Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
VARIABLE RESISTANCE MEMORY AND METHOD OF MANUFACTURING THE SAME
Document Type and Number:
WIPO Patent Application WO/2013/021682
Kind Code:
A1
Abstract:
A variable resistance memory according to an embodiment includes: a first wiring; a second wiring provided above the first wiring and intersecting with the first wiring; a third wiring provided above the second wiring and intersecting with the second wiring; a first variable resistance element provided in an intersection region between the first wiring and the second wiring, the first variable resistance element including a first variable resistance layer formed on the first wiring, and an ion source electrode provided on the first variable resistance layer and penetrating through the second wiring, the ion source electrode being connected to the second wiring and including a metal atoms; and a second variable resistance element provided in an intersection region between the second wiring and the third wiring, the second variable resistance element including a second variable resistance layer formed on the ion source electrode.

Inventors:
KAWASAKI HIROHISA (JP)
Application Number:
PCT/JP2012/059429
Publication Date:
February 14, 2013
Filing Date:
March 30, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TOSHIBA KK (JP)
KAWASAKI HIROHISA (JP)
International Classes:
H01L27/105; H01L45/00; H01L49/00
Domestic Patent References:
WO2010079816A12010-07-15
WO2010042732A22010-04-15
WO2010048127A22010-04-29
Attorney, Agent or Firm:
KATSUNUMA, Hirohito et al. (Room 323 Fuji Bldg., 2-3, Marunouchi 3-chome, Chiyoda-k, Tokyo 05, JP)
Download PDF:
Claims:
CLAIMS

1. A method of manufacturing a variable resistance memory, comprising :

forming a first variable resistance layer on a first wiring; forming a first insulating layer on the first variable resistance layer;

forming a first stack structure including the first variable resistance layer and the first insulating layer on the first wiring by patterning the first insulating layer and the first variable resistance layer;

forming a first interlayer insulating film covering the first stack structure;

exposing an upper face of the first insulating layer by flattening the first interlayer insulating film;

forming a groove portion selectively in the first interlayer insulating film, to expose upper side faces of the first insulating layer;

forming a second wiring in the groove portion;

forming an opening on the first variable resistance layer by removing the first insulating layer;

burying an ion source electrode in the opening;

sequentially stacking a second variable resistance layer and a third wiring material layer to be a third wiring, to cover the ion source electrode; and

forming a second stack structure including the second variable resistance layer and the third wiring on the ion source electrode by patterning the third wiring material layer and the second variable resistance layer.

2. The method according to claim 1, further comprising

forming first sidewalls made of an insulating material on side faces of the first stack structure, before the first interlayer insulating film is formed,

wherein

the first sidewalls formed on the upper side faces of the first insulating layer are exposed in the groove portion, and

when the first insulating layer is removed to form the opening, a part of the first sidewalls is removed.

3. The method according to claim 2, wherein the removed part of the first sidewalls includes part of the first sidewalls formed on side faces of the first variable resistance layer.

4. The method according to claim 2, further comprising

forming second sidewalls made of an insulating material on side faces of the second stack structure, after the second stack structure is formed.

5. The method according to claim 1, wherein, when the patterning is performed to form the second stack structure, etching is performed on a part of upper side faces of the ion source electrode.

6. The method according to claim 1, further comprising

sequentially forming a first semiconductor layer doped with an impurity and a second insulating layer on the first wiring, before the first variable resistance layer is formed,

wherein the first stack structure is formed by stacking the first semiconductor layer, the second insulating layer, the first variable resistance layer, and the first insulating layer.

7. The method according to claim 6, wherein

a third insulating layer and a second semiconductor layer are stacked on the second variable resistance layer before the third wiring material layer is stacked,

the third wiring material layer is stacked on the second semiconductor layer, and

the second stack structure is formed by stacking the second variable resistance layer, the third insulating layer, the second semiconductor layer, and the third wiring material layer.

