Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
VARIANTS OF CHYMOSIN WITH IMPROVED MILK-CLOTTING PROPERTIES
Document Type and Number:
WIPO Patent Application WO/2017/198829
Kind Code:
A1
Abstract:
Variants of chymosin with improved milk clotting properties.

Inventors:
JAECKEL, Christian (Ny Hjortespringvej 3, 3500 Vaerloese, 3500, DK)
LUND, Martin (Holsteinsgade 29D 2, 2100 Copenhagen Ø, 2100, DK)
VAN DEN BRINK, Johannes Maarten (Skelhoejen 1, 2730 Herlev, 2730, DK)
Application Number:
EP2017/062128
Publication Date:
November 23, 2017
Filing Date:
May 19, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHR. HANSEN A/S (Boege Allé 10-12, 2970 Hoersholm, 2970, DK)
International Classes:
A23C19/04; C12N9/64
Domestic Patent References:
WO2013164479A22013-11-07
WO2013174840A12013-11-28
WO2015128417A12015-09-03
WO2016207214A12016-12-29
WO2017037092A12017-03-09
WO2002036752A22002-05-10
WO2013174840A12013-11-28
WO2013164479A22013-11-07
Other References:
SUZUKI ET AL.: "Site directed mutagenesis reveals functional contribution of Thr218, Lys220 and Asp304 in chymosin", PROTEIN ENGINEERING, vol. 4, January 1990 (1990-01-01), pages 69 - 71
SUZUKI ET AL.: "Alteration of catalytic properties of chymosin by site-directed mutagenesis", PROTEIN ENGINEERING, vol. 2, May 1989 (1989-05-01), pages 563 - 569
VAN DEN BRINK ET AL.: "Increased production of chymosin by glycosylation", JOURNAL OF BIOTECHNOLOGY, vol. 125, September 2006 (2006-09-01), pages 304 - 310
PITTS ET AL.: "Expression and characterisation of chymosin pH optima mutants produced in Tricoderma reesei", JOURNAL OF BIOTECHNOLOGY, vol. 28, March 1993 (1993-03-01), pages 69 - 83
M.G. WILLIAMS ET AL.: "Mutagenesis, biochemical characterization and X-ray structural analysis of point mutants of bovine chymosin", PROTEIN ENGINEERING DESIGN AND SELECTION, vol. 10, September 1997 (1997-09-01), pages 991 - 997
STROP ET AL.: "Engineering enzyme subsite specificity: preparation, kinetic characterization, and x-ray analysis at 2.0 ANG resolution of Vallllphe site mutated calf chymosin", BIOCHEMISTRY, vol. 29, October 1990 (1990-10-01), pages 9863 - 9871
CHITPINITYOL ET AL.: "Site-specific mutations of calf chymosin B which influence milk-clotting activity", FOOD CHEMISTRY, vol. 62, June 1998 (1998-06-01), pages 133 - 139
ZHANG ET AL.: "Functional implications of disulfide bond, Cys45-Cys50, in recombinant prochymosin", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1343, December 1997 (1997-12-01), pages 278 - 286
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277
LARKIN MA; BLACKSHIELDS G; BROWN NP; CHENNA R; MCGETTIGAN PA; MCWILLIAM H; VALENTIN F; WALLACE IM; WILM A; LOPEZ R, BIO-INFORMATICS, vol. 23, no. 21, 2007, pages 2947 - 2948
A. KUMAR; S. GROVER; J. SHARMA; V. K. BATISH, CRIT. REV. BIOTECHNOL., vol. 30, 2010, pages 243 - 258
M. W. B RSTING; K. B. QVIST; M.RASMUSSEN; J. VINDELØV; F. K. VOGENSEN; Y. ARDO, DAIRY SCI., vol. 92, 2012, pages 593 - 612
K. KASTBERG M LLER; F. P. RATTRAY; Y. ARDO, J. AGRIC. FOOD CHEM., vol. 60, 2012, pages 11421 - 11432
P. L. H. MCSWEENEY, INT. J. DAIRY TECHNOL., vol. 57, 2004, pages 127 - 144
J. LANGHOLM JENSEN; A. MOLGAARD; J.-C. NAVARRO POULSEN; M. K. HARBOE; J. B. SIMONSEN; A. M. LORENTZEN; K. HJERNO; J. M. VAN DEN BR, ACTA CRYST, vol. D69, 2013, pages 901 - 913
S. CHITPINITYOL; D. GOODE; M. J. C. CRABBE, FOOD CHEM., vol. 62, 1998, pages 133 - 139
G. L. GILLILAND; E. L. WINBORNE; J. NACHMAN; A. WLODAWER, PROTEINS, vol. 8, 1990, pages 82 - 101
D. S. PALMER; A. U. CHRISTENSEN; J. SORENSEN; L. CELIK; K. BRUUN QVIST; B. SCHIOTT, BIOCHEMISTRY, vol. 49, 2010, pages 2563 - 2573
J. SORENSEN; D. S. PALMER; B. SCHIOTT, J. AGRIC. FOOD CHEM., vol. 61, 2013, pages 7949 - 7959
SCHECHTER, A. BERGER, BIOCHEM. BIOPHYS. RES. COMMUN., vol. 425, 1967, pages 497 - 502
L. K. CREAMER; N. F. OLSEN, J. FOOD SCI., vol. 47, 1982, pages 631 - 636
N. BANSAL; M. A. DRAKE; P. PIRAINO; M. L. BROE; M. HARBOE; P. F. FOX; P. L. H. MCSWEENEY, INT. DAIRY J, vol. 19, 2009, pages 510 - 517
A. C. MOYNIHAN; S. GOVINDASAMY-LUCEY; J. J. JAEGGI; M. E. JOHNSON; J. A. LUCEY; P. L. H. MCSWEENEY, J. DAIRY SCI, vol. 97, 2014, pages 85 - 96
J. EHREN; S. GOVINDARAJAN; B. MORON; J. MINSHULL; C. KHOSLA, PROT. ENG. DES. SEL., vol. 21, 2008, pages 699 - 707
S. GOVINDARAJAN; B. MANNERVIK; J. A. SILVERMAN; K. WRIGHT; D. REGITSKY; U. HEGAZY; T. J. PURCELL; M. WELCH; J. MINSHULL; C. GUSTAF, ACS SYNTH. BI OL., vol. 4, 2015, pages 221 - 227
M. NEWMAN; M. SAFRO; C. FRAZAO; G. KHAN; A. ZDANOV; I. J. TICKLE; T. L. BLUNDELL; N. ANDREEVA, J. MOL. BIOL., vol. 221, 1991, pages 1295 - 1309
E. GUSTCHINA; L. RUMSH; L. GINODMAN; P. MAJER; N. ANDREEVA, FEBS LETT, vol. 379, 1996, pages 60 - 62
S. VISSER; C. J. SLANGEN; P. J. VAN ROOIJEN, BIOCHEM. J., vol. 244, 1987, pages 553 - 558
Download PDF:
Claims:
CLAIMS

1. An isolated chymosin polypeptide variant characterized in that

(a) the isolated chymosin polypeptide variant has a specific clot- ting activity (IMCU/mg total protein) that is at least 110% of the specific clotting activity of its parent polypeptide and/or

(b) the isolated chymosin polypeptide variant has a C/P ratio that is at least 200% of the C/P ratio of its parent polypeptide. 2. The isolated chymosin polypeptide variant of claim 1, wherein the parent polypeptide has at least 80%, such as at least e.g . 82%, 85%, 95%, 97%, 98%, 99% or 100% sequence identity with the polypeptide of SEQ ID NO : 2 (camel chymosin). 3. The isolated chymosin polypeptide variant of claims 1 or 2, wherein the isolated chymosin polypeptide variant having a specific clotting activity (IMCU/mg total protein) of at least 110% of the specific clotting activity of parent peptide, and comprises a substitution in one or more (several) of the following positions specified in relation to the amino acid sequence of SEQ ID NO : 2 : Yl l, S 164, L253, R242, L222, D59, S273, K19, V309, S 132, N249, 196, L166, H76, G251, Q280, Q56, M 157, K231, M256, N291.

4. The isolated chymosin polypeptide variant accord ing to claim 3, wherein the substitutions are one or more of the substitutions specified in relation to the amino acid sequence of SEQ ID NO : 2 : Y11I, Y11V, R242E, L222I, D59N, S273Y, K19T, V309I, S 132A, N249D, I96L, N249E, L166V, H76Q, N249D, G251 D, Q280E, Q56H, M 157L, K231 N, M256L, N291Q, S164G, L253I.

5. The isolated chymosin polypeptide variant accord ing to claim 4, wherein the variant comprises one or more of the of the following combinations of substitutions and wherein each substitution is specified in relation to the amino acid sequence of SEQ ID NO : 2 :

Y11V, K19T, D59N, I96L, S 164G, L166V, L222V, R242E, N249E, L253I;

Y11I, D59N, I96L, S 164G, L166V, L222V, R242E, G251D, L253I;

Y11I, I96L, S 164G, L222I, R242E;

Y11I, K19T, D59N, I96L, S 164G, L222I, R242E, N249E, G251 D; H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S164G, L222I, N249D, S273Y;

K19T, D59N, H76Q, L166V, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S132A, L222I, G251D, S273Y, V309I;

Y21S, H76Q, S164G, L222I, R242E, G251D, S273Y;

D59N, S132A, S164G, L222I, R242E, N249D, G251D, S273Y;

D59N, H76Q, I96L, S132A, S164G, L166V, L222I, G251D, S273Y;

H76Q, S164G, L166V, L222I, R242E, G251D, S273Y;

D59N, H76Q, S132A, S164G, L166V, S273Y;

Y21S, D59N, H76Q, I96L, S164G, L222I, N249D, G251D, S273Y;

K19T, D59N, H76Q, S164G, R242E, N249D, G251D, S273Y;

K19T, D59N, I96L, S164G, L222I, G251D;

H76Q, L130I, L222I, S226T, G251D, S273Y;

D59N, H76Q, S164G, L222I, S226T, R242E;

Y21S, D59N, H76Q, I96L, L222I, S273Y;

H76Q, S164G, L222I, N249D, G251D, S273Y, V309I;

D59N, H76Q, S164G, L166V, L222I, N249D, G251D, S273Y, V309I;

D59N, I96L, L166V, L222I, R242E, G251D;

K19S, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

YllV, K19T, D59N, I96L, S164G, L166V, L222I, R242E, G251D, L253I;

K19T, D59N, I96L, S164G, L166I, L222I, R242E, N249D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273;

K19T, I96L, L222I, R242E, L253I;

K19T, D59N, I96L, S164G, L222V, R242E, N249D, L253I;

I96L, S164G, L222I, R242E, G251D, S274Y;

N249D, N100Q, N291Q;

R242E, N100Q, N291Q;

R242E, G251D, Q280E, N100Q, N291Q;

R242E, N252D, N100Q, N291Q;

R242E, S273D, Q280E, N100Q, N291Q;

R242E, R254E, Q280E, N100Q, N291Q;

R242E, Q280E, NIOOQ, N291Q;

R242E, R254E, S273D, Q280E, NIOOQ, N291Q;

N252D, S273D, Q280E, NIOOQ, N291Q;

G251D, S273D, Q280E, NIOOQ, N291Q;

Y243E, Q280E, NIOOQ, N291Q; Q56H, N252Q, N291Q;

R67Q, S132A, L222I, K231N, R242E, V248I;

R67Q, I96L, L130I, M157L, K231N, R242E;

R67Q, M157L, L222I, K231N, V248I;

R67Q, I96L, M157L, L222I, K231N;

R67Q, G70D, M157L, L222I, N291Q or

R67Q, L130I, M157L, R242E, M256L, N292H.

6. The isolated chymosin polypeptide variant according to any of claims 1 to 5, wherein the isolated chymosin polypeptide variant has a C/P ratio of at least

200% of the C/P ratio of its parent polypeptide and comprise a substitution in one or more of the following positions specified in relation to the amino acid sequence of SEQ ID NO:2: R242, 196, H76, S164, S273, G251, Yll, L222, L166, K19, Y21, S74, Y243, N249, Q280, F282, L295, N252, R254, G70, V136, L222, K231, N291.

7. The isolated chymosin polypeptide variant according to claim 6, wherein the substitutions are one or more of the substitutions specified in relation to the amino acid sequence of SEQ ID NO:2:, R242E, I96L, H76Q, S164G, S273Y, G251D, Y11I, R242D, L222V, Y11V, L166I, K19T, Y21S, S74D, Y243E, N249D, S273D, Q280E, F282E, L295K, N252D, R254E, G70D, V136I, L222I, K231N, N291Q.

