Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
VINYL TERMINATED POLYMERS AND METHODS TO PRODUCE THEREOF
Document Type and Number:
WIPO Patent Application WO/2014/052200
Kind Code:
A1
Abstract:
This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated polymers may optionally include ethylene derived units.

Inventors:
HOLTCAMP MATTHEW W (US)
RUFF CHARLES J (US)
CROWTHER DONNA J (US)
HAGADORN JOHN R (US)
BRANT PATRICK (US)
Application Number:
PCT/US2013/060953
Publication Date:
April 03, 2014
Filing Date:
September 20, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EXXONMOBIL CHEM PATENTS INC (US)
International Classes:
C08F10/14; C08F4/6592; C08F210/00
Foreign References:
US20090318644A12009-12-24
US20040171750A12004-09-02
Other References:
XU, G. ET AL.: "Ethylene Copolymerization with 1-Octene Using a 2-Methylbenz[e]indenyl-Based ansa-Monocyclopentadienylamido Complex and Methylaluminoxanes Catalyst", MACROMOLECULES, vol. 31, 1998, pages 4724 - 4729
CHERIAN, A. E. ET AL.: "Synthesis of Allyl-Terminated Syndiotactic Polypropylene: Macromonomers for the Synthesis of Branched Polyolefins", MACROMOLECULES, vol. 38, 2005, pages 6259 - 6268
Attorney, Agent or Firm:
ARECHDERRA, Leandro et al. (P.O. Box 2149Baytown, TX, US)
Download PDF:
Claims:
A higher olefin polymer having an Mn (measured by !fi NMR) of at least 160 g/mol, comprising:

at least 15 mol% of one or more C4 to C4Q higher olefin derived units;

wherein the vinyl terminated polymer comprises substantially no propylene derived units;

wherein the higher olefin polymer has at least 20% allyl chain ends;

optionally, an allyl chain end to vinylidene chain end ratio of 1 : 1 or greater; and yet further optionally, these higher olefin vinyl terminated polymers may comprise at least 5 mol% ethylene derived units.

The higher olefin vinyl terminated polymer of claim 1 , wherein the higher olefin vinyl terminated polymer comprises at least 50 wt%, based upon the weight of the polymer composition, of olefins having at least 36 carbon atoms, as measured by !fi NMR, assuming one unsaturation per chain.

The higher olefin vinyl terminated polymer of claims 1 and 2, wherein the higher olefin vinyl terminated polymer comprises less than 20 wt% dimer and trimer, based upon the weight of the copolymer composition, as measured by GC.

The higher olefin vinyl terminated polymer of claims 1 to 3, wherein the higher olefin copolymer has a viscosity at 60°C of greater than 1000 cP.

A process for making the higher olefin vinyl terminated polymers of claims 1 to 4, wherein the process comprises contacting:

(i) one or more C4 to C4Q monomers;

(ii) substantially no propylene monomer;

(iii) optionally, at least 5 mol% ethylene monomer;

wherein the contacting occurs in the presence of a catalyst system comprising an activator and at least one metallocene compound represented by one of the following formulae: 2200

i)

FORMULA I; or (ii)

FORMULA II; or (Hi)

FORMULA III; or (iv)

FORMULA IV; where:

M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system;

each Q is, independently carbon or a heteroatom;

each R1 is, independently, a Q to Cg alkyl group, R1 may the same or different as R2; each R2 is, independently, a Q to Cg alkyl group;

each R3 is, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided however that at least three R3 groups are not hydrogen;

each R4 is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group;

R5 is hydrogen or a Q to Cg alkyl group;

R6 is hydrogen or a Q to Cg alkyl group;

each R7 is, independently, hydrogen, or a to Cg alkyl group, provided however that at least seven R7 groups are not hydrogen;

T is a bridging group;

each Ra, is independently, hydrogen, halogen or a to C20 hydrocarbyl;

two Ra can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system; and further provided that any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated;

or (v)

FORMULA V

where: M is hafnium or zirconium;

each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (where two X's may form a part of a fused ring or a ring system); each R8 is, independently, a Q to alkyl group;

each R9 is, independently, a Q to alkyl group;

each R10 is hydrogen;

each R1 1, R12, and R13, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group;

T is a bridging group; and

further provided that any of adjacent R1 !, R12, and R13 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated;

or (vi)

FORMULA VI

wherein

M is hafnium or zirconium;

each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof;

each R15 and R17 are, independently, a Q to Cg alkyl group; each Rl6, Rl8, R19; R20; R21; R22; R23; R24; R25; R26; R27; and R28 arQ> independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms; and

wherein the C4 to C4Q higher olefin is selected from butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof.

6. The process of claim 5, wherein the activator is a bulky activator represented by the formula:

where:

each R1 is, independently, a halide;

each R2 is, independently, a halide, a to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-Ra, where Ra is a Q to C20 hydrocarbyl or hydrocarbylsilyl group;

each R3 is a halide, to C20 substituted aromatic hydrocarbyl group, or a siloxy group of the formula -0-Si-Ra, where Ra is a Ci to C20 hydrocarbyl or hydrocarbylsilyl group; and

wherein L is an neutral Lewis base;

H is hydrogen;

(L-H)+ is a Bronsted acid;

d is 1 ;

wherein the anion has a molecular weight of greater than 1020 g/mole; and wherein at least three of the substituents on the B atom each have a molecular volume of greater than 250 cubic A.

A composition comprising the higher olefin copolymers of claims 1 to 4 or made by the process of claims 5 to 6.

The use of the composition of claim 7 as a lubricant or fuel.

Description:
TITLE: VINYL TERMINATED POLYMERS AND METHODS TO PRODUCE THEREOF

FIELD OF THE INVENTION

[0001] This invention relates to olefin polymerization, particularly to produce vinyl terminated polymers.

BACKGROUND OF THE INVENTION

[0002] Alpha-olefins, especially those containing 6 to 20 carbon atoms, have been used as intermediates in the manufacture of detergents or other types of commercial products. Such alpha-olefins have also been used as comonomers, especially in linear low density polyethylene. Commercially produced alpha-olefins are typically made by oligomerizing ethylene. Longer chain alpha-olefins, such as vinyl-terminated polyethylenes are also known and can be useful as building blocks following functionalization or as macromonomers.

[0003] Allyl terminated low molecular weight solids and liquids of ethylene or propylene have also been produced, typically for use as branches in polymerization reactions. See, for example, Rulhoff, Sascha and Kaminsky, ("Synthesis and Characterization of Defined Branched Poly(propylene)s with Different Microstructures by Copolymerization of Propylene and Linear Ethylene Oligomers (C n =26-28) with Metallocenes/MAO Catalysts," Macromolecules, 16, 2006, pp. 1450-1460) and Kaneyoshi, Hiromu et al. ("Synthesis of Block and Graft Copolymers with Linear Polyethylene Segments by Combination of Degenerative Transfer Coordination Polymerization and Atom Transfer Radical Polymerization," Macromolecules, 38, 2005, pp. 5425-5435).

[0004] Further, U.S. Patent No. 4,814,540 discloses bis(pentamethyl cyclopentadienyl) hafnium dichloride, bis(pentamethyl cyclopentadienyl) zirconium dichloride and bis(tetramethyl n-butyl cyclopentadienyl) hafnium dichloride with methylalumoxane in toluene or hexane with or without hydrogen to make allylic vinyl terminated propylene homo-oligomers having a low degree of polymerization of 2-10. These oligomers do not have high Mn's and do not have at least 93% allylic vinyl unsaturation. Likewise, these oligomers lack comonomer and are produced at low productivities with a large excess of alumoxane (molar ratio > 600 Al/M; M = Zr, Hf). Additionally, no less than 60 wt% solvent (solvent + propylene basis) is present in all of the examples. [0005] Teuben et al. (J. Mol. Catal, 62, 1990, pp. 277-287) discloses the use of [Cp* 2 MMe(THT)]+[BPh 4 ] (M= Zr and Hf; Cp* = pentamethylcyclopentadienyl; Me = methyl, Ph = phenyl; THT = tetrahydrothiophene), to make propylene oligomers. For M = Zr, a broad product distribution with oligomers up to C 24 (number average molecular weight (Mn) of 336) was obtained at room temperature. Whereas, for M = Hf, only the dimer 4- methyl-l-pentene and the trimer 4,6-dimethyl-l-heptene were formed. The dominant termination mechanism appeared to be beta-methyl transfer from the growing chain back to the metal center, as was demonstrated by deuterium labeling studies.