8. A method of manufacturing a variable resistance memory, comprising:

forming a first variable resistance layer on a first wiring; forming a first insulating layer on the first variable resistance layer;

forming a first stack structure including the first variable resistance layer and the first insulating layer on the first wiring by performing patterning on the first insulating layer and the first variable resistance layer;

forming a first interlayer insulating film covering the first stack structure;

exposing an upper face of the first insulating layer by flattening the first interlayer insulating film;

forming an opening on the first variable resistance layer by removing the first insulating layer;

burying an ion source electrode in the opening;

forming a groove portion selectively in the first interlayer insulating film, to expose upper side faces of the ion source electrode;

forming a second wiring in the groove portion;

sequentially stacking a second variable resistance layer and a third wiring material layer to be a third wiring, to cover the ion source electrode; and

forming a second stack structure including the second variable resistance layer and the third wiring on the ion source electrode by patterning the third wiring material layer and the second variable resistance layer.

9. The method according to claim 8, wherein the second wiring is made of graphene.

10. A variable resistance memory comprising:

a first wiring;

a second wiring provided above the first wiring and intersecting with the first wiring;

a third wiring provided above the second wiring and intersecting with the second wiring;

a first variable resistance element provided in an intersection region between the first wiring and the second wiring, the first variable resistance element including a first variable resistance layer formed on the first wiring, and an ion source electrode provided on the first variable resistance layer and penetrating through the second wiring, the ion source electrode being connected to the second wiring and including a metal atoms; and

a second variable resistance element provided in an intersection region between the second wiring and the third wiring, the second variable resistance element including a second variable resistance layer formed on the ion source electrode.

11. The variable resistance memory according to claim 10, wherein

the first variable resistance element includes a first polysilicon layer provided between the first wiring and the first variable resistance layer, and a' first insulating layer provided between the first polysilicon; laye and the first variable resistance layer, the first polysilicon layer being doped with an impurity, and the second variable resistance element includes a second polysilicon layer provided between the second variable resistance layer and the third wiring, and a second insulating layer provided between the second polysilicon layer and the second variable resistance layer, the second polysilicon layer being doped with an impurity .

12. The variable resistance memory according to claim 10, wherein a first interlayer insulating film is formed on side faces of the first variable resistance element, and voids are formed between upper side faces of the first variable resistance layer and the first interlayer insulating film.

13. The variable resistance memory according to claim 10, wherein first side walls of insulating material are formed on side faces of the first variable resistance element.

14. The variable resistance memory according to claim 13, wherein a sum of a width of the first variable resistance element and widths of first side walls is substantially equal to a width of the ion source electrode.

15. The variable resistance memory according to claim 13, wherein a width of the first wiring is larger than that of the first variable resistance element.

16. The variable resistance memory according to claim 13, wherein the metal atom is any one of elements selected from a group consisting of Ag, Ni, and Co.

17. The variable resistance memory according to claim 13, wherein the metal atom is Ag.

18. The variable resistance memory according to claim 10, wherein second sidewalls of insulating material are formed on side faces of the second variable resistance element and extend on the second wiring.

Description:
DESCRIPTION

VARIABLE RESISTANCE MEMORY AND METHOD OF MANUFACTURING THE SAME

CROSS-REFERENCE TO RELATED APPLICATION This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2011-173966 filed on August 9, 2011 and PCT/JP2012/056609 filed on March 8, 2012 in Japan, the entire contents of which are incorporated herein by reference.

FIELD

Embodiments described herein relate generally to variable resistance memories and methods of manufacturing the variable resistance memories.

BACKGROUND

A variable resistance memory is a memory in which two-terminal variable resistance elements each having a variable resistance layer interposed between two electrodes are used as memory elements. In such a variable resistance memory, information writing and erasing are performed by using reversible changes in a variable resistance layer between a high-resistance state and a low-resistance state due to the history of voltage application between the electrodes. Even if the voltage between the two electrodes is cut off, the resistance state of the variable resistance layer is maintained. Accordingly, variable resistance memory is a type of nonvolatile memory.

Variable resistance elements are classified into several types based on the types of variable resistance layers and electrodes. For example, there are redox variable resistance elements that utilize movement of oxygen defects of transition metal oxides, ion-conducting variable resistance elements that utilize movement of metal ions or the like in the variable resistance layers.

