Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
VEHICLE MAINTENANCE MANAGER
Document Type and Number:
WIPO Patent Application WO/2018/009773
Kind Code:
A1
Abstract:
The provider or seller of a particular service offered to a user sets fees based on business rules defining a pricing model or structure and applying those rules based on certain conditions. The provider may be a repair facility, power charging station or facility, or a power source exchange station or facility and the user may be a vehicle owner. For example, a business rule for a battery exchange facility for electric or hybrid vehicles may define the fee for an exchange of a low battery for a fully charged battery to be higher in a city center rather than along a highway. Another rule may additionally or alternatively define a higher during certain peak times such as lunchtime, e.g., noon- 1 :00pm or business hours, e.g., 8:00am-5:00pm and reduced during certain low demand hours, e.g., 2:00am-4:00pm

Inventors:
RICCI CHRISTOPHER P (US)
NEWMAN AUSTIN L (US)
Application Number:
PCT/US2017/041064
Publication Date:
January 11, 2018
Filing Date:
July 07, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NIO USA INC (US)
International Classes:
B60L11/18; G01R31/36; H02J7/00
Foreign References:
US20090313098A12009-12-17
US8624719B22014-01-07
US20130297424A12013-11-07
US20130179061A12013-07-11
US20130204471A12013-08-08
Attorney, Agent or Firm:
DALEY, William J. (US)
Download PDF:
Claims:
What Is Claimed Is:

1. A method for managing maintenance services performed on a vehicle, the method comprising:

receiving, at a service provider system and over a communications network, a request for maintenance of one or more vehicles, the request received by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third-party service provider system;

reading, by the service provider system, a set of maintenance management rules from one or more databases;

reading, by the service provider system, a set of service configuration information from one or more databases;

reading, by the service provider system, a set of user or vehicle specific maintenance and use information for the one or more vehicles from one or more databases;

determining, by the service provider system, a maintenance service and a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and

providing, from the service provider system to the one or more vehicles over the communications network, the determined maintenance service for one or more systems of the vehicle and value for the service.

2. The method of claim 1, wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a location at which the service is delivered, the location selected from a plurality of locations and wherein the maintenance management rules define at least one first location of the plurality of locations as having a higher cost than at least one second location of the plurality of locations.

3. The method of claim 1, wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a time of day at which the service is delivered, the time of day at which the service is delivered falling within one of a plurality of time periods and wherein the maintenance management rules define at least one first time period of the plurality of time periods as having a higher cost than at least one second time period of the plurality of time periods.

4. The method of claim 1, wherein the set of service configuration information comprises one or more dynamic pricing parameters.

5. The method of claim 4, wherein the one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

6. The method of claim 1, wherein the set of user or vehicle specific maintenance and use information comprises user loyalty information.

7. The method of claim 1, wherein the set of user or vehicle specific maintenance and use information comprises historical information related to use of the service.

8. The method of claim 1, wherein the service comprises a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service.

9. The method of claim 1, further comprising adjusting the determined value for the service based on feedback from the user.

10. The method of claim 9, wherein adjusting the determined value for the service based on feedback from the user comprises performing an automatic negotiation for the value of the service, and wherein performing the automatic negotiation comprises: receiving a response regarding the determined value;

determining whether the received response indicates an acceptance of the determined value of the service;

in response to determining the response indicates an acceptance of the determined value of the service, recording an acceptance of the determined value; and

in response to determining the response does not indicate an acceptance of the determined value of the service, further determining whether the received response indicates a counteroffer for the determined value for the service.

11. The method of claim 10, further comprising:

in response to determining the received response indicates a counteroffer for the determined value for the service, further determining whether the counteroffer is acceptable;

in response to determining the counteroffer is acceptable, recording an acceptance of the determined value;

in response to determining the counteroffer is not acceptable, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

12. The method of claim 10, further comprising:

in response to determining the received response does not indicate a counteroffer for the determined value for the service, further determining whether the determined value is negotiable; and

in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

13. A system comprising:

a processor; and

a memory coupled with and readable by the processor and storing therein a set of instructions which, when executed by the processor, causes the processor to manage maintenance services performed on a vehicle by:

receiving, over a communications network, a request for maintenance of one or more vehicles, the request received by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third- party service provider system;

reading a set of maintenance management rules from one or more databases; reading a set of service configuration information from one or more databases; reading a set of user or vehicle specific maintenance and use information for the one or more vehicles from one or more databases;

determining a maintenance service and a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and

providing to the one or more vehicles over the communications network the determined maintenance service for one or more systems of the vehicle and value for the service.

14. The system of claim 13, wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a location at which the service is delivered, the location selected from a plurality of locations and wherein the maintenance management rules define at least one first location of the plurality of locations as having a higher cost than at least one second location of the plurality of locations.

15. The system of claim 13, wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a time of day at which the service is delivered, the time of day at which the service is delivered falling within one of a plurality of time periods and wherein the maintenance management rules define at least one first time period of the plurality of time periods as having a higher cost than at least one second time period of the plurality of time periods.

16. The system of claim 13, wherein the set of service configuration information comprises one or more dynamic pricing parameters and wherein the one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

17. The system of claim 13, wherein the set of user or vehicle specific maintenance and use information comprises user loyalty information or historical information related to use of the service.

18. The system of claim 13, further comprising performing an automatic negotiation for the value of the service.

19. A non-transitory computer-readable medium comprising a set of instructions stored thereon which, when executed by a processor, causes the processor to manage maintenance services performed on a vehicle by:

receiving, at a service provider system and over a communications network, a request for maintenance of one or more vehicles, the request received by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third-party service provider system;

reading, by the service provider system, a set of maintenance management rules from one or more databases;

reading, by the service provider system, a set of service configuration information from one or more databases;

reading, by the service provider system, a set of user or vehicle specific maintenance and use information for the one or more vehicles from one or more databases;

determining, by the service provider system, a maintenance service and a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and providing, from the service provider system to the one or more vehicles over the communications network, the determined maintenance service for one or more systems of the vehicle and value for the service.

Description:
VEHICLE MAINTENANCE MANAGER

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefits of and priority, under 35 U.S.C. § 119(e), to U.S. Patent Application Serial Nos. 15/282, 194, filed on September 30, 2016, entitled "Vehicle Maintenance Manager"; 15/282,337, filed on September 30, 2016, entitled "Battery Exchange Licensing Program Based on State of Charge of Battery Pack"; and 15/339,019, filed on October 31, 2016, entitled "Conditional or Temporary Feature Availability." All of the above-listed applications claim, under 35 U.S.C. § 119(e), the benefits of and priority to U.S. Provisional Application Serial No. 62/359,563, filed on July 7, 2016 and U.S. Provisional Application Serial No. 62/378,348, filed on August 23, 2016, both entitled "Next Generation Vehicle." The entire disclosures of the applications listed above are hereby incorporated by reference, in their entirety, for all that they teach and for all purposes.

FIELD

[0002] The present disclosure is generally directed to vehicle systems, in particular, toward electric and/or hybrid-electric vehicles.

BACKGROUND

[0003] In recent years, transportation methods have changed substantially. This change is due in part to a concern over the limited availability of natural resources, a proliferation in personal technology, and a societal shift to adopt more environmentally friendly transportation solutions. These considerations have encouraged the development of a number of new flexible-fuel vehicles, hybrid-electric vehicles, and electric vehicles.

[0004] While these vehicles appear to be new they are generally implemented as a number of traditional subsystems that are merely tied to an alternative power source. In fact, the design and construction of the vehicles is limited to standard frame sizes, shapes, materials, and transportation concepts. Among other things, these limitations fail to take advantage of the benefits of new technology, power sources, and support infrastructure.

SUMMARY

[0005] The provider or seller of a particular service offered to a user sets fees based on business rules defining a pricing model or structure and applying those rules based on certain conditions. The provider may be a repair facility, power charging station or facility, or a power source exchange station or facility and the user may be a vehicle owner. For example, a business rule for a battery exchange facility for electric or hybrid vehicles may define the fee for an exchange of a low battery for a fully charged battery to be higher in a city center rather than along a highway. Another rule may additionally or alternatively define a higher during certain peak times such as lunchtime, e.g., noon- 1 :00pm or business hours, e.g., 8:00am-5:00pm and reduced during certain low demand hours, e.g., 2:00am-4:00pm.

[0006] The service provider can, in some cases, adjust selectable or configurable parameters used by the business rules in order to implement a dynamic pricing model. In such cases, the terms or parameters may be varied depending on, for example, local demand, to apply premium pricing during periodic or temporary high-demand periods. For example, a competing nearby charging station suffering a worker strike or local protest may trigger increased demand at a service provider's charging station thereby allowing that service provider to temporarily charge higher fees while the strike or protest is occurring. In other examples, when there are not enough charger stations or facilities to service the number of vehicles in a particular area or when the electric utility company is struggling to keep up with demand, temporarily higher prices for services may be supported and can be implemented through the configurable parameters set by the service provider.

[0007] Additionally or alternatively, the rules can consider certain conditions related to a particular vehicle or user. Such conditions can influence application of the rules to provide individual vehicle or user specific pricing. For example, use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. In another example, use data may be collected related to and indicating how a particular user charges his vehicle. Since leaving the vehicle on the charger beyond the time when the battery is fully or adequately charged needlessly consumes electricity, an effective pricing model could charge users more for charging longer and possibly less or crediting them for charging for a shorter time.

[0008] Once an initial price has been determined based on the business rules for the service provider, the configurable parameters for that provider, and any individual information considered, automated negotiation between user and service provider may occur. For example, the initial price may be provided to the user, e.g., through a heads up or other display in the vehicle, and the user may be given a choice to accept that initial price, reject, the initial price, or make a counteroffer to the initial price. This choice may be provided back to the service provider system which may then, again depending upon the rules, configurable parameters, and user or vehicle specific maintenance and use information, adjust or update the initial price or leave the initial price as originally determined.

[0009] According to one embodiment, managing maintenance services performed on a vehicle can comprise receiving, at a service provider system and over a communications network, a request for maintenance of one or more vehicles, the request received by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third-party service provider system. The service can comprise a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service. A set of maintenance management rules can be read.

Generally speaking, the set of maintenance management rules can comprise a set of conditions and associated actions to be applied upon satisfaction of those conditions. The actions can, in some cases, be calculations or other operations to determine the price for the service, adjust the price for the service, perform automated negotiations, etc. For example, the set of maintenance management rules can comprise at least one rule defining a value for the service based on a location at which the service is delivered. The location can be selected from a plurality of different and geographically diverse locations. The maintenance management rules can define a first location of the plurality of locations, e.g., a city center or urban location, as having a higher cost than at least one second location of the plurality of locations, e.g., or rural or highway location outside of city or municipal limits. In another example, the set of maintenance management rules can comprise at least one rule defining a value for the service based on a time of day at which the service is delivered. The time of day at which the service is delivered can fall within one of a plurality of time periods. The maintenance management rules can define a first time period of the plurality of time periods, i.e., a peak period, as having a higher cost than a second time period of the plurality of time periods. Any number and variety of other rules can be implemented at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0010] A set of service configuration parameters can also be read. The service configuration parameters can be set by the service provider to influence or adjust the prices determined by the calculations or other actions performed by the value

determination of pricing rules, i.e., to provide a dynamic pricing model adaptable to current conditions. In some cases, these parameters can comprise values for variables defined in the calculations or actions of the rules. In other cases, the parameters can comprise switches, flags, or other values for the conditions of the rules. For example, the set of service configuration information comprises one or more dynamic pricing parameters. The one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service. Any number and variety of other parameters can be implemented at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0011] A set of user or vehicle specific maintenance and use information for one or more vehicles can also be read. Such information can influence application of the rules to provide individual vehicle or user specific pricing. In some cases, this information can comprise values for variables defined in the calculations or actions of the rules. In other cases, the information can comprise switches, flags, or other values for the conditions of the rules. For example, the set of user or vehicle specific maintenance and use information can comprise user loyalty information, i.e., use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. In another example, the set of user or vehicle specific maintenance and use information can comprise historical information related to use of the service, i.e., the value determination or pricing rules could apply higher charges to users for charging longer and possibly less or crediting them for charging for a shorter time.

[0012] A value or price for the service performed on the vehicle can be determined based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information. That is, once the variables of the rules are populated with the values defined in the service configuration parameters and/or the vehicle or user specific information, the rules can be executed and the actions defined for the rules can be performed based on the populated conditions.

[0013] The determined value or price for the service can then be provided to the one or more vehicles. For example, the determined value or price may be transmitted over a cellular or other wireless connection to one or more vehicles, e.g., within a certain geographic distance of a service facility or in response to a specific query from those one or more vehicles. Once received, this information may be presented to the user or driver of the vehicle, e.g., via a heads up or other display within the vehicle.

[0014] In some cases, the determined value or price for the service can be adjusted based on feedback from the user. For example, once the initial price has been provided to the user, the user may be given a choice to accept that initial price, reject, the initial price, or make a counteroffer to the initial price. This choice may be provided back to the service provider system which may then, again depending upon the rules, configurable parameters, and user or vehicle specific maintenance and use information, adjust or update the initial price or leave the initial price as originally determined.

[0015] Adjusting the determined value for the service based on feedback from the user can comprise performing an automatic negotiation for the value or price of the service. Performing the automatic negotiation can comprise receiving a response regarding the determined value or price and determining whether the received response indicates an acceptance of the determined value or price of the service. This determination can be based, for example, on a type of message received from the user, content of the message, etc. Upon determining the response indicates an acceptance of the determined value or price of the service, an indication of acceptance of the determined value or price can be recorded.

[0016] Upon determining the response does not indicate an acceptance of the determined value or price of the service, a further determination can be made as to whether the received response indicates a counteroffer for the determined value or price for the service. Again, this determination can be based, for example, on a type of message received from the user, content of the message, etc. In response to determining the received response indicates a counteroffer for the determined value or price for the service, a further determination can be made as to whether the counteroffer is acceptable. This determination can be based on content of the response indicating a price or amount for the counteroffer and the service provider's rules, configuration parameters, and vehicle or user information. For example, the rules and/or configuration parameters may indicate whether counteroffers can be considered, an acceptable range for counteroffers in terms of percent or absolute difference from the original determined value or price, etc. In response to determining the counteroffer is acceptable, an indication of acceptance of the determined value or price can be recorded.

[0017] In response to determining the counteroffer is not acceptable, a further determination can be made as to whether the determined value or price is negotiable. In response to determining the determined value or price is negotiable, the determined value or price can be updated and provided to the user.

[0018] In response to determining the received response does not indicate a counteroffer for the determined value or price for the service, i.e., not an acceptance and not a counteroffer and thus a rejection, a further determination can be made as to whether the determined value or price is negotiable. Again, this determination can be based on the service provider's rules, configuration parameters, and vehicle or user information. In response to determining the determined value or price is negotiable, the determined value or price can be updated and provided to the user. Updating the determined value or price can comprise, for example, adjusting the determined value or price by a predefined percentage or absolute amount defined in the rules and/or configuration parameters, offering a discount or incentive based on the rules, configuration parameters and/or vehicle or user information, etc.

[0019] A model can be defined for managing a service in which a benefit or incentive can be provided to a vehicle operator for exchanging parts or receiving a service at a particular service level. The model may be prepaid or paid upon service being rendered. The service level may be preselected or selected at the time of service delivery. For example, the vehicle owner or operator may receive a credit or discount for exchanging a current battery pack or other power source of the vehicle for a lower charged battery pack or power source which can be later charged by the operator. In such cases, when a user initially purchases and/or licenses a battery pack, for instance, the user can specify and perhaps prepay for an acceptable stored charge range for exchanged battery packs. For example, a user at a high service level can pay a higher amount for a replacement with a high, e.g., 60%- 100%, charge level while a user at a lower service level can pay a lower amount for a replacement with a low, e.g., 40%-100%, charge level. This lower level might be attractive, for example, to hybrid vehicle users exchanging battery packs with electric vehicle users.

[0020] In another example, the service level can additionally or alternatively be based on the State of Life (SOL) of the replacement. That is, instead of charge, the service levels can be distinguished based on the SOL of the equipment used for the exchange and the user can specify and pay a premium based on the age of a battery pack and/or battery pack usage level, e.g., historic charging cycle number. For example, in a battery pack exchange, a high service level user can receive the newest available battery pack or battery pack having the lowest use, e.g., lowest historic charging cycles, relative to a lower service level user.

[0021] According to one embodiment, managing an exchange of a vehicle power source can comprise maintaining a set of user or vehicle records for each of one or more users or vehicles and maintaining a set of equipment records for each of a plurality of pieces of equipment. A request for service of a vehicle can be received. The service can comprise at least an exchange of a power source of the vehicle. At least one service level of a plurality of service levels can be identified for the requested service based at least in part on the set of user or vehicle records. At least one available power source can be selected for the exchange of the power source of the vehicle based on the identified at least one service level and the set of equipment records. Identifying the at least one service level for the requested service and selecting at least one available power source can further comprise determining a value or price for the selected power source. The determined value or price for the selected power source can then be provided to the vehicle and/or the user.

[0022] For example, the vehicle power source can comprise a battery. The plurality of service levels can be defined based on a level of charge of a battery used for the exchange of the vehicle power source. In such cases, a first service level of the plurality of service levels can be defined based on a level of charge that is higher than a level of charge defined for a second service level of the plurality of service levels, and a cost for the first service level is higher than a cost for the second service level. In another example, the plurality of service levels can be defined based on a state of life of a battery used for the exchange of the vehicle power source. In such cases, a first service level of the plurality of service levels can be defined based on a state of life that is newer than a state of life defined for a second service level of the plurality of service levels, and a cost for the first service level is higher than a cost for the second service level.

[0023] As noted, the model can be prepaid in some cases. According to one

embodiment, determining a value or price for a replacement part or service can comprise determining whether the requested service is a prepaid service at a preselected service level of a plurality of service levels. This determination can be made, for example, based on the maintained set of user or vehicle records. In response to determining the requested service is a prepaid service at a preselected service level of a plurality of service levels, an available power source selected for the exchange of the power source of the vehicle based on the pre-elected service level. In this case, further determination of the value or price of the replacement part need not be performed since the service was prepaid.

[0024] As noted, even if not prepaid, the model can allow the user to preselect a service level. Thus, in response to determining the requested service is not a prepaid service at a preselected service level of a plurality of service levels, a further determination can be made as to whether the at least one service level has been preselected. This determination can be made, for example, based on the maintained set of user or vehicle records. In other cases, the determination may be made based on information in the request for service or by querying the user. In response to determining the at least one service level has been preselected, the preselected service level can be identified and at least one available power source can be selected for the exchange of the power source of the vehicle based on the preselected service level. A value or price or an incentive for using the at least one selected available power source for the exchange of the power source of the vehicle can be determined and provided to the user.

[0025] In response to determining a service level has not been preselected, one or more available power sources for the exchange of the power source of the vehicle identifying and a service level for each of the identified one or more available power sources can be determined. A value or price or an incentive for using each of the identified available power sources for the exchange of the power source of the vehicle can be determined and provided to a user. At this point, the user may be able to select which available equipment or level of service to be used for the exchange or service.

[0026] In general, embodiments of the present disclosure provide methods, devices, and systems for providing a temporary increase in availability or functionality of a power source in a vehicle. The temporary and/or on-demand increase may correspond to the prevention of a disablement of the vehicle, prevention of a degradation of performance or other aspect of vehicle operation, or some other prevention of adverse effects on vehicle safety or operation. In other cases, the temporary and/or on-demand increase may be provided to increase or improve vehicle performance, safety, comfort, accessibility, etc. As can be appreciated, limiting a functionality, availability, capacity, power, or output of a power source such as a battery or battery system may be subject to specific policy, legal, business, or other restrictions.

[0027] More specifically, an agreement, such as a purchase, license, or lease agreement, may provide access to certain functionality or features of a vehicle while restricting availability of other functions or features. Such agreements may further require that a user pay a fee, perhaps on a one time, periodic, per-use, or other basis, to have greater or more complete access to the functionality of the vehicle. This can include the power provided by or available for use from the vehicle power source such as a battery or battery system. By default, aspects of the power source may be limited to certain levels of performance or availability. In response to determining that the user has not paid for more complete access, these aspects of the power source may remain limited to the default level. In response to determining that the user has paid for or is otherwise authorized to access higher levels of performance or functionality, such limits may be increased or eliminated.

[0028] Limits imposed by default and made available under certain conditions can include but are not limited to reducing power output of a power source, reducing power output of a drive system, deactivating or limiting any number of amenities, accessories, or non-critical functions, reducing the number of available battery cells, reducing a power source charging capacity or total charge level available, limiting an available charging rate, etc. However, certain functions may be prevented from being limited. For example, while certain aspects or functions of a vehicle battery may be limited, the battery should still provide safety features and maintain critical operations or functions of the vehicle. In some embodiments, the limits may be directed to non-essential features of a vehicle, battery, and power system.

[0029] In some embodiments, limits on a battery's functionality may be overridden based on a number of circumstances, conditions, and/or some other state information. By way of example, at least some of the limits may be temporarily stayed or otherwise suspended in the event of an emergency condition. Emergency conditions may be detected based on a state of health of the vehicle, presence information associated with a user of a vehicle, via determining whether the user of the vehicle is participating in an emergency call (e.g., the user is in mid-call with an emergency operator, 911, etc.), certain local conditions or events, etc. In one embodiment, a user may activate an "emergency" button, switch, or other input, to temporarily release or increase limits or to prevent limits from being imposed or continuing.