[0006] X. Yang et al. (Angew. Chem. Intl Ed. Engl, 31, 1992, pp. 1375) discloses amorphous, low molecular weight polypropylene made at low temperatures where the reactions showed low activity and product having 90% allylic vinyls, relative to all unsaturations, by l R NMR. Thereafter, Resconi et al. (J. Am. Chem. Soc, 114, 1992, pp. 1025-1032) discloses the use of bis(pentamethylcyclopentadienyl)zirconium and bis(pentamethylcyclopentadienyl)hafnium to polymerize propylene and obtained beta-methyl termination resulting in oligomers and low molecular weight polymers with "mainly allyl- and iso-butyl-terminated" chains. As is the case in U.S. Patent No. 4,814,540, the oligomers produced do not have at least 93% allyl chain ends, an Mn of 500 to 20,000 g/mol (as measured by l R NMR), and the catalyst has low productivity (1-12,620 g/mmol metallocene/hr; >3000 wppm Al in products).

[0007] Similarly, Small and Brookhart (Macromolecules, 32, 1999, pp. 2322) disclose the use of a pyridylbisamido iron catalyst in a low temperature polymerization to produce low molecular weight amorphous propylene materials apparently having predominant or exclusive 2, 1 chain growth, chain termination via beta-hydride elimination, and high amounts of vinyl end groups.

[0008] Weng et al. (Macromol Rapid Comm. 2000, 21, 1103-1107) discloses materials with up to 81 percent vinyl termination made using dimethylsilyl bis(2 -methyl, 4-phenyl- indenyl) zirconium dichloride and methylalumoxane in toluene at 120°C. The materials have a Mn of 12,300 (measured with l R NMR) and a melting point of 143°C.

[0009] Macromolecules, 33, 2000, 8541-8548) discloses preparation of branch-block ethylene-butene polymer made by reincorporation of vinyl terminated polyethylene, said branch-block polymer made by a combination of Cp 2 ZrCL2 and (C5Me 4 SiMe2NC 1 2H23)TiCl2 activated with methylalumoxane. [0010] Moscardi et al. (Organometallics, 20, 2001, pp. 1918) disclose the use of rac- dimethylsilylmethylenebis(3-t-butyl indenyl)zirconium dichloride with methylalumoxane in batch polymerizations of propylene to produce materials where "...allyl end group always prevails over any other end groups, at any [propene]." In these reactions, morphology control was limited and approximately 60% of the chain ends are allylic.

[0011] Coates et al. (Macromolecules, 38, 2005, pp. 6259) disclose preparation of low molecular weight syndiotactic polypropylene ([rrrr] = 0.46-0.93) with 100% allyl end groups using bis(phenoxyimine)titanium dichloride ((Ptff^TiC^) activated with modified methyl alumoxane (MMAO; Al/Ti molar ratio = 200) in batch polymerizations run between -20 and +20°C for four hours. For these polymerizations, propylene was dissolved in toluene to create a 1.65 M toluene solution. Catalyst productivity was very low (0.95 to 1.14 g/mmol Ti/hr).

[0012] JP 2005-336092 A2 discloses the manufacture of vinyl-terminated propylene polymers using materials such as H2SO4 treated montmorillonite, triethylaluminum, triisopropyl aluminum, where the liquid propylene is fed into a catalyst slurry in toluene. This process produces substantially isotactic macromonomers that do not have a significant amount of amorphous material.

[0013] Rose et al. (Macromolecules, 41, 2008, pp. 559-567) disclose poly(ethylene-co- propylene) macromonomers not having significant amounts of iso-butyl chain ends. Those were made with bis(phenoxyimine) titanium dichloride ((Ptff^TiC^) activated with modified methylalumoxane (MMAO; Al/Ti molar ratio range 150 to 292) in semi-batch polymerizations (30 psi propylene added to toluene at 0°C for 30 min, followed by ethylene gas flow at 32 psi of over-pressure at 0°C for polymerization times of 2.3 to 4 hours to produce E-P copolymer having an Mn of 4,800 to 23,300. In four reported copolymerizations, allylic chain ends decreased with increasing ethylene incorporation roughly according to the equation:

% allylic chain ends (of total unsaturations) = -0.95(mol% ethylene incorporated) + 100. For example, 65% allyl (compared to total unsaturation) was reported for E-P copolymer containing 29 mol% ethylene. This is the highest allyl population achieved. For 64 mol% incorporated ethylene, only 42% of the unsaturations are allylic. Productivity of these polymerizations ranged from 0.78 x 10 2 g/ mmol Ti/hr to 4.62 x 10 2 g/ mmol Ti/hr.

[0014] Prior to this work, Zhu et al. reported only low (-38%) vinyl terminated ethylene- propylene copolymer made with the constrained geometry metallocene catalyst [C 5 Me4(SiMe 2 N-tert-butyl)TiMe2 activated with B(C 6 F 5 ) 3 and MMAO (Macromolecules, 35, 2002, pp. 10062-10070 and Macromolecules Rap. Commun, 24, 2003, pp. 31 1-315).

[0015] Janiak and Blank summarize a variety of work related to oligomerization of olefins (Macromol. Symp., 236, 2006, pp. 14-22).

[0016] Example 4 of U.S. Patent No. 6,017,859 discloses a copolymer of octene and tetradecene reported to have a Mn of 109,100 and a vinyl content of 41. Examples 8-10 and 17-22 in EP 0 958 309 disclose various ethylene butene copolymers having up to 44 mol% butene varying levels of vinyls, typically higher levels of vinyl with lower mol% butene.

[0017] Another reference of interest is WO 2004/031250.

[0018] However, higher olefin-based polymerizations to produce vinyl terminated polymers are not known. Accordingly, there is a need for new catalysts that produce vinyl terminated polymers, particularly in high yields, with a wide range of molecular weight, and with high catalyst activity. Further, there is a need for vinyl terminated polymers that have allyl termination present in high amounts, with control over a wide range of molecular weights that can be made at commercial temperatures and which can be made at commercial rates (5,000 g/mmol/hr productivity or more). Further, there is a need for higher olefin polymers having vinyl terminations which can be functionalized and used in additive applications, or as macromonomers for the synthesis of poly(macromonomers).

SUMMARY OF THE INVENTION

[0019] This invention relates to vinyl terminated polymers having an Mn of at least 200 g/mol (measured by l R NMR) comprising of one or more C 4 to C 4 Q higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends relative to total unsaturation. The vinyl terminated polymers may optionally comprise ethylene derived units. The higher olefin vinyl terminated polymers preferably do not have isobutyl chain ends. Isobutyl chain ends are determined according to the procedure set out in WO 2009/155471.

[0020] This invention also relates to a process for making vinyl terminated polymers, wherein the process comprises contacting, under polymerization conditions: one or more C 4 to C 4 o higher olefins, where substantially no propylene is present; wherein the contacting occurs in the presence of a catalyst system comprising an activator and at least one metallocene compound represented by one of the formulae:

(i) FORMULA I;

or (ii)

FORMULA II;

or (iii)

FORMULA III;

or (iv)

FORMULA IV;

where M is hafnium or zirconium; each X, Q, R and other parameter are as described further herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] Figure 1 is a representation of the NMR spectrum of poly(l-decene), where the 1- decene starting material was isotopically enriched.

DETAILED DESCRIPTION

[0022] The inventors have surprisingly discovered a new class of vinyl terminated polymers. Described herein are vinyl terminated polymers comprising substantially no propylene-derived units, processes to produce such vinyl terminated polymers, and compositions comprising vinyl terminated polymers. These vinyl terminated polymers may find utility as macromonomers for the synthesis of poly(macromonomers), block copolymers, and as additives, for example, as additives to lubricants. Advantageously, the vinyl group of these vinyl terminated polymers provides a path to functionalization. These functionalized polymers may be also useful as additives, such as in lubricants and/or fuels.

[0023] As used herein, "molecular weight" means number average molecular weight (Mn), unless otherwise stated.

[0024] For the purposes of this invention and the claims thereto, the new numbering scheme for the Periodic Table Groups is used as in CHEMICAL AND ENGINEERING NEWS, 63(5), pg. 27 (1985). Therefore, a "Group 4 metal" is an element from Group 4 of the Periodic Table.