For example, there are known ion-conducting variable resistance elements in which a thin amorphous silicon film is formed as a variable resistance layer on a silicon substrate doped at high concentration, and an ion source electrode having a metal ion source that can move in the variable resistance layer is formed on the variable resistance layer.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a cross-sectional view of a variable resistance memory according to a first embodiment;

Fig. 2 is a cross-sectional view of the variable resistance memory, taken along the section line A-A of Fig. 1;

Fig. 3 is a cross-sectional view of a variable resistance memory according to a first modification of the first embodiment;

Figs. 4(a) and 4(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the first embodiment;

Figs. 5(a) and 5(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the first embodiment;

Fig. 6 is a cross-sectional view of a variable resistance memory according to a second modification of the first embodiment;

Figs. 7(a) and 7(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the first embodiment;

Figs. 8(a) and 8(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the first embodiment;

Figs. 9(a) and 9(b) are cross-sectional views showing procedures for manufacturing a variable resistance memory according to a second embodiment;

Fig. 10 is a cross-sectional view of the variable resistance memory according to the second embodiment;

Figs. 11(a) and 11(b) are cross-sectional views showing procedures for manufacturing a variable resistance memory according to a third embodiment; Figs. 12(a) and 12(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the third embodiment;

Figs. 13(a) and 13(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the third embodiment; and

Figs. 14(a) and 14(b) are cross-sectional views showing procedures for manufacturing the variable resistance memory according to the third embodiment.

DETAILED DESCRIPTION

A variable resistance memory according to an embodiment includes: a first wiring; a second wiring provided above the first wiring and intersecting with the first wiring; a third wiring provided above the second wiring and intersecting with the second wiring; a first variable resistance element provided in an intersection region between the first wiring and the second wiring, the first variable resistance element including a first variable resistance layer formed on the first wiring, and an ion source electrode provided on the first variable resistance layer and penetrating through the second wiring, the ion source electrode being connected to the second wiring and including a metal atoms; and a second variable resistance element provided in an intersection region between the second wiring and the third wiring, the second variable resistance element including a second variable resistance layer formed on the ion source electrode.

First, the problems spotted by the inventors in the course of developing the present invention are described.

As the ion source electrode, a metal such as Ag, Ni, or Co is used. Particularly, Ag is drawing attention as the most effective ion source electrode material, in terms of rectifying properties and operating voltage.

However, those metals, including Ag, have some problems in actual manufacturing processes.

1) Difficulty in Processing

RIE (Reactive Ion Etching) is used in patterning of ion source electrodes. However, the steam pressures of the above metals are low. Therefore, reactivity is not utilized in processing. Instead, high-energy ions are emitted onto those metals, and the momentum of the ions is given to the metal atoms. Mechanical etching needs to be performed on the metals in this manner.

2) Ag Agglomeration

To avoid the problem described in 1), a metal electrode with the smallest possible film thickness needs to be used. However, a thin Ag film is characteristically agglomerated by movement of atoms, and therefore, it is difficult to form a thin film. The experiments we conducted confirmed that the morphology was poor when the film thickness was 20 nm or smaller, and a spherical shape was formed due to agglomeration when the film thickness was even smaller.

3) Sequential Structure and Reversed Structure

In a cross-point type variable resistance memory, a metal wiring is shared between upper and lower memory cells, so as to improve integration. Therefore, a first memory cell formed below a certain metal wiring and a second memory cell formed on the metal wiring need to have stack structures that are plane-symmetrical with respect to the metal wiring. For example, the first memory cell has a sequential structure in which an ion source electrode is formed on a variable resistance layer in sequential order, and the second memory cell has a reversed structure in which a variable resistance layer is formed on an ion source electrode. In terms of patterning, RIE on Ag (the ion source electrode) with a high degree of difficulty needs to be performed once in each of a sequential structure and a reversed structure, where patterning is performed on a stack structure including the pair of the sequential structure and the reversed structure. In terms of agglomeration, Ag agglomeration might be accelerated by the heat history during the process of layer formation, since an amorphous layer (the variable resistance layer) is formed after an Ag layer (the ion electrode) is deposited in the memory cell having the reversed structure. '

The following is a description of embodiments, with reference to the accompanying drawings.

(First Embodiment)

Referring to Figs. 1 and 2, a resistance-change memory according to a first embodiment is described. Fig. 1 is a cross-sectional view of the variable resistance memory according to the first embodiment. Fig. 2 is a cross-sectional view of the variable resistance memory, taken along the section line A-A of Fig. 1.