[0030] In other instances, removal of limits on power source availability or functionality may be implemented as a "fun" feature, such as when a driver wants greater performance, e.g., faster acceleration, higher top speed, tighter cornering or other ride control and/or traction control functions, and is willing to pay for it. In other cases, the features or functions may be related to certain accessories or amenities of the vehicle. For example, availability of in-vehicle Wi-Fi, BluTooth, or other communications features may be limited by default and powered only as approved. Use of a particular feature may be limited by time, number of uses, range, geographical location, and any number of other factors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] Fig. 1 shows a vehicle in accordance with embodiments of the present disclosure; [0032] Fig. 2 shows a vehicle in an environment in accordance with embodiments of the present disclosure;

[0033] Fig. 3 is a diagram of an embodiment of a data structure for storing information about a vehicle in an environment;

[0034] Fig. 4A shows a vehicle in a user environment in accordance with embodiments of the present disclosure;

[0035] Fig. 4B shows a vehicle in a fleet management and automated operation environment in accordance with embodiments of the present disclosure;

[0036] Fig. 4C shows an embodiment of the instrument panel of the vehicle according to one embodiment of the present disclosure;

[0037] Fig. 5 shows charging areas associated with an environment in accordance with embodiments of the present disclosure;

[0038] Fig. 6 shows a vehicle in a roadway charging environment in accordance with embodiments of the present disclosure;

[0039] Fig. 7 shows a vehicle in a robotic charging station environment in accordance with another embodiment of the present disclosure;

[0040] Fig. 8 shows a vehicle in an overhead charging environment in accordance with another embodiment of the present disclosure;

[0041] Fig. 9 shows a vehicle in a roadway environment comprising roadway vehicles in accordance with another embodiment of the present disclosure;

[0042] Fig. 10 shows a vehicle in an aerial vehicle charging environment in accordance with another embodiment of the present disclosure;

[0043] Fig. 11 shows a vehicle in an emergency charging environment in accordance with embodiments of the present disclosure;

[0044] Fig. 12 is a perspective view of a vehicle in accordance with embodiments of the present disclosure;

[0045] Fig. 13 is a plan view of a vehicle in accordance with at least some embodiments of the present disclosure;

[0046] Fig. 14 is a plan view of a vehicle in accordance with embodiments of the present disclosure;

[0047] Fig. 15 is a block diagram of an embodiment of an electrical system of the vehicle;

[0048] Fig. 16 is a block diagram of an embodiment of a power generation unit associated with the electrical system of the vehicle; [0049] Fig. 17 is a block diagram of an embodiment of power storage associated with the electrical system of the vehicle;

[0050] Fig. 18 is a block diagram of an embodiment of loads associated with the electrical system of the vehicle;

[0051] Fig. 19A is a block diagram of an exemplary embodiment of a communications subsystem of the vehicle;

[0052] Fig. 19B is a block diagram of a computing environment associated with the embodiments presented herein;

[0053] Fig. 19C is a block diagram of a computing device associated with one or more components described herein;

[0054] Fig. 20 is a diagram illustrating a vehicle in an exemplary environment according to one embodiment of the present disclosure;

[0055] Fig. 21 is a block diagram illustrating components of a system for applying service provider or seller rules to a service according to one embodiment of the present disclosure;

[0056] Fig. 22 is a flowchart illustrating an exemplary process for applying provider or seller rules to a service according to one embodiment of the present disclosure;

[0057] Fig. 23 is a flowchart illustrating an exemplary process for adjusting a determined value for a service based on received feedback according to one embodiment of the present disclosure;

[0058] Fig. 24 is a diagram illustrating an exemplary instrument panel of a vehicle according to one embodiment of the present disclosure;

[0059] Fig. 25 is a block diagram illustrating components of a system for applying provider or seller rules to a service according to one embodiment of the present disclosure;

[0060] Fig. 26 is a diagram illustrating an exemplary data structure of records for storing vehicle or user information according to one embodiment of the present disclosure;

[0061] Fig. 27 is a diagram illustrating an exemplary data structure of records for storing equipment information according to one embodiment of the present disclosure;

[0062] Fig. 28 is a flowchart illustrating an exemplary process for applying provider or seller rules to a service according to one embodiment of the present disclosure;

[0063] Fig. 29 is a flowchart illustrating an exemplary process for determining a value for a replacement part or service according to one embodiment of the present disclosure;

[0064] Fig. 30 is a diagram illustrating an exemplary instrument panel of a vehicle according to one embodiment of the present disclosure; [0065] Fig. 31 is a diagram illustrating exemplary components of a vehicle in which conditional availability of power source or other functions can be applied according to one embodiment of the present disclosure;

[0066] Fig. 32 is a diagram illustrating an exemplary instrument panel of a vehicle according to one embodiment of the present disclosure;

[0067] Fig. 33 is a diagram illustrating an exemplary data structure of records for storing vehicle or user information according to one embodiment of the present disclosure; and

[0068] Fig. 34 is a flowchart illustrating an exemplary process for providing conditional availability of a power source or other functions of a vehicle according to one embodiment of the present disclosure.

DETAILED DESCRIPTION

[0069] Embodiments of the present disclosure will be described in connection with a vehicle, and in accordance with one exemplary embodiment an electric vehicle and/or hybrid-electric vehicle and associated systems.

[0070] With attention to Figs. 1-11, embodiments of the electric vehicle system 10 and method of use are depicted.

[0071] Referring to Fig. 1, the electric vehicle system comprises electric vehicle 100.

The electric vehicle 100 comprises vehicle front 110, vehicle aft 120, vehicle roof 130, vehicle side 160, vehicle undercarriage 140 and vehicle interior 150.

[0072] Referring to Fig. 2, the vehicle 100 is depicted in a plurality of exemplary environments. The vehicle 100 may operate in any one or more of the depicted

environments in any combination. Other embodiments are possible but are not depicted in

Fig. 2. Generally, the vehicle 100 may operate in environments which enable charging of the vehicle 100 and/or operation of the vehicle 100. More specifically, the vehicle 100 may receive a charge via one or more means comprising emergency charging vehicle system 270, aerial vehicle charging system 280, roadway system 250, robotic charging system 254 and overhead charging system 258. The vehicle 100 may interact and/or operate in an environment comprising one or more other roadway vehicles 260. The vehicle 100 may engage with elements within the vehicle 100 comprising vehicle driver

220, vehicle passengers 220 and vehicle database 210. In one embodiment, vehicle database 210 does not physically reside in the vehicle 100 but is instead accessed remotely, e.g. by wireless communication, and resides in another location such as a residence or business location. Vehicle 100 may operate autonomously and/or semi- autonomously in an autonomous environment 290 (here, depicted as a roadway environment presenting a roadway obstacle of which the vehicle 100 autonomously identifies and steers the vehicle 100 clear of the obstacle). Furthermore, the vehicle 100 may engage with a remote operator system 240, which may provide fleet management instructions or control.

[0073] Fig. 3 is a diagram of an embodiment of a data structure 300 for storing information about a vehicle 100 in an environment. The data structure may be stored in vehicle database 210. Generally, data structure 300 identifies operational data associated with charging types 310A. The data structures 300 may be accessible by a vehicle controller. The data contained in data structure 300 enables, among other things, for the vehicle 100 to receive a charge from a given charging type.

[0074] Data may comprise charging type 310A comprising a manual charging station 310J, robotic charging station 31 OK such as robotic charging system 254, a roadway charging system 310L such as those of roadway system 250, an emergency charging system 310M such as that of emergency charging vehicle system 270, an emergency charging system 310N such as that of aerial vehicle charging system 280, and overhead charging type 310O such as that of overhead charging system 258.

[0075] Compatible vehicle charging panel types 310B comprise locations on vehicle 100 wherein charging may be received, such as vehicle roof 130, vehicle side 160 and vehicle lower or undercarriage 140. Compatible vehicle storage units 3 IOC data indicates storage units types that may receive power from a given charging type 310A. Available automation level 310D data indicates the degree of automation available for a given charging type; a high level may indicate full automation, allowing the vehicle driver 220 and/or vehicle passengers 230 to not involve themselves in charging operations, while a low level of automation may require the driver 220 and/or occupant 230 to

manipulate/position a vehicle charging device to engage with a particular charging type 31 OA to receive charging. Charging status 310E indicates whether a charging type 31 OA is available for charging (i.e. is "up") or is unavailable for charging (i.e. is "down"). Charge rate 310F provides a relative value for time to charge, while Cost 310G indicates the cost to vehicle 100 to receive a given charge. The Other data element 310H may provide additional data relevant to a given charging type 310A, such as a recommended separation distance between a vehicle charging plate and the charging source. The Shielding data element 3101 indicates if electromagnetic shielding is recommended for a given charging type 310A and/or charging configuration. Further data fields 310P, 310Q are possible. [0076] Fig. 4A depicts the vehicle 100 in a user environment comprising vehicle database 210, vehicle driver 220 and vehicle passengers 230. Vehicle 100 further comprises vehicle instrument panel 400 to facilitate or enable interactions with one or more of vehicle database 210, vehicle driver 220 and vehicle passengers 230. In one embodiment, driver 210 interacts with instrument panel 400 to query database 210 so as to locate available charging options and to consider or weigh associated terms and conditions of the charging options. Once a charging option is selected, driver 210 may engage or operate a manual control device (e.g., a joystick) to position a vehicle charging receiver panel so as to receive a charge.

[0077] Fig. 4B depicts the vehicle 100 in a user environment comprising a remote operator system 240 and an autonomous driving environment 290. In the remote operator system 240 environment, a fleet of electric vehicles 100 (or mixture of electric and nonelectric vehicles) is managed and/or controlled remotely. For example, a human operator may dictate that only certain types of charging types are to be used, or only those charging types below a certain price point are to be used. The remote operator system 240 may comprise a database comprising operational data, such as fleet-wide operational data. In another example, the vehicle 100 may operate in an autonomous driving environment 290 wherein the vehicle 100 is operated with some degree of autonomy, ranging from complete autonomous operation to semi-automation wherein only specific driving parameters (e.g., speed control or obstacle avoidance) are maintained or controlled autonomously. In Fig. 4B, autonomous driving environment 290 depicts an oil slick roadway hazard that triggers that triggers the vehicle 100, while in an automated obstacle avoidance mode, to automatically steer around the roadway hazard.

[0078] Fig. 4C shows one embodiment of the vehicle instrument panel 400 of vehicle 100. Instrument panel 400 of vehicle 100 comprises steering wheel 410, vehicle operational display 420 (which would provide basic driving data such as speed), one or more auxiliary displays 424 (which may display, e.g., entertainment applications such as music or radio selections), heads-up display 434 (which may provide, e.g., guidance information such as route to destination, or obstacle warning information to warn of a potential collision, or some or all primary vehicle operational data such as speed), power management display 428 (which may provide, e.g., data as to electric power levels of vehicle 100), and charging manual controller 432 (which provides a physical input, e.g. a joystick, to manual maneuver, e.g., a vehicle charging plate to a desired separation distance). One or more of displays of instrument panel 400 may be touch-screen displays. One or more displays of instrument panel 400 may be mobile devices and/or applications residing on a mobile device such as a smart phone.

[0079] Fig. 5 depicts a charging environment of a roadway charging system 250. The charging area may be in the roadway 504, on the roadway 504, or otherwise adjacent to the roadway 504, and/or combinations thereof. This static charging area 520B may allow a charge to be transferred even while the electrical vehicle 100 is moving. For example, the static charging area 520B may include a charging transmitter (e.g., conductor, etc.) that provides a transfer of energy when in a suitable range of a receiving unit (e.g., an inductor pick up, etc.). In this example, the receiving unit may be a part of the charging panel associated with the electrical vehicle 100.

[0080] The static charging areas 520A, 520B may be positioned a static area such as a designated spot, pad, parking space 540A, 540B, traffic controlled space (e.g., an area adjacent to a stop sign, traffic light, gate, etc.), portion of a building, portion of a structure, etc., and/or combinations thereof. Some static charging areas may require that the electric vehicle 100 is stationary before a charge, or electrical energy transfer, is initiated. The charging of vehicle 100 may occur by any of several means comprising a plug or other protruding feature. The power source 516A, 516B may include a receptacle or other receiving feature, and/or vice versa.

[0081] The charging area may be a moving charging area 520C. Moving charging areas 520C may include charging areas associated with one or more portions of a vehicle, a robotic charging device, a tracked charging device, a rail charging device, etc., and/or combinations thereof. In a moving charging area 520C, the electrical vehicle 100 may be configured to receive a charge, via a charging panel, while the vehicle 100 is moving and/or while the vehicle 100 is stationary. In some embodiments, the electrical vehicle 100 may synchronize to move at the same speed, acceleration, and/or path as the moving charging area 520C. In one embodiment, the moving charging area 520C may synchronize to move at the same speed, acceleration, and/or path as the electrical vehicle 100. In any event, the synchronization may be based on an exchange of information communicated across a communications channel between the electric vehicle 100 and the charging area 520C. Additionally or alternatively, the synchronization may be based on information associated with a movement of the electric vehicle 100 and/or the moving charging area 520C. In some embodiments, the moving charging area 520C may be configured to move along a direction or path 532 from an origin position to a destination position 520C [0082] In some embodiments, a transformer may be included to convert a power setting associated with a main power supply to a power supply used by the charging areas 520A- C. For example, the transformer may increase or decrease a voltage associated with power supplied via one or more power transmission lines.

[0083] Referring to Fig. 6, a vehicle 100 is shown in a charging environment in accordance with embodiments of the present disclosure. The system 10 comprises a vehicle 100, an electrical storage unit 612, an external power source 516 able to provide a charge to the vehicle 100, a charging panel 608 mounted on the vehicle 100 and in electrical communication with the electrical storage unit 612, and a vehicle charging panel controller 610. The charging panel controller 610 may determine if the electrical storage unit requires charging and if conditions allow for deployment of a charging panel. The vehicle charging panel 608 may operate in at least a retracted state and a deployed state (608 and 608' as shown is Fig. 6), and is movable by way of an armature.

[0084] The charging panel controller 610 may receive signals from vehicle sensors 626 to determine, for example, if a hazard is present in the path of the vehicle 100 such that deployment of the vehicle charging panel 608 is inadvisable. The charging panel controller 610 may also query vehicle database 210 comprising data structures 300 to establish other required conditions for deployment. For example, the database may provide that a particular roadway does not provide a charging service or the charging service is inactive, wherein the charging panel 108 would not be deployed.

[0085] The power source 516 may include at least one electrical transmission line 624 and at least one power transmitter or charging area 520. During a charge, the charging panel 608 may serve to transfer energy from the power source 516 to at least one energy storage unit 612 (e.g., battery, capacitor, power cell, etc.) of the electric vehicle 100.

[0086] Fig. 7 shows a vehicle 100 in a charging station environment 254 in accordance with another embodiment of the present disclosure. Generally, in this embodiment of the disclosure, charging occurs from a robotic unit 700.

[0087] Robotic charging unit 700 comprises one or more robotic unit arms 704, at least one robotic unit arm 704 interconnected with charging plate 520. The one or more robotic unit arms 704 manoeuver charging plate 520 relative to charging panel 608 of vehicle 100. Charging plate 520 is positioned to a desired or selectable separation distance, as assisted by a separation distance sensor disposed on charging plate 520. Charging plate 520 may remain at a finite separation distance from charging panel 608, or may directly contact charging panel (i.e. such that separation distance is zero). Charging may be by induction. In alternative embodiments, separation distance sensor is alternatively or additionally disposed on robotic arm 704. Vehicle 100 receives charging via charging panel 608 which in turn charges energy storage unit 612. Charging panel controller 610 is in

communication with energy storage unit 612, charging panel 608, vehicle database 300, charge provider controller 622, and/or any one of elements of instrument panel 400.

[0088] Robotic unit further comprises, is in communication with and/or is

interconnected with charge provider controller 622, power source 516 and a robotic unit database. Power source 516 supplies power, such as electrical power, to charge plate 520 to enable charging of vehicle 100 via charging panel 608. Controller 622 manoeuvers or operates robotic unit 704, either directly and/or completely or with assistance from a remote user, such as a driver or passenger in vehicle 100 by way of, in one embodiment, charging manual controller 432.

[0089] Fig. 8 shows a vehicle 100 in an overhead charging environment in accordance with another embodiment of the present disclosure. Generally, in this embodiment of the disclosure, charging occurs from an overhead towered charging system 258, similar to existing commuter rail systems. Such an overhead towered system 258 may be easier to build and repair compared to in-roadway systems. Generally, the disclosure includes a specially-designed overhead roadway charging system comprising an overhead charging cable or first wire 814 that is configured to engage an overhead contact 824 which provides charge to charging panel 608 which provides charge to vehicle energy storage unit 612. The overhead towered charging system 258 may further comprise second wire 818 to provide stability and structural strength to the roadway charging system 800. The first wire 814 and second wire 818 are strung between towers 810.

[0090] The overhead charging cable or first wire 814 is analogous to a contact wire used to provide charging to electric trains or other vehicles. An external source provides or supplies electrical power to the first wire 814. The charge provider comprises an energy source i.e. a provider battery and a provider charge circuit or controller in communication with the provider battery. The overhead charging cable or first wire 814 engages the overhead contact 824 which is in electrical communication with charge receiver panel 108.

The overhead contact 824 may comprise any known means to connect to overhead electrical power cables, such as a pantograph 820, a bow collector, a trolley pole or any means known to those skilled in the art. Further disclosure regarding electrical power or energy transfer via overhead systems is found in US Pat. Publ. No. 2013/0105264 to Ruth entitled "Pantograph Assembly," the entire contents of which are incorporated by reference for all purposes. In one embodiment, the charging of vehicle 100 by overhead charging system 800 via overhead contact 824 is by any means know to those skilled in the art, to include those described in the above-referenced US Pat. Publ. No.

2013/0105264 to Ruth.

[0091] The overhead contact 824 presses against the underside of the lowest overhead wire of the overhead charging system, i.e. the overhead charging cable or first wire 814, aka the contact wire. The overhead contact 824 may be electrically conductive.

Alternatively or additionally, the overhead contact 824 may be adapted to receive electrical power from overhead charging cable or first wire 814 by inductive charging.

[0092] In one embodiment, the receipt and/or control of the energy provided via overhead contact 824 (as connected to the energy storage unit 612) is provided by receiver charge circuit or charging panel controller 110.

[0093] Overhead contact 824 and/or charging panel 608 may be located anywhere on vehicle 100, to include, for example, the roof, side panel, trunk, hood, front or rear bumper of the charge receiver 100 vehicle, as long as the overhead contact 824 may engage the overhead charging cable or first wire 814. Charging panel 108 may be stationary (e.g. disposed on the roof of vehicle 100) or may be moveable, e.g. moveable with the pantograph 820. Pantograph 820 may be positioned in at least two states comprising retracted and extended. In the extended state pantograph 820 engages first wire 814 by way of the overhead contact 824. In the retracted state, pantograph 820 may typically reside flush with the roof of vehicle 100 and extend only when required for charging.

Control of the charging and/or positioning of the charging plate 608, pantograph 820 and/or overhead contact 824 may be manual, automatic or semi-automatic (such as via controller 610); said control may be performed through a GUI engaged by driver or occupant of receiving vehicle 100 and/or driver or occupant of charging vehicle.

[0094] Fig. 9 shows a vehicle in a roadway environment comprising roadway vehicles

260 in accordance with another embodiment of the present disclosure. Roadway vehicles

260 comprise roadway passive vehicles 910 and roadway active vehicles 920. Roadway passive vehicles 910 comprise vehicles that are operating on the roadway of vehicle 100 but do no cooperatively or actively engage with vehicle 100. Stated another way, roadway passive vehicles 910 are simply other vehicles operating on the roadway with the vehicle

100 and must be, among other things, avoided (e.g., to include when vehicle 100 is operating in an autonomous or semi-autonomous manner). In contrast, roadway active vehicles 920 comprise vehicles that are operating on the roadway of vehicle 100 and have the capability to, or actually are, actively engaging with vehicle 100. For example, the emergency charging vehicle system 270 is a roadway active vehicle 920 in that it may cooperate or engage with vehicle 100 to provide charging. In some embodiments, vehicle 100 may exchange data with a roadway active vehicle 920 such as, for example, data regarding charging types available to the roadway active vehicle 920.

[0095] Fig. 10 shows a vehicle in an aerial vehicle charging environment in accordance with another embodiment of the present disclosure. Generally, this embodiment involves an aerial vehicle (" AV"), such as an Unmanned Aerial Vehicle (UAV), flying over or near a vehicle to provide a charge. The UAV may also land on the car to provide an emergency (or routine) charge. Such a charging scheme may be particularly suited for operations in remote areas, in high traffic situations, and/or when the car is moving. The AV may be a specially-designed UAV, aka RPV or drone, with a charging panel that can extend from the AV to provide a charge. The AV may include a battery pack and a charging circuit to deliver a charge to the vehicle. The AV may be a manned aerial vehicle, such as a piloted general aviation aircraft, such as a Cessna 172.

[0096] With reference to Fig. 10, an exemplar embodiment of a vehicle charging system 100 comprising a charge provider configured as an aerial vehicle 280, the aerial vehicle 280 comprising a power source 516 and charge provider controller 622. The AV may be semi-autonomous or fully autonomous. The AV may have a remote pilot/operator providing control inputs. The power source 516 is configured to provide a charge to a charging panel 608 of vehicle 100. The power source 516 is in communication with the charge provider controller 622. The aerial vehicle 280 provides a tether 1010 to deploy or extend charging plate 520 near to charging panel 608. The tether 1010 may comprise a chain, rope, rigid or semi-rigid tow bar or any means to position charging plate 520 near charging panel 608. For example, tether 1010 may be similar to a refueling probe used by airborne tanker aircraft when refueling another aircraft.

[0097] In one embodiment, the charging plate 520 is not in physical interconnection to AV 280, that is, there is no tether 1010. In this embodiment, the charging plate 520 is positioned and controlled by AV 280 by way of a controller on AV 280 or in

communication with AV 280.

[0098] In one embodiment, the charging plate 520 position and/or characteristics (e.g. charging power level, flying separation distance, physical engagement on/off) are controlled by vehicle 100 and/or a user in or driver of vehicle 100. [0099] Charge or power output of power source 516 is provided or transmitted to charger plate 620 by way of a charging cable or wire, which may be integral to tether 1010. In one embodiment, the charging cable is non-structural, that is, it provides zero or little structural support to the connection between AV 280 and charger plate 520.