[0025] "Catalyst activity" is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W g of catalyst (cat), over a period of time of T hours; and may be expressed by the following formula: P/(T x W) and expressed in units of gPgcaHhr 1 .

[0026] An "olefin," alternatively referred to as "alkene," is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond. For purposes of this specification and the claims appended thereto, when a polymer or copolymer is referred to as comprising an olefin, including, but not limited to ethylene, propylene, and butene, the olefin present in such polymer or copolymer is the polymerized form of the olefin. For example, when a copolymer is said to have an "ethylene" content of 35 wt% to 55 wt%, it is understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt% to 55 wt%, based upon the weight of the copolymer. A "polymer" has two or more of the same or different mer units. The term "polymer," as used herein, includes oligomers (up to 100 mer units), and larger polymers (greater than 100 mer units). A "homopolymer" is a polymer having mer units that are the same. A "copolymer" is a polymer having two or more mer units that are different from each other. A "terpolymer" is a polymer having three mer units that are different from each other. "Different" as used to refer to mer units indicates that the mer units differ from each other by at least one atom or are different isomerically. Accordingly, the definition of copolymer, as used herein, includes terpolymers, and the like.

[0027] "Higher olefin," as used herein, means C 4 to C 4 Q olefins; preferably C 4 to C30 a- olefins; more preferably C 4 to C20 a-olefins; or even more preferably, C 4 to a-olefins. A "higher olefin copolymer" is a polymer comprising two or more different monomer units, at least one of which is a higher olefin. In a preferred embodiment, all monomer units in the polymer are derived from higher olefins.

[0028] As used herein, Mn is number average molecular weight (measured by Ή NMR, unless stated otherwise), Mw is weight average molecular weight (measured by Gel Permeation Chromatography, GPC), and Mz is z average molecular weight (measured by GPC), wt% is weight percent, mol% is mole percent, vol% is volume percent, and mol is mole. Molecular weight distribution (MWD) is defined to be Mw (measured by GPC) divided by Mn (measured by GPC), Mw/Mn. Unless otherwise noted, all molecular weights (e.g., Mw, Mn, Mz) have units of g/mol.

Vinyl Terminated Polymers

[0029] Preferred vinyl terminated polymers (VT-HO) have an Mn at least 200 g/mol, (preferably 200 to 100,000 g/mol, preferably 200 to 75,000 g/mol, preferably 200 to 60,000 g/mol, preferably 300 to 60,000 g/mol, or preferably 750 to 30,000 g/mol) (measured by l R NMR) comprising of one or more (preferably two or more, three or more, four or more, and the like) C 4 to C 4 Q (preferably C 4 to C30, C 4 to C20, or C 4 to C^, preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof) higher olefin derived units, where the vinyl terminated polymer comprises substantially no propylene derived units (preferably less than 0.1 wt% propylene, preferably 0 wt%); and wherein the higher olefin polymer has at least 5% (at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%, or at least 95%) allyl chain ends (relative to total unsaturation); and optionally, an allyl chain end to vinylidene chain end ratio of 1 : 1 or greater (preferably greater than 2: 1, greater than 2.5: 1, greater than 3 : 1, greater than 5: 1, or greater than 10: 1); and even further optionally, preferably, substantially no isobutyl chain ends (preferably less than 0.1 wt% isobutyl chain ends). In some embodiments, these higher olefin vinyl terminated polymers may comprise ethylene derived units, preferably at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene).

[0030] The VT-HO polymer may be a homopolymer, a copolymer, a terpolymer, or so on.

[0031] In some embodiments, the VT-HO may comprise ethylene derived units, preferably 5 mol% or less ethylene (preferably 10 mol% or less ethylene, preferably 15 mol% or less ethylene, preferably 20 mol% or less ethylene, preferably 25 mol% or less ethylene, preferably 35 mol% or less ethylene, preferably 45 mol% or less ethylene, preferably 60 mol% or less ethylene, preferably 75 mol% or less ethylene, or preferably 90 mol% or less ethylene). In a preferred embodiment of the invention, the vinyl terminated polymer comprises substantially no ethylene derived units (preferably less than 0.1 wt%, preferably 0 wt%).

[0032] In any embodiment of the invention described herein, the vinyl terminated polymer comprises from 0.5 to 100 mol% of one or more C 4 to C20 higher olefin derived units, preferably from 1 to 99 mol%, preferably from 5 to 98 mol%, preferably from 10 to 90 mol%. In a preferred embodiment of the invention, the one or more C 4 to C20 higher olefin derived units are present at at least 5 mol%, preferably at least 10 mol%, preferably at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, preferably at 100 mol%, where the one or more C 4 to C20 higher olefin derived units (preferably two or more, three or more, four or more, and the like) are selected from the group consisting of C 4 to C40 (preferably C 4 to C30, C5 to C20, or C5 to ( ¾) olefins preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof). [0033] In some embodiments, the VT-HO may comprise butene derived units, preferably 5 mol% or less butene (preferably 10 mol% or less butene, preferably 15 mol% or less butene, preferably 20 mol% or less butene, preferably 25 mol% or less butene, preferably 35 mol% or less butene, preferably 45 mol% or less butene, preferably 60 mol% or less butene, preferably 75 mol% or less butene, or preferably 90 mol% or less butene). In a preferred embodiment of the invention, the vinyl terminated polymer comprises substantially no butene derived units (preferably less than 0.1 wt%, preferably 0 wt%).

[0034] In another embodiment of the invention, the vinyl terminated polymer comprises at least 30 mol% of one C 4 to C20 higher olefin derived unit, preferably at least 40 mol%, preferably from 50 to 98 mol%, preferably from 60 to 90 mol% of one C 4 to C20 higher olefin derived unit with the balance of the copolymer being made of up one or more different C 4 to C20 higher olefin derived units.

[0035] In a preferred embodiment of the invention, the VT-HO copolymer comprises ethylene and butene, where the butene is present at at least 5 mol%, preferably at least 10 mol%, preferably at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, and where the copolymer has at least 5% (at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%, or at least 95%) allyl chain ends (relative to total unsaturation) where, optionally the copolymer has an Mn of less than 3000 g/mol, alternately less than 2000 g/mol, alternately less than 1500 g/mol, alternately less than 1450 g/mol, alternately from 160 to 1300 g/mol.

[0036] In a preferred embodiment of the invention, the VT-HO copolymer comprises ethylene and one or more C 4 to C20 higher olefin derived unit, where the C 4 to C20 higher olefin derived unit(s) are present at at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, (and the ethylene makes up the balance of the copolymer) and where the copolymer has at least 20% (at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%, or at least 95%) allyl chain ends (relative to total unsaturation), and, optionally, has an Mn of at least 200 g/mol, (preferably 200 to 100,000 g/mol, preferably 200 to 75,000 g/mol, preferably 200 to 60,000 g/mol, preferably 300 to 60,000 g/mol, or preferably 750 to 30,000 g/mol).

[0037] In a preferred embodiment of the invention, the VT-HO copolymer consists essentially of ethylene and butene, where the butene is present at at least 15 mol%, preferably at least 20 mol%, preferably at least 25 mol%, preferably at least 30 mol%, preferably at least 35 mol%, preferably at least 40 mol%, preferably at least 45 mol%, preferably at least 50 mol%, preferably at least 55 mol%, preferably at least 60 mol%, preferably at least 65 mol%, preferably at least 70 mol%, preferably at least 75 mol%, preferably at least 80 mol%, preferably at least 85 mol%, preferably at least 90 mol%, preferably at least 95 mol%, preferably at least 98 mol%, preferably at least 99 mol%, (where the ethylene makes up the balance of the copolymer) and where the copolymer has at least 20% (at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%; at least 80%, at least 90%, or at least 95%) allyl chain ends (relative to total unsaturation) where, optionally, the copolymer has an Mn of at least 160 g/mol, (preferably 200 to 100,000 g/mol, preferably 200 to 75,000 g/mol, preferably 200 to 60,000 g/mol, preferably 300 to 60,000 g/mol, or preferably 750 to 30,000 g/mol), alternately the copolymer has an Mn of less than 3000 g/mol, alternately less than 2000 g/mol, alternately less than 1500 g/mol, alternately less than 1450 g/mol, alternately from 160 to 1300 g/mol.

