Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
VALVE GEARBOX COVER SYSTEMS AND METHODS
Document Type and Number:
WIPO Patent Application WO/2019/123426
Kind Code:
A1
Abstract:
A valve includes a cover that is transparent and configured to allow a valve orientation to be visible through the valve cover. The cover may couple to existing mounting bolts of the valve operator housing such that the cover may be retrofitted onto existing valves. The cover may be sized and shaped to prevent water, or other weather, ingress into the valve operator housing.

Inventors:
LISLE BRANDON (US)
Application Number:
PCT/IB2018/060537
Publication Date:
June 27, 2019
Filing Date:
December 21, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KPL SOUTH TEXAS LLC (US)
International Classes:
F16K31/53; F16K27/12
Foreign References:
US20130340857A12013-12-26
US6164345A2000-12-26
US20170114907A12017-04-27
Other References:
None
Attorney, Agent or Firm:
MATTISON, Kendra (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A valve gearbox cover, comprising:

a valve cover sized and shaped to shroud a valve gearbox, the valve cover being transparent and configured to allow a valve orientation to be visible through the valve cover.

2. The valve gearbox cover of claim 1, the valve cover including a mounting aperture located at a position corresponding to a mounting bolt of the valve gearbox.

3. The valve gearbox cover of claim 1, further comprising a bracket coupled to an inner surface of the valve cover for spacing the cover from the valve gearbox.

4. The valve gearbox cover of claim 3, the bracket located at a position corresponding to a mounting bolt of the valve gearbox.

5. The valve gearbox cover of claim 3, the bracket comprising a plurality of brackets.

6. The valve gearbox cover of claim 5, each bracket located at a respective position corresponding to a respective mounting bolt of the valve gearbox.

7. The valve gearbox cover of claim 3, the valve cover having a top surface and a sidewall, a first height of the sidewall being greater than a second height of the bracket.

8. The valve gearbox cover of claim 1, the valve cover configured to seal to the valve gearbox when coupled thereto.

9. The valve gearbox cover of claim 1, an inner surface of the valve cover configured to be open to ambient air when coupled to the valve gearbox.

10. The valve gearbox cover of claim 1 , the valve cover comprising a material color-stable across ultra-violet wavelengths.

11. The valve gearbox cover of claim 1, the valve cover being non-porous.

12. The valve gearbox cover of claim 1, the valve cover being non-porous except at a mounting location.

13. A valve system, comprising:

a housing including a top housing and a valve operator housing, the housing surrounding a valve operator;

a cover configured to shroud a portion of the housing, the cover being transparent and configured to allow a valve orientation to be visible through the cover.

14. The valve system of claim 13, the cover mounted to the housing at a mounting bolt of the housing.

15. The valve system of claim 13, the cover being spaced from the housing via a bracket.

16. The valve system of claim 13, the cover comprising a material color-stable across ultra-violet wavelengths.

17. The valve system of claim 13 , the cover configured to shroud a seam formed by the top housing and the valve operator housing.

18. A method for covering a valve, comprising:

attaching a valve cover sized and shaped to shroud at least a portion of the valve, the valve cover being transparent and configured to allow a valve orientation to be visible through the valve cover.

19. The method of claim 18, further comprising removing existing mounting bolts of a housing of the valve.

20. The method of claim 19, the attaching comprising coupling a bracket between the valve cover and the location of the removed existing mounting bolts.

21. The method of claim 18, further comprising billow forming the valve cover.

22. The method of claim 18, the attaching including spacing the valve cover from the valve such that rain is prevented from accessing a seam of a housing of the valve.

23. The method of claim 18, the attaching including sealing the cover against a housing of the valve.

24. The method of claim 18, the attaching including maintaining an inner surface of the valve cover open to ambient air.

Description:
VALVE GEARBOX COVER SYSTEMS AND METHODS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] [0001] This application claims priority to U.S. Provisional Application No.

62/609,593, filed on December 22, 2017. The disclosure of the above applications is incorporated by reference in their entirety.

BACKGROUND

[0002] The efficient transportation of petroleum products (crude oil, gasoline, chemicals, natural gas) is critical to meeting the world’s energy demands. Pipelines, rail cars, tankers, ships, and trucks all work in harmony in the transportation network to deliver energy to consumers. One of the most critical components of this network is the pipeline. North America alone depends on over 185,000 miles of liquid petroleum pipelines, 320,000 miles of gas transmission pipelines, and more than two million miles of gas distribution pipelines.

[0003] Pipelines are often located above ground and susceptible to natural weather, such as rain, snow, hail, wind, etc. Maintenance along the pipeline may cause significant lost profits and downtime.