The variable resistance memory of the first embodiment is a cross-point type variable resistance memory. In this variable resistance memory, first memory cells (variable resistance elements) 10 are provided between first wirings 100a and second wirings 200 that intersect with the first wirings 100a, and second memory cells (variable resistance elements) 20 are provided between the second wirings 200 and third wirings 100b that intersect with the second wirings 200. It should be noted that, in the first embodiment, the third wirings 100b are located above the first wirings 100a, and are arranged parallel to the first wirings 100a. The first wirings 100a have upper faces exposed through an insulating film 2.

The first memory cells 10 are provided in the intersection regions between the first wirings 100a and the second wirings 200. Each of the first memory cells 10 includes: a polysilicon layer 12 that is formed on the corresponding first wiring 100a and is doped with an n-type impurity; an insulating layer 14 that is formed on the polysilicon layer 12 and is made of SiN, for example; a variable resistance layer 16 that is formed on the insulating layer 14 and is made of amorphous silicon; and an ion source electrode 18 that is formed on the variable resistance layer 16 and is made of Ag, for example. It should be noted that a barrier metal 11 may be provided between the first wiring 100a and the polysilicon layer 12. The ion source electrode 18 penetrates through the second wiring 200 made of a different metal from the metal serving as the ion source, and is connected to the second wiring 200. In this first memory cell 10, a liner 17 that has a film thickness of 1.5 nm and is made of SiN is provided on each side face of the polysilicon layer 12 and the variable resistance layer 16. This liner 17 is also formed on the upper face of the insulating film 2. Also, an interlayer insulating film 19 made of Si0 2 , for example, is formed on each side of the first memory cell 10.

Meanwhile, the second memory cells 20 are provided in the intersection regions between the second wirings 200 and the first wirings 100a. Each of the second memory cells 20 includes: the ion source electrode 18 made of Ag, for example; a variable resistance layer 26 that is formed on the ion source electrode 18 and is made of amorphous silicon; an insulating layer 24 that is formed on the variable resistance layer 26 and is made of SiN, for example; and a polysilicon layer 22 that is formed on the insulating layer 24 and is doped with an n-type impurity, for example. That is, the corresponding first memory cell 10 and the second memory cell 20 share the ion source electrode 18. The corresponding third wiring 100b is provided on the polysilicon layer 22. That is, the second memory cell 20 is formed by stacking the ion source electrode 18, the variable resistance layer 26, the insulating layer 24, the polysilicon layer 22, and the third wiring 100b in this order, while the first memory cell 10 is formed by stacking the first wiring 100a, the polysilicon layer 12, the insulating layer 14, the variable resistance layer 16, and the ion source electrode 18 in this order. Accordingly, the layers forming the stack structure of the first memory cell 10 is in the reversed order of the order of the layers forming the stack structure of the second memory cell 20. In this second memory cell 20, a liner 27 that has a film thickness of 1.5 nm and is made of SiN, for example, is provided on each side face of the variable resistance layer 26 and the polysilicon layer 22. This liner 27 is also provided on part of each side of the third wiring 100b. Also, an interlayer insulating film 29 made of S1O2, for example, is formed on each side of the second memory cell 20.

In the variable resistance memory of the first embodiment having the above structure, when a first wiring 100a is grounded, and a positive voltage is applied to a second wiring 200 as opposed to the first wiring 100a, Ag ions are emitted from the ion source electrode 18. The Ag ions move toward the first wiring 100a, and a filament formed by the Ag ions is formed in the variable resistance layer 16, so that the filament reaches the insulating layer 14. By virtue of this filament, the first wiring 100a is electrically connected to the second wiring 200 via the first memory cell 10, and the first memory cell 10 is put into a low-resistance state (hereinafter also referred to as a set state). Likewise, when a third wiring 100b is grounded, and a positive voltage is applied to a second wiring 200 as opposed to the third wiring 100b, a filament formed by Ag ions is formed in the variable resistance layer 26, so that the filament reaches the insulating layer 24. By virtue of this filament, the third wiring 100b is electrically connected to the second wiring 200 via the second memory cell 20, and the second memory cell 20 is put into a low-resistance state (a set state). The Ag ions might be stopped by the insulating layers 14 and 24, for example. At that point, the insulating layer 14 of the first memory cell 10 and the insulating layer 24 of the second memory cell 20 each need to be made to have a film thickness such that charge carriers can tunnel therethrough, or have a film thickness of several nanometers, for example. Also, in another example, depending on the applied field and the film thicknesses of the insulating layer 14 and the insulating layer 24, the Ag ions might partially or completely enter the inside of the insulating layer 14 or the insulating layer 24. In such a case, the resistance of each memory cell can be made lower than that in the above described example. In this manner, the film thickness of the insulating layer 14 or the insulating layer 24 serves as one of the parameters for controlling the resistance value of each memory cell, like the applied voltage. Other than that, the insulating layer 14 and the insulating layer 24 serve to prevent direct contact between the amorphous silicon forming a variable resistance layer and the polysilicon doped with an impurity, and prevent a decrease in resistance of the variable resistance layer due to polycrystallization (grain coarsening) of the amorphous silicon and diffusion of the impurity in the polysilicon into the amorphous Si layer.