8. The isolated chymosin polypeptide variant according to claim 7, wherein the variant comprises one or more of the following combinations of substitutions and wherein each substitution is specified in relation to the amino acid sequence of SEQ ID NO:2:

Y11I, D59N, I96L, S164G, L166V, L222V, R242E, G251D, L253I;

Y11V, K19T, D59N, I96L, S164G, L166V, L222V, R242E, N249E, L253I;

Y11I, I96L, S164G, L222I, R242E;

Y11I, K19T, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

Y21S, H76Q, S164G, L222I, R242E, G251D, S273Y;

H76Q, S164G, L166V, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S164G, R242E, N249D, G251D, S273Y;

Y21S, D59N, H76Q, I96L, S164G, L222I, N249D, G251D, S273Y; D59N, H76Q, I96L, S132A, S164G, L166V, L222I, G251D, S273Y; H76Q, S164G, L222I, N249D, G251D, S273Y, V309I;

D59N, H76Q, I96L, L130I, S164G, L222I, R242E, G251D;

H76Q, S164G, L166V, L222I, S226T, S273Y;

D59N, H76Q, I96L, S164G, L222I, S226T, N249D, G251D, S273Y; K19T, D59N, H76Q, L166V, L222I, R242E, G251D, S273Y;

D59N, H76Q, S164G, L222I, R242E, S273Y, V309I;

H76Q, I96L, S164G, G251D, S273Y, V309I;

D59N, H76Q, L130I, S132A, S164G, L222I, R242E, G251D, S273Y; D59N, H76Q, I96L, S132A, S164G, L222I, S226T, G251D, S273Y; D59N, H76Q, S132A, S164G, L166V, S273Y;

D59N, H76Q, S164G, L222I, S226T, R242E;

K19T, D59N, I96L, S164G, L222I, G251D;

D59N, H76Q, I96L, S164G, L222I, S226T, G251D, S273Y, V309I; D59N, S132A, S164G, L222I, R242E, N249D, G251D, S273Y;

K19T, D59N, H76Q, S164G, L222I, N249D, S273Y;

K19T, D59N, S164G, L166V, L222I, S226T, G251D, S273Y;

Y21S, D59N, H76Q, S164G, L222I, S226T, G251D, S273Y, V309I;

K19T, Y21S, D59N, H76Q, S132A, S164G, L222I, G251D, S273Y; D59N, H76Q, I96L, L130I, S164G, L222I, N249D, G251D, S273Y;

H76Q, L130I, L222I, S226T, G251D, S273Y;

D59N, H76Q, L130I, S164G, L166V, L222I, G251D, S273Y, V309I;

K19T, D59N, H76Q, L130I, S164G, L222I, S226T, G251D, S273Y;

D59N, H76Q, L130I, S164G, G251D, V309I;

K19T, Y21S, D59N, H76Q, L130I, S164G, L222I, S273Y;

K19T, D59N, H76Q, S132A, L222I, G251D, S273Y, V309I;

Y21S, D59N, S164G, L222I, R242E, G251D, S273Y, V309I;

D59N, H76Q, S226T, R242E, G251D, S273Y;

Y21S, D59N, H76Q, I96L, L222I, S273Y;

K19T, Y21S, H76Q, S164G, L222I, G251D, S273Y;

K19T, D59N, H76Q, I96L, S164G, L166V, L222I, G251D, S273Y;

Y21S, D59N, H76Q, L130I, S132A, S164G, L222I, G251D, S273Y;

Y21S, D59N, H76Q, S164G, L166V, N249D, G251D, S273Y;

Y11I, K19T, I96L, S164G, L222V, R242E, G251D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

H76Q, I96L, S164G, L222I, R242E, G251D; YllV, I96L, S164G, L222I, R242E, N249D, L253I, I263L;

YllV, K19T, D59N, I96L, S164G, L166V, L222I, R242E, G251D, L253I; YllV, K19T, E83S, I96L, S164G, L166V, L222I, R242E, G251D;

K19T, D59N, I96L, S164G, L166I, L222I, R242E, N249D;

I96L, S164G, L222I, R242E, N249D, G251D, I263L;

K19T, D59N, I96L, S164G, L222V, R242E, N249D, L253I;

I96L, S164G, L222I, R242E, G251D, S274Y;

K19T, I96L, S164G, L166V, L222I, R242E, N249D, G251D, I263V;

K19T, I96L, S164G, R242E, L253I;

YllV, K19T, I96L, S164G, L166V, L222I, R242E;

D59N, I96L, S164G, L222I, R242E, L253I, I263L;

I96L, S164G, L222I, R242E, G251D;

K19S, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

K19T, D59N, I96L, S164G, L166I, L222I, R242D, G251D, I263V;

I96L, S164G, L166V, L222I, R242E, N249D, I263L;

K19T, D59N, I96L, S164G, L166V, L222I, R242D, G251D, L253I;

D59N, I96L, L166V, L222I, R242E, G251D;

K19T, D59N, I96V, S164G, L166V, L222I, R242E, I263L;

Y11I, K19T, D59N, S164G, L222I, G251D, I263V;

K19T, D59N, I96L, S164G, L222I, N249E, G251D, L253V, I263L;

YllV, E83S, I96L, S164G, L222I, R242E, G251D, L253I, I263L;

K19T, E83S, I96L, S164G, L222I, R242E, N249D, G251D, L253I;

K19T, E83S, I96L, S164G, L166V, L222I, R242E, N249D, G251D, L253I;

K19T, D59N, I96L, S164G, L222V, N249E, G251D, I263V;

YllV, D59N, I96L, S164G, L222I, G251D, L253V;

Y11I, K19T, D59N, I96V, L222I, R242D, G251D;

K19T, E83T, I96L, S164G, L222I, R242E, L253V;

K19S, I96L, S164G, L166V, L222I, R242E;

K19T, D59N, I96L, S164G, L222I, G251D;

K19T, I96L, S164N, L222I, R242E, I263L;

K19T, D59N, E83T, S164G, L166V, L222I, R242D, G251D;

K19T, E83S, I96L, S164G, L222I, R242E, G251D, L253I;

YllV, E83S, I96L, S164G, L222I, R242E, L253I, I263L;

K19T, I96L, L222I, R242E, L253I;

K19T, I96L, S164G, L166V, L222I, N249D, I263L;

K19T, D59N, I96L, S164G, L166I, G251D, L253V; Y11V, K19T, D59N, I96L, S164N, L166I, L222I, G251D;

R242E, Q280E, N100Q, N291Q;

R242E, N252D, N100Q, N291Q;

R242E, R254E, S273D, Q280E, N100Q, N291Q;

R242E, R254E, Q280E, N100Q, N291Q;

V32L, R67Q, L130I, M157L, K231N, M256L;

R67Q, L130I, M157L, D158S, R242E, N291Q;

R67Q, V136I, M157L, L222I, V248I;

Y11V, R67Q, L130I, M157L, L222I, R242E;

R67Q, I96L, L130I, M157L, K231N, R242E;

R67Q, G70D, M157L, L222I, N291Q;

R67Q, S132A, L222I, K231N, R242E, V248I;

R67Q, L130I, L222I, R242E, M256L;

R67Q, G70D, M157L, R242E, V248I;

R67Q, M157L, L222I, K231N, V248I;

R67Q, I96L, N100Q, L130I, M157L, N292H;

I45V, L130I, M157L, K231N, R242E or

R67Q, I96L, M157L, L222I, K231N. 9. A method for making an isolated chymosin polypeptide variant according to any one of claims 1 to 8 comprising the following steps:

(a) : making an alteration at one or more positions in the DNA sequence encoding the polypeptide having at least 80% sequence identity to SEQ ID NO:2, wherein the alteration comprises a substitution, a deletion or an insertion in at least one amino acid position;

(b) : producing and isolating the variant polypeptide of step (a).

10. The method according to claim 9, wherein the parent polypeptide has at least 85%, 95%, 97%, 98% or at least 99% sequence identity with the polypep- tide of SEQ ID NO:2 (camel chymosin).

11. The method for making an isolated chymosin polypeptide variant of claim 9 or 10, wherein:

(a) the variant comprises one or more of the following substitu- tions, wherein the substitution is specified in relation to the amino acid sequence of SEQ ID NO:2: Yll, S164, L253, D59, V309, S132, N249, L166, N249, Q56, M157, M256, R242, 196, H76, S164, S273, G251, Yll, L166, K19, Y21, S74, Y243, N249, S273, Q280, F282, L295, N252, R254, G70, V136, L222, K231, N291 such as e.g. Y11I, Y11V, S164G, L253I, D59N, V309I, S132A, N249E, L166V, N249D, Q56H, M157L, M256L, R242E, I96L, H76Q, S164G, S273Y, G251D, Y11I, R242D, L222V, Y11V, L166I, K19T, Y21S, S74D, Y243E, N249D, S273D, Q280E, F282E, L295K, N252D, R254E, G70D, V136I, L222I, K231N, N291Q.

12. The method for making an isolated chymosin polypeptide variant of claim 10 or 11, wherein:

(a) the variant comprises one or more of the combinations of the following substitutions and wherein each substitution is specified in relation to the amino acid sequence of SEQ ID NO:2:

Y11I, D59N, I96L, S164G, L166V, L222V, R242E, G251D, L253I;

Y11V, K19T, D59N, I96L, S164G, L166V, L222V, R242E, N249E, L253I;

Y11I, I96L, S164G, L222I, R242E;

Y11I, K19T, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S164G, L222I, N249D, S273Y;

K19T, D59N, H76Q, L166V, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S132A, L222I, G251D, S273Y, V309I;

Y21S, H76Q, S164G, L222I, R242E, G251D, S273Y;

D59N, S132A, S164G, L222I, R242E, N249D, G251D, S273Y;

D59N, H76Q, I96L, S132A, S164G, L166V, L222I, G251D, S273Y;

H76Q, S164G, L166V, L222I, R242E, G251D, S273Y;

D59N, H76Q, S132A, S164G, L166V, S273Y;

K19T, D59N, H76Q, S164G, R242E, N249D, G251D, S273Y;

Y21S, D59N, H76Q, I96L, S164G, L222I, N249D, G251D, S273Y;

K19T, D59N, I96L, S164G, L222I, G251D;

D59N, H76Q, S164G, L222I, S226T, R242E;

H76Q, L130I, L222I, S226T, G251D, S273Y;

Y21S, D59N, H76Q, I96L, L222I, S273Y;

H76Q, S164G, L222I, N249D, G251D, S273Y, V309I;

D59N, I96L, L166V, L222I, R242E, G251D;

Y11V, K19T, D59N, I96L, S164G, L166V, L222I, R242E, G251D, L253I;

K19S, D59N, I96L, S164G, L222I, R242E, N249E, G251D; K19T, D59N, I96L, S 164G, L166I, L222I, R242E, N249D;

H76Q, I96L, S164G, L222I, R242E, G251 D, S273Y;

K19T, I96L, L222I, R242E, L253I;

K19T, D59N, I96L, S 164G, L222V, R242E, N249D, L253I;

I96L, S 164G, L222I, R242E, G251 D, S274Y;

R242E, N252D, N 100Q, N291Q;

R242E, R254E, Q280E, N 100Q, N291Q;

R242E, Q280E, N 100Q, N291Q;

R242E, R254E, S273D, Q280E, N 100Q, N291Q;

R67Q, S132A, L222I, K231 N, R242E, V248I;

R67Q, I96L, L130I, M 157L, K231 N, R242E;

R67Q, M 157L, L222I, K231N, V248I;

R67Q, I96L, M 157L, L222I, K231 N or

R67Q, G70D, M 157L, L222I, N291Q.

13. A method for making a food or feed product comprising add ing an effective amount of the isolated chymosin polypeptide variant according to any of claims 1 to 8 to the food or feed ing redient(s) and carrying out further manufacturing steps to obtain the food or feed prod uct.

14. A method accord ing to claim 13, wherein the food or feed product is a mi lk- based product.

15. Food or feed product comprising a chymosin polypetide variant accord ing to any of claims 1 to 8.

16. Use of a chymosin polypetide variant accord ing to any of claims 1 to 8 in a process for making cheese. 17. Use of a chymosin polypetide variant accord ing to claim 16 in a process for making pasta filata, cheddar, continental type cheeses, soft cheese or white brine cheese.

Description:
TITLE: Variants of chymosin with improved milk-clotting properties

FIELD OF THE INVENTION

The present invention relates to variants of chymosin with improved milk- clotting properties.

BACKGROUND ART

Chymosin (EC 3.4.23.4) and pepsin (EC 3.4.23.1), the milk clotting enzymes of the mammalian stomach, are aspartic proteases belonging to a broad class of peptidases.

When produced in the gastric mucosal cells, chymosin and pepsin occur as en- zymatically inactive pre-prochymosin and pre-pepsinogen, respectively. When chymosin is excreted, an N-terminal peptide fragment, the pre-fragment (signal peptide) is cleaved off to give prochymosin including a pro-fragment. Prochymo- sin is a substantially inactive form of the enzyme which, however, becomes activated under acidic conditions to the active chymosin by autocatalytic removal of the pro-fragment. This activation occurs in vivo in the gastric lumen under appropriate pH conditions or in vitro under acidic conditions.

The structural and functional characteristics of bovine, i.e. Bos taurus, pre- prochymosin, prochymosin and chymosin have been studied extensively. The pre-part of the bovine pre-prochymosin molecule comprises 16 aa residues and the pro-part of the corresponding prochymosin has a length of 42 aa residues. The active bovine chymosin comprises 323 aa.

Chymosin is produced naturally in mammalian species such as bovines, camels, caprines, buffaloes, sheep, pigs, humans, monkeys and rats. Bovine and camel chymosin has for a number of years been commercially available to the dairy industry.

Enzymatic coagulation of milk by milk-clotting enzymes, such as chymosin and pepsin, is one of the most important processes in the manufacture of cheeses. Enzymatic milk coagulation is a two-phase process: a first phase where a proteolytic enzyme, chymosin or pepsin, attacks κ-casein, resulting in a metastable state of the casein micelle structure and a second phase, where the m ilk subsequently coagulates and forms a coagulum (reference 1).

WO02/36752A2 (Chr. Hansen) describes recombinant production of camel chy- mosin .

WO2013/174840A1 (Chr. Hansen) describes mutants/variants of bovine and camel chymosin .

WO2013/164479A2 (DSM) describes mutants of bovine chymosin .

The references listed immediately below may in the present context be seen as references describing mutants of chymosin :

- Suzuki et al : Site directed mutagenesis reveals functional contribution of Thr218, Lys220 and Asp304 in chymosin, Protein Eng ineering, vol . 4, January 1990, pages 69-71 ;

- Suzuki et al : Alteration of catalytic properties of chymosin by site-directed mu- tagenesis, Protein Eng ineering, vol. 2, May 1989, pages 563-569;

- van den Brink et al : Increased production of chymosin by g lycosylation, Journal of biotechnology, vol . 125, September 2006, pages 304-310;

- Pitts et al : Expression and characterisation of chymosin pH optima mutants produced in Tricoderma reesei, Journal of biotechnology, vol . 28, March 1993, pages 69-83 ;

- M .G. Williams et al : M utagenesis, biochemical characterization and X-ray structural analysis of point mutants of bovine chymosin, Protein engineering design and selection, vol . 10, September 1997, pages 991-997;

- Strop et al : Engineering enzyme subsite specificity : preparation, kinetic charac- terization, and x-ray analysis at 2.0 ANG resolution of Val l l l phe site mutated calf chymosin, Biochemistry, vol . 29, October 1990, pages 9863-9871 ;

- Chitpinityol et al : Site-specific mutations of calf chymosin B which influence milk-clotting activity, Food Chemistry, vol . 62, June 1998, pages 133- 139;

- Zhang et al : Functional implications of disulfide bond, Cys45-Cys50, in recom- binant prochymosin, Biochimica et biophysica acta, vol . 1343, December 1997, pages 278-286.