[0100] Charging panel 608 of vehicle 100 receives power from charger plate 520.

Charging panel 608 and charger plate 520 may be in direct physical contact (termed a "contact" charger configuration) or not in direct physical contact (termed a "flyer" charger configuration), but must be at or below a threshold (separation) distance to enable charging, such as by induction. Energy transfer or charging from the charger plate 520 to the charging panel 608 is inductive charging (i.e. use of an EM field to transfer energy between two objects). The charging panel 608 provides received power to energy storage unit 612 by way of charging panel controller 610. Charging panel controller 610 is in communication with vehicle database 210, vehicle database 210 comprising an AV charging data structure.

[0101] Charging panel 508 may be located anywhere on vehicle 100, to include, for example, the roof, side panel, trunk, hood, front or rear bumper and wheel hub of vehicle 100. Charging panel 608 is mounted on the roof of vehicle 100 in the embodiment of Fig. 10. In some embodiments, charging panel 608 may be deployable, i.e. may extend or deploy only when charging is needed. For example, charging panel 608 may typically reside flush with the roof of vehicle 100 and extend when required for charging. Similarly, charger plate 520 may, in one embodiment, not be connected to AV 280 by way of tether 1010 and may instead be mounted directly on the AV 280, to include, for example, the wing, empennage, undercarriage to include landing gear, and may be deployable or extendable when required. Tether 1010 may be configured to maneuver charging plate 520 to any position on vehicle 100 so as to enable charging. In one embodiment, the AV 280 may land on the vehicle 100 so as to enable charging through direct contact (i.e. the aforementioned contact charging configuration) between the charging plate 520 and the charging panel 608 of vehicle 100. Charging may occur while both AV 280 and vehicle 100 are moving, while both vehicle 100 and AV 280 are not moving (i.e., vehicle 100 is parked and AV 280 lands on top of vehicle 100), or while vehicle 100 is parked and AV 280 is hovering or circling above. Control of the charging and/or positioning of the charging plate 520 may be manual, automatic or semi-automatic; said control may be performed through a GUI engaged by driver or occupant of receiving vehicle 100 and/or driver or occupant of charging AV 280. [0102] Fig. 11 is an embodiment of a vehicle emergency charging system comprising an emergency charging vehicle 270 and charge receiver vehicle 100 is disclosed. The emergency charging vehicle 270 is a road vehicle, such as a pick-up truck, as shown in Fig. 11. The emergency charging vehicle 270 is configured to provide a charge to a charge receiver vehicle 100, such as an automobile. The emergency charging vehicle 270 comprises an energy source i.e. a charging power source 516 and a charge provider controller 622 in communication with the charging power source 516. The emergency charging vehicle 270 provides a towed and/or articulated charger plate 520, as connected to the emergency charging vehicle 270 by connector 1150. The connector 1150 may comprise a chain, rope, rigid or semi-rigid tow bar or any means to position charger plate 520 near the charging panel 608 of vehicle 100. Charge or power output of charging power source 516 is provided or transmitted to charger plate 520 by way of charging cable or wire 1140. In one embodiment, the charging cable 1140 is non-structural, that is, it provides little or no structural support to the connection between emergency charging vehicle 270 and charging panel 608. Charging panel 608 (of vehicle 100) receives power from charger plate 520. Charger plate 520 and charging panel 608 may be in direct physical contact or not in direct physical contact, but must be at or below a threshold separation distance to enable charging, such as by induction. Charger plate 520 may comprise wheels or rollers so as to roll along roadway surface. Charger plate 520 may also not contact the ground surface and instead be suspended above the ground; such a configuration may be termed a "flying" configuration. In the flying configuration, charger plate may form an aerodynamic surface to, for example, facilitate stability and control of the positioning of the charging plate 520. Energy transfer or charging from the charger plate 520 to the charge receiver panel 608 is through inductive charging (i.e. use of an EM field to transfer energy between two objects). The charging panel 608 provides received power to energy storage unit 612 directly or by way of charging panel controller 610. In one embodiment, the receipt and/or control of the energy provided via the charging panel 608 is provided by charging panel controller 610.

[0103] Charging panel controller 610 may be located anywhere on charge receiver vehicle 100, to include, for example, the roof, side panel, trunk, hood, front or rear bumper and wheel hub of charge receiver 100 vehicle. In some embodiments, charging panel 608 may be deployable, i.e. may extend or deploy only when charging is needed. For example, charging panel 608 may typically stow flush with the lower plane of vehicle 100 and extend when required for charging. Similarly, charger plate 520 may, in one embodiment, not be connected to the lower rear of the emergency charging vehicle 270 by way of connector 1150 and may instead be mounted on the emergency charging vehicle 270, to include, for example, the roof, side panel, trunk, hood, front or rear bumper and wheel hub of emergency charging vehicle 270. Connector 1150 may be configured to maneuver connector plate 520 to any position on emergency charging vehicle 270 so as to enable charging. Control of the charging and/or positioning of the charging plate may be manual, automatic or semi-automatic; said control may be performed through a GUI engaged by driver or occupant of receiving vehicle and/or driver or occupant of charging vehicle.

[0104] Fig. 12 shows a perspective view of a vehicle 100 in accordance with

embodiments of the present disclosure. Although shown in the form of a car, it should be appreciated that the vehicle 100 described herein may include any conveyance or model of a conveyance, where the conveyance was designed for the purpose of moving one or more tangible objects, such as people, animals, cargo, and the like. The term "vehicle" does not require that a conveyance moves or is capable of movement. Typical vehicles may include but are in no way limited to cars, trucks, motorcycles, busses, automobiles, trains, railed conveyances, boats, ships, marine conveyances, submarine conveyances, airplanes, space craft, flying machines, human-powered conveyances, and the like. In any event, the vehicle 100 may include a frame 1204 and one or more body panels 1208 mounted or affixed thereto. The vehicle 100 may include one or more interior components (e.g., components inside an interior space 150, or user space, of a vehicle 100, etc.), exterior components (e.g., components outside of the interior space 150, or user space, of a vehicle 100, etc.), drive systems, controls systems, structural components.

[0105] Referring now to Fig. 13, a plan view of a vehicle 100 will be described in accordance with embodiments of the present disclosure. As provided above, the vehicle 100 may comprise a number of electrical and/or mechanical systems, subsystems, etc. The mechanical systems of the vehicle 100 can include structural, power, safety, and communications subsystems, to name a few. While each subsystem may be described separately, it should be appreciated that the components of a particular subsystem may be shared between one or more other subsystems of the vehicle 100.

[0106] The structural subsystem includes the frame 1204 of the vehicle 100. The frame

1204 may comprise a separate frame and body construction (i.e., body-on-frame construction), a unitary frame and body construction (i.e., a unibody construction), or any other construction defining the structure of the vehicle 100. The frame 1204 may be made from one or more materials including, but in no way limited to steel, titanium, aluminum, carbon fiber, plastic, polymers, etc., and/or combinations thereof. In some embodiments, the frame 1204 may be formed, welded, fused, fastened, pressed, etc., combinations thereof, or otherwise shaped to define a physical structure and strength of the vehicle 100. In any event, the frame 1204 may comprise one or more surfaces, connections, protrusions, cavities, mounting points, tabs, slots, or other features that are configured to receive other components that make up the vehicle 100. For example, the body panels, powertrain subsystem, controls systems, interior components, communications subsystem, and safety subsystem may interconnect with, or attach to, the frame 1204 of the vehicle 100.

[0107] The frame 1204 may include one or more modular system and/or subsystem connection mechanisms. These mechanisms may include features that are configured to provide a selectively interchangeable interface for one or more of the systems and/or subsystems described herein. The mechanisms may provide for a quick exchange, or swapping, of components while providing enhanced security and adaptability over conventional manufacturing or attachment. For instance, the ability to selectively interchange systems and/or subsystems in the vehicle 100 allow the vehicle 100 to adapt to the ever-changing technological demands of society and advances in safety. Among other things, the mechanisms may provide for the quick exchange of batteries, capacitors, power sources 1308A, 1308B, motors 1312, engines, safety equipment, controllers, user interfaces, interiors exterior components, body panels 1208, bumpers 1316, sensors, etc., and/or combinations thereof. Additionally or alternatively, the mechanisms may provide unique security hardware and/or software embedded therein that, among other things, can prevent fraudulent or low quality construction replacements from being used in the vehicle 100. Similarly, the mechanisms, subsystems, and/or receiving features in the vehicle 100 may employ poka-yoke, or mistake-proofing, features that ensure a particular mechanism is always interconnected with the vehicle 100 in a correct position, function, etc.

[0108] By way of example, complete systems or subsystems may be removed and/or replaced from a vehicle 100 utilizing a single minute exchange principle. In some embodiments, the frame 1204 may include slides, receptacles, cavities, protrusions, and/or a number of other features that allow for quick exchange of system components. In one embodiment, the frame 1204 may include tray or ledge features, mechanical

interconnection features, locking mechanisms, retaining mechanisms, etc., and/or combinations thereof. In some embodiments, it may be beneficial to quickly remove a used power source 1308A, 1308B (e.g., battery unit, capacitor unit, etc.) from the vehicle 100 and replace the used power source 1308 A, 1308B with a charged power source.

Continuing this example, the power source 1308A, 1308B may include selectively interchangeable features that interconnect with the frame 1204 or other portion of the vehicle 100. For instance, in a power source 1308A, 1308B replacement, the quick release features may be configured to release the power source 1308 A, 1308B from an engaged position and slide or move away from the frame 1204 of a vehicle 100. Once removed, the power source 1308 A, 1308B may be replaced (e.g., with a new power source, a charged power source, etc.) by engaging the replacement power source into a system receiving position adjacent to the vehicle 100. In some embodiments, the vehicle 100 may include one or more actuators configured to position, lift, slide, or otherwise engage the replacement power source with the vehicle 100. In one embodiment, the replacement power source may be inserted into the vehicle 100 or vehicle frame 1204 with mechanisms and/or machines that are external or separate from the vehicle 100.

[0109] In some embodiments, the frame 1204 may include one or more features configured to selectively interconnect with other vehicles and/or portions of vehicles. These selectively interconnecting features can allow for one or more vehicles to selectively couple together and decouple for a variety of purposes. For example, it is an aspect of the present disclosure that a number of vehicles may be selectively coupled together to share energy, increase power output, provide security, decrease power consumption, provide towing services, and/or provide a range of other benefits.

Continuing this example, the vehicles may be coupled together based on travel route, destination, preferences, settings, sensor information, and/or some other data. The coupling may be initiated by at least one controller of the vehicle and/or traffic control system upon determining that a coupling is beneficial to one or more vehicles in a group of vehicles or a traffic system. As can be appreciated, the power consumption for a group of vehicles traveling in a same direction may be reduced or decreased by removing any aerodynamic separation between vehicles. In this case, the vehicles may be coupled together to subject only the foremost vehicle in the coupling to air and/or wind resistance during travel. In one embodiment, the power output by the group of vehicles may be proportionally or selectively controlled to provide a specific output from each of the one or more of the vehicles in the group.

[0110] The interconnecting, or coupling, features may be configured as electromagnetic mechanisms, mechanical couplings, electromechanical coupling mechanisms, etc., and/or combinations thereof. The features may be selectively deployed from a portion of the frame 1204 and/or body of the vehicle 100. In some cases, the features may be built into the frame 1204 and/or body of the vehicle 100. In any event, the features may deploy from an unexposed position to an exposed position or may be configured to selectively engage/disengage without requiring an exposure or deployment of the mechanism from the frame 1204 and/or body. In some embodiments, the interconnecting features may be configured to interconnect one or more of power, communications, electrical energy, fuel, and/or the like. One or more of the power, mechanical, and/or communications connections between vehicles may be part of a single interconnection mechanism. In some embodiments, the interconnection mechanism may include multiple connection mechanisms. In any event, the single interconnection mechanism or the interconnection mechanism may employ the poka-yoke features as described above.

[0111] The power system of the vehicle 100 may include the powertrain, power distribution system, accessory power system, and/or any other components that store power, provide power, convert power, and/or distribute power to one or more portions of the vehicle 100. The powertrain may include the one or more electric motors 1312 of the vehicle 100. The electric motors 1312 are configured to convert electrical energy provided by a power source into mechanical energy. This mechanical energy may be in the form of a rotational or other output force that is configured to propel or otherwise provide a motive force for the vehicle 100.

[0112] In some embodiments, the vehicle 100 may include one or more drive wheels 1320 that are driven by the one or more electric motors 1312 and motor controllers 1314. In some cases, the vehicle 100 may include an electric motor 1312 configured to provide a driving force for each drive wheel 1320. In other cases, a single electric motor 1312 may be configured to share an output force between two or more drive wheels 1320 via one or more power transmission components. It is an aspect of the present disclosure that the powertrain include one or more power transmission components, motor controllers 1314, and/or power controllers that can provide a controlled output of power to one or more of the drive wheels 1320 of the vehicle 100. The power transmission components, power controllers, or motor controllers 1314 may be controlled by at least one other vehicle controller described herein.

[0113] As provided above, the powertrain of the vehicle 100 may include one or more power sources 1308 A, 1308B. These one or more power sources 1308 A, 1308B may be configured to provide drive power, system and/or subsystem power, accessory power, etc.

While described herein as a single power source 1308 for sake of clarity, embodiments of the present disclosure are not so limited. For example, it should be appreciated that independent, different, or separate power sources 1308A, 1308B may provide power to various systems of the vehicle 100. For instance, a drive power source may be configured to provide the power for the one or more electric motors 1312 of the vehicle 100, while a system power source may be configured to provide the power for one or more other systems and/or subsystems of the vehicle 100. Other power sources may include an accessory power source, a backup power source, a critical system power source, and/or other separate power sources. Separating the power sources 1308A, 1308B in this manner may provide a number of benefits over conventional vehicle systems. For example, separating the power sources 1308 A, 1308B allow one power source 1308 to be removed and/or replaced independently without requiring that power be removed from all systems and/or subsystems of the vehicle 100 during a power source 1308 removal/replacement.

For instance, one or more of the accessories, communications, safety equipment, and/or backup power systems, etc., may be maintained even when a particular power source

1308A, 1308B is depleted, removed, or becomes otherwise inoperable.

[0114] In some embodiments, the drive power source may be separated into two or more cells, units, sources, and/or systems. By way of example, a vehicle 100 may include a first drive power source 1308 A and a second drive power source 1308B. The first drive power source 1308A may be operated independently from or in conjunction with the second drive power source 1308B and vice versa. Continuing this example, the first drive power source 1308 A may be removed from a vehicle while a second drive power source 1308B can be maintained in the vehicle 100 to provide drive power. This approach allows the vehicle 100 to significantly reduce weight (e.g., of the first drive power source 1308 A, etc.) and improve power consumption, even if only for a temporary period of time. In some cases, a vehicle 100 running low on power may automatically determine that pulling over to a rest area, emergency lane, and removing, or "dropping off," at least one power source 1308 A, 1308B may reduce enough weight of the vehicle 100 to allow the vehicle

100 to navigate to the closest power source replacement and/or charging area. In some embodiments, the removed, or "dropped off," power source 1308 A may be collected by a collection service, vehicle mechanic, tow truck, or even another vehicle or individual.

[0115] The power source 1308 may include a GPS or other geographical location system that may be configured to emit a location signal to one or more receiving entities. For instance, the signal may be broadcast or targeted to a specific receiving party. Additionally or alternatively, the power source 1308 may include a unique identifier that may be used to associate the power source 1308 with a particular vehicle 100 or vehicle user. This unique identifier may allow an efficient recovery of the power source 1308 dropped off. In some embodiments, the unique identifier may provide information for the particular vehicle 100 or vehicle user to be billed or charged with a cost of recovery for the power source 1308.

[0116] The power source 1308 may include a charge controller 1324 that may be configured to determine charge levels of the power source 1308, control a rate at which charge is drawn from the power source 1308, control a rate at which charge is added to the power source 1308, and/or monitor a health of the power source 1308 (e.g., one or more cells, portions, etc.). In some embodiments, the charge controller 1324 or the power source 1308 may include a communication interface. The communication interface can allow the charge controller 1324 to report a state of the power source 1308 to one or more other controllers of the vehicle 100 or even communicate with a communication device separate and/or apart from the vehicle 100. Additionally or alternatively, the communication interface may be configured to receive instructions (e.g., control instructions, charge instructions, communication instructions, etc.) from one or more other controllers of the vehicle 100 or a communication device that is separate and/or apart from the vehicle 100.

[0117] The powertrain includes one or more power distribution systems configured to transmit power from the power source 1308 to one or more electric motors 1312 in the vehicle 100. The power distribution system may include electrical interconnections 1328 in the form of cables, wires, traces, wireless power transmission systems, etc., and/or combinations thereof. It is an aspect of the present disclosure that the vehicle 100 include one or more redundant electrical interconnections 1332 of the power distribution system. The redundant electrical interconnections 1332 can allow power to be distributed to one or more systems and/or subsystems of the vehicle 100 even in the event of a failure of an electrical interconnection portion of the vehicle 100 (e.g., due to an accident, mishap, tampering, or other harm to a particular electrical interconnection, etc.). In some embodiments, a user of a vehicle 100 may be alerted via a user interface associated with the vehicle 100 that a redundant electrical interconnection 1332 is being used and/or damage has occurred to a particular area of the vehicle electrical system. In any event, the one or more redundant electrical interconnections 1332 may be configured along completely different routes than the electrical interconnections 1328 and/or include different modes of failure than the electrical interconnections 1328 to, among other things, prevent a total interruption power distribution in the event of a failure. [0118] In some embodiments, the power distribution system may include an energy recovery system 1336. This energy recovery system 1336, or kinetic energy recovery system, may be configured to recover energy produced by the movement of a vehicle 100. The recovered energy may be stored as electrical and/or mechanical energy. For instance, as a vehicle 100 travels or moves, a certain amount of energy is required to accelerate, maintain a speed, stop, or slow the vehicle 100. In any event, a moving vehicle has a certain amount of kinetic energy. When brakes are applied in a typical moving vehicle, most of the kinetic energy of the vehicle is lost as the generation of heat in the braking mechanism. In an energy recovery system 1336, when a vehicle 100 brakes, at least a portion of the kinetic energy is converted into electrical and/or mechanical energy for storage. Mechanical energy may be stored as mechanical movement (e.g., in a flywheel, etc.) and electrical energy may be stored in batteries, capacitors, and/or some other electrical storage system. In some embodiments, electrical energy recovered may be stored in the power source 1308. For example, the recovered electrical energy may be used to charge the power source 1308 of the vehicle 100.

[0119] The vehicle 100 may include one or more safety systems. Vehicle safety systems can include a variety of mechanical and/or electrical components including, but in no way limited to, low impact or energy-absorbing bumpers 1316A, 1316B, crumple zones, reinforced body panels, reinforced frame components, impact bars, power source containment zones, safety glass, seatbelts, supplemental restraint systems, air bags, escape hatches, removable access panels, impact sensors, accelerometers, vision systems, radar systems, etc., and/or the like. In some embodiments, the one or more of the safety components may include a safety sensor or group of safety sensors associated with the one or more of the safety components. For example, a crumple zone may include one or more strain gages, impact sensors, pressure transducers, etc. These sensors may be configured to detect or determine whether a portion of the vehicle 100 has been subjected to a particular force, deformation, or other impact. Once detected, the information collected by the sensors may be transmitted or sent to one or more of a controller of the vehicle 100 (e.g., a safety controller, vehicle controller, etc.) or a communication device associated with the vehicle 100 (e.g., across a communication network, etc.).

[0120] Fig. 14 shows a plan view of the vehicle 100 in accordance with embodiments of the present disclosure. In particular, Fig. 14 shows a broken section 1402 of a charging system for the vehicle 100. The charging system may include a plug or receptacle 1404 configured to receive power from an external power source (e.g., a source of power that is external to and/or separate from the vehicle 100, etc.). An example of an external power source may include the standard industrial, commercial, or residential power that is provided across power lines. Another example of an external power source may include a proprietary power system configured to provide power to the vehicle 100. In any event, power received at the plug/receptacle 1404 may be transferred via at least one power transmission interconnection 1408. Similar, if not identical, to the electrical

interconnections 1328 described above, the at least one power transmission

interconnection 1408 may be one or more cables, wires, traces, wireless power

transmission systems, etc., and/or combinations thereof. Electrical energy in the form of charge can be transferred from the external power source to the charge controller 1324. As provided above, the charge controller 1324 may regulate the addition of charge to the power source 1308 of the vehicle 100 (e.g., until the power source 1308 is full or at a capacity, etc.).

[0121] In some embodiments, the vehicle 100 may include an inductive charging system and inductive charger 1412. The inductive charger 1412 may be configured to receive electrical energy from an inductive power source external to the vehicle 100. In one embodiment, when the vehicle 100 and/or the inductive charger 1412 is positioned over an inductive power source external to the vehicle 100, electrical energy can be transferred from the inductive power source to the vehicle 100. For example, the inductive charger 1412 may receive the charge and transfer the charge via at least one power transmission interconnection 1408 to the charge controller 1324 and/or the power source 1308 of the vehicle 100. The inductive charger 1412 may be concealed in a portion of the vehicle 100 (e.g., at least partially protected by the frame 1204, one or more body panels 1208, a shroud, a shield, a protective cover, etc., and/or combinations thereof) and/or may be deployed from the vehicle 100. In some embodiments, the inductive charger 1412 may be configured to receive charge only when the inductive charger 1412 is deployed from the vehicle 100. In other embodiments, the inductive charger 1412 may be configured to receive charge while concealed in the portion of the vehicle 100.

