du triazole », l'ensemble des composés comprenant un motif triazole, c'est-à-dire un motif cyclique aromatique à 5 chaînons, comportant deux doubles liaisons et 3 atomes d'azote. Selon la position des atomes d'azote, on di stingue les motifs 1 ,2,3 - triazoles (appelées V- triazoles) et les motifs 1 ,2,4-triazoles (appelées S-triazoles). A titre d'exemple de motifs triazole, on peut citer le benzotriazole ou le tolyltriazole.

Le ou les agents passivateurs de métaux sont de préférence choisis parmi les amines substituées par des groupements triazole, seules ou en mélange. On entend par « groupement triazole » tout substituant contenant un motif triazole tel que défini ci-dessus.

Le ou les agents passivateurs de métaux sont plus préférentiellement choisis parmi la N,N-bis(2-éthylhexyl)-[( l ,2,4- triazol- 1 -yl)méthyl]amine (CAS 91273 -04-0) et la N,N'-bis- (2 éthylhexyl)-4-méthyl- lH-benzotriazole amine (CAS 80584-90-3), seules ou en mélange.

On peut également citer et les agents passivateurs décrits en page

5 de la demande US2006/0272597.

Le ou les agents passivateurs de métaux peuvent être présents en une teneur allant de 0,2 à 50 ppm, de préférence de 0, 5 à 25 ppm, et plus préférentiellement de 1 à 15 ppm en poids, par rapport au poids total de la composition.

Selon un autre mode de réalisation préféré, la composition comprend en outre un ou plusieurs agents chélatants (ou agents séquestrants de métaux), qui peuvent être notamment choisi s parmi les amines substituées par des groupements N,N'-disalicylidène, tels que le N,N'-disalicylidène 1 ,2-diaminopropane (DMD).

Le ou les agents chélatants peuvent être présents en une teneur allant de 0, 1 à 100 ppm, de préférence de 0,2 à 50 ppm, et plus préférentiellement de 0, 5 à 20 ppm en poids, encore plus préférentiellement de 0,5 à 10 ppm en poids, par rapport au poids total de la composition.

La composition selon l’invention peut également comprendre un ou plusieurs autres additifs couramment utilisés dans les carburants, différents des additifs décrits précédemment.

La composition peut, typiquement, comprendre un ou plusieurs autres additifs choisis parmi les détergents, les agents anti-corrosion, les dispersants, les désémul sifiants, les traceurs, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion de suie), les agents anti-usure et/ou les agents modifiant la conductivité.

Parmi ces additifs, on peut citer en particulier :

a) les additifs procétane, notamment (mais non limitativement) choisis parmi les nitrates d'alkyle, de préférence le nitrate de 2-éthyl hexyle, les peroxydes d'aryle, de préférence le peroxyde de benzyle, et les peroxydes d'alkyle, de préférence le peroxyde de ter-butyle;

b) les additifs de lubrifiance ou agents anti-usure, notamment (mai s non limitativement) choisis dans le groupe constitué par les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol, et les dérivés d'acides carboxyliques mono- et polycycliques. Des exemples de tels additifs sont donnés dans les documents suivants: EP680506, EP860494, WO98/04656, EP915944, FR2772783 ,

FR2772784,

c) les additifs désémulsifiants par exemple (mais non limitativement) choisis parmi les résines alkyl phénoliques oxyalkylées (par exemple le composé C AS63428-92-2)

d) les détergents.

Selon un mode de réalisation préféré, la composition comprend au moins un additif détergent choisi parmi les dérivés de triazole de formule (VI) suivante:

dans laquelle

- R14 est choisi parmi le groupe consistant en un atome d’hydrogène, un groupement hydrocarboné aliphatique en C l à C8, de préférence en C l à C4, plus préférentiellement en C l à C2, linéaire ou ramifié et un groupement carboxyle (-C02H). De préférence, R14 est un atome d’hydrogène ;

- R16 et R17 sont identiques ou différents et représentent, indépendamment l'un de l'autre, un groupement choisi parmi le groupe consistant en un atome d'hydrogène et un groupement hydrocarboné aliphatique, linéaire ou ramifié, saturé ou insaturé, cyclique ou acyclique ayant de 2 à 200 atomes de carbones, de préférence de 14 et 200 atomes de carbone, plus préférentiellement de 50 à 170 atomes de carbone, encore plus préférentiellement entre 60 et 120 atomes de carbone.

Il est à noter que nous appliquons les règles conventionnelles de représentation (liaison en pointillé et liai son labile) pour indiquer que la position de l’atome d’hydrogène et de la double liaison dans le cycle triazole peut changer, ladite formule couvant ainsi les deux positions possibles.