None of the prior art references mentioned above describe d irectly and unambiguously any of the chymosin variants with improved specific clotting activity or increased C/P ratios compared to the parent from which the variant is derived, as described below. SUMMARY OF THE INVENTION

The problem to be solved by the present invention is to provide variants of chy- mosin which, when compared to the parent polypeptide, have a specific clotting activity (IMCU/mg total protein) that is at least 110% of the specific clotting activity of its parent polypeptide and/or at least 200% of the C/P ratio of its parent polypeptide as illustrated herein.

Based on intelligent design and comparative analyses of different variants the present inventors identified a number of amino acid positions that are herein important in the sense that by making a variant in one or more of these positions in a parent peptide one may get an improved chymosin variant with either increased specific clotting activity or increased C/P ratios or both. The amino acid numbering as used herein to specify the variant is based on the mature peptide. As known in the art - different natural wildtype chymosin polypeptide sequences obtained from different mammalian species (such as e.g. bo- vines, camels, sheep, pigs, or rats) are having a relatively high sequence similarity/identity. In figure 1 this is exemplified by an alignment of herein relevant dif- ferent chymosin sequences.

In view of this relatively close sequence relationship - it is believed that the 3D structures of different natural wildtype chymosins are also relatively similar.

In the present context - a naturally obtained wildtype chymosin (such as bovine chymosin or camel chymosin) may herein be an example of a parent polypeptide - i.e. a parent polypeptide to which an alteration is made to produce a variant chymosin polypeptide of the present invention.

Without being limited to theory - it is believed that the herein discussed chymo- sin related amino acid positions are of general importance in any herein relevant chymosin enzyme of interest (e.g. chymosins of e.g. bovines, camels, sheep, pigs, rats etc.) - in the sense that by making a variant in one or more of these positions one may get an improved chymosin variant in general (e.g. an improved bovine, camel, sheep, pig or rat chymosin variant). As discussed herein - as a reference sequence for determining the amino acid position of a parent chymosin polypeptide of interest (e.g. camel, sheep, bovine etc.) is herein used the public known Camelius dromedarius mature chymosin sequence of SEQ ID NO: 2 herein. It may herein alternatively be termed camel chymosin. The sequence is also shown in Figure 1 herein.

In the present context it is believed that a parent chymosin polypeptide (e.g. from sheep or rat) that has at least 80% sequence identity with the mature polypeptide of SEQ ID NO: 2 (camel chymosin) may herein be seen as sufficient structural related to e.g. bovine or camel chymosin in order to be improved by making a variant in any of the amino acid positions as described herein.

Embodiments of the present invention are described below. DEFINITIONS

All definitions of herein relevant terms are in accordance of what would be understood by the skilled person in relation to the herein relevant technical context.

The term "chymosin" relates to an enzyme of the EC 3.4.23.4 class. Chymosin has a high specificity and predominantly clots milk by cleavage of a single 104- Ser-Phe- | -Met-Ala-107 bond in κ-chain of casein. As a side-activity, chymosin also cleaves α-casein primarily between Phe23 and Phe24 and β-casein primarily between Leul92 and Tyrl93 (references 2, 3). The resulting peptides aSl(l-23) and β(193-209) will be further degraded by proteases from microbial cultures added to the ripening cheese (reference 4). An alternative name of chymosin used in the art is rennin. The term "chymosin activity" relates to chymosin activity of a chymosin enzyme as understood by the skilled person in the present context.

The skilled person knows how to determine herein relevant chymosin activity. As known in the art - the herein relevant so-called C/P ratio is determined by dividing the specific clotting activity (C) with the proteolytic activity (P). As known in the art - a hig her C/P ratio implies generally that the loss of protein during e.g . cheese manufacturing due to non-specific protein degradation is reduced which may lead to cheese yield improvements. The term "isolated variant" means a variant that is mod ified by the act of man . In one aspect, the variant is at least 1% pure, e.g ., at least 5% pure, at least 10% pure, at least 20% pure, at least 40% pure, at least 60% pure, at least 80% pure, and at least 90% pure, as determined by SDS PAGE. The term "mature polypeptide" means a peptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. In the present context may a herein relevant mature chymosin polypeptide be seen as the active chy- mosin polypeptide sequence - i .e. without the pre-part and/or pro-part sequenc- es. Herein relevant examples of a mature polypeptide are e.g . the mature polypeptide of SEQ ID NO : 1 (bovine chymosin), which is from amino acid position 59 to amino acid position 381 of SEQ ID NO : 1 or the mature polypeptide of SEQ ID NO : 2 (camel chymosin), which is from amino acid position 59 to amino acid position 381 of SEQ ID NO : 2.

The term "parent" or "parent polypeptide having chymosin activity" means a polypeptide to which an alteration is made to prod uce the enzyme variants of the present invention . The parent may be a naturally occurring (wild-type) polypeptide or a variant thereof.

The term "Seq uence Identity" relates to the relatedness between two am ino acid sequences or between two nucleotide sequences.

For purposes of the present invention, the degree of sequence identity between two amino acid sequences is determined using the Need leman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48 : 443-453) as implemented in the Need le program of the EMBOSS package (EMBOSS : The European Molecular Biology Open Software Suite, Rice et al. r 2000, Trends Genet. 16 : 276-277), preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EM BOSS ver- sion of BLOSUM62) substitution matrix. The output of Need le labeled "longest identity" (obtained using the nobrief option) is used as the percent identity and is calculated as follows :

(Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment)

For purposes of the present invention, the degree of sequence identity between two deoxyribonucleotide sequences is determined using the Neqedleman-Wunsch algorithm (Needleman and Wunsch, 1970, supra) as implemented in the Need le program of the EMBOSS package (EMBOSS : The European Molecular Biology Open Software Suite, Rice et al. r 2000, supra), preferably version 3.0.0 or later. The optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix. The output of Need le labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows :

(Identical Deoxyribonucleotides x 100)/(Length of Alignment - Total Number of Gaps in Alignment).

The term "variant" means a peptide having chymosin activity comprising an alteration, i.e. , a substitution, insertion, and/or deletion, at one or more (several) positions. A substitution means a replacement of an amino acid occupying a po- sition with a different amino acid ; a deletion means removal of an amino acid occupying a position ; and an insertion means adding 1-3 amino acids adjacent to an amino acid occupying a position .

The amino acid may be natural or unnatural amino acids - for instance, substitution with e.g . a particularly D-isomers (or D-forms) of e.g . D-alanine could theo- retically be possible.

The term "wild-type" peptide refers to a nucleotide sequence or peptide sequence as it occurs in nature, i.e. nucleotide sequence or peptide sequence which hasn't been subject to targeted mutations by the act of man .

DRAWINGS

Figure 1: An alig nment of herein relevant d ifferent chymosin seq uences.

As understood by the skilled person in the present context - herein relevant sequence identity percentages of mature polypeptide sequences of e.g . sheep, C. bactrianus, camel, pig or rat chymosin with the mature polypeptide of SEQ ID NO: 3 (bovine chymosin - i.e. amino acid positions 59 to 381 of SEQ ID NO : 3) are relatively similar to above mentioned sequence identity percentages.

Figure 2:

3D structure of camel chymosin (detail, PDB: 4AA9) with a model of bound κ- casein shown in green rod-shaped structure, κ-casein is placed in the chymosin substrate binding cleft with the scissile bond between residues 105 and 106. Mutations R242E, Y243E, N249D, G251D, N252D, R254E, S273D, Q280E, F282E are highlighted in blue.

Figure 3:

3D structure of bovine chymosin (PDB: 4AA8) with a model of bound κ-casein shown in green, rod-shaped structure, κ-casein is placed in the chymosin substrate binding cleft with the scissile bond between residues 105 and 106. Posi- tions H292 and Q294 are highlighted in yellow.

Figure 4:

3D structure of camel chymosin (detail, PDB: 4AA9). Residues Yl l, L12, and D13 of the protein N-terminus as well as the potential Yl l interaction partner D290 are highlighted in purple rod-shaped structure.

DETAILED DESCRIPTION OF THE INVENTION Determining the amino acid position of a chymosin of interest

As discussed above - as a reference sequence for determining the amino acid position of a herein relevant chymosin polypeptide of interest (e.g . camel, sheep, bovine etc.) is herein used the public known camel chymosin sequence disclosed as SEQ ID NO: 2 herein.

The amino acid sequence of another chymosin polypeptide is aligned with the polypeptide disclosed in SEQ ID NO: 2, and based on the alignment, the amino acid position number corresponding to any amino acid residue in the polypeptide disclosed in SEQ ID NO: 2 is determined using the ClustalW algorithm as described in working Example 1 herein. Based on above well-known computer programs - it is routine work for the skilled person to determine the amino acid position of a herein relevant chymo- sin polypeptide of interest (e.g . camel, sheep, bovine etc.). In figure 1 herein is shown an example of an alignment.

Just as an example - in fig ure 1 can e.g . be seen that herein used bovine reference SEQ ID NO : 3 has a "G" in position 50 and "Camelus_dromedarius" (SEQ ID NO : 2 herein) has an "A" in this position 50. Nomenclature of variants

In describing the variants of the present invention, the nomenclature described below is adapted for ease of reference. The accepted IUPAC sing le letter or three letter amino acid abbreviations are employed .

The specific variants discussed in this "nomenclature" section below may not be herein relevant variants of the present invention - i.e. this "nomenclature" section is just to describe the herein relevant used nomenclature as such .

Substitutions. For an amino acid substitution, the following nomenclature is used : Original amino acid, position, substituted amino acid . According ly, a theoretical substitution of threonine with alanine at position 226 is designated as "Thr226Ala" or "T226A". M ultiple mutations are separated by addition marks ("+"), e.g. , "Gly205Arg + Ser411Phe" or "G205R + S411 F", representing substitutions at positions 205 and 411 of glycine (G) with arginine (R) and serine (S) with phenylalanine (F), respectively. A substitution e.g . designated "226A" refers to a substitution of a parent amino acid (e.g . T, Q, S or another parent amino acid) with alanine at position 226.

Deletions. For an amino acid deletion, the following nomenclature is used : Origi- nal amino acid, position, * . Accord ing ly, the deletion of glycine at position 195 is designated as "Glyl95*" or "G 195*". Multiple deletions are separated by add ition marks ("+"), e.g. , "Glyl95* + Ser411 *" or "G 195* + S411 *".

Insertions. For an amino acid insertion, the following nomenclature is used : Orig- inal amino acid, position, orig inal amino acid, inserted amino acid . Accordingly the insertion of lysine after glycine at position 195 is desig nated "Glyl95Glyl_ys" or "G195GK". An insertion of multiple amino acids is designated [Original amino acid, position, original amino acid, inserted amino acid # 1, inserted amino acid #2; etc. ] . For example, the insertion of lysine and alanine after glycine at position 195 is indicated as "Glyl95Glyl_ysAla" or "G195GKA".

In such cases the inserted amino acid residue(s) are numbered by the addition of lower case letters to the position number of the amino acid residue preceding the inserted amino acid residue(s). In the above example, the sequence would thus be:

Multiple alterations. Variants comprising multiple alterations are separated by addition marks ("+"), e.g., "Arg l70Tyr+Glyl95Glu" or "R170Y+G195E" representing a substitution of tyrosine and glutamic acid for arginine and glycine at positions 170 and 195, respectively.

Different substitutions. Where different substitutions can be introduced at a position, the different substitutions are separated by a comma, e.g., "Arg l70Tyr,Glu" or "R170Y,E" represents a substitution of arginine with tyrosine or glutamic acid at position 170. Thus, "Tyrl67Gly,Ala + Arg l70Gly,Ala" or "Y167G,A + R170G,A" designates the following variants:

"Tyrl67Gly+Arg l70Gly", "Tyrl67Gly+Arg l70Ala", "Tyrl67Ala+Arg l70Gly", and "Tyrl67Ala+Arg l70Ala".

Preferred parent polypeptide having chymosin activity

Preferably, the parent polypeptide has at least 80%, 85%, 90%, 95%, 97%, 98%, or 99% sequence identity with the mature polypeptide of SEQ ID NO: 3 (bovine chymosin) and/or SEQ ID NO: 2 (camel chymosin).

Just as an example - a herein suitable relevant parent polypeptide could e.g . be bovine chymosin A - as known in the art bovine chymosin A may only have one amino acid difference as compared to bovine chymosin B of SEQ ID NO: 3 herein. In a preferred embodiment - the parent polypeptide has at least 90% sequence identity with the mature polypeptide of SEQ ID NO: 3 (bovine chymosin), more preferably the parent polypeptide has at least 95% sequence identity with the mature polypeptide of SEQ ID NO: 3 (bovine chymosin) and even more prefera- bly the parent polypeptide has at least 97% sequence identity with the mature polypeptide of SEQ ID NO: 3 (bovine chymosin). It may be preferred that the parent polypeptide is the mature polypeptide of SEQ ID NO: 3 (bovine chymosin). As understood by the skilled person in the present context - a herein relevant parent polypeptide having chymosin activity may already e.g . be a variant of e.g. a corresponding wildtype chymosin.

For instance, a bovine chymosin variant with e.g. 5-10 alterations (e.g. substitu- tions) as compared to mature wildtype bovine chymosin polypeptide of SEQ ID NO: 3 may still be a parent polypeptide that has at least 95% sequence identity with the mature polypeptide of SEQ ID NO: 3 (Bovine chymosin).