[0038] VT-HO polymers generally have a saturated chain end (or terminus) and/or an unsaturated chain end, or terminus. The unsaturated chain end of inventive VT-HO polymers comprises an "allyl chain end." An allyl chain end is represented by C^CH-CT^., as shown in the formula:

where M represents the polymer chain. "Allylic vinyl group," "allyl chain end," "vinyl chain end," "vinyl termination," "allylic vinyl group," and "vinyl terminated" are used interchangeably in the following description.

[0039] In some embodiments, the VT-HO polymer has at least 5% allyl chain ends (preferably at least 10% allyl chain ends, at least 15% allyl chain ends, at least 20% allyl chain ends, at least 30% allyl chain ends, at least 40% allyl chain ends, at least 50% allyl chain ends, at least 60% allyl chain ends, at least 70% allyl chain ends; at least 80% allyl chain ends, at least 90% allyl chain ends, or at least 95% allyl chain ends) relative to total unsaturation. The number of allyl chain ends, vinylidene chain ends, vinylene chain ends, and other unsaturated chain ends is determined using X H NMR at 120°C using deuterated tetrachloroethane as the solvent on an at least 250 MHz NMR spectrometer, and in selected cases, confirmed by 13 C NMR. Resconi has reported proton and carbon assignments (neat perdeuterated tetrachloroethane used for proton spectra, while a 50:50 mixture of normal and perdeuterated tetrachloroethane was used for carbon spectra; all spectra were recorded at 100°C on a Bruker spectrometer operating at 500 MHz for proton and 125 MHz for carbon) for vinyl terminated oligomers in J. American Chemical Soc, 114, 1992, pp. 1025-1032 that are useful herein. Allyl chain ends are reported as a molar percentage of the total number of moles of unsaturated groups (that is, the sum of allyl chain ends, vinylidene chain ends, vinylene chain ends, and the like).

[0040] The "allyl chain end to vinylidene chain end ratio" is defined to be the ratio of the percentage of allyl chain ends to the percentage of vinylidene chain ends. In some embodiments, the allyl chain end to vinylidene chain end ratio of 1 : 1 or greater (preferably greater than 2: 1, greater than 2.5: 1, greater than 3 : 1, greater than 5: 1, or greater than 10: 1). In some embodiments, the allyl chain end to vinylidene chain end ratio is in the range of from 10: 1 to 1 : 1 (preferably from 5: 1 to 2: 1 or preferably from 10: 1 to 2.5: 1).

[0041] The "allyl chain end to vinylene chain end ratio" is defined to be the ratio of the percentage of allyl chain ends to the percentage of vinylene chain ends. In some embodiments, the allyl chain end to vinylene ratio is greater than 1 : 1 (preferably greater than 2 : 1 , or greater than 5: 1).

[0042] VT-HO polymers typically also have a saturated chain end. In polymerizations without ethylene, the saturated chain end is a higher olefin chain end, as shown in the formula below:

higher olefin chain end

where M represents the polymer chain and n is an integer selected from 4 to 40. In an ethylene/higher olefin copolymerization, the polymer chain may initiate growth in an ethylene monomer, thereby generating a saturated chain end which is an ethyl chain end. VT-HO polymers herein comprise substantially no propylene (preferably less than 0.1 wt%, preferably 0 wt%), and therefore have substantially no isobutyl chain ends (preferably less than 0.1 wt%, preferably 0 wt%). Isobutyl chain ends are determined according to the procedure set out in WO 2009/155471.

[0043] The VT-HO polymer may further comprise ethylene derived units. In some embodiments, these VT-HO polymers comprise at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene). In other embodiments, the VT-HO polymers comprise from 1.0 to 99 mol% of ethylene (from 10 to 90 mol%, from 15 to 95 mol%, from 20 to 85 mol%, from 25 to 75 mol%, or from 30 to 70 mol%).

[0044] In particular embodiments, the VT-HO copolymer has a Mn of greater than 300 g/mol (preferably of in the range from 300 to 60,000 g/mol, 400 to 50,000 g/mol, preferably 500 to 35,000 g/mol, preferably 300 to 15,000 g/mol, preferably 400 to 12,000 g/mol, or preferably 750 to 10,000 g/mol), a Mw of 1000 or more (preferably from 1,000 to 60400,000 g/mol, preferably from 2000 to 50300,000 g/mol, preferably from 3,000 to 35200,000 g/mol), and a Mz of from 1700 to 150,000 g/mol, or preferably from 800 to 100,000 g/mol. Further, a desirable molecular weight range can be any combination of any upper molecular weight limit with any lower molecular weight limit described above. Mn (¾ NMR) is determined according to the NMR method described below in the Examples section. Mn may also be determined using a GPC-DRI method, as described below. For the purpose of the claims, Mn is determined by !H NMR.

[0045] Mn, Mw, and Mz may be measured by using a Gel Permeation Chromatography (GPC) method using a High Temperature Size Exclusion Chromatograph (SEC, either from Waters Corporation or Polymer Laboratories), equipped with a differential refractive index detector (DRI). Experimental details, are described in: T. Sun, P. Brant, R. R. Chance, and W. W. Graessley, Macromolecules, Volume 34, Number 19, pp. 6812-6820, (2001) and references therein. Three Polymer Laboratories PLgel 10mm Mixed-B columns are used. The nominal flow rate is 0.5 cm 3 /min and the nominal injection volume is 300 μί. The various transfer lines, columns and differential refractometer (the DRI detector) are contained in an oven maintained at 135°C. Solvent for the SEC experiment is prepared by dissolving 6 grams of butylated hydroxy toluene as an antioxidant in 4 liters of Aldrich reagent grade 1,2,4 trichlorobenzene (TCB). The TCB mixture is then filtered through a 0.7 μιη glass pre- filter and subsequently through a 0.1 μιη Teflon filter. The TCB is then degassed with an online degasser before entering the SEC. Polymer solutions are prepared by placing dry polymer in a glass container, adding the desired amount of TCB, then heating the mixture at 160°C with continuous agitation for 2 hours. All quantities are measured gravimetrically. The TCB densities used to express the polymer concentration in mass/volume units are 1.463 g/mL at room temperature and 1.324 g/mL at 135°C. The injection concentration is from 1.0 to 2.0 mg/mL, with lower concentrations being used for higher molecular weight samples. Prior to running each sample the DRI detector and the injector are purged. Flow rate in the apparatus is then increased to 0.5 mL/minute, and the DRI is allowed to stabilize for 8 to 9 hours before injecting the first sample. The concentration, c, at each point in the chromatogram is calculated from the baseline-subtracted DRI signal, I DR[ , using the following equation:

c = K DRI I DRI /(dn/dc)

where K D RJ is a constant determined by calibrating the DRI, and (dn/dc) is the refractive index increment for the system. The refractive index, n = 1.500 for TCB at 135°C and λ = 690 nm. For purposes of this invention and the claims thereto (dn/dc) = 0.104 for propylene polymers and 0.1 otherwise. Units of parameters used throughout this description of the SEC method are: concentration is expressed in g/cm 3 , molecular weight is expressed in g/mol, and intrinsic viscosity is expressed in dL/g.

[0046] In a preferred embodiment, the VT-HO polymer comprises less than 3 wt% of functional groups selected from hydroxide, aryls and substituted aryls, halogens, alkoxys, carboxylates, esters, acrylates, oxygen, nitrogen, and carboxyl, preferably less than 2 wt%, more preferably less than 1 wt%, more preferably less than 0.5 wt%, more preferably less than 0.1 wt%, more preferably 0 wt%, based upon the weight of the copolymer.

[0047] In another embodiment, the VT-HO polymer comprises at least 50 wt% (preferably at least 75 wt%, preferably at least 90 wt%, based upon the weight of the copolymer composition) olefins having at least 36 carbon atoms (preferably at least 51 carbon atoms, preferably at least 102 carbon atoms) as measured by NMR, assuming one unsaturation per chain.

[0048] In another embodiment, the VT-HO polymer comprises less than 20 wt% dimer and trimer (preferably less than 10 wt%, preferably less than 5 wt%, more preferably less than 2 wt%, based upon the weight of the copolymer composition), as measured by gas chromatography (GC). Products were analyzed by GC (Agilent 6890N with auto-injector) using helium as a carrier gas at 38 cm/sec. A column having a length of 60 m(J & W Scientific DB-1, 60 m x 0.25 mm I.D.x 1.0 μιη film thickness) packed with a flame ionization detector (FID), an Injector temperature of 250°C, and a Detector temperature of 250°C were used. The sample was injected into the column in an oven at 70°C, then heated to 275°C over 22 minutes (ramp rate 10°C/min to 100°C, 30°C/min to 275°C, hold). An internal standard, usually the monomer, is used to derive the amount of dimer or trimer product that is obtained. Yields of dimer and trimer product are calculated from the data recorded on the spectrometer. The amount of dimer or trimer product is calculated from the area under the relevant peak on the GC trace, relative to the internal standard.