Selon un mode de réalisation particulier, le dérivé de triazole a la formule (VI) dans laquelle R16 et R17 sont identiques ou différents et représentent, indépendamment l'un de l'autre, un groupement choisi parmi le groupe consistant en un atome d'hydrogène et un groupement hydrocarboné aliphatique ayant une masse moléculaire moyenne en nombre (Mn) comprise entre 200 et 3000, de préférence entre 400 à 3000, plus préférentiellement entre 400 à 2500, encore plus préférentiellement entre 400 et 1500 ou entre 500 à 1500. Ledit groupement hydrocarboné aliphatique est de préférence un groupement polyisobutylène (ou encore appelé polyisobutène noté PIB) ayant une masse moléculaire moyenne en nombre (Mn) comprise entre 200 et 3000, de préférence entre de préférence entre 5 400 à 3000, plus préférentiellement entre 400 à 2500, encore plus préférentiellement entre 400 et 1 500 ou entre 500 à 1500. Selon un mode de réalisation particulièrement préféré, R16 et R17 représentent respectivement un atome d’hydrogène et un groupement PIB tel que décrit ci-dessus ou inversement.

Selon un mode de réalisation préféré, la composition utilisée conformément à l’invention ne contient pas d’additif anti-mousse. En effet, les bonnes propriétés intrinsèques de la composition selon l’invention rendent inutile l’aj out d’un tel additif. Pour mémoire, des exemples d’additifs anti-mousse sont notamment (mai s non limitativement) les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales. Des exemples de tels additifs sont donnés dans EP861882, EP663000, EP736590.

L’utilisation:

Selon la présente invention la composition de carburant telle que décrite ci-avant est utilisée pour réduire les dépôts présents dans les parties internes d’un moteur à allumage par compression (ou moteur Diesel). Il s’agit d’un effet de nettoyage des parties internes encrassées, ou effet dit « clean-up » .

Les parties du moteur désencrassées par l’utilisation de la composition selon l’invention sont avantageusement choisies parmi les suivantes : la chambre de combustion et le système d’inj ection de carburant.

Les dépôts visés tout particulièrement sont localisés dans le système d’inj ection du moteur Diesel, de préférence, localisés sur une partie externe d’un inj ecteur dudit système d’inj ection, par exemple le nez de l’inj ecteur et/ou sur une partie interne d’un inj ecteur dudit système d’inj ection (IDID en anglai s « Internai Diesel Inj ector Deposits »), par exemple à la surface d’une aiguille d’inj ecteur.

Les dépôts éliminés par l’utilisation selon l’invention peuvent être de tous types, et en particulier les dépôts liés au phénomène de cokage (« coking » en anglais) et/ou les dépôts de type savon et/ou vernis (en anglais « lacquering »).

L’effet de désencrassement des parties internes des moteurs Diesel induit par l’utilisation selon l’invention peut être évalué par différentes méthodes, bien connues de l’homme du métier. On citera, à titre d’exemple non limitatif, les essais normalisés ou reconnus par la profession ou les méthodes décrites dans la littérature suivants :

- la méthode DW 10, méthode d’essai moteur normée CEC F-98- 08, consistant à mesurer de la perte de puissance due à la formation des dépôts dans les parties internes d’un moteur Diesel à inj ection directe ;

- la méthode XUD9, méthode d’essai moteur normée CEC F-23 - 1 -01 Issue 5, consistant à mesurer la restriction de flux de carburant émise par l’inj ecteur ;

- la méthode décrite par la demanderesse dans la demande WO2014/029770 page 17 à 20, consistant à évaluer des dépôts lacquering (IDID).

Selon un mode de réalisation particulier, l’utilisation selon l’invention permet de réduire la consommation massique de carburant du moteur à combustion interne.

Selon un mode de réalisation particulier, l’utilisation selon l’invention permet de réduire les émi ssions de polluants, en particulier les émissions de particules du moteur à combustion interne.

La composition selon l’invention peut être utilisée pour nettoyer tout type de moteur diesel, équipant tout véhicule ou engin stationnaire, et par exemple pour nettoyer les moteurs des véhicules suivants : les véhicules légers, les poids lourds (camions de différentes charges dits « medium duty » et « heavy duty », bennes à ordures ménagères, bus, cars ... ) et les véhicules non routiers (par exemple les engins de chantier ou de/ travaux publics, tracteurs, trains, bateaux).

Selon un mode de réalisation préféré, la composition est utili sée pour nettoyer les parties internes d’un moteur diesel de véhicule automobile, de préférence un moteur Diesel à inj ection directe (DICI en anglais « Direct Inj ection Compression Ignition engine »), en particulier un moteur Diesel à système d’inj ection Common-Rail (CRDI en anglai s « Common Rail Direct Inj ection »).

Les exemples ci-après sont donnés à titre d’illustration de l’invention, et ne sauraient être interprétés de manière à en limiter la portée.

EXEMPLES

Les exemples ci-après ont été réalisés à partir d’une coupe d’hydrocarbures paraffiniques (ci-après coupe C l ) constituée d’une huile végétale hydrotraitée (HVO) dont les caractéristiques sont détaillées dans le tableau I ci-dessous :

[Tableau I]

Cette coupe d’hydrocarbures est constituée à 99,9% en poids de paraffines, dont 92,6% d’iso-paraffines (ci-après i-paraffines) et 7,3% en poids de n-paraffines.