As understood by the skilled person in the present context - a parent polypep- tide may be a polypeptide that has at least 80% sequence identity with the mature polypeptide of SEQ ID NO: 2 (Camel). In a preferred embodiment - the parent polypeptide has at least 92% sequence identity with the mature polypeptide of SEQ ID NO: 2 and/or SEQ ID NO: 3, more preferably the parent polypeptide has at least 95% sequence identity with the mature polypeptide of SEQ ID NO: 2 and/or SEQ ID NO: 3 and even more preferably the parent polypeptide has at least 97% sequence identity with the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 3. It may be preferred that the parent polypeptide is the mature polypeptide of SEQ ID NO: 2 (camel chymosin). Said in other words and in general - a herein relevant isolated chymosin polypeptide variant may comprise alterations (e.g. substitutions) in other positions than the positions claimed herein.

For instance, a bovine chymosin variant with e.g. 5-10 alterations (e.g. substitutions) as compared to wildtype camel chymosin polypeptide of SEQ ID NO : 2 will still be a parent polypeptide that has at least 95% sequence identity with the mature polypeptide of SEQ ID NO: 2. It may be preferred that the isolated bovine chymosin variant comprises less than 30 amino acid alterations (e.g . substitutions) as compared to the mature polypeptide of SEQ ID NO : 2 (camel chymosin) or it may be preferred that the isolated camel chymosin variant comprises less than 20 amino acid alterations (e.g . substitutions) as compared to the mature polypeptide of SEQ ID NO : 2 or it may be preferred that the isolated bovine chymosin variant comprises less than 10 amino acid alterations (e.g . substitutions) as compared to the mature polypeptide of SEQ ID NO : 2 or it may be preferred that the isolated camel chymosin variant comprises less than 5 am ino acid alterations (e.g . substitutions) as com- pared to the mature polypeptide of SEQ ID NO : 2 (camel chymosin).

Method for making isolated chymosin polypeptide variants

As discussed above - as known in the art, the skilled person may, based on his common general knowledge, routinely prod uce and purify chymosin and chymosin variants.

Said in other words, once the skilled person is in possession of a herein relevant parent polypeptide having chymosin activity of interest (e.g . from bovines, camels, sheep, pigs, or rats) it is routine work for the skilled person to make a vari- ant of such a parent chymosin of interest when guided by present disclosure.

An example of a suitable method to prod uce and isolate a chymosin (variant or parent) may be by well-known e.g . fungal recombinant expression/production based technology as e.g . described in WO02/36752A2 (Chr. Hansen).

It is also routine work for the skilled person to make alteration at one or more positions in a parent polypeptide having chymosin activity, wherein the alteration is comprising a substitution, a deletion or an insertion in at least one amino acid position as disclosed herein .

As known to the skilled person - this may e.g . be done by so-called site directed mutagenesis and recombinant expression/production based technology.

It is also routine work for the skilled person to determine if a herein relevant parent polypeptide (e.g . camel or bovine wildtype chymosin) and/or a herein relevant variant has chymosin activity or not. As known in the art - chymosin specificity may be determined by the so-called C/P ratio, which is determined by dividing the specific clotting activity (C) with the proteolytic activity (P). As known in the art - a higher C/P ratio implies generally that the loss of protein during e.g. cheese manufacturing due to non- specific protein degradation is reduced, i.e. the yield of cheese is improved.

Determination of milk clotting activity

Milk clotting activity may be determined using the REMCAT method, which is the standard method developed by the International Dairy Federation (IDF method). Milk clotting activity is determined from the time needed for a visible flocculation of a standard milk substrate prepared from a low-heat, low fat milk powder with a calcium chloride solution of 0.5 g per liter (pH « 6.5). The clotting time of a rennet sample is compared to that of a reference standard having known milk- clotting activity and having the same enzyme composition by IDF Standard HOB as the sample. Samples and reference standards are measured under identical chemical and physical conditions. Variant samples are adjusted to approximately 3 IMCU/ml using an 84 mM acetic acid buffer pH 5.5. Hereafter, 20 μΙ enzyme preparation was added to 1 ml preheated milk (32°C) in a glass test tube placed in a water bath, capable of maintaining a constant temperature of 32°C ± 1°C under constant stirring.

The total milk-clotting activity (strength) of a rennet is calculated in International Milk-Clotting Units (IMCU) per ml relative to a standard having the same enzyme composition as the sample according to the formula :

Strength in IMCU/ml = Sstandard x Tstandard x Dsample

Dstandard x Tsample

Sstandard : The milk-clotting activity of the international reference

standard for rennet.

Tstandard : Clotting time in seconds obtained for the standard dilution. Dsample: Dilution factor for the sample

Dstandard : Dilution factor for the standard

Tsample: Clotting time in seconds obtained for the diluted rennet sample from addition of enzyme to time of flocculation.

For clotting activity determination the μΙΜ^ method may be used instead of the REMCAT method. As compared to REMCAT, flocculation time of chymosin vari- ants in the μΙΜθυ assay is determined by OD measurements in 96-well micro- titer plates at 800 nm in a UV/VIS plate reader. A standard curve of various dilutions of a reference standard with known clotting strength is recorded on each plate. Samples are prepared by diluting enzyme in 84 mM acetate buffer, 0.1% triton X-100, pH 5.5. Reaction at 32°C is started by adding 250 uL of a standard milk sub-strate containing 4% (w/w) low-heat, low fat milk powder and 7.5% (w/w) calcium chloride (pH ¾ 6.5) to 25 uL enzyme sample. Milk clotting activity of chymosin variants in International Milk-Clotting Units (IMCU) per ml is determined based on sample flocculation time relative to the standard curve.

Determination of total protein content

Total protein content may preferably be determined using the Pierce BCA Protein Assay Kit from Thermo Scientific following the instructions of the providers. Calculation of specific clotting activity

Specific clotting activity (IMCU/mg total protein) was determined by dividing the clotting activity (IMCU/ml) by the total protein content (mg total protein per ml).

Determination of proteolytic activity

General proteolytic activity may preferably be measured using fluorescently labelled Bodipy-FL casein as a substrate (EnzChek; Molecular Bioprobes, E6638). Casein derivatives heavily labeled with pH-insensitive green-fluorescent Bodipy- FL result in quenching of the conjugate's fluorescence. Protease catalyzed hydrolysis releases fluorescent Bodipy-FL. This method is very sensitive which was essential for this experiment as the reference has the lowest general proteolyti- cal activity of all coagulants known to date. A 0.04 mg/ml substrate solution is prepared in 0.2M phosphate buffer pH 6.5, containing lOOmM NaCI, 5% glycerol, and 0.1% Brij. Chymosin variants are dissolved in 20mM malonate buffer, containing lOOmM NaCI, 5% glycerol, and 0.1% Brij. Of both reference and chymo- sin variant solu-tions, 20μί are mixed in a black 384-well Corning flat bottom polystyrene micro-titter plate and fluorescence was continuously recorded in a fluorometer at 32C for 10 hours. Slopes of the linear part of fluorescence change are used to determine general proteolytic activity. Determination of the C/P ratio

The C/P ratio is calculated by dividing the clotting activity (C) with the proteolyt- ic activity (P).

Statistical analysis of the positional and mutational effects on specific clotting activity and C/P ratio

A statistical machine-learning approach and PCA-based analysis may preferably be used to determine the effects of single mutations present in the multi- substitution variants, i.e. specific milk clotting activity, as well as on the ratio of clotting and general proteolytic activity (C/P). Preferred embodiments of the invention

As outlined above and illustrated in the examples below, the inventors of present disclosure have made a number of preferred chymosin polypeptide variants with improved clotting activity and/or C/P ratio when compared to the corresponding parent polypeptide under comparable conditions.

In a preferred aspect, the present invention relates to an isolated chymosin polypeptide variant characterized in that:

(a) the isolated chymosin polypeptide variant has a specific clot- ting activity (IMCU/mg total protein) that is at least 110% of the specific clotting activity of its parent polypeptide and/or

(b) the isolated chymosin polypeptide variant has a C/P ratio that is at least 200% of the C/P ratio of its parent polypeptide. The parent polypeptide may have at least 80%, such as at least e.g. 80%, 85%,

95%, 97%, 98%, 99% or 100% sequence identity with the polypeptide of SEQ ID NO: 2 (camel chymosin).

The preferred isolated chymosin polypeptide variant may have a specific clotting activity (IMCU/mg total protein) of at least 110% of the specific clotting activity of parent peptide, and comprises a substitution in one or more (several) of the following positions specified in relation to the amino acid sequence of SEQ ID NO: 2 : R242, L222, D59, S273, K19, V309, S132, N249, 196, L166, H76, G251, Q280, Q56, M 157, K231, M256, N291, more specifically the substitution may be R242E, L222I, D59N, S273Y, K19T, V309I, S132A, N249D, I96L, N249E, L166V, H76Q, N249D, G251D, Q280E, Q56H, M 157L, K231N, M256L, N291Q. Optionally, the isolated chymosin polypeptide variant may further comprise substitutions that alter the glycosylation pattern, such as e.g. substitutions in one or more of positions N100, N252 and/or N291, more specifically N100Q, N252Q and/or N291Q.

The preferred variant may comprise one or more of the of the following combinations of substitutions and wherein each substitution is specified in relation to the amino acid sequence of SEQ ID NO:2:

Y11V, K19T, D59N, I96L, S164G, L166V, L222V, R242E, N249E, L253I;

Y11I, D59N, I96L, S164G, L166V, L222V, R242E, G251D, L253I;

Y11I, I96L, S164G, L222I, R242E;

Y11I, K19T, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S164G, L222I, N249D, S273Y;

K19T, D59N, H76Q, L166V, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S132A, L222I, G251D, S273Y, V309I;

Y21S, H76Q, S164G, L222I, R242E, G251D, S273Y;

D59N, S132A, S164G, L222I, R242E, N249D, G251D, S273Y;

D59N, H76Q, I96L, S132A, S164G, L166V, L222I, G251D, S273Y;

H76Q, S164G, L166V, L222I, R242E, G251D, S273Y;

D59N, H76Q, S132A, S164G, L166V, S273Y;

Y21S, D59N, H76Q, I96L, S164G, L222I, N249D, G251D, S273Y;

K19T, D59N, H76Q, S164G, R242E, N249D, G251D, S273Y;

K19T, D59N, I96L, S164G, L222I, G251D;

H76Q, L130I, L222I, S226T, G251D, S273Y;

D59N, H76Q, S164G, L222I, S226T, R242E;

Y21S, D59N, H76Q, I96L, L222I, S273Y;

H76Q, S164G, L222I, N249D, G251D, S273Y, V309I;

D59N, H76Q, S164G, L166V, L222I, N249D, G251D, S273Y, V309I;

D59N, I96L, L166V, L222I, R242E, G251D;

K19S, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

Y11V, K19T, D59N, I96L, S164G, L166V, L222I, R242E, G251D, L253I;

K19T, D59N, I96L, S164G, L166I, L222I, R242E, N249D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273;

K19T, I96L, L222I, R242E, L253I;

K19T, D59N, I96L, S164G, L222V, R242E, N249D, L253I; I96L, S164G, L222I, R242E, G251D, S274Y;

N249D, N100Q, N291Q;

R242E, N100Q, N291Q;

R242E, G251D, Q280E, N100Q, N291Q;

R242E, N252D, N100Q, N291Q;

R242E, S273D, Q280E, N100Q, N291Q;

R242E, R254E, Q280E, N100Q, N291Q;

R242E, Q280E, N100Q, N291Q;

R242E, R254E, S273D, Q280E, N100Q, N291Q;

N252D, S273D, Q280E, NIOOQ, N291Q;

G251D, S273D, Q280E, NIOOQ, N291Q;

Y243E, Q280E, NIOOQ, N291Q;

Q56H, N252Q, N291Q;

R67Q, S132A, L222I, K231N, R242E, V248I;

R67Q, I96L, L130I, M157L, K231N, R242E;

R67Q, M157L, L222I, K231N, V248I;

R67Q, I96L, M157L, L222I, K231N;

R67Q, G70D, M157L, L222I, N291Q or

R67Q, L130I, M157L, R242E, M256L, N292H.

In a related embodiment, the preferred isolated chymosin polypeptide variant of present invention has a C/P ratio of at least 200% of the C/P ratio of its parent polypeptide and comprise a substitution in one or more of the following positions specified in relation to the amino acid sequence of SEQ ID NO:2: R242, 196, H76, S164, S273, G251, Yll, L222, L166, K19, Y21, S74, Y243, N249, Q280, F282, L295, N252, R254, G70, V136, L222, K231, N291, more specifically R242E, I96L, H76Q, S164G, S273Y, G251D, Y11I, R242D, L222V, Y11V, L166I, K19T, Y21S, S74D, Y243E, N249D, S273D, Q280E, F282E, L295K, N252D, R254E, G70D, V136I, L222I, K231N, N291Q.