[0122] In addition to the mechanical components described herein, the vehicle 100 may include a number of user interface devices. The user interface devices receive and translate human input into a mechanical movement or electrical signal or stimulus. The human input may be one or more of motion (e.g., body movement, body part movement, in two- dimensional or three-dimensional space, etc.), voice, touch, and/or physical interaction with the components of the vehicle 100. In some embodiments, the human input may be configured to control one or more functions of the vehicle 100 and/or systems of the vehicle 100 described herein. User interfaces may include, but are in no way limited to, at least one graphical user interface of a display device, steering wheel or mechanism, transmission lever or button (e.g., including park, neutral, reverse, and/or drive positions, etc.), throttle control pedal or mechanism, brake control pedal or mechanism, power control switch, communications equipment, etc.

[0123] An embodiment of the electrical system 1500 associated with the vehicle 100 may be as shown in Fig. 15. The electrical system 1500 can include power source(s) that generate power, power storage that stores power, and/or load(s) that consume power. Power sources may be associated with a power generation unit 1504. Power storage may be associated with a power storage system 612. Loads may be associated with loads 1508. The electrical system 1500 may be managed by a power management controller 1324. Further, the electrical system 1500 can include one or more other interfaces or controllers, which can include the billing and cost control unit 1512.

[0124] The power generation unit 1504 may be as described in conjunction with Fig. 16. The power storage component 612 may be as described in conjunction with Fig. 17. The loads 1508 may be as described in conjunction with Fig. 18.

[0125] The billing and cost control unit 1512 may interface with the power management controller 1324 to determine the amount of charge or power provided to the power storage 612 through the power generation unit 1504. The billing and cost control unit 1512 can then provide information for billing the vehicle owner. Thus, the billing and cost control unit 1512 can receive and/or send power information to third party system(s) regarding the received charge from an external source. The information provided can help determine an amount of money required, from the owner of the vehicle, as payment for the provided power. Alternatively, or in addition, if the owner of the vehicle provided power to another vehicle (or another device/system), that owner may be owed compensation for the provided power or energy, e.g., a credit.

[0126] The power management controller 1324 can be a computer or computing system(s) and/or electrical system with associated components, as described herein, capable of managing the power generation unit 1504 to receive power, routing the power to the power storage 612, and then providing the power from either the power generation unit 1504 and/or the power storage 612 to the loads 1508. Thus, the power management controller 1324 may execute programming that controls switches, devices, components, etc. involved in the reception, storage, and provision of the power in the electrical system 1500.

[0127] An embodiment of the power generation unit 1504 may be as shown in Fig. 16. Generally, the power generation unit 1504 may be electrically coupled to one or more power sources 1308. The power sources 1308 can include power sources internal and/or associated with the vehicle 100 and/or power sources external to the vehicle 100 to which the vehicle 100 electrically connects. One of the internal power sources can include an on board generator 1604. The generator 1604 may be an alternating current (AC) generator, a direct current (DC) generator or a self-excited generator. The AC generators can include induction generators, linear electric generators, and/or other types of generators. The DC generators can include homopolar generators and/or other types of generators. The generator 1604 can be brushless or include brush contacts and generate the electric field with permanent magnets or through induction. The generator 1604 may be mechanically coupled to a source of kinetic energy, such as an axle or some other power take-off. The generator 1604 may also have another mechanical coupling to an exterior source of kinetic energy, for example, a wind turbine.

[0128] Another power source 1308 may include wired or wireless charging 1608. The wireless charging system 1608 may include inductive and/or resonant frequency inductive charging systems that can include coils, frequency generators, controllers, etc. Wired charging may be any kind of grid-connected charging that has a physical connection, although, the wireless charging may be grid connected through a wireless interface. The wired charging system can include an connectors, wired interconnections, the controllers, etc. The wired and wireless charging systems 1608 can provide power to the power generation unit 1504 from external power sources 1308.

[0129] Internal sources for power may include a regenerative braking system 1612. The regenerative braking system 1612 can convert the kinetic energy of the moving car into electrical energy through a generation system mounted within the wheels, axle, and/or braking system of the vehicle 100. The regenerative braking system 1612 can include any coils, magnets, electrical interconnections, converters, controllers, etc. required to convert the kinetic energy into electrical energy.

[0130] Another source of power 1308, internal to or associated with the vehicle 100, may be a solar array 1616. The solar array 1616 may include any system or device of one or more solar cells mounted on the exterior of the vehicle 100 or integrated within the body panels of the vehicle 100 that provides or converts solar energy into electrical energy to provide to the power generation unit 1504.

[0131] The power sources 1308 may be connected to the power generation unit 1504 through an electrical interconnection 1618. The electrical interconnection 1618 can include any wire, interface, bus, etc. between the one or more power sources 1308 and the power generation unit 1504.

[0132] The power generation unit 1504 can also include a power source interface 1620. The power source interface 1620 can be any type of physical and/or electrical interface used to receive the electrical energy from the one or more power sources 1308; thus, the power source interface 1620 can include an electrical interface 1624 that receives the electrical energy and a mechanical interface 1628 which may include wires, connectors, or other types of devices or physical connections. The mechanical interface 1608 can also include a physical/electrical connection 1634 to the power generation unit 1504.

[0133] The electrical energy from the power source 1308 can be processed through the power source interface 1624 to an electric converter 1632. The electric converter 1632 may convert the characteristics of the power from one of the power sources into a useable form that may be used either by the power storage 612 or one or more loads 1508 within the vehicle 100. The electrical converter 1624 may include any electronics or electrical devices and/or component that can change electrical characteristics, e.g., AC frequency, amplitude, phase, etc. associated with the electrical energy provided by the power source 1308. The converted electrical energy may then be provided to an optional conditioner 1638. The conditioner 1638 may include any electronics or electrical devices and/or component that may further condition the converted electrical energy by removing harmonics, noise, etc. from the electrical energy to provide a more stable and effective form of power to the vehicle 100.

[0134] An embodiment of the power storage 1612 may be as shown in Fig. 17. The power storage unit can include an electrical converter 1632b, one or more batteries, one or more rechargeable batteries, one or more capacitors, one or more accumulators, one or more supercapacitors, one or more ultrabatteries, and/or superconducting magnetics 1704, and/or a charge management unit 1708. The converter 1632b may be the same or similar to the electrical converter 1632a shown in Fig. 16. The converter 1632b may be a replacement for the electric converter 1632a shown in Fig. 16 and thus eliminate the need for the electrical converter 1632a as shown in Fig. 16. However, if the electrical converter

1632a is provided in the power generation unit 1504, the converter 1632b, as shown in the power storage unit 612, may be eliminated. The converter 1632b can also be redundant or different from the electrical converter 1632a shown in Fig. 16 and may provide a different form of energy to the battery and/or capacitors 1704. Thus, the converter 1632b can change the energy characteristics specifically for the battery/capacitor 1704.

[0135] The battery 1704 can be any type of battery for storing electrical energy, for example, a lithium ion battery, a lead acid battery, a nickel cadmium battery, etc. Further, the battery 1704 may include different types of power storage systems, such as, ionic fluids or other types of fuel cell systems. The energy storage 1704 may also include one or more high-capacity capacitors 1704. The capacitors 1704 may be used for long-term or short-term storage of electrical energy. The input into the battery or capacitor 1704 may be different from the output, and thus, the capacitor 1704 may be charged quickly but drain slowly. The functioning of the converter 1632 and battery capacitor 1704 may be monitored or managed by a charge management unit 1708.

[0136] The charge management unit 1708 can include any hardware (e.g., any electronics or electrical devices and/or components), software, or firmware operable to adjust the operations of the converter 1632 or batteries/capacitors 1704. The charge management unit 1708 can receive inputs or periodically monitor the converter 1632 and/or battery/capacitor 1704 from this information; the charge management unit 1708 may then adjust settings or inputs into the converter 1632 or battery/capacitor 1704 to control the operation of the power storage system 612.

[0137] An embodiment of one or more loads 1508 associated with the vehicle 100 may be as shown in Fig. 18. The loads 1508 may include a bus or electrical interconnection system 1802, which provides electrical energy to one or more different loads within the vehicle 100. The bus 1802 can be any number of wires or interfaces used to connect the power generation unit 1504 and/or power storage 1612 to the one or more loads 1508. The converter 1632c may be an interface from the power generation unit 1504 or the power storage 612 into the loads 1508. The converter 1632c may be the same or similar to electric converter 1632a as shown in Fig. 16. Similar to the discussion of the converter 1632b in Fig. 17, the converter 1632c may be eliminated, if the electric converter 1632a, shown in Fig. 16, is present. However, the converter 1632c may further condition or change the energy characteristics for the bus 1802 for use by the loads 1508. The converter 1632c may also provide electrical energy to electric motor 1804, which may power the vehicle 100. [0138] The electric motor 1804 can be any type of DC or AC electric motor. The electric motor may be a direct drive or induction motor using permanent magnets and/or winding either on the stator or rotor. The electric motor 1804 may also be wireless or include brush contacts. The electric motor 1804 may be capable of providing a torque and enough kinetic energy to move the vehicle 100 in traffic.

[0139] The different loads 1508 may also include environmental loads 1812, sensor loads 1816, safety loads 1820, user interaction loads 1808, etc. User interaction loads 1808 can be any energy used by user interfaces or systems that interact with the driver and/or passenger(s). These loads 1808 may include, for example, the heads up display, the dash display, the radio, user interfaces on the head unit, lights, radio, and/or other types of loads that provide or receive information from the occupants of the vehicle 100. The environmental loads 1812 can be any loads used to control the environment within the vehicle 100. For example, the air conditioning or heating unit of the vehicle 100 can be environmental loads 1812. Other environmental loads can include lights, fans, and/or defrosting units, etc. that may control the environment within the vehicle 100. The sensor loads 1816 can be any loads used by sensors, for example, air bag sensors, GPS, and other such sensors used to either manage or control the vehicle 100 and/or provide information or feedback to the vehicle occupants. The safety loads 1820 can include any safety equipment, for example, seat belt alarms, airbags, headlights, blinkers, etc. that may be used to manage the safety of the occupants. There may be more or fewer loads than those described herein, although they may not be shown in Fig. 18.

[0140] Fig. 19 illustrates an exemplary hardware diagram of communications componentry that can be optionally associated with the vehicle.

[0141] The communications componentry can include one or more wired or wireless devices such as a transceiver(s) and/or modem that allows communications not only between the various systems disclosed herein but also with other devices, such as devices on a network, and/or on a distributed network such as the Internet and/or in the cloud.

[0142] The communications subsystem can also include inter- and intra-vehicle communications capabilities such as hotspot and/or access point connectivity for any one or more of the vehicle occupants and/or vehicle-to-vehicle communications.

[0143] Additionally, and while not specifically illustrated, the communications subsystem can include one or more communications links (that can be wired or wireless) and/or communications busses (managed by the bus manager 1974), including one or more of CANbus, OBD-II, ARCINC 429, Byteflight, CAN (Controller Area Network), D2B (Domestic Digital Bus), FlexRay, DC-BUS, IDB-1394, IEBus, I 2 C, ISO 9141-1/-2, J1708, J1587, J1850, J1939, ISO 11783, Keyword Protocol 2000, LIN (Local Interconnect Network), MOST (Media Oriended Systems Transport), Multifunction Vehicle Bus, SMART wireX, SPI, VAN (Vehicle Area Network), and the like or in general any communications protocol and/or standard.

[0144] The various protocols and communications can be communicated one or more of wirelessly and/or over transmission media such as single wire, twisted pair, fibre optic, IEEE 1394, MIL-STD-1553, MIL-STD-1773, power-line communication, or the like. (All of the above standards and protocols are incorporated herein by reference in their entirety)

[0145] As discussed, the communications subsystem enables communications between any if the inter-vehicle systems and subsystems as well as communications with non- collocated resources, such as those reachable over a network such as the Internet.

[0146] The communications subsystem, in addition to well-known componentry (which has been omitted for clarity), the device communications subsystem 1900 includes interconnected elements including one or more of: one or more antennas 1904, an interleaver/deinterleaver 1908, an analog front end (AFE) 1912, memory/storage/cache 1916, controller/microprocessor 1920, MAC circuitry 1922, modulator/demodulator 1924, encoder/decoder 1928, a plurality of connectivity managers 1934-1966, GPU 1940, accelerator 1944, a multiplexer/demultiplexer 1954, transmitter 1970, receiver 1972 and wireless radio 1978 components such as a Wi-Fi PHY/Bluetooth® module 1980, a Wi- Fi/BT MAC module 1984, transmitter 1988 and receiver 1992. The various elements in the device 1900 are connected by one or more links/busses 5 (not shown, again for sake of clarity).

[0147] The device 400 can have one more antennas 1904, for use in wireless

communications such as multi-input multi-output (MFMO) communications, multi-user multi-input multi-output (MU-MIMO) communications Bluetooth®, LTE, 4G, 5G, Near- Field Communication (NFC), etc. The antenna(s) 1904 can include, but are not limited to one or more of directional antennas, omnidirectional antennas, monopoles, patch antennas, loop antennas, microstrip antennas, dipoles, and any other antenna(s) suitable for communication transmission/reception. In an exemplary embodiment,

transmission/reception using MFMO may require particular antenna spacing. In another exemplary embodiment, MFMO transmission/reception can enable spatial diversity allowing for different channel characteristics at each of the antennas. In yet another embodiment, MIMO transmission/reception can be used to distribute resources to multiple users for example within the vehicle and/or in another vehicle.

[0148] Antenna(s) 1904 generally interact with the Analog Front End (AFE) 1912, which is needed to enable the correct processing of the received modulated signal and signal conditioning for a transmitted signal. The AFE 1912 can be functionally located between the antenna and a digital baseband system in order to convert the analog signal into a digital signal for processing and vice-versa.

[0149] The subsystem 1900 can also include a controller/microprocessor 1920 and a memory/storage/cache 1916. The subsystem 1900 can interact with the

memory/storage/cache 1916 which may store information and operations necessary for configuring and transmitting or receiving the information described herein. The memory/storage/cache 1916 may also be used in connection with the execution of application programming or instructions by the controller/microprocessor 1920, and for temporary or long term storage of program instructions and/or data. As examples, the memory/storage/cache 1920 may comprise a computer-readable device, RAM, ROM, DRAM, SDRAM, and/or other storage device(s) and media.

[0150] The controller/microprocessor 1920 may comprise a general purpose

programmable processor or controller for executing application programming or instructions related to the subsystem 1900. Furthermore, the controller/microprocessor 1920 can perform operations for configuring and transmitting/receiving information as described herein. The controller/microprocessor 1920 may include multiple processor cores, and/or implement multiple virtual processors. Optionally, the

controller/microprocessor 1920 may include multiple physical processors. By way of example, the controller/microprocessor 1920 may comprise a specially configured Application Specific Integrated Circuit (ASIC) or other integrated circuit, a digital signal processor(s), a controller, a hardwired electronic or logic circuit, a programmable logic device or gate array, a special purpose computer, or the like.

[0151] The subsystem 1900 can further include a transmitter 1970 and receiver 1972 which can transmit and receive signals, respectively, to and from other devices, subsystems and/or other destinations using the one or more antennas 1904 and/or links/busses. Included in the subsystem 1900 circuitry is the medium access control or MAC Circuitry 1922. MAC circuitry 1922 provides for controlling access to the wireless medium. In an exemplary embodiment, the MAC circuitry 1922 may be arranged to contend for the wireless medium and configure frames or packets for communicating over the wireless medium.

[0152] The subsystem 1900 can also optionally contain a security module (not shown). This security module can contain information regarding but not limited to, security parameters required to connect the device to one or more other devices or other available network(s), and can include WEP or WPA/WPA-2 (optionally + AES and/or TKIP) security access keys, network keys, etc. The WEP security access key is a security password used by Wi-Fi networks. Knowledge of this code can enable a wireless device to exchange information with an access point and/or another device. The information exchange can occur through encoded messages with the WEP access code often being chosen by the network administrator. WPA is an added security standard that is also used in conjunction with network connectivity with stronger encryption than WEP.

[0153] The exemplary subsystem 1900 also includes a GPU 1940, an accelerator 1944, a Wi-Fi/BT/BLE PHY module 1980 and a Wi-Fi/BT/BLE MAC module 1984 and wireless transmitter 1988 and receiver 1992. In some embodiments, the GPU 1940 may be a graphics processing unit, or visual processing unit, comprising at least one circuit and/or chip that manipulates and changes memory to accelerate the creation of images in a frame buffer for output to at least one display device. The GPU 1940 may include one or more of a display device connection port, printed circuit board (PCB), a GPU chip, a metal-oxide- semiconductor field-effect transistor (MOSFET), memory (e.g., single data rate random- access memory (SDRAM), double data rate random-access memory (DDR) RAM, etc., and/or combinations thereof), a secondary processing chip (e.g., handling video out capabilities, processing, and/or other functions in addition to the GPU chip, etc.), a capacitor, heatsink, temperature control or cooling fan, motherboard connection, shielding, and the like.

[0154] The various connectivity managers 1934-1966 (even) manage and/or coordinate communications between the subsystem 1900 and one or more of the systems disclosed herein and one or more other devices/systems. The connectivity managers include an emergency charging connectivity manager 1934, an aerial charging connectivity manager 1938, a roadway charging connectivity manager 1942, an overhead charging connectivity manager 1946, a robotic charging connectivity manager 1950, a static charging

connectivity manager 1954, a vehicle database connectivity manager 1958, a remote operating system connectivity manager 1962 and a sensor connectivity manager 1966. [0155] The emergency charging connectivity manager 1934 can coordinate not only the physical connectivity between the vehicle and the emergency charging device/vehicle, but can also communicate with one or more of the power management controller, one or more third parties and optionally a billing system(s). As an example, the vehicle can establish communications with the emergency charging device/vehicle to one or more of coordinate interconnectivity between the two (e.g., by spatially aligning the charging receptacle on the vehicle with the charger on the emergency charging vehicle) and optionally share navigation information. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. In addition to being able to manage connectivity for the exchange of power, the emergency charging connectivity manager 1934 can also communicate information, such as billing information to the emergency charging vehicle and/or a third party. This billing information could be, for example, the owner of the vehicle, the driver of the vehicle, company information, or in general any information usable to charge the appropriate entity for the power received.

[0156] The aerial charging connectivity manager 1938 can coordinate not only the physical connectivity between the vehicle and the aerial charging device/vehicle, but can also communicate with one or more of the power management controller, one or more third parties and optionally a billing system(s). As an example, the vehicle can establish communications with the aerial charging device/vehicle to one or more of coordinate interconnectivity between the two (e.g., by spatially aligning the charging receptacle on the vehicle with the charger on the emergency charging vehicle) and optionally share navigation information. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. In addition to being able to manage connectivity for the exchange of power, the aerial charging connectivity manager 1938 can similarly communicate information, such as billing information to the aerial charging vehicle and/or a third party. This billing information could be, for example, the owner of the vehicle, the driver of the vehicle, company information, or in general any information usable to charge the appropriate entity for the power received etc., as discussed.

[0157] The roadway charging connectivity manager 1942 and overhead charging connectivity manager 1946 can coordinate not only the physical connectivity between the vehicle and the charging device/system, but can also communicate with one or more of the power management controller, one or more third parties and optionally a billing system(s).

As one example, the vehicle can request a charge from the charging system when, for example, the vehicle needs or is predicted to need power. As an example, the vehicle can establish communications with the charging device/vehicle to one or more of coordinate interconnectivity between the two for charging and share information for billing. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. This billing information could be, for example, the owner of the vehicle, the driver of the vehicle, company information, or in general any information usable to charge the appropriate entity for the power received etc., as discussed. The person responsible for paying for the charge could also receive a copy of the billing information as is customary. The robotic charging connectivity manager 1950 and static charging connectivity manager 1954 can operate in a similar manner to that described herein.

[0158] The vehicle database connectivity manager 1958 allows the subsystem to receive and/or share information stored in the vehicle database. This information can be shared with other vehicle components/subsystems and/or other entities, such as third parties and/or charging systems. The information can also be shared with one or more vehicle occupant devices, such as an app on a mobile device the driver uses to track information about the vehicle and/or a dealer or service/maintenance provider. In general any information stored in the vehicle database can optionally be shared with any one or more other devices optionally subject to any privacy or confidentially restrictions.

[0159] The remote operating system connectivity manager 1962 facilitates

communications between the vehicle and any one or more autonomous vehicle systems. These communications can include one or more of navigation information, vehicle information, occupant information, or in general any information related to the remote operation of the vehicle.

[0160] The sensor connectivity manager 1966 facilitates communications between any one or more of the vehicle sensors and any one or more of the other vehicle systems. The sensor connectivity manager 1966 can also facilitate communications between any one or more of the sensors and/or vehicle systems and any other destination, such as a service company, app, or in general to any destination where sensor data is needed.

[0161] In accordance with one exemplary embodiment, any of the communications discussed herein can be communicated via the conductor(s) used for charging. One exemplary protocol usable for these communications is Power-line communication (PLC). PLC is a communication protocol that uses electrical wiring to simultaneously carry both data, and Alternating Current (AC) electric power transmission or electric power distribution. It is also known as power-line carrier, power-line digital subscriber line (PDSL), mains communication, power-line telecommunications, or power-line networking (PLN). For DC environments in vehicles PLC can be used in conjunction with CAN-bus, LIN-bus over power line (DC-LIN) and DC-BUS.

[0162] The communications subsystem can also optionally manage one or more identifiers, such as an IP (internet protocol) address(es), associated with the vehicle and one or other system or subsystems or components therein. These identifiers can be used in conjunction with any one or more of the connectivity managers as discussed herein.

[0163] Fig. 19B illustrates a block diagram of a computing environment 1901 that may function as the servers, user computers, or other systems provided and described above. The environment 1901 includes one or more user computers, or computing devices, such as a vehicle computing device 1903, a communication device 1907, and/or more 1911. The computing devices 1903, 1907, 1911 may include general purpose personal computers (including, merely by way of example, personal computers, and/or laptop computers running various versions of Microsoft Corp.'s Windows® and/or Apple Corp.'s

Macintosh® operating systems) and/or workstation computers running any of a variety of commercially-available UNIX® or UNIX-like operating systems. These computing devices 1903, 1907, 1911 may also have any of a variety of applications, including for example, database client and/or server applications, and web browser applications.