[0049] In another embodiment, the VT-HO polymers described herein preferably have a melting temperature (T m , DSC first melt) in the range of from 60 to 150°C, alternately 50 to 100°C. In another embodiment, the copolymers described herein have no detectable melting temperature by DSC following storage at ambient temperature (23°C) for at least 48 hours. The VT-HO polymer preferably has a glass transition temperature (Tg) of less than 0°C or less (as determined by differential scanning calorimetry as described below), preferably -10°C or less, more preferably -20°C or less, more preferably -30°C or less, more preferably - 50°C or less. Melting temperature (T m ) and glass transition temperature (Tg) are measured using Differential Scanning Calorimetry (DSC) using commercially available equipment such as a TA Instruments 2920 DSC. Typically, 6 to 10 mg of the sample, that has been stored at room temperature for at least 48 hours, is sealed in an aluminum pan and loaded into the instrument at room temperature. The sample is equilibrated at 25°C, then it is cooled at a cooling rate of 10°C/min to -80°C. The sample is held at -80°C for 5 min and then heated at a heating rate of 10°C/min to 25°C. The glass transition temperature is measured from the heating cycle. Alternatively, the sample is equilibrated at 25°C, then heated at a heating rate of 10°C/min to 150°C. The endothermic melting transition, if present, is analyzed for onset of transition and peak temperature. The melting temperatures reported are the peak melting temperatures from the first heat unless otherwise specified. For samples displaying multiple peaks, the melting point (or melting temperature) is defined to be the peak melting temperature (i.e., associated with the largest endothermic calorimetric response in that range of temperatures) from the DSC melting trace.

[0050] In another embodiment, the VT-HO polymers described herein have a viscosity at 60°C of greater than 1000 cP, greater than 12,000 cP, or greater than 100,000 cP. In other embodiments, the VT-HO polymers have a viscosity of less than 200,000 cP, less than 150,000 cP, or less than 100,000 cP. Viscosity is defined as resistance to flow and the melt viscosity of neat copolymers is measured at elevated temperature using a Brookfield Digital Viscometer.

[0051] In some embodiments, the VT-HO polymers are hexene/octene copolymers, hexene/decene copolymers, hexene/dodecene copolymers, octene/decene copolymers, octene/dodecene copolymers, decene/dodecene copolymers, hexene/decene/dodecene terpolymers, hexene/octene/decene terpolymers, octene/decene/dodecene terpolymers, and the like.

Processes For Making Vinyl Terminated-Higher Olefin Copolymers

[0052] This invention also relates to a process for making higher olefin polymers, wherein the process comprises contacting, one or more (preferably two or more, three or more, four or more, and the like) C 4 to C 4 Q (preferably C 4 to C30, C 4 to C20, or C 4 to C^, preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof) monomers, where substantially no propylene (preferably less than 0.1 wt% propylene, preferably 0 wt% propylene) monomer is present; and optionally, at least 5 mol% ethylene (preferably at least 15 mol% ethylene, preferably at least 25 mol% ethylene, preferably at least 35 mol% ethylene, preferably at least 45 mol% ethylene, preferably at least 60 mol% ethylene, preferably at least 75 mol% ethylene, or preferably at least 90 mol% ethylene), wherein the contacting occurs in the presence of a catalyst system comprising an activator and at least one metallocene compound represented by one of the following formulae:

(i) FORMULA I;

or (ii)

FORMULA II;

or (iii)

FORMULA III;

or (iv)

where M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system) each Q is, independently carbon or a heteroatom; each R 1 is, independently, a to Cg alkyl group, R 1 may the same or different as R 2 ; each R 2 is, independently, a Q to Cg alkyl group; each R 3 is, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, provided, however, that at least three R 3 groups are not hydrogen; each R 4 is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; R 5 is hydrogen or a Q to Cg alkyl group; R 6 is hydrogen or a Q to Cg alkyl group; each R 7 is, independently, hydrogen, or a Ci to Cg alkyl group, provided however that at least seven R 7 groups are not hydrogen; R2 a is a bridging group where T is a group 14 element (preferably C, Si, or Ge, preferably Si) and each R a is, independently, hydrogen, halogen or a Q to C20 hydrocarbyl, and two R a can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system; and further provided that any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated;

or (v)

FORMULA V;

where M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system); each R 8 is, independently, a to alkyl group; each R 9 is, independently, a Q to CIQ alkyl group; each R 10 is hydrogen; each R 1 1 , R 12 , and R 13 , is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group (such as R2 a T described above); and further provided that any of adjacent R 1 1 , R 12 , and R 13 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated; or (vi)

FORMULA VI;

wherein M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; each R 15 and R 17 are, independently, a to Cg alkyl group; and each R 16 , R 18 , R 19 , R 20 , R21, R22, R23 ; R 24 ; R 25 ; R 26 ; R 27 ; AND R 28 ar6j independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms.

[0053] Generally, to make the vinyl terminated VT-HO polymers described herein, higher olefin monomers (such as hexene or octene) are polymerized by contacting: one or more (preferably two or more, three or more, four or more, and the like) C 4 to C 4 Q (preferably C 4 to C30, C 4 to C20, or C 4 to C^, preferably butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof); wherein the contacting occurs in the presence of a catalyst system (comprising one or more metallocene compounds, and one or more activators, described below). Other additives may also be used, as desired, such as one or more scavengers, promoters, modifiers, reducing agents, oxidizing agents, hydrogen, aluminum alkyls, or silanes. In a preferred embodiment, little or no scavenger is used in the process to produce the VT-HO copolymers. Preferably, scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1. [0054] The higher olefin monomers may be linear, branched, or cyclic. The higher olefin cyclic olefins may be strained or unstrained, monocyclic or polycyclic, and may optionally include hetero atoms and/or one or more functional groups. Exemplary higher olefin monomers include butene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, norbornene, norbornadiene, dicyclopentadiene, cyclopentene, cycloheptene, cyclooctene, cyclooctadiene, cyclododecene, 7-oxanorbornene, 7-oxanorbornadiene, substituted derivatives thereof, and isomers thereof (preferably hexane, heptene, octene, nonene, decene, dodecene, cyclooctene, 1,5-cyclooctadiene, l-hydroxy-4-cyclooctene, 1- acetoxy-4-cyclooctene, 5-methylcyclopentene, cyclopentene, dicyclopentadiene, norbornene, norbornadiene, and their respective homologs and derivatives, preferably norbornene, norbornadiene, and dicyclopentadiene).

[0055] In some embodiments, where butene is the comonomer, the butene source may be a mixed butene stream comprising various isomers of butene. The 1 -butene monomers are expected to be preferentially consumed by the polymerization process. Use of such mixed butene streams will provide an economic benefit, as these mixed streams are often waste streams from refining processes, for example C 4 raffinate streams, and can therefore be substantially less expensive than pure 1 -butene.

[0056] Processes of this invention can be carried out in any manner known in the art. Any suspension, homogeneous bulk, solution, slurry, or gas phase polymerization process known in the art can be used. Such processes can be run in a batch, semi-batch, or continuous mode. Such processes and modes are well known in the art. Homogeneous polymerization processes and slurry are preferred. (A homogeneous polymerization process is defined to be a process where at least 90 wt% of the product is soluble in the reaction media.) A bulk homogeneous process is particularly preferred. (A bulk process is defined to be a process where monomer concentration in all feeds to the reactor is 70 vol% or more.) Alternately, no solvent or diluent is present or added in the reaction medium, (except for the small amounts used as the carrier for the catalyst system or other additives, or amounts typically found with the monomer; e.g., propane in propylene).