SUMMARY

[0004] Embodiments herein significantly reduce downtime along the pipeline by providing a valve gearbox cover that reduces ingress of water, or other aspects of weather, into the valve gearbox. In embodiments, the valve gearbox cover is a non-porous, weatherproof, material that covers the top seam of the valve gearbox which is a typical access point for said water or other weather. By covering this top seam, the valve gearbox cover eliminates, either totally or significantly, water from entering the gearbox where said water/weather may cause degradation of the valve part. In embodiments, the cover may be clear such that valve orientation is always visible through the cover. In embodiments, the cover may be stable across ultra-violet (UV) wavelengths such that the clarity of the valve gearbox cover is not compromised via exposure to the sun and other weather. These and other aspects of the valve gearbox cover discussed herein provide the advantage of significantly reduced downtime to the pipeline by reducing the maintenance required along the valves of the pipeline.

[0005] In embodiments, a valve gearbox cover comprises a valve cover sized and shaped to shroud a valve gearbox, the valve cover being transparent and configured to allow a valve orientation to be visible through the valve cover.

[0006] In embodiments, a valve system comprises a housing including a top housing and a valve operator housing, the housing surrounding a valve operator. The valve system further comprises a cover configured to shroud a portion of the housing, the cover being transparent and configured to allow a valve orientation to be visible through the cover.

[0007] In embodiments, a method for covering a valve comprises attaching a valve cover sized and shaped to shroud at least a portion of the valve, the valve cover being transparent and configured to allow a valve orientation to be visible through the valve cover.

BRIEF DESCRIPTION OF THE FIGURES

[0008] FIG. 1 depicts a perspective view of a valve system of a pipeline including a valve cover, in embodiments.

[0009] FIG. 2 depicts a top view of the valve system including a valve cover of FIG. 1, in embodiments.

[0010] FIG. 3 depicts a zoomed-in view of the bracket of the valve system including a valve cover in FIGs.1-2, in embodiments.

[0011] FIG. 4 depicts a valve system including a valve cover, in embodiments.

[0012] FIG. 5 depicts a method for covering a valve, in embodiments.

[0013] FIG. 6 depicts the internal valve operator of a prior art valve that does not include the valve cover of FIGs.1-4.

[0014] FIG. 7 depicts the internal valve operator of a valve including a valve cover. DETAILED DESCRIPTION OF THE EMBODIMENTS

[0015] FIG. 1 depicts a perspective view of a valve system 100 of a pipeline, in embodiments. FIG. 2 depicts a top view of the valve system 100, in embodiments. FIG. 3 depicts a zoomed-in view of the bracket 302 of valve system 100, in embodiments. FIG. 4 depicts a valve system 400, in embodiments. FIGs. 1-4 are best viewed together with the following description.

[0016] Valve system 100 includes a valve 102 for use in pipeline 104. Although valve 102 is shown as a ball valve, valve 102 may be any type of valve including, but not limited to, floating ball valves, trunion ball valves, gate valves, globe valves, needle valves, butterfly valves, check valves, relief valves, etc. Valve 102 may include a valve operator housing 106 that surrounds internal components of the valve 102 (such as, but not limited to, valve seats, valve bearings, valve seals, valve fittings, etc.).

[0017] Valve 102, as shown, includes a valve operator housing 108 and a top housing 110. Valve operator housing 108 and top housing 110 collectively surround a valve operator (not shown) therein for controlling the orientation of the valve housed by valve operator housing 106. Valve operator housing 108 and top housing 110 may be components of valve operator housing 106. A handwheel 112 may extend through components of the valve operator housing 106 (e.g., through valve operator housing 108) such that an operator may manually control the orientation of the valve 102 (e.g., open, closed orientations controlling flui d/gas/material flow within valve 102).

[0018] Valve system 100 includes a valve cover 114 configured to prevent intrusion of external elements into the valve 102, such as within valve operator housing 108 and/or top housing 110. For example, valve cover 114 may prevent intrusion of external elements such as rain, snow, ice, hail, wind, etc. by being non-porous such that the elements are directed away from valve operator housing 108. In embodiments, valve cover 114 is transparent and configured to allow a valve orientation to be visible through the valve cover. In embodiments, valve cover 114 is a plastic material that is billow formed, thereby reducing costs. In embodiments, valve cover 114 is a material color-stable across ultra violet wavelengths such that extended exposure to sunlight does not cause color-fading of the valve cover 114. [0019] The embodiment of valve cover 114 shown in FIG. 1 includes a top surface 116 and a side surface 118 extending directly therefrom. Side surface 118 is sized such that it extends a distance beyond a seam between top housing 110 and valve operator housing 108 such that external elements cannot ingress into the valve operator housing 108. Top surface 116 is shown as circular, and side surface 118 is shown as cylindrical. However, it should be appreciated that the valve cover 114 may be any shape and/or size as desired to fit a particular valve. Billow forming, discussed above, allows custom shapes and sizes to be created with minimal cost.