When a first memory cell 10 is in a set state, a positive voltage is applied to the corresponding first wiring 100a, and the corresponding second wiring 200 is grounded. As a result, the Ag atoms forming a filament are partially ionized, and move toward the ion source electrode 18. The filament connecting the electrodes becomes discontinuous, and the first memory cell 10 transits to a high-resistance state (hereinafter also referred to as a reset state). Likewise, when a second memory cell 20 is in a set state, a positive voltage is applied to the corresponding third wiring 100b, and the corresponding second wiring 200 is grounded. The second memory cell 20 then transits to a reset state.

In the variable resistance memory of the first embodiment having the above structure, the first memory cells 10 and the second memory cells 20 penetrate through the second wirings 200, and share the ion source electrodes 18 connected to the second wirings 200. Accordingly, the film thickness of each ion source electrode 18 can be made greater, and agglomeration of the metal forming the ion source electrodes 18 can be prevented.

In the above description, the polysilicon layers 12 and 22 are n-type polysilicon layers. However, the polysilicon layers 12 and 22 may be p-type polysilicon layers. Alternatively, the polysilicon layers 12 and 22 can be made of a metal that is not easily ionized, such as W (tungsten) or Ti (titanium).

As in a variable resistance memory according to a first modification illustrated in Fig. 3, the polysilicon layers 12 and 22 can be omitted, and the variable resistance layers 16 and 26, and the insulating layers 14 and 24 can be in direct contact with the first wirings 100a and the third wirings 100b. In that case, the heights of the first and second memory cells 10 and 20 become smaller, and the later described procedure for patterning the stack structures is simplified.

Although the variable resistance layers 16 are made of amorphous silicon in the above description, the variable resistance layers 16 may be made of a silicon oxide, a silicon oxynitride, or a metal oxide such as a hafnium oxide or an aluminum oxide.

Referring now to Figs. 4(a) through 8(b), a method of manufacturing a variable resistance memory of the first embodiment is described.

First, as shown in Fig. 4(a), grooves for the first wirings 100a are formed in the insulating film 2, and a first wiring material such as W (tungsten) is deposited in each of those grooves by CVD (Chemical Vapor Deposition) or the like. After that, the first wiring material is buried by a flattening technique such as CMP (Chemical Mechanical Polishing), to form the first wirings 100a. The polysilicon layer 12 doped with an n-type impurity, the SiN layer 14, the amorphous silicon layer 16, and a SiN layer 50 are then sequentially stacked to form a film stack that covers each first wiring 100a. The barrier metal 11 may be provided between the first wiring 100a and the polysilicon layer 12. By using a known lithography technique, patterning is performed on the film stack, to form a stack structure consisting of the polysilicon layer 12, the SiN layer 14, the amorphous silicon layer 16, and the SiN layer 50 on the first wiring 100a. After that, by using ALD (Atomic Layer Deposition), for example, the liner 17 made of SiN is formed on each side face of the stack structure. At this point, the SiN layer 17 is also formed on the upper face of the insulating film 2. By using CVD, for example, Si0 2 is deposited to cover the stack structure, and the interlayer insulating film 19 is formed. After that, the interlayer insulating film 19 is flattened by CMP, for example, to expose the upper face of the stack structure or the upper face of the SiN layer 50 (Fig. 4(a)).