[0057] Suitable diluents/solvents for polymerization include non-coordinating, inert liquids. Examples include straight and branched-chain hydrocarbons such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof such as can be found commercially (Isopar™); perhalogenated hydrocarbons such as perfluorinated C4 0 alkanes, chlorobenzene, and aromatic and alkylsubstituted aromatic compounds such as benzene, toluene, mesitylene, and xylene. Suitable solvents also include liquid olefins which may act as monomers or comonomers including ethylene, propylene, 1-butene, 1-hexene, 1-pentene, 3-methyl-l-pentene, 4-methyl- 1-pentene, 1-octene, 1-decene, and mixtures thereof. In a preferred embodiment, aliphatic hydrocarbon solvents are used as the solvent, such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof. In another embodiment, the solvent is not aromatic, preferably aromatics are present in the solvent at less than 1 wt%, preferably at 0.5 wt%, preferably at 0 wt% based upon the weight of the solvents.

[0058] In a preferred embodiment, the feed concentration for the polymerization is 60 vol% solvent or less, preferably 40 vol% or less, or preferably 20 vol% or less, based on the total volume of the feedstream. Preferably the polymerization is run in a bulk process.

[0059] "Catalyst productivity" is a measure of how many grams of polymer (P) are produced using a polymerization catalyst comprising W g of catalyst (cat), over a period of time of T hours; and may be expressed by the following formula: P/(T x W) and expressed in units of gPgcat^hr "1 . Conversion is the amount of monomer that is converted to polymer product, and is reported as mol% and is calculated based on the polymer yield and the amount of monomer fed into the reactor. Catalyst activity is a measure of how active the catalyst is and is reported as the mass of product polymer (P) produced per mole of catalyst (cat) used (kgP/molcat).

[0060] In an alternate embodiment, the activity of the catalyst is at least 50 g/mmol/hour, preferably 500 or more g/mmol/hour, preferably 5000 or more g/mmol/hr, preferably 50,000 or more g/mmol/hr. In an alternate embodiment, the conversion of olefin monomer is at least 10%, based upon polymer yield and the weight of the monomer entering the reaction zone, preferably 20% or more, preferably 30% or more, preferably 50% or more, preferably 80% or more.

[0061] In some embodiments, the productivity is 4500 g/mmol/hour or more, preferably 5000 g/mmol/hour or more, preferably 10,000 g/mmol/hr or more, preferably 50,000 g/mmol/hr or more. In other embodiments, the productivity is at least 80,000 g/mmol/hr, preferably at least 150,000 g/mmol/hr, preferably at least 200,000 g/mmol/hr, preferably at least 250,000 g/mmol/hr, preferably at least 300,000 g/mmol/hr.

[0062] Preferred polymerizations can be run at any temperature and/or pressure suitable to obtain the desired VT-HO polymers. The polymerization may be run at any suitable temperature, such as at a temperature in the range of from 0 to 250°C, preferably from 15 to 200°C, preferably from 23 to 120°C; and at any suitable pressure, preferable pressures may be in the range of from 0.35 to 10 MPa, preferably from 0.45 to 6 MPa, or preferably from 0.5 to 4 MPa.

[0063] In a typical polymerization, the run time of the reaction is up to 300 minutes, preferably in the range of from 5 to 250 minutes, or preferably from 10 to 120 minutes.

[0064] In a preferred embodiment hydrogen is present in the polymerization reactor at a partial pressure of 0.001 to 50 psig (0.007 to 345 kPa), preferably from 0.01 to 25 psig (0.07 to 172 kPa), more preferably 0.1 to 10 psig (0.7 to 70 kPa). It has been found that in the present systems, hydrogen can be used to provide increased activity without significantly impairing the catalyst's ability to produce allylic chain ends. Preferably the catalyst activity (calculated as g/mmol catalyst/hr) is at least 20% higher than the same reaction without hydrogen present, preferably at least 50% higher, preferably at least 100% higher.

[0065] In a preferred embodiment, the polymerization: 1) is conducted at temperatures of 0 to 300°C (preferably 25 to 150°C, preferably 40 to 120°C, preferably 45 to 80°C); 2) is conducted at a pressure of atmospheric pressure to 10 MPa (preferably 0.35 to 10 MPa, preferably from 0.45 to 6 MPa, preferably from 0.5 to 4 MPa); 3) is conducted in an aliphatic hydrocarbon solvent (such as isobutane, butane, pentane, isopentane, hexanes, isohexane, heptane, octane, dodecane, and mixtures thereof; cyclic and alicyclic hydrocarbons, such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures thereof; preferably where aromatics are present in the solvent at less than 1 wt%, preferably at less than 0.5 wt%, preferably at 0 wt% based upon the weight of the solvents); 4) wherein the catalyst system used in the polymerization comprises less than 0.5 mol%, preferably 0 mol% alumoxane, alternately the alumoxane is present at a molar ratio of aluminum to transition metal less than 500: 1, preferably less than 300: 1, preferably less than 100: 1, preferably less than 1 : 1); 5) the polymerization occurs in one reaction zone; 6) the productivity of the catalyst compound is at least 80,000 g/mmol/hr (preferably at least 150,000 g/mmol/hr, preferably at least 200,000 g/mmol/hr, preferably at least 250,000 g/mmol/hr, preferably at least 300,000 g/mmol/hr); 7) optionally scavengers (such as trialkyl aluminum compounds) are absent (e.g., present at zero mole%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1); and 8) optionally hydrogen is present in the polymerization reactor at a partial pressure of 0.001 to 50 psig (0.007 to 345 kPa) (preferably from 0.01 to 25 psig (0.07 to 172 kPa), more preferably 0.1 to 10 psig (0.7 to 70 kPa)). In preferred embodiment, the catalyst system used in the polymerization comprises no more than one catalyst compound. A "reaction zone" also referred to as a "polymerization zone" is a vessel where polymerization takes place, for example a batch reactor. When multiple reactors are used in either series or parallel configuration, each reactor is considered as a separate polymerization zone. For a multi-stage polymerization in both a batch reactor and a continuous reactor, each polymerization stage is considered as a separate polymerization zone. In a preferred embodiment, the polymerization occurs in one reaction zone. Room temperature is 23°C unless otherwise noted.

Catalyst Systems

[0066] In embodiments herein, the invention relates to a process for making higher olefin polymers, wherein the process comprises contacting the higher olefin monomers in the presence of a catalyst system comprising an activator and at least one metallocene compound, as shown below.

[0067] In the description herein, the metallocene catalyst may be described as a catalyst precursor, a pre-catalyst compound, or a transition metal compound, and these terms are used interchangeably. A polymerization catalyst system is a catalyst system that can polymerize monomers to polymer. A "catalyst system" is combination of at least one catalyst compound, at least one activator, an optional co-activator, and an optional support material. An "anionic ligand" is a negatively charged ligand which donates one or more pairs of electrons to a metal ion. A "neutral donor ligand" is a neutrally charged ligand which donates one or more pairs of electrons to a metal ion.

[0068] For the purposes of this invention and the claims thereto, when catalyst systems are described as comprising neutral stable forms of the components, it is well understood by one of ordinary skill in the art, that the ionic form of the component is the form that reacts with the monomers to produce polymers.

[0069] A metallocene catalyst is defined as an organometallic compound with at least one π-bound cyclopentadienyl moiety (or substituted cyclopentadienyl moiety) and more frequently two π-bound cyclopentadienyl-moieties or substituted moieties. This includes other π-bound moieties such as indenyls or fluorenyls or derivatives thereof.

[0070] The metallocene, activator, optional co-activator, and optional support components of the catalyst system are discussed below.

(a) Metallocene Component

[0071] The term "substituted" means that a hydrogen group has been replaced with a hydrocarbyl group, a heteroatom, or a heteroatom containing group. For example, methyl cyclopentadiene (Cp) is a Cp group substituted with a methyl group, ethyl alcohol is an ethyl group substituted with an -OH group, and a "substituted hydrocarbyl" is a radical made of carbon and hydrogen where at least one hydrogen is replaced by a heteroatom.

[0072] For purposes of this invention and claims thereto, "alkoxides" include those where the alkyl group is a C^ to hydrocarbyl. The alkyl group may be straight chain, branched, or cyclic. The alkyl group may be saturated or unsaturated. In some embodiments, the alkyl group may comprise at least one aromatic group.

[0073] The metallocene component of the catalyst system is represented by at least one of the formulae I, II, III, IV, V, or VI.

Formulae I. II. Ill, and IV

[0074] In some embodiments, the metallocene compound is represented by at least one of Formulae I, II, III, and IV.