Alternatively, the computing devices 1903, 1907, 1911 may be any other electronic device, such as a thin-client computer, Internet-enabled mobile telephone, and/or personal digital assistant, capable of communicating via a network 1909 and/or displaying and navigating web pages or other types of electronic documents. Although the exemplary computer environment 1901 is shown with two computing devices, any number of user computers or computing devices may be supported.

[0164] Environment 1901 further includes a network 1909. The network 1909 may can be any type of network familiar to those skilled in the art that can support data

communications using any of a variety of commercially-available protocols, including without limitation SIP, TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by way of example, the network 1909 maybe a local area network ("LAN"), such as an Ethernet network, a Token-Ring network and/or the like; a wide-area network; a virtual network, including without limitation a virtual private network ("VPN"); the Internet; an intranet; an extranet; a public switched telephone network ("PSTN"); an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.9 suite of protocols, the Bluetooth® protocol known in the art, and/or any other wireless protocol); and/or any combination of these and/or other networks.

[0165] The system may also include one or more servers 1913, 1915. In this example, server 1913 is shown as a web server and server 1915 is shown as an application server. The web server 1913, which may be used to process requests for web pages or other electronic documents from computing devices 1903, 1907, 1911. The web server 1913 can be running an operating system including any of those discussed above, as well as any commercially-available server operating systems. The web server 1913 can also run a variety of server applications, including SIP servers, HTTP servers, FTP servers, CGI servers, database servers, Java servers, and the like. In some instances, the web server 1913 may publish operations available operations as one or more web services.

[0166] The environment 1901 may also include one or more file and or/application servers 1915, which can, in addition to an operating system, include one or more applications accessible by a client running on one or more of the computing devices 1903, 1907, 1911. The server(s) 1915 and/or 1913 may be one or more general purpose computers capable of executing programs or scripts in response to the computing devices 1903, 1907, 1911. As one example, the server 1915, 1913 may execute one or more web applications. The web application may be implemented as one or more scripts or programs written in any programming language, such as Java™, C, C# ® , or C++, and/or any scripting language, such as Perl, Python, or TCL, as well as combinations of any programming/scripting languages. The application server(s) 1915 may also include database servers, including without limitation those commercially available from Oracle, Microsoft, Sybase™, IBM™ and the like, which can process requests from database clients running on a computing device 1903, 1907, 1911.

[0167] The web pages created by the server 1913 and/or 1915 may be forwarded to a computing device 1903, 1907, 1911 via a web (file) server 1913, 1915. Similarly, the web server 1913 may be able to receive web page requests, web services invocations, and/or input data from a computing device 1903, 1907, 1911 (e.g., a user computer, etc.) and can forward the web page requests and/or input data to the web (application) server 1915. In further embodiments, the server 1915 may function as a file server. Although for ease of description, Fig. 19B illustrates a separate web server 1913 and file/application server

1915, those skilled in the art will recognize that the functions described with respect to servers 1913, 1915 may be performed by a single server and/or a plurality of specialized servers, depending on implementation-specific needs and parameters. The computer systems 1903, 1907, 1911, web (file) server 1913 and/or web (application) server 1915 may function as the system, devices, or components described in Figs. 1-19A.

[0168] The environment 1901 may also include a database 1917. The database 1917 may reside in a variety of locations. By way of example, database 1917 may reside on a storage medium local to (and/or resident in) one or more of the computers 1903, 1907, 1911, 1913, 1915. Alternatively, it may be remote from any or all of the computers 1903, 1907, 1911, 1913, 1915, and in communication (e.g., via the network 1909) with one or more of these. The database 1917 may reside in a storage-area network ("SAN") familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers 1903, 1907, 1911, 1913, 1915 may be stored locally on the respective computer and/or remotely, as appropriate. The database 1917 may be a relational database, such as Oracle 20i ® , that is adapted to store, update, and retrieve data in response to SQL-formatted commands.

[0169] Fig. 19C illustrates one embodiment of a computer system 1919 upon which the servers, user computers, computing devices, or other systems or components described above may be deployed or executed. The computer system 1919 is shown comprising hardware elements that may be electrically coupled via a bus 1921. The hardware elements may include one or more central processing units (CPUs) 1923; one or more input devices 1925 (e.g., a mouse, a keyboard, etc.); and one or more output devices 1927 (e.g., a display device, a printer, etc.). The computer system 1919 may also include one or more storage devices 1929. By way of example, storage device(s) 1929 may be disk drives, optical storage devices, solid-state storage devices such as a random access memory ("RAM") and/or a read-only memory ("ROM"), which can be programmable, flash-updateable and/or the like.

[0170] The computer system 1919 may additionally include a computer-readable storage media reader 1931; a communications system 1933 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.); and working memory 1937, which may include RAM and ROM devices as described above. The computer system 1919 may also include a processing acceleration unit 1935, which can include a DSP, a special-purpose processor, and/or the like.

[0171] The computer-readable storage media reader 1931 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s) 1929) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. The communications system 1933 may permit data to be exchanged with a network and/or any other computer described above with respect to the computer environments described herein. Moreover, as disclosed herein, the term "storage medium" may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.

[0172] The computer system 1919 may also comprise software elements, shown as being currently located within a working memory 1937, including an operating system 1939 and/or other code 1941. It should be appreciated that alternate embodiments of a computer system 1919 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.

[0173] Examples of the processors 1923 as described herein may include, but are not limited to, at least one of Qualcomm ® Snapdragon ® 800 and 801, Qualcomm ®

Snapdragon ® 620 and 615 with 4G LTE Integration and 64-bit computing, Apple ® A7 processor with 64-bit architecture, Apple ® M7 motion coprocessors, Samsung ® Exynos ® series, the Intel ® Core™ family of processors, the Intel ® Xeon ® family of processors, the Intel ® Atom™ family of processors, the Intel Itanium ® family of processors, Intel ® Core ® Ϊ5-4670Κ and Ϊ7-4770Κ 22nm Haswell, Intel ® Core ® Ϊ5-3570Κ 22nm Ivy Bridge, the AMD ® FX™ family of processors, AMD ® FX-4300, FX-6300, and FX-8350 32nm Vishera, AMD ® Kaveri processors, Texas Instruments ® Jacinto C6000™ automotive infotainment processors, Texas Instruments ® OMAP™ automotive-grade mobile processors, ARM ® Cortex™-M processors, ARM ® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.

[0174] Fig. 20 is a diagram illustrating a vehicle in an exemplary environment according to one embodiment of the present disclosure. As described above with reference to Fig. 2, the vehicle 100 may operate in environments which enable charging of the vehicle 100 and/or operation of the vehicle 100. More specifically, the vehicle 100 may receive a charge via one or more means comprising emergency charging vehicle system 270, aerial vehicle charging system 280, robotic charging system 254 and others as described above. The vehicle 100 may interact and/or operate in an environment comprising one or more other roadway vehicles 260. The vehicle 100 may engage with elements within the vehicle 100 comprising vehicle driver 220, vehicle passengers 220 and vehicle database 210. In one embodiment, vehicle database 210 does not physically reside in the vehicle 100 but is instead accessed remotely, e.g. by wireless communication, and resides in another location such as a residence or business location. Vehicle 100 may operate autonomously and/or semi-autonomously in an autonomous environment also as described above. Furthermore, the vehicle 100 may engage with a remote operator system 240, which may provide fleet management instructions or control.

[0175] The vehicle 100 may also engage with one or more service provider systems including but not limited to a repair facility 2005, a power source exchange facility 2010, and/or a third party service provider system 2015 such as an advertiser or other information exchange system. According to one embodiment, one or more of the environments in which the vehicle 100 operates may apply service provider rules to manage or influence services provided to or interactions with the vehicle 100. For example, the repair facility 2005 can set fees for vehicle repair services based on business rules defining a pricing model or structure and applying those rules based on certain conditions defined by the repair facility operator and/or specific to the vehicle 100 and/or vehicle driver or user. Similarly, the power source exchange facility 2010 can apply business rules defining a pricing model for services to exchange vehicle batteries or other power sources. Any one or more of the remote operator system 240, robotic charging system 254, emergency charging vehicle system 270, aerial vehicle charging system 280, and/or other systems described above may similarly apply service provider rules to manage services provided when interacting with the vehicle 100. Additionally or alternatively, a third party service provider system 2015 such as an advertiser may apply rules specific to another service provider system including but not limited to the remote operator system 240, robotic charging system 254, emergency charging vehicle system

270, aerial vehicle charging system 280, etc., to determine a value or price for a service, for example, and communicate that determined value or price to the vehicle 100. It should be noted that the terms value and price, while used together here, need not be considered to be synonymous. As used herein, the term price is intended to mean a monetary amount for services can be exchanged. The term value is intended to mean not only a monetary amount but any other exchange for services such as an exchange of earned credits, i.e., not necessarily monetary credits, an exchange of other tokens having some intrinsic or other agreed upon worth, etc.

[0176] Fig. 21 is a block diagram illustrating components of a system for applying service provider or seller rules to a service according to one embodiment of the present disclosure. As illustrated in this example, a service provider's system 2100 can comprise a configuration and/or administration component 2105, one or more repositories of rules and information including but not limited to a repository of maintenance management rules 2110, a repository of configuration parameters 2115, and a repository of vehicle and/or user specific information 2120. The service provider's system 2100 can further comprise a data collection component 2125, a value determination component 2130, a repository of service value information 2135, and a communication component 2140.

[0177] Generally speaking, a service provider can, for example using a graphical or other user interface provided by the configuration and/or administration component 2105, define a set of rules saved in the repository of maintenance management rules 2110 and/or a set of configuration parameters saved in the repository of configuration parameters 2115. In some cases, the service provider may also be able, through the configuration and/or administration component 2105, defined, modify, or view a set of vehicle or user information saved in the repository of vehicle and/or user specific information 2120.

Additionally or alternatively, the data collection component 2125 can collect vehicle and/or user information from the vehicle, e.g., from an on-board diagnostic system, telemetric system, vehicle management system and/or other computer system within the vehicle, from one or more elements interacting with the vehicle, from the user via the vehicle, a mobile device, a laptop or other computer system, or through other means and save the collected information in the vehicle and/or user specific information 2120. The value determination component 2130 can apply the rules of the repository of maintenance management rules 2110 using the set of configuration parameters saved in the repository of configuration parameters 2115 and the vehicle or user information saved in the repository of vehicle and/or user specific information 2120 to determine or generate a value or price for a service available from the service provider to the vehicle. This value or price can be saved in the repository of service value information 2135 for access by the service provider, the vehicle, the user, other service providers, etc. Additionally or alternatively, the determined value or price can be sent by the communication component 2140 to the vehicle or other system, for example, via a cellular or other wireless connection. [0178] More specifically, the service provider or seller of a particular service can set fees for the services provided by configuring, through the configuration and/or

administration component 2105, business rules defining a pricing model or structure. The set of rules can be implemented in any common rule definition language such as, for example, Business Process Execution Language (BPEL) or similar language, and can comprise a set of conditions and associated actions to be applied upon satisfaction of those conditions. The actions can, in some cases, be calculations or other operations to determine the price for the service, adjust the price for the service, perform automated negotiations, etc. For example, a business rule for a battery exchange facility for electric or hybrid vehicles may define the fee for an exchange of a low battery for a fully charged battery to be higher in a city center rather than along a highway. Therefore, the set of maintenance management rules defined through the configuration and/or administration component 2105 and stored in the repository of maintenance management rules 2110 can comprise at least one rule defining a value for the service based on a location at which the service is delivered. The location can be selected from a plurality of different and geographically diverse locations. The maintenance management rules can define a first location of the plurality of locations, e.g., a city center or urban location, as having a higher cost than at least one second location of the plurality of locations, e.g., or rural or highway location outside of city or municipal limits. In another example, a rule may define a higher value or price during certain peak times such as lunchtime, e.g., noon- 1 :00pm or business hours, e.g., 8:00am-5:00pm and a reduced value or price during certain low demand hours, e.g., 2:00am-4:00pm. Thus, the set of maintenance

management rules defined through the configuration and/or administration component 2105 and stored in the repository of maintenance management rules 2110 can comprise at least one rule defining a value for the service based on a time of day at which the service is delivered. The time of day at which the service is delivered can fall within one of a plurality of time periods. The maintenance management rules can define a first time period of the plurality of time periods, i.e., a peak period, as having a higher cost than a second time period of the plurality of time periods. Any number and variety of other rules can be implemented at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0179] The service provider can, for example, through the graphical or other user interface of the configuration and/or administration component 2105, define and/or adjust selectable or configurable parameters stored in the repository of configuration parameters 2115 to be used by the business rules in order to implement a dynamic pricing model adaptable to current conditions. These parameters can comprise, for example, values for variables defined in the calculations or actions of the rules. In other cases, the parameters can comprise switches, flags, or other values for the conditions of the rules. The terms or parameters stored in the repository of configuration parameters 2115 may be varied by the service provider through the configuration and/or administration component 2105 depending on, for example, local demand, to apply premium pricing during periodic or temporary high-demand periods. For example, a competing nearby charging station suffering a worker strike or local protest may trigger increased demand at a service provider's charging station thereby allowing that service provider to temporarily charge higher fees while the strike or protest is occurring. In other examples, when there are not enough charger stations or facilities to service the number of vehicles in a particular area or when the electric utility company is struggling to keep up with demand, temporarily higher prices for services may be supported and can be implemented through the configurable parameters set by the service provider. Thus, the set of service configuration information comprises one or more dynamic pricing parameters. The one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

The dynamic pricing parameters can comprise, for example, multipliers, divisors, additional charges, discounts amounts, and/or other factors that can be applied by the service rules to adjust a price up or down for given conditions. Any number and variety of other parameters can be implemented in different ways at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0180] The repository of vehicle or user specific information 2120 can comprise information for one or more vehicles defined by the service provider through the configuration and/or administration component. Additionally or alternatively, this information may be collected from the vehicle, the user, other service providers, other elements interacting with the vehicle etc. through the data collection component interfacing with those elements. The information stored in the repository of vehicle or user specific information 2120 can comprise values for variables defined in the calculations or actions of the rules. In other cases, the information can comprise switches, flags, or other values for the conditions of the rules. For example, use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. Therefore, the set of user or vehicle specific maintenance and use information stored in the repository of vehicle or user specific information 2120 can comprise user loyalty information, i.e., use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. In another example, use data may be collected related to and indicating how a particular user charges his vehicle. Since leaving the vehicle on the charger beyond the time when the battery is fully or adequately charged needlessly consumes electricity, an effective pricing model could charge users more for charging longer and possibly less or crediting them for charging for a shorter time. Therefore, the set of user or vehicle specific maintenance and use information stored in the repository of vehicle or user specific information 2120 can comprise historical information related to use of the service, i.e., the value determination or pricing rules could apply higher charges to users for charging longer and possibly less or crediting them for charging for a shorter time. Any amount and variety of other data can be implemented in different ways at the service provider's discretion and is considered to be within the scope of the present disclosure.

[0181] The value determination component 2130 can then determine a value or price for the service performed on the vehicle based on applying the maintenance management rules stored in the repository maintenance management rules 2110 and using the set of service configuration parameters stored in the repository of configuration parameters 2115 and the set of user or vehicle specific maintenance and use information stored in the repository of vehicle or user information 2120. That is, once the variables of the rules are populated with the values defined in the service configuration parameters and/or the vehicle or user specific information, the rules can be executed by the value determination component 2130 and the actions defined for the rules can be performed by the value determination component 2130 based on the populated conditions.

[0182] The determined value or price for the service can then be provided to the one or more vehicles. For example, the determined value or price may be saved by the value determination component 2130 in the repository of service value information 2135 which can be accessible by the vehicle, by the user through other means such as a mobile device or computer, by other service providers, or by other elements interacting with the vehicle.

Additionally or alternatively, the determined value or price may be transmitted by the communication component 2140 over a cellular or other wireless connection to the vehicle, user, other service provider or element, etc. Once received by the vehicle, this information may be presented to the user or driver of the vehicle, e.g., via a heads up or other display within the vehicle. In some cases, automated negotiation between user and service provider may occur. For example, the initial price may be provided to the user, e.g., through a heads up or other display in the vehicle, and the user may be given a choice to accept that initial price, reject, the initial price, or make a counteroffer to the initial price. This choice may be provided through the communication component 2140 back to the value determination component 2130 of the service provider system 2100 which may then, again depending upon the rules, configurable parameters, and user or vehicle specific maintenance and use information, adjust or update the initial price or leave the initial price as originally determined.

[0183] Fig. 22 is a flowchart illustrating an exemplary process for applying provider or seller rules to a service according to one embodiment of the present disclosure. As illustrated in this example, managing maintenance services performed on a vehicle can comprise receiving 2202, at the service provider system and over a communications network, a request for maintenance of one or more vehicles. The request can be received

2202 by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third-party service provider system. A set of maintenance management rules can be read 2205. The service can comprise a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service. Generally speaking, the set of maintenance management rules can comprise a set of conditions and associated actions to be applied upon satisfaction of those conditions.

The actions can, in some cases, be calculations or other operations to determine the price for the service, adjust the price for the service, perform automated negotiations, etc. For example, the set of maintenance management rules can comprise at least one rule defining a value for the service based on a location at which the service is delivered. The location can be selected from a plurality of different and geographically diverse locations. The maintenance management rules can define a first location of the plurality of locations, e.g., a city center or urban location, as having a higher cost than at least one second location of the plurality of locations, e.g., or rural or highway location outside of city or municipal limits. In another example, the set of maintenance management rules can comprise at least one rule defining a value for the service based on a time of day at which the service is delivered. The time of day at which the service is delivered can fall within one of a plurality of time periods. The maintenance management rules can define a first time period of the plurality of time periods, i.e., a peak period, as having a higher cost than a second time period of the plurality of time periods. Any number and variety of other rules can be implemented at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0184] A set of service configuration parameters can also be read 2210. The service configuration parameters can be set by the service provider to influence or adjust the prices determined by the calculations or other actions performed by the value

determination of pricing rules, i.e., to provide a dynamic pricing model adaptable to current conditions. In some cases, these parameters can comprise values for variables defined in the calculations or actions of the rules. In other cases, the parameters can comprise switches, flags, or other values for the conditions of the rules. For example, the set of service configuration information comprises one or more dynamic pricing parameters. The one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service. Any number and variety of other parameters can be implemented at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0185] A set of user or vehicle specific maintenance and use information for one or more vehicles can also be read 2215. Such information can influence application of the rules to provide individual vehicle or user specific pricing. In some cases, this information can comprise values for variables defined in the calculations or actions of the rules. In other cases, the information can comprise switches, flags, or other values for the conditions of the rules. For example, the set of user or vehicle specific maintenance and use information can comprise user loyalty information, i.e., use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. In another example, the set of user or vehicle specific maintenance and use information can comprise historical information related to use of the service, i.e., the value determination or pricing rules could apply higher charges to users for charging longer and possibly less or crediting them for charging for a shorter time.

[0186] A value or price for the service performed on the vehicle can be determined 2220 based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information. That is, once the variables of the rules are populated with the values defined in the service configuration parameters and/or the vehicle or user specific information, the rules can be executed and the actions defined for the rules can be performed based on the populated conditions. [0187] The determined value or price for the service can then be provided 2225 to the one or more vehicles. For example, the determined value or price may be transmitted over a cellular or other wireless connection to one or more vehicles, e.g., within a certain geographic distance of a service facility or in response to a specific query from those one or more vehicles. Once received, this information may be presented to the user or driver of the vehicle, e.g., via a heads up or other display within the vehicle.

[0188] In some cases, the determined value or price for the service can be adjusted 2230 based on feedback from the user. For example, once the initial price has been provided to the user, the user may be given a choice to accept that initial price, reject, the initial price, or make a counteroffer to the initial price. This choice may be provided back to the service provider system which may then, again depending upon the rules, configurable parameters, and user or vehicle specific maintenance and use information, adjust or update the initial price or leave the initial price as originally determined.

[0189] Fig. 23 is a flowchart illustrating an exemplary process for adjusting a determined value for a service based on received feedback according to one embodiment of the present disclosure. Adjusting the determined value for the service based on feedback from the user can comprise performing an automatic negotiation for the value or price of the service. As illustrated in this example, performing the automatic negotiation can comprise receiving 2305 a response regarding the determined value or price and determining 2310 whether the received response indicates an acceptance of the determined value or price of the service. This determination 2310 can be based, for example, on a type of message received from the user, content of the message, etc. Upon determining 2310 the response indicates an acceptance of the determined value or price of the service, an indication of acceptance of the determined value or price can be recorded 2325.

[0190] Upon determining 2310 the response does not indicate an acceptance of the determined value or price of the service, a further determination 2315 can be made as to whether the received response indicates a counteroffer for the determined value or price for the service. Again, this determination 2315 can be based, for example, on a type of message received from the user, content of the message, etc. In response to determining 2315 the received response indicates a counteroffer for the determined value or price for the service, a further determination 2320 can be made as to whether the counteroffer is acceptable. This determination 2320 can be based on content of the response indicating a price or amount for the counteroffer and the service provider's rules, configuration parameters, and vehicle or user information. For example, the rules and/or configuration parameters may indicate whether counteroffers can be considered, an acceptable range for counteroffers in terms of percent or absolute difference from the original determined value or price, etc. In response to determining 2320 the counteroffer is acceptable, an indication of acceptance of the determined value or price can be recorded 2325.

[0191] In response to determining 2320 the counteroffer is not acceptable, a further determination 2330 can be made as to whether the determined value or price is negotiable. In response to determining 2330 the determined value or price is negotiable, the determined value or price can be updated 2335 and provided to the user.