As shown in Fig. 4(b), part of the interlayer insulating film

19 is shaved off by etching, and the upper portion of the SiN layer 50 is exposed so that the upper face of the interlayer insulating film 19 is located in a higher position than the upper face of the amorphous silicon layer 16.

As shown in Fig. 5(a), W to be the second wirings 200 is deposited by CVD, for example, and flattening is performed by CMP, to expose the upper faces of the liner 17 and the SiN layer 50. Patterning is then performed on the W layer, and the second wirings 200 are formed so that the SiN layer 50 and the liner 17 penetrate through the patterned W layer. After that, the SiN layer 50 is removed by wet etching or the like. An opening 52 is then formed in a place the SiN layer 50 exists, as shown in Fig. 5(b). Since the liner 17 is also made of SiN, the portions of the liner 17 located on the sides of the SiN layer 50 are also removed at this point. However, the portions of the liner 17 located on the sides of the amorphous silicon layer 16 are left. Depending on the etching time, part of the portions of the liner 17 located on the sides of the amorphous silicon layer 16 might be removed. In such a case, the removed portions turn into voids. For example, as in a second modification of the first embodiment illustrated in Fig. 6, a void 17a is formed at part of each side of the amorphous silicon layer 16 after the formation of the second wirings 200.

As shown in Fig. 7(a), the Ag layer 18 that is an ion source electrode material is deposited to fill the opening 52. At this point, the Ag layer 18 is also formed on the second wirings 200. After that, by using CMP, RIE, or wet etching, the portions of the Ag layer 18 located on the second wirings 200 are removed, and the Ag layer 18 is buried in the opening 52 (Fig. 7(b)).

As shown in Fig. 8(a), the amorphous silicon layer 26, the SiN layer 24, the polysilicon layer 22 doped with an n-type impurity, for example, and a W layer to be the third wirings 100b are sequentially formed to cover the Ag layer 18 buried in the opening 52 and the second wirings 200. In this manner, a film stack is formed. Patterning is then performed on this film stack by using a known lithography technique, and a stack structure consisting of the amorphous silicon layer 26, the SiN layer 24, the polysilicon layer 22, and the W layer 100b is formed on the Ag layer 18 (Fig. 8(b)).

The liner 27 made of SiN, for example, is then formed on each side face of the stack structure (Fig. 1). After that, the interlayer insulating film 29 made of S1O2, for example, is deposited by using CVD, for example. The interlayer insulating film 29 is then flattened by using CMP, to complete the variable resistance memory of the first embodiment.

In the above described manufacturing method, etching is performed only once for the ion source electrode 18, to form the stack structures of the first memory cells 10 and the second memory cells 20. In a conventional structure, on the other hand, etching needs to be performed twice. That is, etching needs to be performed once for the first memory cells that are sequential structures, and etching needs to be performed once for the second memory cells that are reversed structures. Accordingly, the number of procedures can be reduced in this embodiment. Also, even if the amorphous silicon layer 26 of each second memory cell is formed after the ion source electrode 18 made of Ag is deposited, acceleration of Ag agglomeration due to the heat history during the process for forming the amorphous silicon layer 26 can be prevented by the great film thickness of the ion source electrode 18.

(Second Embodiment)

Referring now to Figs. 9(a) through 10, a method of manufacturing a variable resistance memory according to a second embodiment is described. Figs. 9(a) and 9(b) are cross-sectional views illustrating procedures for manufacturing the variable resistance memory of the second embodiment. Fig. 10 is a cross-sectional view of the variable resistance memory of the second embodiment. The same procedures as those in the manufacturing method described in the first embodiment are carried out until the opening 52 shown in Fig. 5(b) is formed. After that, as shown in Fig. 9(a), the Ag layer 18 to be the ion source electrode is deposited to fill the opening 52. The amorphous silicon layer 26, the SiN layer 24, the polysilicon layer 22, and a W layer to be the third wirings 100b are then sequentially formed to cover the Ag layer 18, and a film stack is formed. After that, patterning is performed on the film stack by using a known lithography technique, and a stack structure consisting of the amorphous silicon layer 26, the SiN layer 24, the polysilicon layer 22, and the W layer 100b is formed on the Ag layer 18 (Fig. 9(b)).