The preferred isolated chymosin polypeptide variant according of present invention may as well comprise one or more of the following combinations of substitutions and wherein each substitution is specified in relation to the amino acid sequence of SEQ ID NO:2:

Y11V, K19T, D59N, I96L, S164G, L166V, L222V, R242E, N249E, L253I;

Y11I, D59N, I96L, S164G, L166V, L222V, R242E, G251D, L253I; Y11I, I96L, S164G, L222I, R242E;

Y11I, K19T, D59N, I96L, S164G, L222I, R242E, N249E, G251D; H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

Y21S, H76Q, S164G, L222I, R242E, G251D, S273Y;

H76Q, S164G, L166V, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S164G, R242E, N249D, G251D, S273Y;

Y21S, D59N, H76Q, I96L, S164G, L222I, N249D, G251D, S273Y; D59N, H76Q, I96L, S132A, S164G, L166V, L222I, G251D, S273Y; H76Q, S164G, L222I, N249D, G251D, S273Y, V309I;

D59N, H76Q, I96L, L130I, S164G, L222I, R242E, G251D;

H76Q, S164G, L166V, L222I, S226T, S273Y;

D59N, H76Q, I96L, S164G, L222I, S226T, N249D, G251D, S273Y;

K19T, D59N, H76Q, L166V, L222I, R242E, G251D, S273Y;

D59N, H76Q, S164G, L222I, R242E, S273Y, V309I;

H76Q, I96L, S164G, G251D, S273Y, V309I;

D59N, H76Q, L130I, S132A, S164G, L222I, R242E, G251D, S273Y;

D59N, H76Q, I96L, S132A, S164G, L222I, S226T, G251D, S273Y;

D59N, H76Q, S132A, S164G, L166V, S273Y;

D59N, H76Q, S164G, L222I, S226T, R242E;

K19T, D59N, I96L, S164G, L222I, G251D;

D59N, H76Q, I96L, S164G, L222I, S226T, G251D, S273Y, V309I;

D59N, S132A, S164G, L222I, R242E, N249D, G251D, S273Y;

K19T, D59N, H76Q, S164G, L222I, N249D, S273Y;

K19T, D59N, S164G, L166V, L222I, S226T, G251D, S273Y;

Y21S, D59N, H76Q, S164G, L222I, S226T, G251D, S273Y, V309I;

K19T, Y21S, D59N, H76Q, S132A, S164G, L222I, G251D, S273Y;

D59N, H76Q, I96L, L130I, S164G, L222I, N249D, G251D, S273Y;

H76Q, L130I, L222I, S226T, G251D, S273Y;

D59N, H76Q, L130I, S164G, L166V, L222I, G251D, S273Y, V309I; K19T, D59N, H76Q, L130I, S164G, L222I, S226T, G251D, S273Y;

D59N, H76Q, L130I, S164G, G251D, V309I;

K19T, Y21S, D59N, H76Q, L130I, S164G, L222I, S273Y;

K19T, D59N, H76Q, S132A, L222I, G251D, S273Y, V309I;

Y21S, D59N, S164G, L222I, R242E, G251D, S273Y, V309I;

D59N, H76Q, S226T, R242E, G251D, S273Y;

Y21S, D59N, H76Q, I96L, L222I, S273Y; K19T, Y21S, H76Q, S164G, L222I, G251D, S273Y;

K19T, D59N, H76Q, I96L, S164G, L166V, L222I, G251D, S273Y;

Y21S, D59N, H76Q, L130I, S132A, S164G, L222I, G251D, S273Y;

Y21S, D59N, H76Q, S164G, L166V, N249D, G251D, S273Y;

Y11I, K19T, I96L, S164G, L222V, R242E, G251D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

H76Q, I96L, S164G, L222I, R242E, G251D;

YllV, I96L, S164G, L222I, R242E, N249D, L253I, I263L;

YllV, K19T, D59N, I96L, S164G, L166V, L222I, R242E, G251D, L253I; YllV, K19T, E83S, I96L, S164G, L166V, L222I, R242E, G251D;

K19T, D59N, I96L, S164G, L166I, L222I, R242E, N249D;

I96L, S164G, L222I, R242E, N249D, G251D, I263L;

K19T, D59N, I96L, S164G, L222V, R242E, N249D, L253I;

I96L, S164G, L222I, R242E, G251D, S274Y;

K19T, I96L, S164G, L166V, L222I, R242E, N249D, G251D, I263V;

K19T, I96L, S164G, R242E, L253I;

YllV, K19T, I96L, S164G, L166V, L222I, R242E;

D59N, I96L, S164G, L222I, R242E, L253I, I263L;

I96L, S164G, L222I, R242E, G251D;

K19S, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

K19T, D59N, I96L, S164G, L166I, L222I, R242D, G251D, I263V;

I96L, S164G, L166V, L222I, R242E, N249D, I263L;

K19T, D59N, I96L, S164G, L166V, L222I, R242D, G251D, L253I;

D59N, I96L, L166V, L222I, R242E, G251D;

K19T, D59N, I96V, S164G, L166V, L222I, R242E, I263L;

Y11I, K19T, D59N, S164G, L222I, G251D, I263V;

K19T, D59N, I96L, S164G, L222I, N249E, G251D, L253V, I263L;

YllV, E83S, I96L, S164G, L222I, R242E, G251D, L253I, I263L;

K19T, E83S, I96L, S164G, L222I, R242E, N249D, G251D, L253I;

K19T, E83S, I96L, S164G, L166V, L222I, R242E, N249D, G251D, L253I;

K19T, D59N, I96L, S164G, L222V, N249E, G251D, I263V;

YllV, D59N, I96L, S164G, L222I, G251D, L253V;

Y11I, K19T, D59N, I96V, L222I, R242D, G251D;

K19T, E83T, I96L, S164G, L222I, R242E, L253V;

K19S, I96L, S164G, L166V, L222I, R242E;

K19T, D59N, I96L, S164G, L222I, G251D; K19T, I96L, S164N, L222I, R242E, I263L;

K19T, D59N, E83T, S164G, L166V, L222I, R242D, G251D;

K19T, E83S, I96L, S164G, L222I, R242E, G251D, L253I;

Y11V, E83S, I96L, S164G, L222I, R242E, L253I, I263L;

K19T, I96L, L222I, R242E, L253I;

K19T, I96L, S164G, L166V, L222I, N249D, I263L;

K19T, D59N, I96L, S164G, L166I, G251D, L253V;

Y11V, K19T, D59N, I96L, S164N, L166I, L222I, G251D;

R242E, Q280E, N100Q, N291Q;

R242E, N252D, N100Q, N291Q;

R242E, R254E, S273D, Q280E, N100Q, N291Q;

R242E, R254E, Q280E, N100Q, N291Q;

V32L, R67Q, L130I, M157L, K231N, M256L;

R67Q, L130I, M157L, D158S, R242E, N291Q;

R67Q, V136I, M157L, L222I, V248I;

Y11V, R67Q, L130I, M157L, L222I, R242E;

R67Q, I96L, L130I, M157L, K231N, R242E;

R67Q, G70D, M157L, L222I, N291Q;

R67Q, S132A, L222I, K231N, R242E, V248I;

R67Q, L130I, L222I, R242E, M256L;

R67Q, G70D, M157L, R242E, V248I;

R67Q, M157L, L222I, K231N, V248I;

R67Q, I96L, N100Q, L130I, M157L, N292H;

I45V, L130I, M157L, K231N, R242E or

R67Q, I96L, M157L, L222I, K231N.

Preferred methods for making isolated chymosin polypeptide variants

The present invention further relates to methods for producing an isolated poly- peptide according to present disclosure.

Said preferred methods may comprise the following steps:

(a) : making an alteration at one or more positions in the DNA sequence encoding the polypeptide having at least 80% sequence identity to SEQ ID NO:2, wherein the alteration comprises a substitution, a deletion or an insertion in at least one amino acid position;

(b) : producing and isolating the variant polypeptide of step (a). The parent polypeptide may have at least 85%, 95%, 97%, 98% or at least 99% sequence identity with the polypeptide of SEQ ID NO:2 (camel chymosin).

In a further preferred embodiment, the present invention relates to a method for making an isolated chymosin polypeptide wherein the variant comprises one or more of the following substitutions, specified in relation to the amino acid sequence of SEQ ID NO:2: D59, V309, S132, N249, L166, N249, Q56, M157, M256, R242, 196, H76, S164, S273, G251, Yll, L166, K19, Y21, S74, Y243, N249, S273, Q280, F282, L295, N252, R254, Q294, G70, V136, L222, K231, N291 such as e.g. D59N, V309I, S132A, N249E, L166V, N249D, Q56H, M157L, M256L, R242E, I96L, H76Q, S164G, S273Y, G251D, Y11I, R242D, L222V, Y11V, L166I, K19T, Y21S, S74D, Y243E, N249D, S273D, Q280E, F282E, L295K, N252D, R254E, Q294E, G70D, V136I, L222I, K231N, N291Q. IN yet a further embodiment, present invention relates to a method for making an isolated chymosin polypeptide variant wherein:

(a) the variant comprises one or more of the combinations of the following substitutions and wherein each substitution is specified in relation to the amino acid sequence of SEQ ID NO:2:

Y11V, K19T, D59N, I96L, S164G, L166V, L222V, R242E, N249E, L253I;

Y11I, D59N, I96L, S164G, L166V, L222V, R242E, G251D, L253I;

Y11I, I96L, S164G, L222I, R242E;

Y11I, K19T, D59N, I96L, S164G, L222I, R242E, N249E, G251D;

H76Q, I96L, S164G, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S164G, L222I, N249D, S273Y;

K19T, D59N, H76Q, L166V, L222I, R242E, G251D, S273Y;

K19T, D59N, H76Q, S132A, L222I, G251D, S273Y, V309I;

Y21S, H76Q, S164G, L222I, R242E, G251D, S273Y;

D59N, S132A, S164G, L222I, R242E, N249D, G251D, S273Y;

D59N, H76Q, I96L, S132A, S164G, L166V, L222I, G251D, S273Y;

H76Q, S164G, L166V, L222I, R242E, G251D, S273Y;

D59N, H76Q, S132A, S164G, L166V, S273Y;

K19T, D59N, H76Q, S164G, R242E, N249D, G251D, S273Y;

Y21S, D59N, H76Q, I96L, S164G, L222I, N249D, G251D, S273Y;

K19T, D59N, I96L, S164G, L222I, G251D;

D59N, H76Q, S164G, L222I, S226T, R242E; H76Q, L130I, L222I, S226T, G251 D, S273Y;

Y21S, D59N, H76Q, I96L, L222I, S273Y;

H76Q, S 164G, L222I, N249D, G251 D, S273Y, V309I;

D59N, I96L, L166V, L222I, R242E, G251 D;

Y11V, K19T, D59N, I96L, S 164G, L166V, L222I, R242E, G251 D, L253I;

K19S, D59N, I96L, S 164G, L222I, R242E, N249E, G251D;

K19T, D59N, I96L, S 164G, L166I, L222I, R242E, N249D;

H76Q, I96L, S164G, L222I, R242E, G251 D, S273Y;

K19T, I96L, L222I, R242E, L253I;

K19T, D59N, I96L, S 164G, L222V, R242E, N249D, L253I;

I96L, S164G, L222I, R242E, G251 D, S274Y;

R242E, N252D, N 100Q, N291Q;

R242E, R254E, Q280E, N 100Q, N291Q;

R242E, Q280E, N 100Q, N291Q;

R242E, R254E, S273D, Q280E, N 100Q, N291Q;

R67Q, S132A, L222I, K231 N, R242E, V248I;

R67Q, I96L, L130I, M 157L, K231 N, R242E;

R67Q, M 157L, L222I, K231 N, V248I;

R67Q, I96L, M 157L, L222I, K231 N or

R67Q, G70D, M 157L, L222I, N291Q.

A further related aspect of present invention concerns a method for making a food or feed product comprising add ing an effective amount of the isolated chymosin polypeptide variant as described herein to the food or feed ing redient(s) and carrying our further manufacturing steps to obtain the food or feed product, in particular wherein the food or feed product is a milk-based prod uct or a food or feed prod uct comprising a chymosin polypetide of present invention .

A further related aspect of present invention relates to a chymosin polypetide variant accord ing to present invention in a process for making a milk based product such as e.g . cheese, such as e.g . pasta filata, cheddar, continental type cheeses, soft cheese or white brine cheese.

As discussed above - an isolated chymosin polypeptide variant as described herein may be used accord ing to the art - e.g . to make a milk based prod uct of interest (such as e.g . a cheese prod uct). As discussed above - an aspect of the invention relates to a method for making a food or feed product comprising add ing an effective amount of the isolated chymosin polypeptide variant as described herein to the food or feed ing redients) and carrying our further manufacturing steps to obtain the food or feed product.

Preferably, the food or feed product is a milk-based product and wherein the method comprises add ing an effective amount of the isolated chymosin polypeptide variant as described herein to milk and carrying our further manufacturing steps to obtain the milk based prod uct.

The milk may e.g . be soy milk, sheep milk, goat milk, buffalo milk, yak m ilk, lama milk, camel milk or cow milk. The milk based product may e.g . be a fermented milk prod uct such as a quark or a cheese.

As known in the art, the growth, purification, testing and hand ling may influence the performance of enzymes and hence also the enzyme of present invention . Hence the present invention relates to chymosin polypeptide variants, methods for making these and products containing these, wherein the chymosin polypeptide variant has an improved clotting activity and/or C/P ratio when compared to the correspond ing parent polypeptide under comparable cond itions and preferably after being produced and otherwise handled under comparable conditions.

EXAMPLES

EXAMPLE 1: alignment and numbering of chymosin protein sequences and variant sequences

Chymosin protein sequences were aligned using the ClustalW algorithm as provided by the EBI (EBI, tools, multiple sequence alignment, CLUSTALW", http ://www.ebi.ac. uk/Tools/msa/clustalw2/) and as described in Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, H iggins DG (2007) . Bio- informatics 23(21), 2947-2948. ClustalW2 settings for multiple sequence alignments were Protein weig ht Matrix = BLOSUM, GAP open = 10, GAP EXTENSION = 0.5, GAP DISTANCES = 8, No End Gaps, ITERATION = none, NUMITER = 1, CLUSTERING = NJ As a reference seq uence the bovine chymosin B preprochymosin was used (Gen- bank accession number P00794 - disclosed herein as SEQ ID NO : 1), where the

N-terminal Methionin has number 1 (MRCL ) and the C-terminal Isoleucin (in the protein sequence ...LAKAI) has number 381. Variants were alig ned against the bovine B pre-pro-chymosin and residues were numbered accord ing to the corresponding bovine chymosin residue.

EXAMPLE 2: Design of chymosin variants

Chymosin variants were designed using d ifferent strateg ies.

When there is referred to camel chymosin there is referred to camel chymosin comprising the polypeptide of SEQ ID NO : 2 herein .

Camel chymosin of SEQ ID NO : 2 may be seen as a herein relevant parent polypeptide having chymosin activity used to make camel chymosin variants thereof.

When there is referred to bovine chymosin there is referred to bovine chymosin comprising the polypeptide of SEQ ID NO : 1 herein .

Bovine chymosin of SEQ ID NO : 1 may be seen as a relevant parent polypeptide having chymosin activity used to make bovine chymosin variants thereof.

Variants 180 to 269 and 367 to 461 of camel chymosin were designed based on an alignment of a large set of public known aspartic protease sequences having an identity of 25% or more compared to bovine chymosin B.