[0192] In response to determining 2315 the received response does not indicate a counteroffer for the determined value or price for the service, i.e., not an acceptance 2310 and not a counteroffer 2315 and thus a rejection, a further determination 2330 can be made as to whether the determined value or price is negotiable. Again, this determination 2330 can be based on the service provider's rules, configuration parameters, and vehicle or user information. In response to determining 2330 the determined value or price is negotiable, the determined value or price can be updated 2335 and provided to the user. Updating 2335 the determined value or price can comprise, for example, adjusting the determined value or price by a predefined percentage or absolute amount defined in the rules and/or configuration parameters, offering a discount or incentive based on the rules, configuration parameters and/or vehicle or user information, etc.

[0193] Fig. 24 is a diagram illustrating an exemplary instrument panel of a vehicle according to one embodiment of the present disclosure. As described above with reference for Fig. 4C, the instrument panel 400 of vehicle 100 can comprise steering wheel

410, vehicle operational display 420, one or more auxiliary displays 424, heads-up display

434, power management display 428, and charging manual controller 432 (which provides a physical input, e.g. a joystick, to manual maneuver, e.g., a vehicle charging plate to a desired separation distance). One or more of displays of instrument panel 400 may be touch-screen displays. One or more displays of instrument panel 400 may be mobile devices and/or applications residing on a mobile device such as a smart phone. As described herein, the determined value or price for a service can be provided to the vehicle and presented on one of the displays. In this example, service value or price information is presented on the heads-up display 434 as a list of available service locations and prices for a particular service. It should be noted that in other implementations the service value or price information can be presented on any one or more of the other displays such as the vehicle operational display 420, one or more auxiliary displays 424, power management display 428, etc. or may be played out in audio form through the sound system of the vehicle. In yet other implementations, the information may be presented on a mobile device or computer of the user coupled with the vehicle, e.g., through a Blue Tooth or other communication means.

[0194] According to one embodiment, the determined value or price information may be presented to the vehicle in response to a query from the vehicle. This query may be generated automatically by the vehicle based on a detected condition. For example, when a battery or other power source of the vehicle reaches a certain charge level that is predefined as being low, the vehicle may begin searching for a charging facility or an exchange facility. In other cases, the driver may initiate the query. Additionally or alternatively, the value or price information may be presented whenever received by the vehicle from the service. For example, a service may generate and send the information to vehicles in a specific geographic range of a service facility or periodically send value and price information, perhaps at discounted rates or with another incentive, to one or more vehicles as an advertisement for the service.

[0195] Regardless of exactly how or why the value or price information is received and displayed, the user can, in some cases and as described above, initiate an automated negotiation with the service. For example, the user or driver of the vehicle may

manipulate the charging controller 432 or other input device or a touch sensitive screen of the display on which the information is displayed to select the information and perhaps indicate acceptance of the value or price, reject the initial value or price, or propose a counteroffer to the value or price. In other cases, the selections and acceptance, rejection, or counteroffer can be made verbally by the driver or user and appropriately processed by speech recognition components of the vehicle and/or service. Numerous other variations are contemplated and considered to be within the scope of the present disclosure.

[0196] Generally speaking, a service provider can, for example using a graphical or other user interface provided by the configuration and/or administration component 2505, define a set of rules saved in the repository of maintenance management rules 2510 and/or a set of configuration parameters saved in the repository of configuration parameters 2515. In some cases, the service provider may also be able, through the configuration and/or administration component 2505, defined, modify, or view a set of vehicle or user information saved in the repository of vehicle and/or user specific information 2520.

Additionally or alternatively, the data collection component 2525 can collect vehicle and/or user information from the vehicle, from one or more elements interacting with the vehicle, from the user via the vehicle, a mobile device, a laptop or other computer system, or through other means and save the collected information in the vehicle and/or user specific information 2520. The value determination component 2530 can apply the rules of the repository of maintenance management rules 2510 using the set of configuration parameters saved in the repository of configuration parameters 2515 and the vehicle or user information saved in the repository of vehicle and/or user specific information 2520 to determine or generate a value or price for a service available from the service provider to the vehicle. This value or price can be saved in the repository of service value information 2535 for access by the service provider, the vehicle, the user, other service providers, etc. Additionally or alternatively, the determined value or price can be sent by the communication component 2540 to the vehicle or other system, for example, via a cellular or other wireless connection.

[0197] More specifically, the service provider or seller of a particular service can set fees for the services provided by configuring, through the configuration and/or administration component 2505, business rules defining a pricing model or structure. The set of rules can be implemented in any common rule definition language such as, for example, Business Process Execution Language (BPEL) or similar language, and can comprise a set of conditions and associated actions to be applied upon satisfaction of those conditions. The actions can, in some cases, be calculations or other operations to determine the price for the service, adjust the price for the service, perform automated negotiations, etc. For example, a business rule for a battery exchange facility for electric or hybrid vehicles may define the fee for an exchange of a low battery for a fully charged battery to be higher in a city center rather than along a highway. Therefore, the set of maintenance management rules defined through the configuration and/or administration component 2505 and stored in the repository of maintenance management rules 2510 can comprise at least one rule defining a value for the service based on a location at which the service is delivered. The location can be selected from a plurality of different and geographically diverse locations. The maintenance management rules can define a first location of the plurality of locations, e.g., a city center or urban location, as having a higher cost than at least one second location of the plurality of locations, e.g., or rural or highway location outside of city or municipal limits. In another example, a rule may define a higher value or price during certain peak times such as lunchtime, e.g., noon-

1 :00pm or business hours, e.g., 8:00am-5:00pm and a reduced value or price during certain low demand hours, e.g., 2:00am-4:00pm. Thus, the set of maintenance management rules defined through the configuration and/or administration component 2505 and stored in the repository of maintenance management rules 2510 can comprise at least one rule defining a value for the service based on a time of day at which the service is delivered. The time of day at which the service is delivered can fall within one of a plurality of time periods. The maintenance management rules can define a first time period of the plurality of time periods, i.e., a peak period, as having a higher cost than a second time period of the plurality of time periods. Any number and variety of other rules can be implemented at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0198] The service provider can, for example, through the graphical or other user interface of the configuration and/or administration component 2505, define and/or adjust selectable or configurable parameters stored in the repository of configuration parameters 2515 to be used by the business rules in order to implement a dynamic pricing model adaptable to current conditions. These parameters can comprise, for example, values for variables defined in the calculations or actions of the rules. In other cases, the parameters can comprise switches, flags, or other values for the conditions of the rules. The terms or parameters stored in the repository of configuration parameters 2515 may be varied by the service provider through the configuration and/or administration component 2505 depending on, for example, local demand, to apply premium pricing during periodic or temporary high-demand periods. For example, a competing nearby charging station suffering a worker strike or local protest may trigger increased demand at a service provider's charging station thereby allowing that service provider to temporarily charge higher fees while the strike or protest is occurring. In other examples, when there are not enough charger stations or facilities to service the number of vehicles in a particular area or when the electric utility company is struggling to keep up with demand, temporarily higher prices for services may be supported and can be implemented through the configurable parameters set by the service provider. Thus, the set of service configuration information comprises one or more dynamic pricing parameters. The one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service. The dynamic pricing parameters can comprise, for example, multipliers, divisors, additional charges, discounts amounts, and/or other factors that can be applied by the service rules to adjust a price up or down for given conditions. Any number and variety of other parameters can be implemented in different ways at the service provider's discretion and are considered to be within the scope of the present disclosure.

[0199] The repository of vehicle or user specific information 2520 can comprise information for one or more vehicles defined by the service provider through the configuration and/or administration component. Additionally or alternatively, this information may be collected from the vehicle, the user, other service providers, other elements interacting with the vehicle etc. through the data collection component interfacing with those elements. The information stored in the repository of vehicle or user specific information 2520 can comprise values for variables defined in the calculations or actions of the rules. In other cases, the information can comprise switches, flags, or other values for the conditions of the rules. For example, use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. Therefore, the set of user or vehicle specific maintenance and use information stored in the repository of vehicle or user specific information 2520 can comprise user loyalty information, i.e., use of a particular service or facility may be tracked and frequent users of that service or facility may be provided a discount or special terms. In another example, use data may be collected related to and indicating how a particular user charges his vehicle. Since leaving the vehicle on the charger beyond the time when the battery is fully or adequately charged needlessly consumes electricity, an effective pricing model could charge users more for charging longer and possibly less or crediting them for charging for a shorter time. Therefore, the set of user or vehicle specific maintenance and use information stored in the repository of vehicle or user specific information 2520 can comprise historical information related to use of the service, i.e., the value determination or pricing rules could apply higher charges to users for charging longer and possibly less or crediting them for charging for a shorter time. Any amount and variety of other data can be implemented in different ways at the service provider's discretion and is considered to be within the scope of the present disclosure.

[0200] The value determination component 2530 can then determine a value or price for the service performed on the vehicle based on applying the maintenance management rules stored in the repository maintenance management rules 2510 and using the set of service configuration parameters stored in the repository of configuration parameters 2515 and the set of user or vehicle specific maintenance and use information stored in the repository of vehicle or user information 2520. That is, once the variables of the rules are populated with the values defined in the service configuration parameters and/or the vehicle or user specific information, the rules can be executed by the value determination component 2530 and the actions defined for the rules can be performed by the value determination component 2530 based on the populated conditions.

[0201] The determined value or price for the service can then be provided to the one or more vehicles. For example, the determined value or price may be saved by the value determination component 2530 in the repository of service value information 2535 which can be accessible by the vehicle, by the user through other means such as a mobile device or computer, by other service providers, or by other elements interacting with the vehicle. Additionally or alternatively, the determined value or price may be transmitted by the communication component 2540 over a cellular or other wireless connection to the vehicle, user, other service provider or element, etc. Once received by the vehicle, this information may be presented to the user or driver of the vehicle, e.g., via a heads up or other display within the vehicle. In some cases, automated negotiation between user and service provider may occur. For example, the initial price may be provided to the user, e.g., through a heads up or other display in the vehicle, and the user may be given a choice to accept that initial price, reject, the initial price, or make a counteroffer to the initial price. This choice may be provided through the communication component 2540 back to the value determination component 2530 of the service provider system 2500 which may then, again depending upon the rules, configurable parameters, and user or vehicle specific maintenance and use information, adjust or update the initial price or leave the initial price as originally determined.

[0202] According to one embodiment, using the maintenance management rules, configuration parameters, and vehicle and/or user specific information described above, a model can be implemented for managing a service in which a benefit or incentive can be provided to a vehicle operator for exchanging parts or receiving a service at a particular service level. The model may be prepaid or paid upon service being rendered. The service level may be preselected or selected at the time of service delivery. For example, the vehicle owner or operator may receive a credit or discount for exchanging a current battery pack or other power source of the vehicle for a lower charged battery pack or power source which can be later charged by the operator. In such cases, when a user initially purchases and/or licenses a battery pack, for instance, the user can specify and perhaps prepay for an acceptable stored charge range for exchanged battery packs. For example, a user at a high service level can pay a higher amount for a replacement with a high, e.g., 60%- 100%, charge level while a user at a lower service level can pay a lower amount for a replacement with a low, e.g., 40%-100%, charge level. This lower level might be attractive, for example, to hybrid vehicle users exchanging battery packs with electric vehicle users.

[0203] In another example, the service level can additionally or alternatively be based on the State of Life (SOL) of the replacement. That is, instead of charge, the service levels can be distinguished based on the SOL of the equipment used for the exchange and the user can specify and pay a premium based on the age of a battery pack and/or battery pack usage level, e.g., historic charging cycle number. For example, in a battery pack exchange, a high service level user can receive the newest available battery pack or battery pack having the lowest use, e.g., lowest historic charging cycles, relative to a lower service level user.

[0204] Fig. 26 is a diagram illustrating an exemplary data structure of records for storing vehicle or user information according to one embodiment of the present disclosure. As illustrated in this example, a vehicle or user information record 2600 can store a vehicle identifier field 2605 and user identifier field 2610. The vehicle identifier field 2605 can comprise a VIN or other identifier unique to the vehicle. Similarly, the user identifier field 2610 can store a name, social security number, customer number, or other identifier uniquely identifying the user. The record 2600 can also include a prepaid indicator field 2615 indicating whether the service for this vehicle and/or user has been prepaid.

Additionally or alternatively, the record 2600 can include a service level indicator field 2620 storing an indication of a preselected service level, if any. According to one embodiment, the service level may be selected when the service is prepaid or may be selected even if not prepaid but rather, will be paid upon completion of the service. It should be understood that, while only one record 2600 is illustrated here for the sake of simplicity and clarity, any number of records can be maintained for each of any number of vehicles and/or users. Furthermore, the exemplary fields 2605, 2610, 2615, and 2620 described here are offered for illustrative purposes and are not intended to limit the scope of the present disclosure. Rather, more or fewer fields may be used depending upon the exact implementation.

[0205] Fig. 27 is a diagram illustrating an exemplary data structure of records for storing equipment information according to one embodiment of the present disclosure. As illustrated in this example, an equipment information record 2700 can store an equipment identifier field 2705 and charge level field 2710. The equipment identifier field 2705 can store any number, string of characters, code, or other information uniquely identifying the battery. The charge level field 2710 can store an indication of a current charge level for the battery. For example, this field 2710 can be updated each time the battery is charged. The record 2700 can also include a SOL field 2715 which can store an indication of the estimated state of life of the battery based, for example, on the number of charges, the environment in which the battery has been operated (if know), the types of charging cycles the battery has been subjected to (if know), etc. This field 2715 can be updated, for example, each time the battery is charged. The record can also include a charge cycle field 2720 storing a number indicating the number of times the battery has been charged. For example, this field 2720 can be updated each time the battery is charged. It should be understood that, while only one record 2600 is illustrated here for the sake of simplicity and clarity, any number of records can be maintained for each of any number of vehicles and/or users. Furthermore, the exemplary fields 2705, 2710, 2715, and 2720 described here are offered for illustrative purposes and are not intended to limit the scope of the present disclosure. Rather, more or fewer fields may be used depending upon the exact implementation.

[0206] Fig. 28 is a flowchart illustrating an exemplary process for applying provider or seller rules to a service according to one embodiment of the present disclosure. As illustrated in this example, managing an exchange of a vehicle power source can comprise maintaining 2805 a set of user or vehicle records for each of one or more users or vehicles and maintaining 2810 a set of equipment records for each of a plurality of pieces of equipment. A request for service of a vehicle can be received 2815. The service can comprise at least an exchange of a power source of the vehicle. At least one service level of a plurality of service levels can be identified 2820 for the requested service based at least in part on the set of user or vehicle records. At least one available power source can be selected 2825 for the exchange of the power source of the vehicle based on the identified at least one service level and the set of equipment records. Identifying the at least one service level for the requested service and selecting at least one available power source can further comprise determining a value or price for the selected power source. Additional details of determining the value or price will be described in greater detail below with reference to FIG. 29. The determined value or price for the selected power source can then be provided 2830 to the vehicle and/or the user.

[0207] For example, the vehicle power source can comprise a battery. The plurality of service levels can be defined based on a level of charge of a battery used for the exchange of the vehicle power source. In such cases, a first service level of the plurality of service levels can be defined based on a level of charge that is higher than a level of charge defined for a second service level of the plurality of service levels, and a cost for the first service level is higher than a cost for the second service level. In another example, the plurality of service levels can be defined based on a state of life of a battery used for the exchange of the vehicle power source. In such cases, a first service level of the plurality of service levels can be defined based on a state of life that is newer than a state of life defined for a second service level of the plurality of service levels, and a cost for the first service level is higher than a cost for the second service level.

[0208] Fig. 29 is a flowchart illustrating an exemplary process for determining a value for a replacement part or service according to one embodiment of the present disclosure. As illustrated in this example, determining a value or price for a replacement part or service can comprise determining 2905 whether the requested service is a prepaid service at a preselected service level of a plurality of service levels. This determination can be made, for example, based on the maintained set of user or vehicle records. In response to determining 2905 the requested service is a prepaid service at a preselected service level of a plurality of service levels, an available power source selected 2910 for the exchange of the power source of the vehicle based on the pre-elected service level. In this case, further determination of the value or price of the replacement part need not be performed since the service was prepaid.

[0209] In response to determining 2905 the requested service is not a prepaid service at a preselected service level of a plurality of service levels, a further determination 2915 can be made as to whether the at least one service level has been preselected. This determination 2915 can be made, for example, based on the maintained set of user or vehicle records. In other cases, the determination 2915 may be made based on

information in the request for service or by querying the user. In response to determining 2915 the at least one service level has been preselected, the preselected service level can be identified 2930 and at least one available power source can be selected 2935 for the exchange of the power source of the vehicle based on the preselected service level. A value or price or an incentive for using the at least one selected available power source for the exchange of the power source of the vehicle can be determined 2940 and provided 2945 to the user.

[0210] In response to determining 2915 a service level has not been preselected, one or more available power sources for the exchange of the power source of the vehicle identifying 2920 and a service level for each of the identified one or more available power sources can be determined 2925. A value or price or an incentive for using each of the identified available power sources for the exchange of the power source of the vehicle can be determined 2940 and provided 2945 to a user. At this point, the user may be able to select which available equipment or level of service to be used for the exchange or service.

[0211] Fig. 30 is a diagram illustrating an exemplary instrument panel of a vehicle according to one embodiment of the present disclosure. As described above with reference for Fig. 4C, the instrument panel 400 of vehicle 100 can comprise steering wheel 410, vehicle operational display 420, one or more auxiliary displays 424, heads-up display 434, power management display 428, and charging manual controller 432 (which provides a physical input, e.g. a joystick, to manual maneuver, e.g., a vehicle charging plate to a desired separation distance). One or more of displays of instrument panel 400 may be touch-screen displays. One or more displays of instrument panel 400 may be mobile devices and/or applications residing on a mobile device such as a smart phone. As described herein, the determined value or price for a service can be provided to the vehicle and presented on one of the displays. In this example, service level and price information is presented on the heads-up display 434 as a list of available replacements at a number of locations with an indication of an associated type or service level and price for each. It should be noted that in other implementations this information can be presented on any one or more of the other displays such as the vehicle operational display 420, one or more auxiliary displays 424, power management display 428, etc. or may be played out in audio form through the sound system of the vehicle. In yet other implementations, the information may be presented on a mobile device or computer of the user coupled with the vehicle, e.g., through a Blue Tooth or other communication means.

[0212] According to one embodiment, the service level and price information may be presented to the vehicle in response to a query from the vehicle. This query may be generated automatically by the vehicle based on a detected condition. For example, when a battery or other power source of the vehicle reaches a certain charge level that is predefined as being low, the vehicle may begin searching for a charging facility or an exchange facility. In other cases, the driver may initiate the query. Additionally or alternatively, the information may be presented whenever received by the vehicle from the service. For example, a service may generate and send the information to vehicles in a specific geographic range of a service facility or periodically send value and price information, perhaps at discounted rates or with another incentive, to one or more vehicles as an advertisement for the service.

[0213] Fig. 31 is a diagram illustrating exemplary components of a vehicle in which conditional availability of power source and/or other functions can be applied according to one embodiment of the present disclosure. Similar to Fig. 13 described above, this example illustrates a plan view of a vehicle 100 in accordance with embodiments of the present disclosure. As provided above, the vehicle 100 may comprise any number of electrical and/or mechanical systems, subsystems, etc. The mechanical systems of the vehicle 100 can include structural, power, safety, and communications subsystems, to name a few. While each subsystem may be described separately, it should be appreciated that the components of a particular subsystem may be shared between one or more other subsystems of the vehicle 100.

[0214] As noted above, the power system of the vehicle 100 may include the powertrain, power distribution system, accessory power system, and/or any other components that store power, provide power, convert power, and/or distribute power to one or more portions of the vehicle 100. The powertrain may include the one or more electric motors 1312 of the vehicle 100. The electric motors 1312 are configured to convert electrical energy provided by a power source into mechanical energy. This mechanical energy may be in the form of a rotational or other output force that is configured to propel or otherwise provide a motive force for the vehicle 100.

[0215] Also as noted above, the vehicle 100 may include one or more drive wheels 1320 that are driven by the one or more electric motors 1312 and motor controllers 1314. In some cases, the vehicle 100 may include an electric motor 1312 configured to provide a driving force for each drive wheel 1320. In other cases, a single electric motor 1312 may be configured to share an output force between two or more drive wheels 1320 via one or more power transmission components. It is an aspect of the present disclosure that the powertrain include one or more power transmission components, motor controllers 1314, and/or power controllers that can provide a controlled output of power to one or more of the drive wheels 1320 of the vehicle 100. The power transmission components, power controllers, or motor controllers 1314 may be controlled by at least one other vehicle controller described herein.

[0216] As provided above, the powertrain of the vehicle 100 may include one or more power sources 1308 A, 1308B. These one or more power sources 1308 A, 1308B may be configured to provide drive power, system and/or subsystem power, accessory power, etc. While described herein as a single power source 1308 for sake of clarity, embodiments of the present disclosure are not so limited. For example, it should be appreciated that independent, different, or separate power sources 1308A, 1308B may provide power to various systems of the vehicle 100. For instance, a drive power source may be configured to provide the power for the one or more electric motors 1312 of the vehicle 100, while a system power source may be configured to provide the power for one or more other systems and/or subsystems of the vehicle 100. Other power sources may include an accessory power source, a backup power source, a critical system power source, and/or other separate power sources. Separating the power sources 1308A, 1308B in this manner may provide benefits over conventional vehicle systems. For example, separating the power sources 1308A, 1308B allow one power source 1308 to be removed and/or replaced independently without requiring that power be removed from all systems and/or subsystems of the vehicle 100 during a power source 1308 removal/replacement. For instance, one or more of the accessories, communications, safety equipment, and/or backup power systems, etc., may be maintained even when a particular power source 1308A, 1308B is depleted, removed, or becomes otherwise inoperable.