The liner 27 made of SiN, for example, is then formed on each side face of the stack structure (Fig. 10). After that, the interlayer insulating film 29 made of Si0 2 , for example, is deposited by using CVD, for example. The interlayer insulating film 29 is then flattened by using CMP, to complete the variable resistance memory manufactured by the manufacturing method according to the second embodiment. A cross-sectional surface of the variable resistance memory of the second embodiment manufactured as described above is shown in Fig. 10.

In the variable resistance memory manufactured by the manufacturing method according to the second embodiment, etching for the ion source electrode 18 is performed only once, as in the first embodiment. Accordingly, the number of etching procedures for the ion source electrodes can be reduced by one, compared with the number of etching procedures required in conventional structures. Also, even if the amorphous silicon layer 26 of each second memory cell is formed after the ion source electrode 18 made of Ag is deposited, acceleration of Ag agglomeration due to the heat history during the process for forming the amorphous silicon layer 26 can be prevented by the great film thickness of the ion source electrode 18. (Third Embodiment)

Referring now to Figs. 11(a) through 14(b), a method of manufacturing a variable resistance memory according to a third embodiment is described. Figs. 11(a) through 14(b) are cross-sectional views illustrating procedures for manufacturing the variable resistance memory according to the third embodiment. In the third embodiment, graphene that is drawing attention as the next-generation wiring material is used as the second wirings 200.

The same procedures as those in the manufacturing method described in the first embodiment are carried out until the interlayer insulating film 19 made of Si0 2 shown in Fig. 4(a) is formed (Fig. 11(a)). After that, the SiN layer 50 is removed by wet etching, as shown in Fig. 11(b). An opening 52 is then formed in a place the SiN layer 50 exists. Since the liner 17 is also made of SiN, the portions of the liner 17 located on the sides of the SiN layer 50 are also removed at this point. However, the portions of the liner 17 located on the sides of the amorphous silicon layer 16 are left. Depending on the etching time, part of the portions of the liner 17 located on the sides of the amorphous silicon layer 16 might be removed.

As shown in Fig. 12(a), the Ag layer 18 that is an ion source electrode material is deposited to fill the opening 52. At this point, the Ag layer 18 is also formed on the interlayer insulating film 19. After that, by using CMP, RIE, or wet etching, the portions of the Ag layer 18 located on the interlayer insulating film 19 are removed, and the Ag layer 18 is buried in the opening 52 (Fig. 12(b)).

A part of the interlayer insulating film 19 is then shaved off by etching, so that the upper face of the interlayer insulating film 19 is located in a higher position than the upper face of the amorphous silicon layer 16 (Fig. 13(a)). At this point, an upper portion of the Ag layer 18 is exposed. A graphene layer 56 is then grown in the horizontal direction, with the side face portions of the Ag layer 18 being the growth starting portions. If unnecessary graphene portions are grown, the graphene layer 56 is flattened by using CMP or the like. At this point, the upper face of the Ag layer 18 is exposed (Fig. 13(b)).

As shown in Fig. 14(a), the amorphous silicon layer 26, the

SiN layer 24, the polysilicon layer 22 doped with an n-type impurity, for example, and a W layer to be the third wirings 100b are then sequentially formed to cover the graphene layer 56 and the Ag layer 18, and a film stack is formed. After that, patterning is performed on the film stack by using a known lithography technique, and a stack structure consisting of the amorphous silicon layer 26, the SiN layer 24, the polysilicon layer 22, and the W layer 100b is formed on the Ag layer 18 (Fig. 14(b)).

The liner 27 made of SiN, for example, is then formed on each side face of the stack structure. After that, the interlayer insulating film 29 made of Si0 2 , for example, is deposited by using CVD, for example. The interlayer insulating film 29 is then flattened by using CMP, to complete the variable resistance memory of the third embodiment.

In the above described manufacturing method, etching is performed only once for the ion source electrode 18, to form the stack structures of the first memory cells 10 and the second memory cells 20. Accordingly, the number of etching procedures for the ion source electrodes can be reduced by one, compared with the number of etching procedures required in conventional structures. Also, even if the amorphous silicon layer 26 of each second memory cell is formed after the ion source electrode 18 made of Ag is formed, acceleration of Ag agglomeration due to the heat history during the process for forming the amorphous silicon layer 26 can be prevented by the great film thickness of the ion source electrode 18.

While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein can be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein can be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.