Variations were generally introduced in regions with a high level of amino acid variation between species, while conserved reg ions were not changed . Amino acid substitutions were chosen based on phylogenetic, structural and experimental information to identify changes with high probability to show beneficial effects on specific clotting activity and the C/P ratio. M ultiple variations were introduced in each variant construct, ensuring that each single mutation was present in multi- pie variant constructs to minimize the effect of covariation between various substitutions. Machine learning and statistical analysis of experimental data were used to determine the relative contributions of the amino acid substitutions to measured coagulant performance of the chymosin variants (references 14, 15).

Variants 271 to 366 were designed based on detailed structural analysis of bo- vine chymosin (PDB code: 4AA8) and camel chymosin (PDB code: 4AA9). Variations were chosen based on the chemical nature of the respective amino acid side chains and their expected impact on either casein substrate binding or general enzyme properties. Most of the amino acid substitutions in variants 271 to 346 were made in sequence positions either within or in close structural proximi- ty to the substrate binding cleft, or in secondary structural elements that get into contact with the bound casein substrate. Furthermore, changes were made in positions on the protein surface that alter the charge profile of these regions (reference 5) and are therefore expected to have an impact on enzyme performance. Variants 347 to 366 were made based on the different structural confor- mation of the N-terminal sequence in bovine and camel chymosin. Amino acid substitutions were made in positions within the substrate binding cleft that interact with the N-terminus in camel chymosin.

EXAMPLE 3 : Preparation of chymosin variant enzyme material

All chymosin variants were synthesized as synthetic genes and cloned into a fungal expression vector such as e.g . pGAMpR-C (described in WO02/36752A2)

The vectors were transformed into E. coli and plasmid DNA was purified using standard molecular biology protocols, known to the person skilled in the art. The variant plasmids were individually transformed into an Aspergillus niger or

Aspergillus nidulans strain and protein was produced essentially as described in WO02/36752A2 and purified using standard chromatography techniques. For enzyme library screening, all chymosin variants were produced in 20-60mL fermentations. For more detailed characterization of variants 433, 436, 453, and 457, the respective enzymes were fermented again in 70L scale.

As known in the art - the skilled person may, based on his common general knowledge, produce and purify chymosin and chymosin variants - such as herein described bovine and camel chymosin variants. EXAMPLE 4: Determination of specific chvmosin activity

4.1 Determination of milk clotting activity

Milk clotting activity was determined using the REMCAT method, which is the standard method developed by the International Dairy Federation (IDF method). Milk clotting activity is determined from the time needed for a visible flocculation of a standard milk substrate prepared from a low-heat, low fat milk powder with a calcium chloride solution of 0.5 g per liter (pH ¾ 6.5). The clotting time of a rennet sample is compared to that of a reference standard having known milk- clotting activity and having the same enzyme composition by IDF Standard HOB as the sample. Samples and reference standards were measured under identical chemical and physical conditions. Variant samples were adjusted to approximately 3 IMCU/ml using an 84 mM acetic acid buffer pH 5.5. Hereafter, 20 μΙ enzyme preparation was added to 1 ml preheated milk (32°C) in a glass test tube placed in a water bath, capable of maintaining a constant temperature of 32°C ± 1°C under constant stirring .

The total milk-clotting activity (strength) of a rennet was calculated in International Milk-Clotting Units (IMCU) per ml relative to a standard having the same enzyme composition as the sample according to the formula :

Strength in IMCU/ml = Sstandard x Tstandard x Dsample

Dstandard x Tsample

Sstandard : The milk-clotting activity of the international reference standard for rennet.

Tstandard : Clotting time in seconds obtained for the standard dilution.

Dsample: Dilution factor for the sample

Dstandard : Dilution factor for the standard

Tsample: Clotting time in seconds obtained for the diluted rennet sample from addition of enzyme to time of flocculation. For clotting activity determination of libraries 1 and 3 variants as well as variants by structural design, the μΙΜ^ method was used instead of the REMCAT method. As compared to REMCAT, flocculation time of chymosin variants in the μΙΜ^ assay was determined by OD measurements in 96-well microtiter plates at 800 nm in a UV/VIS plate reader. A standard curve of various dilutions of a reference standard with known clotting strength was recorded on each plate. Samples were prepared by diluting enzyme in 84 mM acetate buffer, 0.1% triton X-100, pH 5.5. Reaction at 32°C was started by adding 250 uL of a standard milk substrate containing 4% (w/w) low-heat, low fat milk powder and 7.5% (w/w) calcium chloride (pH ¾ 6.5) to 25 uL enzyme sample. Milk clotting activity of chymosin variants in International Milk-Clotting Units (IMCU) per ml was determined based on sample flocculation time relative to the standard curve.

4.2 Determination of total protein content

Total protein content was determined using the Pierce BCA Protein Assay Kit from Thermo Scientific following the instructions of the providers.

4.3 Calculation of specific clotting activity

Specific clotting activity (IMCU/mg total protein) was determined by dividing the clotting activity (IMCU/ml) by the total protein content (mg total protein per ml). EXAMPLE 5 Determination of proteolytic activity

General proteolytic activity was measured using fluoresecently labelled Bodipy- FL casein as a substrate (EnzChek; Molecular Bioprobes, E6638). Casein derivatives heavily labeled with pH-insensitive green-fluorescent Bodipy-FL result in quenching of the conjugate's fluorescence. Protease catalyzed hydrolysis releas- es fluorescent Bodipy-FL. This method is very sensitive which was essential for this experiment as CHYMAX M has the lowest general proteolytical activity of all coagulants known to date.

A 0.04 mg/ml substrate solution was prepared in 0.2M phosphate buffer pH 6.5, containing lOOmM NaCI, 5% glycerol, and 0.1% Brij. Chymosin variants were solved in 20mM malonate buffer, containing lOOmM NaCI, 5% glycerol, and

0.1% Brij. Of both substrate and chymosin variant solutions, 20μί were mixed in a black 384-well Corning flat bottom polystyrene microtitter plate and fluorescence was continuously recorded in a fluorometer at 32C for 10 hours. Slopes of the linear part of fluorescence change were used to determine general proteolyt- ic activity.

EXAMPLE 6 Statistical analysis of the positional and mutational effects on specific clotting activity and C/P ratio

A statistical machine-learning approach and PCA-based analysis was used to de- termine the effects of all single mutations present in the variants of multi- substitution libraries 1 to 3 on cleavage of κ-casein between positions Phel05 and Metl06, i.e. specific milk clotting activity, as well as on the ratio of clotting and general proteolytic activity (C/P).

Results

Multi-substitution library 1

Variants of camel chymosin, each having multiple substitutions compared to wild type, were generated and analyzed as described above. All variants have an amino acid sequence identical to camel chymosin (SEQ ID NO: 2), except for the variations mentioned in the table. Camel chymosin (CHY-MAX M) is included as reference.

Clotting activities were determined using the μΙΝ^υ method.

Table 1: Enzymatic activities of camel chymosin variants 180-222. Numbers are given in % cleavage of wild type camel chymosin (CHY-MAX M).

In table 1 are shown camel chymosin variants with data on specific clotting activity (C), unspecific proteolytic activity (P) as well as the C/P ratio. Out of 43 variants 17 reveal between 10% and 50% increased specific clotting activity compared to wild type camel chymosin (CHY-MAX M). All variants have signifi- cantly increased C/P ratios, with the best one, 190, showing a ca. 15x improvement compared to wild type camel chymosin.

Mutational analysis of multi-substitution library 1

A statistical analysis of the positional and mutational effects on specific clotting activity (C) and the C/P ratio was performed based on the proteolytic data of library 1. The most beneficial mutations for increased specific clotting and C/P are shown in tables 2 and 3, respectively. Table 2: Mutational contributions (mean) to increased specific clotting activity and standard deviations (sd) based on statistical analysis.

mutation mean sd

R242E 1.98E-01 2.47E-02

L222I 1.09E-01 3.35E-02

D59N 6.06E-02 3.12E-02

S273Y 6.06E-02 3.47E-02

K19T 5.13E-02 2.65E-02

V309I 4.37E-02 2.92E-02

S132A 4.18E-02 2.46E-02

N249D 3.85E-02 2.54E-02

I96L 3.38E-02 2.59E-02

Based on the results shown in table 2 it is concluded that mutations K19T, D59N, I96L, S132A, L222I, R242E, N249D, S273Y, and V309I increase the specific clotting activity of chymosin. It can consequently be expected that these mutations enable a lower dosing of chymosin in cheese manufacturing.

Table 3: Mutational contributions (mean) to increased C/P ratio and standard deviations (sd) based on statistical analysis.

mutation mean sd

R242E 2.12E-01 2.82E-02

I96L 1.20E-01 2.81E-02

H76Q 9.10E-02 2.16E-02

S164G 8.59E-02 2.19E-02

S273Y 7.77E-02 2.01E-02

G251D 3.59E-02 1.99E-02

Based on the results shown in table 3 it is concluded that mutations H76Q, I96L, S164G, R242E, G251D, and S273Y increase the C/P ratio of chymosin. It can consequently be expected that these mutations result in increased yields during cheese manufacturing using the respective chymosin variants.

Multi-substitution library 2

Another set of camel chymosin variants, each having multiple substitutions compared to wild type, were generated and analyzed as described above. All variants have an amino acid sequence identical to camel chymosin (SEQ ID NO: 2), except for the variations mentioned in the table. Camel chymosin (CHY-MAX M) is included as reference.

Clotting activities were determined using the REMCAT method.

Table 4: Enzymatic activities of camel chymosin variants 223-269. Numbers are given in % cleavage of wild type camel chymosin (CHY-MAX M).

variant mutations Clotting (C) Proteolytic (P) C/P

CHY-MAX M 100 100 100

223 K19T D59N I96L S164G L222I G251D 89 37 242

22 4 Ylll K19T D59N 196V L222I R242D G251D 82 31 262

225 K19S D59N 196V S164G G251D 72 40 182

226 K19S I96L S164G L166V L222I R242E 91 38 242

227 K19T D59N I96L S164G L166V L222I R242D G251D L253I 92 24 378

228 D59N I96L S164G L222I R242E L253I I263L 108 23 467

229 K19T D59N E83T I96L L222I G251D I263L 99 106 93

230 Ylll K19T D59N S164G L222I G251D 1263V 54 16 343

231 K19T D59N I96L S164G L166I G251D L253V 63 30 206

232 K19T 196V S164G L222I N249D G251D L253I 56 29 193

233 K19T I96L L222I R242E L253I 125 57 220

23 4 K19T E83S I96L S164G L222I R242E G251D L253I 83 35 235

235 D59N E83T I96L S164N L222V G251D 42 53 80

236 K19S D59N I96L S164G L222I R242E N249E G251D 130 28 459

237 K19T I96L S164G L166V L222I N249D I263L 65 30 217

238 D59N I96L L166V L222I R242E G251D 178 51 347

239 K19T D59N E83T S164G L166V L222I R242D G251D 101 43 235

2 4 0 Ylll K19T D59N E83S I96L S164G L222I N249D 53 60 87

241 K19T E83T I96L S164G L222I R242E L253V 97 37 261

242 K19T D59N I96L S164G L166I L222I R242E N249D 129 21 623

243 Y11V K19T D59N I96L S164G L166V L222I R242E G251D L253I 130 17 759

244 K19T I96L S164N L222I R242E I263L 51 22 236

245 Y11V D59N I96L S164G L222I G251D L253V 63 24 265

246 K19T D59N 196V S164G L166V L222I R242E I263L 98 28 347

247 Y11V K19T D59N I96L S164N L166I L222I G251D 32 16 202

248 K19T I96L S164G L166V L222I R242E N249D G251D 1263V 105 19 566

249 K19T I96L S164G R242E L253I 73 14 516

250 K19S D59N E83S I96L S164N L222I G251D 47 64 74

251 K19T D59N I96L S164G L222V N249E G251D 1263V 79 27 293

252 K19T D59N I96L S164G L222I N249E G251D L253V I263L 69 21 332

253 Ylll K19T I96L S164G L222V R242E G251D 58 2 3265

254 I96L S164G L222I R242E N249D G251D I263L 82 14 601

255 K19T D59N I96L S164G L166I L222I R242D G251D 1263V 108 25 427

256 K19T D59N I96L S164G L222V R242E N249D L253I 111 19 574

257 H76Q I96L S164G L222I R242E G251D S273Y 128 8 1597

258 K19T E83S I96L S164G L222I R242E N249D G251D L253I 95 30 315

259 I96L S164G L166V L222I R242E N249D I263L 104 26 405

260 Y11V K19T E83S I96L S164G L166V L222I R242E G251D 97 14 676

261 Y11V K19T I96L S164G L166V L222I R242E 94 19 491

262 Y11V E83S I96L S164G L222I R242E G251D L253I I263L 61 18 332

263 Y11V I96L S164G L222I R242E N249D L253I I263L 67 7 961

264 K19T I96L S164G L166V L222I R242E N249D I263L 75 50 149

265 Y11V E83S I96L S164G L222I R242E L253I I263L 62 28 222

266 K19T E83S I96L S164G L166V L222I R242E N249D G251D L253I 97 32 302

267 I96L S164G L222I R242E G251D S274Y 110 19 569

268 H76Q I96L S164G L222I R242E G251D 102 10 1054

269 I96L S164G L222I R242E G251D 101 22 465

In table 4 are shown camel chymosin variants with data on specific clotting activity (C), unspecific proteolytic activity (P) as well as the C/P ratio. Out of 47 variants, 8 reveal between 10% and 78% increased specific clotting activity compared to wild type camel chymosin (CHY-MAX M). While 43 variants have significantly increased C/P ratios, the best one, 253, shows a ca. 33x improvement compared to wild type camel chymosin.