FORMULA I;

or (ii)

FORMULA II; or (iii)

FORMULA III;

or (iv)

FORMULA IV;

where M is hafnium or zirconium;

each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof; preferably methyl, ethyl, propyl, butyl, phenyl, benzyl, chloride, bromide, iodide, (alternately two X's may form a part of a fused ring or a ring system);

each Q is, independently carbon or a heteroatom, preferably C, N, P, S (preferably at least one Q is a heteroatom, alternately at least two Q's are the same or different heteroatoms, alternately at least three Q's are the same or different heteroatoms, alternately at least four Q's are the same or different heteroatoms);

each R 1 is, independently, hydrogen or a C to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, R 1 may the same or different as R 2 ;

each R 2 is, independently, hydrogen or a to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, provided that at least one of R 1 or R 2 is not hydrogen, preferably both of R 1 and R 2 are not hydrogen, preferably R 1 and/or R 2 are not branched; each R 3 is, independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, preferably a substituted or unsubstituted Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, provided however that at least three R 3 groups are not hydrogen (alternately four R 3 groups are not hydrogen, alternately five R 3 groups are not hydrogen);

each R 4 is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group, preferably a substituted or unsubstituted hydrocarbyl group having from 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms, preferably a substituted or unsubstituted Ci to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, substituted phenyl (such as propyl phenyl), phenyl, silyl, substituted silyl, (such as CH 2 SiR' ; where R is a to Ci2 hydrocarbyl, such as methyl, ethyl, propyl, butyl, phenyl);

R 5 is hydrogen or a to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl;

R 6 is hydrogen or a Ci to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl;

each R 7 is, independently, hydrogen, or a to Cg alkyl group, preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, provided however that at least seven R 7 groups are not hydrogen, alternately at least eight R 7 groups are not hydrogen, alternately all R 7 groups are not hydrogen, (preferably the R 7 groups at the 3 and 4 positions on each Cp ring of Formula IV are not hydrogen);

R2 a T is a bridging group, preferably T comprises C, Si, or Ge, preferably Si;

each R a is, independently, hydrogen, halogen or a C j to C20 hydrocarbyl, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, phenyl, benzyl, substituted phenyl, and two R a can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system; and

further provided that any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated.

[0075] In an alternate embodiment, at least one R 4 group is not hydrogen, alternately at least two R 4 groups are not hydrogen, alternately at least three R 4 groups are not hydrogen, alternately at least four R 4 groups are not hydrogen, alternately all R 4 groups are not hydrogen.

[0076] In some embodiments, the bridging group T includes bridging groups containing at least one Group 13 to 16 atom, often referred to as a divalent moiety, such as, but not limited to, at least one of a carbon, oxygen, nitrogen, silicon, aluminum, boron, germanium and tin atom, or a combination thereof. Preferably, bridging group T contains a carbon, silicon or germanium atom, most preferably, T contains at least one silicon atom or at least one carbon atom. The bridging group T may also contain substituent groups R* as defined below including halogens and iron.

[0077] Non-limiting examples of substituent groups R* include one or more from the group selected from hydrogen, or linear, or branched alkyl radicals, alkenyl radicals, alkynyl radicals, cycloalkyl radicals, aryl radicals, acyl radicals, aryl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl- or dialkyl- carbamoyl radicals, acyloxy radicals, acylamino radicals, arylamino radicals, or combination thereof. In a preferred embodiment, substituent groups R* have up to 50 non-hydrogen atoms, preferably from 1 to 30 carbon, that may also be substituted with halogens or heteroatoms, or the like. Non- limiting examples of alkyl substituents R* include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups, and the like, including all their isomers, for example tertiary butyl, isopropyl, and the like. Other hydrocarbyl radicals include fluoromethyl, fluoroethyl, difluoroethyl, iodopropyl, bromohexyl, chlorobenzyl, and hydrocarbyl substituted organometalloid radicals including trimethylsilyl, trimethylgermyl, methyldiethylsilyl, and the like; and halocarbyl-substituted organometalloid radicals including tris(trifluoromethyl)silyl, methyl-bis(difluoromethyl)silyl, bromomethyldimethylgermyl, and the like; and disubstituted boron radicals including dimethylboron, for example; and disubstituted pnictogen radicals including dimethylamine, dimethylphosphine, diphenylamine, methylphenylphosphine, chalcogen radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide, and ethylsulfide. Non-hydrogen substituents R* include the atoms carbon, silicon, boron, aluminum, nitrogen, phosphorous, oxygen, tin, sulfur, germanium, and the like, including olefins, such as, but not limited to, olefinically unsaturated substituents including vinyl-terminated ligands, for example, but-3- enyl, prop-2-enyl, hex-5-enyl, and the like. Also, in some embodiments, at least two R* groups, preferably two adjacent R groups, are joined to form a ring structure having from 3 to 30 atoms selected from carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron, or a combination thereof. In other embodiments, R* may also be a diradical bonded to L at one end and forming a carbon sigma bond to the metal M. Particularly preferred R* substituent groups include a Q to C30 hydrocarbyl, a heteroatom or heteroatom containing group (preferably methyl, ethyl, propyl (including isopropyl, sec- propyl), butyl (including t-butyl and sec -butyl), neopentyl, cyclopentyl, hexyl, octyl, nonyl, decyl, phenyl, substituted phenyl, benzyl (including substituted benzyl), cyclohexyl, cyclododecyl, norbornyl, and all isomers thereof.

[0078] Examples of bridging group R2 a T in Formula III or T in Formula V useful herein may be represented by R' 2 C, R' 2 Si, R' 2 Ge, R' 2 CCR' 2 , R' 2 CCR' 2 CR 2 , R' 2 CCR' 2 CR' 2 CR 2 , R'C=CR, R'C=CR'CR' 2 , R' 2 CCR'=CR'CR 2 , R'C=CR'CR'=CR, R'C=CR'CR' 2 CR 2 , R' 2 CSiR 2 , R' 2 SiSiR 2 , R 2 CSiR' 2 CR 2 , R' 2 SiCR' 2 SiR 2 , R'C=CR'SiR 2 , R' 2 CGeR 2 , R' 2 GeGeR' 2 , R' 2 CGeR' 2 CR' 2 , R' 2 GeCR' 2 GeR' 2 , R' 2 SiGeR 2 , R'C=CR'GeR 2 , R'B, R' 2 C-BR, R' 2 C-BR'-CR' 2 , R' 2 C-0-CR' 2 , R' 2 CR' 2 C-0-CR' 2 CR' 2 , R' 2 C-0-CR' 2 CR' 2 , R' 2 C-0- CR'=CR, R' 2 C-S-CR 2 , R' 2 CR' 2 C-S-CR' 2 CR 2 , R' 2 C-S-CR' 2 CR 2 , R' 2 C-S-CR'=CR', R' 2 C- Se-CR 2 , R' 2 CR' 2 C-Se-CR' 2 CR 2 , R' 2 C-Se-CR 2 CR 2 , R' 2 C-Se-CR'=CR', R' 2 C-N=CR, R' 2 C-NR'-CR 2 , R' 2 C-NR'-CR' 2 CR 2 , R' 2 C-NR'-CR'=CR, R' 2 CR' 2 C-NR'-CR' 2 CR 2 , R' 2 C- P=CR, and R' 2 C-PR'-CR' 2 where R' is hydrogen, or a C C^o containing hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, silylcarbyl or germylcarbyl substituent and optionally two or more adjacent R' may join to form a substituted or unsubstituted, saturated, partially unsaturated or aromatic, cyclic or polycyclic substituent. Preferably, the bridging group comprises carbon or silica, such as dialkylsilyl, preferably the bridging group is selected from CH 2 , CH 2 CH 2 , C(CH 3 ) 2 , SiMe 2 , SiPh 2 , SiMePh, silylcyclobutyl (Si(CH 2 ) 3 , (Ph) 2 C, (p-(Et) 3 SiPh) 2 C and silylcyclopentyl (Si(CH 2 ) 4 ).