[0020] As shown in FIG. 2, top housing 110 may couple to valve operator housing 108 (FIG. 1) via one or more mounting apertures at locations 202. Bolts are shown located at mounting locations 202 securing top housing 110 to valve operator housing 108. Although six mounting locations 202 are shown, it should be appreciated that there may be more or fewer in any given system without departing from the scope herein. Valve cover 114 may couple to valve operator housing 106 (e.g. the top housing 110, the valve operator housing 108, or another portion of the housing 106). In embodiments, valve cover 114 couples to housing 106 at one or more of the mounting locations 202. To couple to the housing 106, valve cover 114 may include one or more mounting apertures 204 at positions corresponding to the locations of the mounting locations 202. In the embodiment of FIGs. 1-3, the mounting apertures 204 are not located symmetrically on top surface 116 such that valve cover 114 may cover multiple components of the housing 106 (e.g. including handwheel cover 206 at which handwheel 112 extends into to control operation of valve 102). In embodiments, the same bolts used to couple top housing 110 to valve operator housing 108 may couple valve cover 114 to top housing 110.

[0021] As shown in FIG. 3, it may be desirable to space valve cover 114 from housing 106. As such, in embodiments, a bracket 302 may be located at one or more of the mounting locations 202. It should be appreciated that, in embodiments, there are multiple brackets 302 located at respective ones of the mounting locations 202. Bracket 302 is shown having a“U” shape such that the bolt securing top housing 110 to valve operator housing 106 couples bracket 302 to the top housing 110. Bracket 302 may have a first height that is less than a second height of the side surface 118 of the valve cover 114. For example, bracket 302 is shown having a first coupling portion 306 and a second coupling portion 308 spaced via a spacing portion 310. A separate fastener 304 may then couple the valve cover 114 to the bracket 302. It should be appreciated, however, that in embodiments the bolt may simultaneously couple the valve cover 114 to the bracket 302, and the bracket 302 to top housing 110 without departing from the scope hereof. In other words, certain embodiments may not include fastener 304. Moreover, bracket 302 may be any arbitrary shape and not a“U” shape without departing from the scope hereof.

[0022] FIG. 4 depicts another embodiment of a valve system 400. Valve system 400 includes valve 402 having a valve operator housing 406. Valve operator housing 406 may include a valve operator housing 408 and a top housing 410. Valve 402 may be controlled via handwheel 412. Valve system 400 may include valve cover 414. Valve cover 414 differs from valve cover 114 in that, instead of a flat top surface (e.g. top surface 116), the top surface 416 of valve cover 414 is domed. Moreover, valve cover 414 shrouds not only a portion of valve operator housing 406, but also handwheel 412. As such, it should be appreciated that any component of a valve may be covered by a cover (e.g. valve cover 114, 414) without departing from the scope hereof. Moreover, the cover may be sized and shaped in any desired configuration to fit any desired coverage of the valve. Although not all components of valve system 100 are not discussed with respect to valve system 400, it should be appreciated that any component of valve system 100 (such as bracket 302) may be included in valve system 400 without departing from the scope hereof.

[0023] The valve systems 100 and 400, discussed above, are shown with a valve cover 114, 414 having an inner surface open to ambient air. However, it should be appreciated that covers 114, 414 may be sealed to the valve operator housing 106, 406 such that no the inner surface of the cover is sealed from the external elements.

[0024] FIG. 5 depicts a method 500 for covering a valve, in embodiments. Method 500 may be implemented using valve system 100 or valve system 400 discussed above. Method 500 may include one or more of the following operations.

[0025] In operation 502 of method 500, a valve cover is formed. In one embodiment of operation 502, valve cover 114 and/or valve cover 414 are formed. Operation 502 may be performed using any molding process including, but not limited to, billow forming, thermoforming, injection molding, blow molding, compression molding, gas assist molding, rotational molding, structural foam molding, etc. [0026] In operation 504, a valve cover is attached to a valve. In one embodiment of operation 504, valve cover 114 and/or valve cover 414 is coupled to valve 102 and/or 402, respectively. Operation 504 may include spacing the valve cover from the valve such that rain is prevented from accessing a seam of a housing of the valve.

[0027] In operation 506, existing mounting bolts of the valve are removed. In one embodiment of operation 506, mounting bolts at mounting locations 202 are removed from top housing 110.

[0028] In operation 508, a bracket is coupled between the valve operator housing and the valve cover. In one embodiment of operation 508, bracket 302 is coupled between valve cover 114 and top housing 110.

[0029] In operation 510, the inner surface of the valve cover is maintained open to ambient air. In one example of operation 510, inner surface of valve cover 114 is maintained to external air as shown in FIG. 1.

[0030] In operation 512, the inner surface of the valve cover is sealed to ambient air. In one example of operation 512, valve cover 114 is sealed against top housing 110 when mounted.

[0031] The systems and methods described herein provide many significant advantages. Most importantly, the valve cover 114, 414 significantly reduces corrosion within the housing of the valve system. FIG. 6 depicts a prior art valve that does not include valve cover 114 or 414. As seen in FIG. 6, the water seeps into the housing and causes corrosion therein. FIG. 7, on the other hand, depicts a valve, such as valve 102, including valve cover 114. As shown in FIG. 7, there is almost no corrosion within the valve. This allows significantly less maintenance along the pipeline thereby increasing cost and profit.

[0032] It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall therebetween.