Mutational analysis of multi-substitution library 2

A statistical analysis of the positional and mutational effects on specific clotting activity (C) and the C/P ratio was performed based on the proteolytic data of library 2. The most beneficial mutations for increased specific clotting and C/P are shown in tables 5 and 6, respectively. Table 5: Mutational contributions (mean) to increased specific clotting activity and standard deviations (sd) based on statistical analysis.

mutation mean sd

R242E 4.00E-01 3.19E-02

D59N 2.94E-01 2.26E-02

N249E 1.47E-01 3.22E-02

L166V 1.27E-01 2.70E-02

S273Y 1.23E-01 2.94E-02

L222I 1.07E-01 3.53E-02

H76Q 5.93E-02 2.94E-02

N249D 4.26E-02 2.38E-02

Based on the results shown in table 5 it is concluded that mutations D59N, H76Q, L166V, L222I, R242E, N249D, N249E, and S273Y increase the specific clotting activity of chymosin. It can consequently be expected that these mutations enable a lower dosing of chymosin in cheese manufacturing.

Table 6: Mutational contributions (mean) to increased C/P ratio and standard deviations (sd) based on statistical analysis.

mutation mean sd

R242E 4.13E-01 2.20E-02

H76Q 2.50E-01 3.24E-02

Ylll 2.49E-01 6.43E-02

S164G 2.27E-01 2.07E-02

G251D 2.10E-01 2.65E-02

R242D 1.85E-01 2.69E-02

L222V 1.75E-01 4.53E-02

YllV 1.75E-01 2.83E-02

S273Y 8.29E-02 3.35E-02

L166I 7.64E-02 2.91E-02

I96L 3.85E-02 2.59E-02

K19T 3.85E-02 2.43E-02 Based on the results shown in table 6 it is concluded that mutations Ylll, YllV, K19T, H76Q, I96L, S164G, L166I, L222V, R242D, R242E, G251D, and S273Y increase the C/P ratio of chymosin. It can consequently be expected that these mutations result in increased yields during cheese manufacturing using the respective chymosin variants.

Structure-based variations in camel chymosin

Variants of camel chymosin (SEQ ID NO: 2) were made with amino acid changes in positions determined by protein structural analysis (Tab. 7). Mutations N 100Q and N291Q were introduced into both N-glycosylation sites of these variants and the reference camel chymosin (CamUGly) to yield non-glycosylated, homogeneous protein samples.

Clotting activities were determined using the μΙΝ^υ method. Table 7: Enzymatic activities of camel chymosin variants 271 -308. Numbers are given in % cleavage of non-glycosylated camel chymosin (CamUGly).

Table 7 CamBov

variant mutations Clotting (C) Proteolytic (P) C/P

CamUGly N 100Q N291Q 100 100 100

271 V221K N 100Q N291Q 47 61 77

272 D290E N 100Q N291Q 92 100 92

273 V136I N 100Q N291Q 80 90 89

274 E240Q N 100Q N291Q 84 144 58

276 G289S N 100Q N291Q 93 107 86

277 N292H N 100Q N291Q 95 93 100

278 L295K N 100Q N291Q 102 70 146

279 V136E N 100Q N291Q 102 102 100

280 D290L N 100Q N291Q 44 198 22

281 F119Y N 100Q N291Q 8 45 18

282 Q280E N 100Q N291Q 79 72 110

283 F282E N 100Q N291Q 93 80 116

284 N249D N 100Q N291Q 118 84 140

285 R254S N 100Q N291Q 47 94 50

286 R242E N 100Q N291Q 114 67 170

288 V203R N 100Q N291Q 99 113 88

289 N249R N 100Q N291Q 76 108 70

290 H56K N 100Q N291Q 99 133 74

291 S74D N 100Q N291Q 94 87 108

292 A131D N 100Q N291Q 17 39 44

293 Y190A N 100Q N291Q 3 33 9

294 I297A N 100Q N291Q 26 37 70

302 Y21S N 100Q N291Q 97 87 111

303 L130I N 100Q N291Q 77 82 95

306 G251D N 100Q N291Q 100 81 123

307 Y243E N 100Q N291Q 86 58 149

308 S273D N 100Q N291Q 102 98 104

Based on the results shown in table 7 it is concluded that mutations Y21S, S74D, R242E, Y243E, N249D, G251D, S273D, Q280E, F282E, and L295K increase the C/P ratio of chymosin. Mutations R242E and N249D also result in increased specific clotting activity. Seven out of ten variants with increased C/P ratios shown in table 7 bear mutations (R242E, N249D, G251D, Y243E, S273D, Q280E, F282E) in a distinct region on the protein surface that is located in proximity to the binding cleft as seen in figure 2. This region has been suggested to support binding of the κ-casein substrate by interacting with its posi- tively charged sequence Arg96 to Hisl02 (references 5, 16-18) in positions P10 to P4 (reference 10). The negative charges introduced with the mutations may strengthen these interactions, resulting in increased specificity for κ-casein (C/P). The results show that single amino acid substitutions in this region can increase C/P significantly.

Negative charge combinations in camel chymosin

More variants of camel chymosin (SEQ ID NO: 2) were made with combinations of mutations that introduce negative charges into the surface region described above (R242E, Y243E, G251D, N252D, R254E, S273D, Q280E). Mutations N100Q and N291Q were introduced into both N-glycosylation sites of these variants and the reference camel chymosin (CamUGIy) to yield non-glycosylated, homogeneous protein samples (Tab. 8). Clotting activities were determined using the μΙΜ^ method.

Table 8: Enzymatic activities of camel chymosin variants 309-323. Numbers are given in % cleavage of non-glycosylated camel chymosin (CamUGIy).

variant mutations Clotting (C) Proteolytic (P) C/P

CamUGIy N100Q N291Q 100 100 100

309 R242E Q280E N100Q N291Q 133 59 225

310 R242E N252D N100Q N291Q 136 63 216

311 N252D Q280E N100Q N291Q 108 96 112

312 Y243E Q280E N100Q N291Q 112 71 158

313 Y243E N252D N100Q N291Q 91 77 117

314 R254E Q280E N100Q N291Q 106 84 127

315 S273D Q280E N100Q N291Q 77 51 150

316 R242E G251D N100Q N291Q 107 72 148

317 R242E G251D Q280E N100Q N291Q 138 84 164

318 R242E S273D Q280E N100Q N291Q 136 98 139

319 N252D S273D Q280E N100Q N291Q 115 67 171

320 G251D S273D Q280E N100Q N291Q 114 64 176

321 R242E R254E Q280E N100Q N291Q 134 66 202

322 R242E R254E S273D Q280E N100Q N291Q 126 60 211

323 Y243E R254E S273D N100Q N291Q 103 71 144

All variants shown in table 8 reveal increased C/P ratios compared to non- glycosylated camel chymosin. Several of these variants (309, 310, 321, 322, 323) had even higher C/P than the best variant with single negative charge mutation (286). It is concluded that the C/P-increasing effect, caused by introducing negative charges into the P10-P4 interacting region on the chymosin structure, can be further enhanced by combinations of the respective mutations.

Structure-based variations in bovine chymosin

Variants of bovine chymosin (SEQ ID NO: l) were made with amino acid changes in positions determined by protein structural analysis (Tab. 9). Mutations N252Q and N291Q were introduced into both N-glycosylation sites of these variants and the reference bovine chymosin (BovUGly) to yield non-glycosylated, homogeneous protein samples.

Clotting activities were determined using the μΙΜθυ method.

Table 9: Enzymatic activities of bovine chymosin variants 325-346. Numbers are given in % cleavage of non-glycosylated bovine chymosin (BovUGly). variant mutations Clotting (C) Proteolytic (P) C/P

BovUGly N252Q N291Q 100 100 100

325 V223F N252Q N291Q 54 130 41

327 A117S N252Q N291Q 75 76 96

329 Q242R N252Q N291Q 76 166 45

330 Q278K N252Q N291Q 94 112 83

332 H292N N252Q N291Q 96 71 133

333 Q294E N252Q N291Q 99 79 123

334 K295L N252Q N291Q 106 182 58

335 D249N N252Q N291Q 89 129 68

337 G244D N252Q N291Q 100 106 93

338 Q56H N252Q N291Q 110 140 77

339 L32I N252Q N291Q 86 124 69

340 K71E N252Q N291Q 44 50 86

341 P72T N252Q N291Q 103 172 59

342 Q83T N252Q N291Q 92 103 88

343 V113F N252Q N291Q 42 44 95

344 E133S N252Q N291Q 93 199 46

345 Y134G N252Q N291Q 106 115 91

346 K71A N252Q N291Q 79 131 60

The data in table 9 demonstrates that variations Q56H, Y134G, and K295L lead to increased specific clotting activity and variations H292N and Q294E result in enhanced C/P ratios. Both H292 and Q294 are located in a loop partially covering the substrate binding cleft (Fig. 3), which explains the observed impact of the respective mutations in these positions on casein substrate specificity (C/P). Notably, while substitutions H292N increased C/P and D249N as well as K295L decreased C/P of bovine chymosin, inverse effects on C/P were observed by the respective reverse mutations N292H, N249D, and L295K in camel chymosin (Tab. 7). This demonstrates that these amino acid changes exert similar effects on chymosin specificity across species.

Variations of the camel chymosin N-terminus

Variants of camel chymosin (SEQ ID NO: 2) were made with amino acid changes in positions determined by protein structural analysis of the molecular interactions of the N-terminal sequence Y11-D13 within the substrate binding cleft (Tab. 10). Mutations N100Q and N291Q were introduced into both N- glycosylation sites of these variants and the reference camel chymosin (CamUG- ly) to yield non-glycosylated, homogeneous protein samples.

Clotting activities were determined using the μΙΝ^υ method.

Table 10: Enzymatic activities of camel chymosin variants 347-366. Numbers are given in % cleavage of non-glycosylated camel chymosin (CamUGly).

variant mutations Clotting (C) Proteolytic (P) C/P

CamUGly N100Q N291Q 100 100 100

347 Y11H N100Q N291Q 76 131 58

348 Y11K N100Q N291Q 63 82 76

349 Y11 N100Q N291Q 55 277 20

350 Y11H D290E N100Q N291Q 74 105 71

351 Y11R D290E N100Q N291Q 62 101 62

352 Y11F N100Q N291Q 91 146 62

353 Ylll N100Q N291Q 96 83 116

354 Y11L N100Q N291Q 79 108 74

355 Y11V N100Q N291Q 101 64 157

356 L12F N100Q N291Q 96 147 66

357 L12I N100Q N291Q 83 91 91

359 D13N N100Q N291Q 88 131 67

360 D13Q N100Q N291Q 100 169 59

361 D13S N100Q N291Q 88 164 54

362 D13T N100Q N291Q 62 89 70

363 D13F N100Q N291Q 73 155 48

364 D13L N100Q N291Q 82 196 42

365 D13V N100Q N291Q 49 86 57

366 D13Y N100Q N291Q 74 99 75 Analysis of the camel chymosin structure guided variations in the N-terminal sequence Y11-D13 as well as in position D290, a potential interaction partner of Yl l (fig . 4). Since casein substrates compete with the N-terminal chymosin sequence for binding within the binding cleft, amino acid substitutions that change interactions between binding cleft and the motif Y11-D13 are expected to impact enzymatic activity toward various casein substrates and, thus, the C/P ratio. The results of the respective variants 347-366 show strong variation of both specific clotting activity and C/P. Notably, variants 353 and 355 reveal increased C/P ratios. It is therefore concluded that amino acid substitutions Y11I and Y11V re- suit in increased C/P ratios. Since the chymosin binding cleft consists mainly of hydrophobic amino acids (reference 9), both mutations might enhance binding of the N-term in the binding cleft by improved hydrophobic interactions and, thus, inhibit non-specific binding and hydrolysis of caseins (P). Multi-substitution library 3

Another set of camel chymosin variants, each having multiple substitutions compared to wild type, were generated and analyzed as described above. All variants have an amino acid sequence identical to camel chymosin (SEQ ID NO: 2), except for the variations mentioned in the table. Camel chymosin (CHY-MAX M) is in- eluded as reference.

Clotting activities were determined using the μΙΙ^υ method.

Table 11: Enzymatic activities of camel chymosin variants 367-416. Numbers are given in % cleavage of wild type camel chymosin (CHY-MAX M).

variant mutations Clotting (C) Proteolytic (P) C/P

CHY-MAX M 100 100 100

367 R67Q N100Q L130I M157L V248I N291Q 46 64 72

368 N100Q L130I S132A M157L K231N 87 104 83

369 R67Q I96L L130I M157L L222I M256L 49 56 88

370 R67Q L130I S132A M157L R242E V248I 23 32 70

371 R67Q N100Q M157L R242E M256L 100 62 162

372 R67Q G70D M157L R242E V248I 89 32 276

373 V32L R67Q M157L L222I R242E 64 63 102

374 Y11V R67Q M157L V248I M256L 71 45 158

375 R67Q V136I M157L L222I V248I 88 20 449

376 L130I M157L V248I M256L N291Q 90 80 112

377 R67Q I96L L130I M157L K231N R242E 124 37 339

378 V32L R67Q L130I M157L L222I K231N 52 103 51

379 L130I V136I M157L L222I N292H 55 47 118

380 R67Q G70D M157L L222I N291Q 117 34 339

381 V32L R67Q L130I K231N N292H 58 66 87

382 Y11V R67Q N100Q L130I V136I M157L 60 55 109

383 R67Q L130I L222I R242E M256L 78 27 290

384 R67Q M157L L222I V248I N292H 83 97 86

385 V32L R67Q M157L M256L N291Q 85 143 60

386 R67Q L130I S132A M157L L222I N292H 78 133 58

387 R67Q N100Q L130I M157L K231N N291Q 59 70 84

388 R67Q L130I K231N V248I N291Q 91 87 105

389 Y11V R67Q L130I M157L L222I K231N 63 47 134

390 145V L130I M157L K231N R242E 108 43 253

391 V32L R67Q V136I M157L N291Q 104 84 124

392 R67Q N100Q L130I D158S V248I 70 67 105

393 145V R67Q L130I M157L L222I K231N 79 54 147

394 V32L R67Q L130I S132A M157L V248I 74 130 57

395 Y11V R67Q L130I M157L N291Q N292H 74 83 90

396 R67Q N100Q L130I M157L L222I K231N 60 81 74

397 145V R67Q G70D L130I S132A 68 75 90

398 145V R67Q L130I V248I N292H 53 81 66

399 Y11V R67Q L130I M157L L222I R242E 106 28 373

400 R67Q N100Q D158S L130I M157L L222I 57 58 98

401 R67Q L130I V136I M157L K231N V248I 71 79 89

402 145V R67Q L130I L222I N291Q 91 89 103

403 R67Q G70D L130I M157L K231N M256L 89 53 167

404 V32L R67Q L130I M157L D158S V248I 58 82 71

405 R67Q L130I M157L D158S R242E N291Q 92 16 556

406 R67Q L130I M157L D158S K231N N292H 53 74 72

407 R67Q L130I V248I M256L N292H 58 107 55

408 V32L R67Q I96L L130I M157L V248I 35 76 46

409 R67Q I96L N100Q L130I M157L N292H 96 36 263

410 V32L R67Q G70D N100Q M157L 68 66 104

411 V32L R67Q L130I M157L K231N M256L 102 18 574

412 R67Q I96L M157L L222I K231N 120 55 220

413 R67Q M157L L222I K231N V248I 124 46 268

414 R67Q L130I M157L R242E M256L N292H 115 59 196

415 R67Q L222I K231N V248I 82 67 123

416 R67Q S132A L222I K231N R242E V248I 129 42 306 In table 11 are shown camel chymosin variants with data on specific clotting activity (C), unspecific proteolytic activity (P) as well as the C/P ratio. Out of 50 variants 6 reveal between 10% and 29% increased specific clotting activity compared to wild type camel chymosin (CHY-MAX M). While 23 variants have more than 10% increased C/P ratios, the best one, 411, shows a ca. 6x improvement compared to wild type camel chymosin (CHY-MAX M).