[0217] In some embodiments, the drive power source may be separated into two or more cells, units, sources, and/or systems. By way of example, a vehicle 100 may include a first drive power source 1308 A and a second drive power source 1308B. The first drive power source 1308A may be operated independently from or in conjunction with the second drive power source 1308B and vice versa.

[0218] The power source 1308 may include a charge controller 1324 that may be configured to determine charge levels of the power source 1308, control a rate at which charge is drawn from the power source 1308, control a rate at which charge is added to the power source 1308, and/or monitor a health of the power source 1308 (e.g., one or more cells, portions, etc.). In some embodiments, the charge controller 1324 or the power source 1308 may include a communication interface. The communication interface can allow the charge controller 1324 to report a state of the power source 1308 to one or more other controllers of the vehicle 100 or even communicate with a communication device separate and/or apart from the vehicle 100. Additionally or alternatively, the communication interface may be configured to receive instructions (e.g., control instructions, charge instructions, communication instructions, etc.) from one or more other controllers of the vehicle 100 or a communication device that is separate and/or apart from the vehicle 100. [0219] The powertrain includes one or more power distribution systems configured to transmit power from the power source 1308 to one or more electric motors 1312 in the vehicle 100. The power distribution system may include electrical interconnections 1328 in the form of cables, wires, traces, wireless power transmission systems, etc., and/or combinations thereof. It is an aspect of the present disclosure that the vehicle 100 include one or more redundant electrical interconnections 1332 of the power distribution system. The redundant electrical interconnections 1332 can allow power to be distributed to one or more systems and/or subsystems of the vehicle 100 even in the event of a failure of an electrical interconnection portion of the vehicle 100 (e.g., due to an accident, mishap, tampering, or other harm to a particular electrical interconnection, etc.). In some embodiments, a user of a vehicle 100 may be alerted via a user interface associated with the vehicle 100 that a redundant electrical interconnection 1332 is being used and/or damage has occurred to a particular area of the vehicle electrical system. In any event, the one or more redundant electrical interconnections 1332 may be configured along completely different routes than the electrical interconnections 1328 and/or include different modes of failure than the electrical interconnections 1328 to, among other things, prevent a total interruption power distribution in the event of a failure.

[0220] The vehicle 100 may also include, as suggested above, a GPS system 3105 as well as an on-board diagnostic system 3110 and telematics system 3115. These systems can operate in conjunction with a control system or component 3120 which can, according to one embodiment, orchestrate or manage operation of other components of the vehicle such as the power sources 1308, 1308A, and 108B, electric motor 1312, motor controller 1314, charge controller 1324, etc. Also as suggested above, the vehicle 100 can include a communications 3125 component such as a cellular or other wireless communications transceiver adapted to communication with other elements of an environment in which the vehicle 100 may operate.

[0221] The GPS system 3105, diagnostic system 3110 and telematics system 3115 can each collect data during the operation of the vehicle 100 and make that information available for transmission from the vehicle 100 to other elements through the

communication system 3125. For example, this collected information can be provided to a remote operator, vehicle database, third party system, or other system as described above. Additionally, the vehicle 100 can receive information from such other elements as described above that can be used for the operation and control of the vehicle 100. For example, the communication system 3125 can receive and the control system 3120 can apply parameters defining limits on the operation of other components and system of the vehicle 100 such as the power sources 1308, 1308 A, and 1308B, the electric motor 1312, motor controller 1314, charge controller 1324, and nearly any other component or system of the vehicle 100 which can be electronically controlled or influenced.

[0222] For example, parameters received through the communication system 3125 and applied by the control system 3120 can comprise parameters limiting the output of the power sources 1308, 1308A, 1308B in terms of the power, e.g., in watts, available at a given time, minimum charge that should be maintained on the power source, e.g., in amp- hours, etc. In other cases, the parameters can comprise parameters to manage the motor controller 1314 to limit the output, e.g., in terms of torque, horsepower, kilowatts, etc., of the electric motor 1314. In yet other cases, the parameters can be applied to manage the charge controller 1324 to limit or control the rate or level to which the power sources 1308, 1308 A, and 1308B are charged. Again, nearly any other component or system of the vehicle 100 which can be electronically controlled or influenced can be subject to limitation according to such parameters. Thus, many other parameters are contemplated and considered to be within the scope of the present disclosure.

[0223] Fig. 32 is a diagram illustrating an exemplary instrument panel of a vehicle according to one embodiment of the present disclosure. Similar to Fig. 4C described above, this example shows one embodiment of the vehicle instrument panel 400 of vehicle 100. Instrument panel 400 of vehicle 100 comprises steering wheel 410, vehicle operational display 420 (which would provide basic driving data such as speed), one or more auxiliary displays 424 (which may display, e.g., entertainment applications such as music or radio selections), heads-up display 434 (which may provide, e.g., guidance information such as route to destination, or obstacle warning information to warn of a potential collision, or some or all primary vehicle operational data such as speed), power management display 428 (which may provide, e.g., data as to electric power levels of vehicle 100), and charging manual controller 432 (which provides a physical input, e.g. a joystick, to manual maneuver, e.g., a vehicle charging plate to a desired separation distance). One or more of displays of instrument panel 400 may be touch-screen displays. One or more displays of instrument panel 400 may be mobile devices and/or applications residing on a mobile device such as a smart phone.

[0224] According to one embodiment, limits or levels imposed or applied to various functions or features of the vehicle can be displayed on any of the vehicle operational display 420, auxiliary display 424, power management display 428, and/or heads up display 434. For example, a message may be displayed to inform the user of the vehicle that the current performance levels are limited to a low or middle range. Additionally, messages may be displayed to inform the user that higher levels are available, e.g., by paying an indicated fee or upon the satisfaction of specified conditions. According to one embodiment, the user can request changes in the levels applied or imposed on features of the vehicle through buttons 3205A or 3205B, touch panels of the various displays 420, 424, or 428, or other input mechanisms. This request can, according to one embodiment, then be sent to another element such as the remote operator system 240, which can determine whether to authorize the request, e.g., based on a payment made by the user and/or another one or more conditions. If authorized, the remote operator system 240 or other element can provide updated parameters or otherwise signal the vehicle 100 to apply the requested change.

[0225] Fig. 33 is a diagram illustrating an exemplary data structure of records for storing vehicle or user information according to one embodiment of the present disclosure. More specifically, this example illustrates a set of records 3305-3330 similar to what may be maintained by a vehicle 100, vehicle database 210, remote operator 240, third party 2010, etc. as described above. As illustrated here, each record 3305-3330 can have a number of fields. The exemplary fields as illustrated here can comprise a vehicle ID field 3345 storing a VIN or other unique identifier for a particular vehicle, a user ID field 3350 storing a name, user number, or other unique identifier for a particular user or driver of the vehicle, a feature field 3355 identifying a particular feature or function of the vehicle, an override field 3360 storing a flag or other indicator of whether the particular feature is being temporarily overridden, i.e., applied or removed as the case may be, a level field

3365 storing an indication of a control level for the feature, and an end field 3370 storing an indication of when, if ever, the feature of level for the feature expires.

[0226] As illustrated in this example, for a particular vehicle ID 3345 and user ID 3350, a combination of features can be defined. For example, a set of records 3305 and 3310 can relate to power or performance of the vehicle motor and define parameters for torque

(feature field 3355 of record 3305) and power (feature field 3355 of record 3310). As indicated by the level field 3365 of records 3305 and 3310, these features are set to a

"High" level which may indicate, for example, a maximum amount of power or the amount of power otherwise available without limits applied. In other cases, these fields may indicate an actual value for torque, e.g., in foot-pounds, and power, e.g., in horsepower or watts. As illustrated here, the end fields 3370 of these records 3305 and 3310 can indicate an end or expiration date such as when the user has paid a subscription fee for the feature.

[0227] Other records 3315 and 3320 can relate to a power source charging and/or use. For example, record 3315 can comprise a record relating to a battery charge level feature as indicated by field 3355 and record 3320 can comprise a record relating to a minimum battery charge level feature as indicated by field 3360. As indicated by the level field 3365 of record 3315 related to the battery charge level feature, a 100% or maximum charge level is available. As indicated by the level field 3365 of record 3320 related to the minimum battery charge level feature, a 5% or minimum charge level can be reached, e.g, before the vehicle shuts down, alarms, cuts off other features, etc. The end condition field 3370 for both of these records indicate null in this example. This may be the case for default levels or standard features or may be the case for features that do not change or end such as permanent features purchased with the vehicle and/or for the life of the vehicle.

[0228] Still other records 3325 and 3330 can relate to accessories or amenities of the vehicle such as Wi-Fi (record 3325) and/or BluTooth (record 3330) connectivity within the vehicle. As indicated by the override field 3360 and level field 3365 of record 3325 related to Wi-Fi connectivity, this feature is overridden and temporarily turned on. The end field 3370 of this record indicates, in this example, a relative time at which the override will expire. In other cases, this may be an absolute time and/or date or other condition such as when the vehicle is next powered down etc. In this example, the record 3330 related to the Blutooth connectivity feature includes a parameter in the level field 3365 indicating that the feature is turned off.

[0229] It should be understood that this example illustrates one set of records 3305-3330 for a particular user and a particular vehicle. In use, records may exist for each vehicle, each user, and/or each vehicle/user combination. That is, the records may be keyed to or specific to a particular user and applied to any vehicle the user is driving whether a personal vehicle of the user, a loaner, a rental, another person's vehicle, etc. In other cases, the records may apply to a particular vehicle regardless of the user or driver in which case, the user ID field 3350 may be omitted or set to null. In yet other cases, records may be maintained for each vehicle/user combination such as for a family or other shared vehicle. It should also be understood that a wide variation in the records, fields, and/or content of each are possible depending upon the exact implementation and/or use and such variations are considered to be within the scope of the present disclosure. [0230] As noted above, these records can be set at the time of vehicle purchase, can be maintained centrally, and/or can be propagated to the vehicle for use by the systems of the vehicle to control the various features as described above. Additionally or alternatively, the parameters of such records can be set or adjusted periodically and/or on demand as features expire or are added. These changes can be made to the records maintained by the vehicle and can be propagated to the central store for backup, billing, and/or other purposes. Alternatively, these changes can be made to the central records and can be propagated to the vehicle for use by the systems of the vehicle to control the various features as described above. Once the vehicles records are set, the parameters stored therein can be read, e.g., at startup of the vehicle, and applied to the control systems of the vehicle.

[0231] Fig. 34 is a flowchart illustrating an exemplary process for providing conditional availability of a power source or other functions of a vehicle according to one embodiment of the present disclosure. As illustrated in this example, controlling availability of features of a vehicle can comprise determining 3405, by a remote operator system, a set of initial parameters. Each parameter of the set of initial parameters can relate to a feature of the vehicle. The set of initial parameters can comprise at least one parameter related to an availability of a power supply of the vehicle. The remote operator system can save 3410 the set of initial parameters and providing 3415 the set of initial parameters to a control system of the vehicle over a network connection.

[0232] The control system of the vehicle can receive 3420, over the network connection, the set of initial parameters, save 3425 the set of initial parameters, and apply 3430 the set of initial parameters to operations of the vehicle. Applying 3430 the set of initial parameters to operations of the vehicle can comprise controlling operations of one or more features of the vehicle to levels indicated by the set of initial parameters. Applying 3430 the set of initial parameters to operations of the vehicle can further comprise limiting an availability of at least one feature of the vehicle based on the set of initial parameters.

[0233] At some point after the set of initial parameters have been provided to and applied by the vehicle, the remote operator system can receive 3435 a request for a set of updated parameters. In some cases, the request can be received from the vehicle over the network connection. A determination 3440 can be made by the remote operator system as to whether the update, i.e., whether the override or increase of the limit imposed by the set of initial parameters, is authorized. In response to determining 3440 that the update is authorized, a set of updated parameters can be determined 3445 by the remote operator system. The set of updated parameters can comprise at least one parameter corresponding to a parameter in the initial set of parameters but having a different value. The at least one parameter of the set of updated parameters corresponding to a parameter in the initial set of parameters but having a different value can comprise an override or increase of a limit imposed by the set of initial parameters. The remote operator system can save 3450the set of updated parameters and provide 3455 the set of updated parameters over the network connection to the control system of the vehicle.

[0234] The control system of the vehicle can receive 3460 the set of updated parameters over the network connection, save 3465 the set of updated parameters, and apply 3470 the set of updated parameters to operations of the vehicle. Applying 3470 the set of updated parameters to operations of the vehicle can comprise controlling operations of one or more features of the vehicle to levels indicated by the set of updated parameters. Applying 3470 the set of updated parameters to operations of the vehicle can further comprise increasing an availability of at least one feature of the vehicle based on the set of updated parameters.

[0235] Any of the steps, functions, and operations discussed herein can be performed continuously and automatically.

[0236] The exemplary systems and methods of this disclosure have been described in relation to vehicle systems and electric vehicles. However, to avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scope of the claimed disclosure. Specific details are set forth to provide an understanding of the present disclosure. It should, however, be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.

[0237] Furthermore, while the exemplary embodiments illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined into one or more devices, such as a server, communication device, or collocated on a particular node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switched network, or a circuit- switched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system. [0238] Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire, and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.

[0239] While the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.

[0240] A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.

[0241] In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed

microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the present disclosure includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.

[0242] In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.

[0243] In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general- purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as a program embedded on a personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.

[0244] Although the present disclosure describes components and functions

implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.

[0245] The present disclosure, in various embodiments, configurations, and aspects, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the systems and methods disclosed herein after understanding the present disclosure. The present disclosure, in various embodiments, configurations, and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease, and/or reducing cost of implementation. [0246] The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments,

configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.

[0247] Moreover, though the description of the disclosure has included description of one or more embodiments, configurations, or aspects and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights, which include alternative embodiments, configurations, or aspects to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges, or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

[0248] Embodiments include a method for managing maintenance services performed on a vehicle comprising: receiving, at a service provider system and over a

communications network, a request for maintenance of one or more vehicles, the request received by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third-party service provider system; reading, by the service provider system, a set of maintenance management rules from one or more databases; reading, by the service provider system, a set of service configuration information from one or more databases; reading, by the service provider system, a set of user or vehicle specific maintenance and use information for the one or more vehicles from one or more databases; determining, by the service provider system, a maintenance service and a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and providing, from the service provider system to the one or more vehicles over the communications network, the determined maintenance service for one or more systems of the vehicle and value for the service.

[0249] Aspects of the above method include wherein the set of maintenance

management rules comprise at least one rule defining a value for the service based on a location at which the service is delivered, the location selected from a plurality of locations and wherein the maintenance management rules define at least one first location of the plurality of locations as having a higher cost than at least one second location of the plurality of locations.

[0250] Aspects of the above method include wherein the set of maintenance

management rules comprise at least one rule defining a value for the service based on a time of day at which the service is delivered, the time of day at which the service is delivered falling within one of a plurality of time periods and wherein the maintenance management rules define at least one first time period of the plurality of time periods as having a higher cost than at least one second time period of the plurality of time periods.

[0251] Aspects of the above method include wherein the set of service configuration information comprises one or more dynamic pricing parameters.

[0252] Aspects of the above method include wherein the one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

[0253] Aspects of the above method include wherein the set of user or vehicle specific maintenance and use information comprises user loyalty information.

[0254] Aspects of the above method include wherein the set of user or vehicle specific maintenance and use information comprises historical information related to use of the service.

[0255] Aspects of the above method include wherein the service comprises a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service.

[0256] Aspects of the above method further include adjusting the determined value for the service based on feedback from the user.

[0257] Aspects of the above method include wherein adjusting the determined value for the service based on feedback from the user comprises performing an automatic negotiation for the value of the service, and wherein performing the automatic negotiation comprises: receiving a response regarding the determined value; determining whether the received response indicates an acceptance of the determined value of the service; in response to determining the response indicates an acceptance of the determined value of the service, recording an acceptance of the determined value; and in response to determining the response does not indicate an acceptance of the determined value of the service, further determining whether the received response indicates a counteroffer for the determined value for the service.

[0258] Aspects of the above method further include: in response to determining the received response indicates a counteroffer for the determined value for the service, further determining whether the counteroffer is acceptable; in response to determining the counteroffer is acceptable, recording an acceptance of the determined value; in response to determining the counteroffer is not acceptable, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0259] Aspects of the above method further include: in response to determining the received response does not indicate a counteroffer for the determined value for the service, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0260] Embodiments include a system comprising: a processor; and a memory coupled with and readable by the processor and storing therein a set of instructions which, when executed by the processor, causes the processor to apply service provider rules to a service performed on a vehicle by: receiving, over a communications network, a request for maintenance of one or more vehicles, the request received by the service provider system from an on-board diagnostic system on one of the one or more vehicles or one or more servers of a third-party service provider system; reading a set of maintenance management rules from one or more databases; reading a set of service configuration information from one or more databases; reading a set of user or vehicle specific maintenance and use information for the one or more vehicles from one or more databases; determining a maintenance service and a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and providing to the one or more vehicles over the communications network the determined maintenance service for one or more systems of the vehicle and value for the service

[0261] Aspects of the above system include wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a location at which the service is delivered, the location selected from a plurality of locations and wherein the maintenance management rules define at least one first location of the plurality of locations as having a higher cost than at least one second location of the plurality of locations.

[0262] Aspects of the above system include wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a time of day at which the service is delivered, the time of day at which the service is delivered falling within one of a plurality of time periods and wherein the maintenance management rules define at least one first time period of the plurality of time periods as having a higher cost than at least one second time period of the plurality of time periods.

[0263] Aspects of the above system include wherein the set of service configuration information comprises one or more dynamic pricing parameters.

[0264] Aspects of the above system include wherein the one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

[0265] Aspects of the above system include wherein the set of user or vehicle specific maintenance and use information comprises user loyalty information.

[0266] Aspects of the above system include wherein the set of user or vehicle specific maintenance and use information comprises historical information related to use of the service.

[0267] Aspects of the above system include wherein the service comprises a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service.

[0268] Aspects of the above system further include adjusting the determined value for the service based on feedback from the user.

[0269] Aspects of the above system include wherein adjusting the determined value for the service based on feedback from the user comprises performing an automatic negotiation for the value of the service, and wherein performing the automatic negotiation comprises: receiving a response regarding the determined value; determining whether the received response indicates an acceptance of the determined value of the service; in response to determining the response indicates an acceptance of the determined value of the service, recording an acceptance of the determined value; and in response to determining the response does not indicate an acceptance of the determined value of the service, further determining whether the received response indicates a counteroffer for the determined value for the service.

[0270] Aspects of the above system further include: in response to determining the received response indicates a counteroffer for the determined value for the service, further determining whether the counteroffer is acceptable; in response to determining the counteroffer is acceptable, recording an acceptance of the determined value; in response to determining the counteroffer is not acceptable, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0271] Aspects of the above system further include: in response to determining the received response does not indicate a counteroffer for the determined value for the service, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0272] Embodiments include a non-transitory computer-readable medium comprising a set of instructions stored thereon which, when executed by a processor, causes the processor to apply service provider rules to a service performed on a vehicle by: reading a set of maintenance management rules; reading a set of service configuration information; reading a set of user or vehicle specific maintenance and use information for one or more vehicles; determining a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and providing the determined value for the service to the one or more vehicles.

[0273] Aspects of the above non-transitory computer-readable medium include wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a location at which the service is delivered, the location selected from a plurality of locations and wherein the maintenance management rules define at least one first location of the plurality of locations as having a higher cost than at least one second location of the plurality of locations.

[0274] Aspects of the above non-transitory computer-readable medium include wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a time of day at which the service is delivered, the time of day at which the service is delivered falling within one of a plurality of time periods and wherein the maintenance management rules define at least one first time period of the plurality of time periods as having a higher cost than at least one second time period of the plurality of time periods.

[0275] Aspects of the above non-transitory computer-readable medium include wherein the set of service configuration information comprises one or more dynamic pricing parameters.

[0276] Aspects of the above non-transitory computer-readable medium include wherein the one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

[0277] Aspects of the above non-transitory computer-readable medium include wherein the set of user or vehicle specific maintenance and use information comprises user loyalty information.

[0278] Aspects of the above non-transitory computer-readable medium include wherein the set of user or vehicle specific maintenance and use information comprises historical information related to use of the service.

[0279] Aspects of the above non-transitory computer-readable medium include wherein the service comprises a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service.

[0280] Aspects of the above non-transitory computer-readable medium further include adjusting the determined value for the service based on feedback from the user.

[0281] Aspects of the above non-transitory computer-readable medium include wherein adjusting the determined value for the service based on feedback from the user comprises performing an automatic negotiation for the value of the service, and wherein performing the automatic negotiation comprises: receiving a response regarding the determined value; determining whether the received response indicates an acceptance of the determined value of the service; in response to determining the response indicates an acceptance of the determined value of the service, recording an acceptance of the determined value; and in response to determining the response does not indicate an acceptance of the determined value of the service, further determining whether the received response indicates a counteroffer for the determined value for the service. [0282] Aspects of the above non-transitory computer-readable medium further include: in response to determining the received response indicates a counteroffer for the determined value for the service, further determining whether the counteroffer is acceptable; in response to determining the counteroffer is acceptable, recording an acceptance of the determined value; in response to determining the counteroffer is not acceptable, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0283] Aspects of the above non-transitory computer-readable medium further include: in response to determining the received response does not indicate a counteroffer for the determined value for the service, further determining whether the determined value is negotiable; and in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0284] Embodiments include a system for managing maintenance services performed on a vehicle comprising: means for reading a set of maintenance management rules; means reading a set of service configuration information; means for reading a set of user or vehicle specific maintenance and use information for one or more vehicles; means for determining a value for the service performed on the vehicle based on applying the maintenance management rules and using the set of service configuration information and the set of user or vehicle specific maintenance and use information; and means for providing the determined value for the service to the one or more vehicles.