Sa composition exacte est détaillée dans le tableau II ci- dessous :

[Tableau II]

Des compositions de carburant C2 et C3 ont été préparées, en aj outant à la coupe C l les additifs détaillés dans le tableau III ci- dessous, dans lequel la teneur de chaque additif est indiquée en ppm en poids par rapport au poids total de la composition finale :

[Tableau IUj

( 1 ) formé par réaction de l’oxyde de propylène avec le produit de la réaction d'un anhydride polyisobutényl-succinique dont le groupement polyisobutylène (PIB) a une masse moléculaire moyenne en nombre (Mn) de 1000 g/mol et de la diméthyl-aminopropylamine ;

(2) composition d’additif constituée de di-t-butyl-2,6 méthyl-4 phénol ; dicyclohexylamine ; N,N-bis(2-éthylhexyl)-[( l ,2,4- triazol- 1 -yl)méthyl]amine ; et N,N'-disalicylidène 1 ,2-diaminopropane.

Les propriétés détergentes de la composition de carburant constituée de la coupe d’hydrocarbures C l seule, et des compositions C2 et C3 ont été évaluées.

Les performances en termes de détergence ont été évaluées en utilisant le test moteur XUD9, consistant à déterminer la perte de débit définie comme correspondant à la restriction du flux d'un gazole émis par Tinj ecteur d'un moteur Diesel à préchambre au cours de son fonctionnement, selon la méthode d'essai moteur normée CEC F-23 - 1 - 01 . L'obj ectif de ce test est d'évaluer l'aptitude de la composition d'additifs testé(s) à réduire les dépôts sur les inj ecteurs d'un moteur Peugeot XUD9 A/L à quatre cylindres et à inj ection à préchambre Diesel .

Les tests ont été effectués avec un moteur Peugeot XUD9 A/L à quatre cylindres et à inj ection à préchambre Diesel équipé d'inj ecteurs propres dont on a déterminé le débit au préalable.

Le moteur suit le cycle d'essai détaillée dans le tableau IV suivant répété 134 fois pour une durée totale de 10 heures et 3 minutes : [Tableau IVj

Les conditions de test sont les suivantes :

Débit du liquide de refroidissement (étape 2 uniquement): 85 ± 5 1/min Températures :

- Sortie liquide de refroidissement : 95 ± 2°C

- Huile : 100 ± 5°C

- Entrée d’air : 32 ± 2°C

- Carburant (à la pompe) : 3 1 ± 2°C

Pressions :

- A l’entrée de la pompe de carburant : -50 à + 100 mbar

- A la sortie de la pompe de carburant : - 100 à + 100 mbar

- Pression de refoulement d’échappement (étape 2 uniquement) : 50 ± 10 mbar

- entrée d’air : 950 ± 10 mbar.

Les deux phases consécutives suivantes ont été effectuées, avec a même méthode d’essai pour chaque phase : - Phase 1 d’encrassement (ou « dirty up ») avec un carburant diesel classique de type B7, conforme à la norme EN 590. La perte de débit évaluée après cette première phase est de 80%.

- Phase 2 de nettoyage (ou « clean up ») avec le carburant candidat.

En fin d'essai, le débit des inj ecteurs est à nouveau évalué. La perte de débit est mesurée sur les quatre inj ecteurs. Les résultats sont exprimés en pourcentage de perte de débit pour différentes levées d'aiguille. Usuellement on compare les valeurs d'encrassement à 0, 1 mm de levée d'aiguille car elles sont plus discriminantes et plus précises et répétables (répétabilité < 5%). L'évolution de la perte de débit avant / après essai permet de déduire la perte de débit en pourcentage. Compte tenu de la répétabilité de l'essai, un effet détergent significatif est affirmable pour une réduction de perte de débit soit un gain en débit supérieure à 10 points (> 10%).

En fin d'essai à l’issue de la phase de nettoyage, la perte de débit des inj ecteurs est à nouveau évaluée.

Les résultats obtenus sont détaillés dans le tableau V ci-dessous : [Tableau Vj

Les résultats ci-dessus montrent que la composition selon l’invention conduit à de très bons résultats en termes de nettoyage des inj ecteurs encrassés (effet « clean-up »).

En effet, l’utilisation de la composition constituée de la coupe

C l seule permet de réduire de 21 % (80 - 59) la perte de débit, ce qui signifie qu’une partie substantielle des dépôts présents à la surface des inj ecteurs ont été éliminés.

L’utilisation des compositions C2 et C3 , qui contiennent une faible teneur de l’Additif 1 (additif détergent) permet d’augmenter encore cet effet, et d’obtenir une élimination complète des dépôts (perte de débit nulle ou quasi nulle).