Mutational analysis of multi-substitution library 3

A statistical analysis of the positional and mutational effects on clotting activity (C) and the C/P ratio was performed based on the proteolytic data of library 3. The most beneficial mutations for increased clotting and C/P are shown in tables 12 and 13, respectively.

Table 12: Mutational contributions (mean) to increased clotting activity and standard deviations (sd) based on statistical analysis.

mutation mean sd

242E 4.63E-01 4.21E-02

I96L 2.31E-01 4.82E-02

N291Q 1.67E-01 3.97E-02

K231N 1.34E-01 3.52E-02

M256L 1.28E-01 4.44E-02

S132A 1.04E-01 3.35E-02

M157L 7.99E-02 3.49E-02

Based on the results shown in table 12 it is concluded that mutations I96L, S132A, M157L, K231N, R242E, M256L, and N291Q increase the specific clotting activity of chymosin. It can consequently be expected that these mutations enable a lower dosing of chymosin in cheese manufacturing.

Table 13: Mutational contributions (mean) to increased C/P ratio and standard deviations (sd) based on statistical analysis.

mutation mean sd

242E 6.66E-01 4.23E-02

G70D 3.32E-01 5.72E-02

YllV 2.06E-01 3.61E-02

K231N 1.45E-01 2.92E-02

L222I 1.09E-01 3.71E-02

V136I 1.02E-01 4.53E-02

I96L 9.84E-02 6.02E-02

N291Q 4.78E-02 4.20E-02

Based on the results shown in table 13 it is concluded that mutations YllV, G70D, I96L, V136I, L222I, K231N, R242E, and N291Q increase the C/P ratio of chymosin . It can consequently be expected that these mutations result in increased yields during cheese manufacturing using the respective chymosin variants. Multi-substitution library 4

Another set of camel chymosin variants, each having multiple substitutions compared to wild type, were generated and analyzed as described above. All variants have an amino acid seq uence identical to camel chymosin (SEQ ID NO : 2), except for the variations mentioned in the table. Camel chymosin (CHY-MAX M) is in- eluded as reference.

Clotting activities were determined using the REMCAT method .

Table 14: Enzymatic activities of camel chymosin variants 417-461. Numbers are given in % cleavage of wild type camel chymosin (CHY-MAX M).

variant mutations Clotting (C) Proteolytic (P) C/P

CHY-MAX M 100 100 100

417 Y11V K19T D59N S164G L166V L222I R242E N249E G251D 132 20 651

418 Y11V K19T D59N I96L S164G L166I L222I R242E N249E G251D 114 21 556

419 Ylll K19T D59N I96L S164G L166V L222I R242E N249E G251D 108 20 554

420 Ylll K19T D59N I96L S164G L166I L222I R242E G251D 98 11 898

421 Y11V K19T D59N I96L L166V L222V R242E N249E G251D L253I 132 84 156

422 Y11V K19T D59N I96L S164G L166V R242E 105 13 802

423 Y11V K19T D59N I96L S164G L222V R242E G251D 89 8 1131

424 Y11V K19T D59N I96L S164G L166I R242E N249E G251D L253I 93 8 1111

425 Y11V K19T D59N I96L S164G L166V L222V R242E N249E G251D 105 18 572

426 Y11V K19T D59N I96L S164G L166I L222V R242E N249E G251D L253I 93 18 512

427 Y11V K19T D59N L166V L222I R242E N249E G251D L253I 137 42 323

428 Y11V K19T D59N I96L S164G L166V L222I R242E N249E 120 15 803

429 Y11V K19T D59N S164G L166I L222I R242E G251D 107 17 630

430 Y11V K19T D59N I96L S164G R242E G251D 89 11 801

431 Y11V D59N I96L S164G L166I L222V R242E G251D L253I 79 28 283

432 Y11V D59N I96L S164G L166I L222I R242E G251D 102 24 432

433 Ylll D59N I96L S164G L166V L222V R242E G251D L253I 97 25 392

434 Y11V K19T D59N I96L S164G L222I R242E N249E G251D 99 33 301

435 Y11V K19T D59N I96L S164G L166I L222V R242E G251D 88 17 514

436 Y11V K19T D59N I96L S164G L166V L222V R242E N249E L253I 95 10 949

437 Y11V K19T D59N I96L S164G L166I L222V R242E N249E G251D 114 22 520

438 Ylll K19T I96L S164G L166V R242E N249E G251D 93 7 1262

439 Y11V K19T D59N I96L S164G L166V L222V R242E G251D 108 26 423

440 Y11V K19T D59N I96L S164G L222V R242E N249E G251D 105 9 1196

441 Ylll K19T L222V R242E N249E G251D 122 26 469

442 Y11V K19T I96L L222V R242E N249E G251D 105 21 503

443 Ylll K19T D59N I96L S164G L166V L222V R242E N249E G251D 105 18 595

444 Y11V K19T I96L S164G L166V L222V R242E N249E G251D 96 8 1242

445 Ylll K19T D59N I96L S164G L166I L222V R242E N249E G251D 82 12 707

446 Ylll I96L S164G L166V L222V R242E N249E G251D 95 16 579

447 Ylll K19T D59N I96L S164G L222V R242E N249E 90 11 790

448 Ylll K19T D59N I96L L222V R242E N249E G251D 153 40 381

449 Ylll K19T D59N I96L S164G L222I R242E 89 16 564

450 Ylll K19T D59N I96L S164G L166V R242E G251D 88 5 1686

451 Ylll K19T D59N S164G L166I L222V R242E G251D 93 21 440

452 Ylll I96L L222V R242E N249E G251D 122 22 566

453 Ylll I96L S164G L222I R242E 74 5 1375

454 Y11V K19T I96L L166V L222V R242E G251D 119 52 228

455 Ylll D59N I96L S164G L222I R242E G251D 105 9 1139

456 Ylll D59N I96L S164G L222V R242E N249E G251D 95 15 615

457 Ylll K19T D59N I96L S164G L222I R242E N249E G251D 101 7 1419

458 Ylll D59N I96L S164G L166V L222V R242E G251D 89 16 572

459 Y11V K19T D59N I96L L222V R242E G251D 143 62 230

460 Ylll K19T S164G L166I L222V R242E N249E G251D 80 13 625

461 Ylll D59N I96L S164G L166V L222V R242E N249E G251D 96 35 273

In table 14 are shown camel chymosin variants with data on specific clotting activity (C), unspecific proteolytic activity (P) as well as the C/P ratio. Out of 45 variants 11 reveal between 14% and 53% increased specific clotting activity compared to wild type camel chymosin (CHY-MAX M). While all 45 variants have more than 10% increased C/P ratios, the best one, 450, shows a ca. 17x improvement compared to wild type camel chymosin (CHY-MAX M). Mutational analysis of multi-substitution library 4

A statistical analysis of the positional and mutational effects on clotting activity (C) and the C/P ratio was performed based on the proteolytic data of library 4. The most beneficial mutations for increased clotting and C/P are shown in tables 15 and 16, respectively.

Table 15: Mutational contributions (mean) to increased clotting activity and standard deviations (sd) based on statistical analysis.

mutation mean sd

D59N 3.99E-01 3.48E-02

L222I 2.05E-01 2.64E-02

L166V 1.92E-01 2.39E-02

N249E 1.45E-01 1.88E-02

G251D 9.79E-02 2.29E-02

YllV 8.54E-02 1.56E-02

242E 5.14E-02 2.06E-02 Based on the results shown in table 15 it is concluded that mutations Yl lV, D59N, L166V, L222I, R242E, N249E, and G251D increase the specific clotting activity of chymosin . It can consequently be expected that these mutations enable a lower dosing of chymosin in cheese manufacturing . Table 16: Mutational contributions (mean) to increased C/P ratio and standard deviations (sd) based on statistical analysis.

mutation mean sd

S164G 7.51E-01 4.50E-02

K19T 2.85E-01 4.93E-02

I96L 2.43E-01 4.16E-02

R242E 2.25E-01 7.12E-02

L253I 2.22E-01 4.61E-02

Ylll 1.30E-01 4.93E-02

N249E 9.52E-02 3.86E-02

YllV 9.49E-02 3.55E-02

Based on the results shown in table 16 it is concluded that mutations Yl ll, Yl lV, K19T, I96L, S164G, R242E, N249E, and L253I increase the C/P ratio of chymosin . It can consequently be expected that these mutations result in in- creased yields during cheese manufacturing using the respective chymosin variants.

Selected variants from multi-substitution library 4 were fermented again in 70L followed by purification and characterization regarding their proteolytic profile (table 17).

Table 17: Enzymatic activities of selected camel chymosin variants from 70L fermentation. Numbers are given in % cleavage of wild type camel chymosin (CHY-MAX M).

variant mutations Clotting (C) Proteolytic (P) C/P

CHY-MAX M 100 100 100

433 Ylll D59N I96L S164G L166V L222V R242E G251D L253I 151 11 1356

436 Y11V K19T D59N I96L S164G L166V L222V R242E N249E L253I 188 9 2007

453 Ylll I96L S164G L222I R242E 153 8 1893

457 Ylll K19T D59N I96L S164G L222I R242E N249E G251D 217 7 3002

In table 17 are shown camel chymosin variants from 70L fermentation with data on specific clotting activity (C), unspecific proteolytic activity (P) as well as the C/P ratio. All 4 variants reveal between 51% and 117% increased specific clotting activity compared to wild type camel chymosin (CHY-MAX M). While all 4 variants have more than 13-fold increased C/P ratios, the best one, 457, shows a ca. 30x improvement compared to wild type camel chymosin (CHY-MAX M).

REFERENCES

I . A. Kumar, S. Grover, J. Sharma, V. K. Batish, Crit. Rev. Biotechnol. 2010, 30, 243-258.

2. M. W. Borsting, K. B. Qvist, M. Rasmussen, J. Vindelov, F. K. Vogensen, Y.

Ardo, Dairy Sci. 2012, 92, 593-612.

3. K. Kastberg Moller, F. P. Rattray, Y. Ardo, J. Agric. Food Chem. 2012, 60, 11421-11432.

4. P. L. H. McSweeney, Int. J. Dairy Technol. 2004, 57, 127-144.

5. J. Langholm Jensen, A. Molgaard, J.-C. Navarro Poulsen, M. K. Harboe, J.

B. Simonsen, A. M . Lorentzen, K. Hjerno, J. M. van den Brink, K. B. Qvist, S. Larsen, Acta Cryst. 2013, D69, 901-913.

6. S. Chitpinityol, D. Goode, M. J. C. Crabbe, Food Chem. 1998, 62, 133- 139.

7. G. L. Gilliland, E. L. Winborne, J. Nachman, A. Wlodawer, Proteins 1990,

8, 82-101.

8. D. S. Palmer, A. U. Christensen, J. Sorensen, L. Celik, K. Bruun Qvist, B.

Schiott, Biochemistry 2010, 49, 2563-2573.

9. J. Sorensen, D. S. Palmer, B. Schiott, J. Agric. Food Chem. 2013, 61 , 7949-7959.

10. 1. Schechter, A. Berger, Biochem. Biophys. Res. Commun. 1967, 425, 497-502.

I I . L. K. Creamer, N. F. Olsen, J . Food Sci. 1982, 47 : 631-636

12. N. Bansal, M. A. Drake, P. Piraino, M. L. Broe, M. Harboe, P. F. Fox, P. L.

H . McSweeney, Int. Dairy J. 2009, 19: 510-517.

13. A. C. Moynihan, S. Govindasamy-Lucey, J. J. Jaeggi, M. E. Johnson, J. A.

Lucey, P. L. H . McSweeney, J. Dairy Sci. 2014, 97 : 85-96.

14. J. Ehren, S. Govindarajan, B. Moron, J. Minshull, C. Khosla, Prot. Eng.

Des. Sel. 2008, 21 , 699-707.

15. S. Govindarajan, B. Mannervik, J . A. Silverman, K. Wright, D. Regitsky, U.

Hegazy, T. J . Purcell, M . Welch, J . Minshull, C. Gustafsson, ACS Synth. Biol. 2015, 4, 221-227.

16. M. Newman, M. Safro, C. Frazao, G. Khan, A. Zdanov, I. J. Tickle, T. L.

Blundell, N. Andreeva, J. Mol. Biol. 1991, 221 , 1295-1309.

17. E. Gustchina, L. Rumsh, L. Ginodman, P. Majer, N. Andreeva, FEBS Lett.

1996, 379, 60-62. . S. Visser, C. J. Slangen, P. J. van Rooijen, Biochem. J. 1987, 244, 553- 558.