[0285] Aspects of the above system include means for wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a location at which the service is delivered, the location selected from a plurality of locations and wherein the maintenance management rules define at least one first location of the plurality of locations as having a higher cost than at least one second location of the plurality of locations.

[0286] Aspects of the above system include means for wherein the set of maintenance management rules comprise at least one rule defining a value for the service based on a time of day at which the service is delivered, the time of day at which the service is delivered falling within one of a plurality of time periods and wherein the maintenance management rules define at least one first time period of the plurality of time periods as having a higher cost than at least one second time period of the plurality of time periods. [0287] Aspects of the above system include means for wherein the set of service configuration information comprises one or more dynamic pricing parameters.

[0288] Aspects of the above system include means for wherein the one or more dynamic pricing parameters relate to one or more of a current demand for the service, a current availability of the service, or one or more factors adjusting the price of the service.

[0289] Aspects of the above system include means for wherein the set of user or vehicle specific maintenance and use information comprises user loyalty information.

[0290] Aspects of the above system include means for wherein the set of user or vehicle specific maintenance and use information comprises historical information related to use of the service.

[0291] Aspects of the above system include means for wherein the service comprises a vehicle battery charging service, a vehicle repair service, or a vehicle power source replacement service.

[0292] Aspects of the above system further include means for adjusting the determined value for the service based on feedback from the user.

[0293] Aspects of the above system include means for wherein adjusting the determined value for the service based on feedback from the user comprises means for performing an automatic negotiation for the value of the service, and wherein means for performing the automatic negotiation comprises: means for receiving a response regarding the determined value; means for determining whether the received response indicates an acceptance of the determined value of the service; means for in response to determining the response indicates an acceptance of the determined value of the service, means for recording an acceptance of the determined value; and means for in response to determining the response does not indicate an acceptance of the determined value of the service, further determining whether the received response indicates a counteroffer for the determined value for the service.

[0294] Aspects of the above system further include: means for in response to

determining the received response indicates a counteroffer for the determined value for the service, further determining whether the counteroffer is acceptable; means for in response to determining the counteroffer is acceptable, recording an acceptance of the determined value; means for in response to determining the counteroffer is not acceptable, further determining whether the determined value is negotiable; and means for in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value. [0295] Aspects of the above system further include: means for in response to

determining the received response does not indicate a counteroffer for the determined value for the service, further determining whether the determined value is negotiable; and means for in response to determining the determined value is negotiable, updating the determined value and providing the updated determined value.

[0296] Embodiments include a method for managing an exchange of a vehicle power source, the method comprising: maintaining a set of user or vehicle records for each of one or more users or vehicles; maintaining a set of equipment records for each of a plurality of pieces of equipment; receiving a request for service of a vehicle, the service comprising at least an exchange of a power source of the vehicle; identifying at least one service level of a plurality of service levels for the requested service based at least in part on the set of user or vehicle records; and selecting at least one available power source for the exchange of the power source of the vehicle based on the identified at least one service level and the set of equipment records.

[0297] Aspects of the above method include wherein identifying the at least one service level of the plurality of service levels for the requested service comprises determining whether the requested service is a prepaid service at a preselected service level of a plurality of service levels and wherein selecting at least one available power source for the exchange of the power source of the vehicle comprises, in response to determining the requested service is a prepaid service at a preselected service level of a plurality of service levels, selecting an available power source for the exchange of the power source of the vehicle based on the pre-elected service level.

[0298] Aspects of the above method further include: determining whether the at least one service level has been preselected; and in response to determining the at least one service level has been preselected, identifying the preselected service level, selecting the at least one available power source for the exchange of the power source of the vehicle based on the preselected service level, determining a price or an incentive for using the at least one selected available power source for the exchange of the power source of the vehicle, and providing the determined price or incentive to a user.

[0299] Aspects of the above method further include, in response to determining a service level has been preselected: identifying one or more available power sources for the exchange of the power source of the vehicle; determining a service level for each of the identified one or more available power sources; determining a price or an incentive for using each of the identified available power sources for the exchange of the power source of the vehicle; and providing the determined price or incentive for using each of the identified available power sources to a user.

[0300] Aspects of the above method include, wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a level of charge of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a level of charge that is higher than a level of charge defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0301] Aspects of the above method include, wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a state of life of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a state of life that is newer than a state of life defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0302] Aspects of the above method include, wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a historic number of charging cycles on a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a higher number of charging cycles than a number of charging cycles defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0303] Embodiments include a system comprising: a processor; and a memory coupled with and readable by the processor and storing therein a set of instructions which, when executed by the processor, causes the processor to manage an exchange of a vehicle power source by: maintaining a set of user or vehicle records for each of one or more users or vehicles; maintaining a set of equipment records for each of a plurality of pieces of equipment; receiving a request for service of a vehicle, the service comprising at least an exchange of a power source of the vehicle; identifying at least one service level of a plurality of service levels for the requested service based at least in part on the set of user or vehicle records; and selecting at least one available power source for the exchange of the power source of the vehicle based on the identified at least one service level and the set of equipment records. [0304] Aspects of the above system include wherein identifying the at least one service level of the plurality of service levels for the requested service comprises determining whether the requested service is a prepaid service at a preselected service level of a plurality of service levels and wherein selecting at least one available power source for the exchange of the power source of the vehicle comprises, in response to determining the requested service is a prepaid service at a preselected service level of a plurality of service levels, selecting an available power source for the exchange of the power source of the vehicle based on the pre-elected service level.

[0305] Aspects of the above system include wherein managing an exchange of a vehicle power source further comprises: determining whether the at least one service level has been preselected; and in response to determining the at least one service level has been preselected, identifying the preselected service level, selecting the at least one available power source for the exchange of the power source of the vehicle based on the preselected service level, determining a price or an incentive for using the at least one selected available power source for the exchange of the power source of the vehicle, and providing the determined price or incentive to a user.

[0306] Aspects of the above system further include, in response to determining a service level has been preselected: identifying one or more available power sources for the exchange of the power source of the vehicle; determining a service level for each of the identified one or more available power sources; determining a price or an incentive for using each of the identified available power sources for the exchange of the power source of the vehicle; and providing the determined price or incentive for using each of the identified available power sources to a user.

[0307] Aspects of the above system include wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a level of charge of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a level of charge that is higher than a level of charge defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0308] Aspects of the above system include wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a state of life of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a state of life that is newer than a state of life defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0309] Aspects of the above system include wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a historic number of charging cycles on a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a higher number of charging cycles than a number of charging cycles defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0310] Embodiments include a non-transitory computer readable medium comprising a set of instructions stored therein which, when executed by a processor, causes the processor to manage an exchange of a vehicle power source by: maintaining a set of user or vehicle records for each of one or more users or vehicles; maintaining a set of equipment records for each of a plurality of pieces of equipment; receiving a request for service of a vehicle, the service comprising at least an exchange of a power source of the vehicle; identifying at least one service level of a plurality of service levels for the requested service based at least in part on the set of user or vehicle records; and selecting at least one available power source for the exchange of the power source of the vehicle based on the identified at least one service level and the set of equipment records.

[0311] Aspects of the above non-transitory computer readable medium include wherein identifying the at least one service level of the plurality of service levels for the requested service comprises determining whether the requested service is a prepaid service at a preselected service level of a plurality of service levels and wherein selecting at least one available power source for the exchange of the power source of the vehicle comprises, in response to determining the requested service is a prepaid service at a preselected service level of a plurality of service levels, selecting an available power source for the exchange of the power source of the vehicle based on the pre-elected service level.

[0312] Aspects of the above non-transitory computer readable medium include wherein managing an exchange of a vehicle power source further comprises: determining whether the at least one service level has been preselected; and in response to determining the at least one service level has been preselected, identifying the preselected service level, selecting the at least one available power source for the exchange of the power source of the vehicle based on the preselected service level, determining a price or an incentive for using the at least one selected available power source for the exchange of the power source of the vehicle, and providing the determined price or incentive to a user.

[0313] Aspects of the above non-transitory computer readable medium further include, in response to determining a service level has been preselected: identifying one or more available power sources for the exchange of the power source of the vehicle; determining a service level for each of the identified one or more available power sources; determining a price or an incentive for using each of the identified available power sources for the exchange of the power source of the vehicle; and providing the determined price or incentive for using each of the identified available power sources to a user.

[0314] Aspects of the above non-transitory computer readable medium include wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a level of charge of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a level of charge that is higher than a level of charge defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0315] Aspects of the above non-transitory computer readable medium include wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a historic number of charging cycles on a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a higher number of charging cycles than a number of charging cycles defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0316] Embodiments include a system for managing an exchange of a vehicle power source, the method comprising: means for maintaining a set of user or vehicle records for each of one or more users or vehicles; means for maintaining a set of equipment records for each of a plurality of pieces of equipment; means for receiving a request for service of a vehicle, the service comprising at least an exchange of a power source of the vehicle; means for identifying at least one service level of a plurality of service levels for the requested service based at least in part on the set of user or vehicle records; and means for selecting at least one available power source for the exchange of the power source of the vehicle based on the identified at least one service level and the set of equipment records.

[0317] Aspects of the above system include means for wherein identifying the at least one service level of the plurality of service levels for the requested service comprises means for determining whether the requested service is a prepaid service at a preselected service level of a plurality of service levels and wherein means for selecting at least one available power source for the exchange of the power source of the vehicle comprises, means for in response to determining the requested service is a prepaid service at a preselected service level of a plurality of service levels, means for selecting an available power source for the exchange of the power source of the vehicle based on the pre-elected service level.

[0318] Aspects of the above system further include: means for determining whether the at least one service level has been preselected; and means for in response to determining the at least one service level has been preselected, identifying the preselected service level, selecting the at least one available power source for the exchange of the power source of the vehicle based on the preselected service level, determining a price or an incentive for using the at least one selected available power source for the exchange of the power source of the vehicle, and providing the determined price or incentive to a user.

[0319] Aspects of the above system further include, means for in response to

determining a service level has been preselected: means for identifying one or more available power sources for the exchange of the power source of the vehicle; means for determining a service level for each of the identified one or more available power sources; means for determining a price or an incentive for using each of the identified available power sources for the exchange of the power source of the vehicle; and means for providing the determined price or incentive for using each of the identified available power sources to a user.

[0320] Aspects of the above system include, wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a level of charge of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a level of charge that is higher than a level of charge defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0321] Aspects of the above system include, wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a state of life of a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a state of life that is newer than a state of life defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0322] Aspects of the above system include, wherein the vehicle power source comprises a battery, wherein the plurality of service levels are defined based on a historic number of charging cycles on a battery used for the exchange of the vehicle power source, wherein a first service level of the plurality of service levels is defined based on a higher number of charging cycles than a number of charging cycles defined for a second service level of the plurality of service levels, and wherein a cost for the first service level is higher than a cost for the second service level.

[0323] Embodiments include a method for controlling availability of features of a vehicle. Aspects of the above method include receiving, at a control system of a vehicle over a network connection, a set of initial parameters, each parameter of the set of initial parameters related to a feature of the vehicle, saving, by the control system of the vehicle, the set of initial parameters, and applying, by the control system of the vehicle, the set of initial parameters to operations of the vehicle, wherein applying the set of initial parameters to operations of the vehicle comprises controlling operations of one or more features of the vehicle to levels indicated by the set of initial parameters.

[0324] Aspects of the above method include wherein the set of initial parameters comprise at least one parameter related to an availability of a power supply of the vehicle.

[0325] Aspects of the above method include wherein applying the set of initial parameters to operations of the vehicle further comprises limiting an availability of at least one feature of the vehicle based on the set of initial parameters.

[0326] Aspects of the above method further include receiving, at the control system of the vehicle over the network connection, a set of updated parameters, the set of updated parameters comprising at least one parameter corresponding to a parameter in the initial set of parameters but having a different value, saving, by the control system of the vehicle, the set of updated parameters, and applying, by the control system of the vehicle, the set of updated parameters to operations of the vehicle, wherein applying the set of updated parameters to operations of the vehicle comprises controlling operations of one or more features of the vehicle to levels indicated by the set of updated parameters.

[0327] Aspects of the above method include requesting, by the control system of the vehicle over the network connection, the set of updated parameters and wherein the set of updated parameters are received in response. [0328] Aspects of the above method include wherein the at least one parameter of the set of updated parameters corresponding to a parameter in the initial set of parameters but having a different value comprises an override or increase of a limit imposed by the set of initial parameters.

[0329] Aspects of the above method include wherein applying the set of updated parameters to operations of the vehicle further comprises increasing an availability of at least one feature of the vehicle based on the set of updated parameters.

[0330] Embodiments include a method for controlling availability of features of a vehicle. Aspects of the above method include determining, by a remote operator system, a set of initial parameters, each parameter of the set of initial parameters related to a feature of the vehicle, saving, by the remote operator system, the set of initial parameters, and providing, by the remote operator system over a network connection to a control system of the vehicle, the set of initial parameters, wherein the control system of the vehicle controls operations of one or more features of the vehicle to levels indicated by the set of initial parameters.

[0331] Aspects of the above method include wherein the set of initial parameters comprise at least one parameter related to an availability of a power supply of the vehicle.

[0332] Aspects of the above method further include determining, by the remote operator system, a set of updated parameters, the set of updated parameters comprising at least one parameter corresponding to a parameter in the initial set of parameters but having a different value, saving, by the remote operator system, the set of updated parameters, and providing, by the remote operator system over the network connection to the control system of the vehicle, the set of updated parameters, wherein the control system of the vehicle controls operations of one or more features of the vehicle to levels indicated by the set of updated parameters.

[0333] Aspects of the above method include wherein the at least one parameter of the set of updated parameters corresponding to a parameter in the initial set of parameters but having a different value comprises an override or increase of a limit imposed by the set of initial parameters.

[0334] Aspects of the above method include determining, by the remote operator system, whether the override or increase of the limit imposed by the set of initial parameters is authorized. [0335] Aspects of the above method include receiving, by the remote operator system, a request for the set of updated parameters and wherein the set of updated parameters are determined in response to receiving the request.

[0336] Aspects of the above method include wherein the request is received from the vehicle over the network connection.

[0337] Embodiments include a system comprising a remote operator system comprising a processor and a memory having stored therein a set of instruction which, when executed by the processor, causes the processor to control availability of features by determining a set of initial parameters, each parameter of the set of initial parameters related to a feature, saving the set of initial parameters, and providing, over a network connection, the set of initial parameters, and a vehicle comprising a processor and a memory having stored therein a set of instruction which, when executed by the processor, causes the processor to control availability of features by receiving, over the network connection, the set of initial parameters, saving the set of initial parameters, and applying the set of initial parameters to operations of the vehicle, wherein applying the set of initial parameters to operations of the vehicle comprises controlling operations of one or more features of the vehicle to levels indicated by the set of initial parameters.

[0338] Aspects of the above system include wherein the set of initial parameters comprise at least one parameter related to an availability of a power supply of the vehicle.

[0339] Aspects of the above system include wherein applying the set of initial parameters to operations of the vehicle further comprises limiting an availability of at least one feature of the vehicle based on the set of initial parameters.

[0340] Aspects of the above system include determining, by the remote operator system, a set of updated parameters, the set of updated parameters comprising at least one parameter corresponding to a parameter in the initial set of parameters but having a different value, saving, by the remote operator system, the set of updated parameters, and providing, by the remote operator system over the network connection to the vehicle.

[0341] Aspects of the above system include receiving, at the vehicle over the network connection, the set of updated parameters, saving, by the vehicle, the set of updated parameters, and applying, by the vehicle, the set of updated parameters to operations of the vehicle, wherein applying the set of updated parameters to operations of the vehicle comprises controlling operations of one or more features of the vehicle to levels indicated by the set of updated parameters. [0342] Aspects of the above system include wherein the at least one parameter of the set of updated parameters corresponding to a parameter in the initial set of parameters but having a different value comprises an override or increase of a limit imposed by the set of initial parameters.

[0343] Embodiments include a system for controlling availability of features of a vehicle. Aspects of the above system include means for receiving, at a control system of a vehicle over a network connection, a set of initial parameters, each parameter of the set of initial parameters related to a feature of the vehicle, means for saving, by the control system of the vehicle, the set of initial parameters, and means for applying, by the control system of the vehicle, the set of initial parameters to operations of the vehicle, wherein applying the set of initial parameters to operations of the vehicle comprises controlling operations of one or more features of the vehicle to levels indicated by the set of initial parameters.

[0344] Aspects of the above system include wherein the set of initial parameters comprise at least one parameter related to an availability of a power supply of the vehicle.

[0345] Aspects of the above system include wherein applying the set of initial parameters to operations of the vehicle further comprises limiting an availability of at least one feature of the vehicle based on the set of initial parameters.

[0346] Aspects of the above system further include means for receiving, at the control system of the vehicle over the network connection, a set of updated parameters, the set of updated parameters comprising at least one parameter corresponding to a parameter in the initial set of parameters but having a different value, means for saving, by the control system of the vehicle, the set of updated parameters, and means for applying, by the control system of the vehicle, the set of updated parameters to operations of the vehicle, wherein applying the set of updated parameters to operations of the vehicle comprises controlling operations of one or more features of the vehicle to levels indicated by the set of updated parameters.

[0347] Aspects of the above system include means for requesting, by the control system of the vehicle over the network connection, the set of updated parameters and wherein the set of updated parameters are received in response.

[0348] Aspects of the above system include wherein the at least one parameter of the set of updated parameters corresponding to a parameter in the initial set of parameters but having a different value comprises an override or increase of a limit imposed by the set of initial parameters. [0349] Aspects of the above system include wherein applying the set of updated parameters to operations of the vehicle further comprises increasing an availability of at least one feature of the vehicle based on the set of updated parameters.

[0350] Embodiments include a system for controlling availability of features of a vehicle. Aspects of the above system include means for determining, by a remote operator system, a set of initial parameters, each parameter of the set of initial parameters related to a feature of the vehicle, means for saving, by the remote operator system, the set of initial parameters, and means for providing, by the remote operator system over a network connection to a control system of the vehicle, the set of initial parameters, wherein the control system of the vehicle controls operations of one or more features of the vehicle to levels indicated by the set of initial parameters.

[0351] Aspects of the above system include wherein the set of initial parameters comprise at least one parameter related to an availability of a power supply of the vehicle.

[0352] Aspects of the above system further include means for determining, by the remote operator system, a set of updated parameters, the set of updated parameters comprising at least one parameter corresponding to a parameter in the initial set of parameters but having a different value, means for saving, by the remote operator system, the set of updated parameters, and means for providing, by the remote operator system over the network connection to the control system of the vehicle, the set of updated parameters, wherein the control system of the vehicle controls operations of one or more features of the vehicle to levels indicated by the set of updated parameters.

[0353] Aspects of the above system include wherein the at least one parameter of the set of updated parameters corresponding to a parameter in the initial set of parameters but having a different value comprises an override or increase of a limit imposed by the set of initial parameters.

[0354] Aspects of the above system include means for determining, by the remote operator system, whether the override or increase of the limit imposed by the set of initial parameters is authorized.

[0355] Aspects of the above system include means for receiving, by the remote operator system, a request for the set of updated parameters and wherein the set of updated parameters are determined in response to receiving the request.

[0356] Aspects of the above system include wherein the request is received from the vehicle over the network connection. [0357] The phrases "at least one," "one or more," "or," and "and/or" are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions "at least one of A, B and C," "at least one of A, B, or C," "one or more of A, B, and C," "one or more of A, B, or C," "A, B, and/or C," and "A, B, or C" means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.

[0358] The term "a" or "an" entity refers to one or more of that entity. As such, the terms "a" (or "an"), "one or more," and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprising," "including," and "having" can be used interchangeably.

[0359] The term "automatic" and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be "material."

[0360] Aspects of the present disclosure may take the form of an embodiment that is entirely hardware, an embodiment that is entirely software (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit," "module," or "system." Any combination of one or more computer-readable medium(s) may be utilized. The computer- readable medium may be a computer-readable signal medium or a computer-readable storage medium.

[0361] A computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples

(a non-exhaustive list) of the computer-readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.

[0362] A computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer- readable signal medium may be any computer-readable medium that is not a computer- readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.

Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.

[0363] The terms "determine," "calculate," "compute," and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.

[0364] The term "electric vehicle" (EV), also referred to herein as an electric drive vehicle, may use one or more electric motors or traction motors for propulsion. An electric vehicle may be powered through a collector system by electricity from off-vehicle sources, or may be self-contained with a battery or generator to convert fuel to electricity. An electric vehicle generally includes a rechargeable electricity storage system (RESS) (also called Full Electric Vehicles (FEV)). Power storage methods may include: chemical energy stored on the vehicle in on-board batteries (e.g., battery electric vehicle or BEV), on board kinetic energy storage (e.g., flywheels), and/or static energy (e.g., by on-board double-layer capacitors). Batteries, electric double-layer capacitors, and flywheel energy storage may be forms of rechargeable on-board electrical storage.

[0365] The term "hybrid electric vehicle" refers to a vehicle that may combine a conventional (usually fossil fuel-powered) powertrain with some form of electric propulsion. Most hybrid electric vehicles combine a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system (hybrid vehicle drivetrain). In parallel hybrids, the ICE and the electric motor are both connected to the mechanical transmission and can simultaneously transmit power to drive the wheels, usually through a conventional transmission. In series hybrids, only the electric motor drives the drivetrain, and a smaller ICE works as a generator to power the electric motor or to recharge the batteries. Power-split hybrids combine series and parallel characteristics. A full hybrid, sometimes also called a strong hybrid, is a vehicle that can run on just the engine, just the batteries, or a combination of both. A mid hybrid is a vehicle that cannot be driven solely on its electric motor, because the electric motor does not have enough power to propel the vehicle on its own.

[0366] The term "rechargeable electric vehicle" or "REV" refers to a vehicle with on board rechargeable energy storage, including electric vehicles and hybrid electric vehicles.