[0079] Catalyst compounds that are particularly useful in this invention include one or more of:

(l,3-dimethylindenyl)(pentamethylcyclopentadienyl)hafniumdim ethyl,

(l,3,4,7-tetramethylindenyl)(pentamethylcyclopentadienyl)haf niumdimethyl,

(1,3 -dimethylindenyl)(tetramethylcyclopentadienyl)hafniumdimethy l,

(l,3-diethylindenyl)(pentamethylcyclopentadienyl)hafniumdime thyl,

(l,3-dipropylindenyl)(pentamethylcyclopentadienyl)hafniumdim ethyl,

(l-methyl,3-propyllindenyl)(pentamethylcyclopentadienyl)hafn iumdimethyl,

(l,3-dimethylindenyl)(tetramethylpropylcyclopentadienyl)hafn iumdimethyl, (l,2,3-trimethylindenyl)(pentamethylcyclopentadienyl)hafnium dimethyl,

(l,3-dimethylbenzindenyl)(pentamethylcyclopentadienyl)haf niumdimethyl,

(2,7-bis t-butylfluorenyl)(pentamethylcyclopentadienyl)hafniumdimethy l,

(9-methylfluorenyl)(pentamethylcyclopentadienyl)hafniumdimet hyl,

(2,7,9-trimethylfluorenyl)(pentamethylcyclopentadienyl)hafni umdimethyl,

dihydrosilylbis(tetramethylcyclopentadienyl)hafniumdimeth yl,

dihydrosilylbis(tetramethylcyclopentadienyl)hafniumdimeth yl,

dimethylsilyl(tetramethylcyclopentadienyl)(3-propyltrimet hylcyclopentadienyl)

hafniumdimethyl, and dicyclopropylsilylbis(tetramethylcyclopentadienyl)hafniumdim ethyl.

[0080] In an alternate embodiment, the "dimethyl" after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.

Formula V

[0081] In some be represented by Formula V, below.

FORMULA V;

where M is hafnium or zirconium, preferably hafnium;

each X is, independently, selected from the group consisting of a substituted or unsubstituted hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof (two X's may form a part of a fused ring or a ring system); preferably each X is independently selected from halides and to hydrocarbyl groups, preferably each X is methyl, ethyl, propyl, butyl, phenyl, benzyl, chloride, bromide, or iodide; each R 8 is, independently, a substituted or unsubstituted C to C Q alkyl group; preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or isomers thereof; preferably methyl, n-propyl, or n-butyl, or preferably methyl; each R 9 is, independently, a substituted or unsubstituted Q to alkyl group; preferably methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or isomers thereof; preferably methyl, n-propyl, or butyl, or preferably n-propyl;

each R 10 is hydrogen;

each R 1 1 , R 12 , and R 13 , is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; preferably each

R 1 1 , R 12 , and R 13 , is hydrogen;

T is a bridging group represented by the formula R 2 a J where J is C, Si, or Ge, preferably Si; each R a is, independently, hydrogen, halogen or a to C 20 hydrocarbyl, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, phenyl, benzyl, substituted phenyl, and two R a can form a cyclic structure including aromatic, partially saturated, or saturated cyclic, or fused ring system;

further provided that any two adjacent R groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated. T may also be a bridging group as defined above; and

further provided that any of adjacent R 1 1 , R 12 , and R 13 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated.

[0082] Metallocene compounds that are particularly useful in this invention include one or more of:

rac-dimethylsilyl bis(2-methyl,3-propylindenyl)hafniumdimethyl,

rac-dimethylsilyl bis(2-methyl,3-propylindenyl)zirconiumdimethyl,

rac-dimethylsilyl bis(2-ethyl,3 -propylindenyl)hafniumdimethyl,

rac-dimethylsilyl bis(2-ethyl,3-propylindenyl)zirconiumdimethyl,

rac-dimethylsilyl bis(2-methyl,3 -ethylindenyl)hafniumdimethyl,

rac-dimethylsilyl bis(2-methyl,3-ethylindenyl)zirconiumdimethyl,

rac-dimethylsilyl bis(2-methyl,3-isopropylindenyl)hafniumdimethyl,

rac-dimethylsilyl bis(2-methyl,3-isopropylindenyl)zirconiumdimethyl,

rac-dimethylsilyl bis(2-methyl,3-butyllindenyl)hafniumdimethyl,

rac-dimethylsilyl bis(2-methyl,3-butylindenyl)zirconiumdimethyl,

rac-dimethylgermanyl bis(2-methyl,3-propylindenyl)hafniumdimethyl,

rac-dimethylgermanyl bis (2-methyl,3-propylindenyl)zirconiumdimethyl,

rac-dimethylgermanyl bis(2-ethyl,3-propylindenyl)hafniumdimethyl, rac-dimethylgermanyl bis(2-ethyl,3-propylindenyl)zirconiumdimethyl, rac-dimethylgermanyl bis(2-methyl,3-ethylindenyl)hafniumdimethyl,

rac-dimethylgermanyl bis(2-methyl,3-ethylindenyl)zirconiumdimethyl,

rac-dimethylgermanyl bis(2-methyl,3-isopropylindenyl)hafniumdimethyl,

rac-dimethylgermanyl bis(2-methyl,3-isopropylindenyl)zirconiumdimethyl,

rac-dimethylgermanyl bis(2-methyl,3-butyllindenyl)hafniumdimethyl,

rac-dimethylgermanyl bis(2-methyl,3-propylindenyl)zirconiumdimethyl,

rac-dimethylsilyl bis(2-propyl,3-methylindenyl)hafniumdimethyl,

rac-dimethylsilyl bis(2-propyl,3-ethylindenyl)hafniumdimethyl,

rac-dimethylsilylbis(2-propyl,3-butylindenyl)hafniumdimet hyl,

rac-dimethylsilyl bis(2-methyl,3-butylindenyl)hafniumdimethyl,

rac-dimethylgermanyl bis(2,3-dimethylindenyl)hafnium dimethyl,

rac-dimethylsilyl bis(2,3-dimethylindenyl)hafnium dimethyl, and

rac-dimethylsilyl bis(2,3-diethylindenyl)hafnium dimethyl.

[0083] In an alternate embodiment, the "dimethyl" after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.

[0084] In particular embodiments, the metallocene compound is rac-dimethylsilylbis(2- methyl,3-propylindenyl)hafniumdimethyl (V-I), rac-dimethylsilylbis(2-methyl,3- propylindenyl)zirconiumdimethyl (V-II), represented by the formulae below:

V-I V-II

Formula VI [0085] In some embodiments the metallocene may be represented by Formula VI, below.

FORMULA VI;

wherein M is hafnium or zirconium;

each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halogens, dienes, amines, phosphines, ethers, or a combination thereof;

each R 15 and R 17 are, independently, a to Cg alkyl group; preferably a Q to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl, R 15 may be the same or different as R 17 , and preferably are both methyl; and

each Rl6, Rl8, R 19 ; R 20 ; R 21 ; R 22 ; R 23 ; R 24 ; R 25 ; R 26 ; R 27 ; and R 28 ar ^ independently, hydrogen, or a substituted or unsubstituted hydrocarbyl group having from 1 to 8 carbon atoms; preferably 1 to 6 carbon atoms, preferably a substituted or unsubstituted to Cg linear alkyl group, preferably methyl ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, provided however that at least three of R 24 -R 28 groups are not hydrogen (alternately four of R 24_ R 28 groups are not hydrogen, alternately five of R 24 -R 28 groups are not hydrogen). Preferably all five groups of R 24 -R 28 are methyl, and/or four of the R 24 -R 28 groups are not hydrogen and at least one of the R 24 -R 28 groups is a C 2 to Cg substituted or unsubstituted hydrocarbyl (preferably at least two, three, four or five of R 24 -R 28 groups are a C 2 to Cg substituted or unsubstituted hydrocarbyl).

[0086] In one embodiment, R 15 and R 17 are methyl groups, R 16 is a hydrogen, R 18 -R 23 are all hydrogens, R 24 -R 28 are all methyl groups, and each X is a methyl group. Catalyst compounds that are particularly useful in this invention include:

(CpMe 5 )( 1 ,3 -Me 2 benz[e]indenyl)HfMe 2 , (CpMe 5 )( 1 -methyl-3 -n-propylbenz[e] indenyl)HfMe2,

(CpMe 5 )( 1 -n-propyl,3 -methylbenz[e]indenyl)HfMe2,

(CpMe 5 )( 1 -methyl-3 -n-butylbenz[e]indenyl)HfMe 2 ,

(CpMe 5 )( 1 -n-butyl,3 -methylbenz[e]indenyl)HfMe 2 ,

(CpMe 5 )( 1 -ethyl,3 -methylbenz[e]indenyl)HfMe 2 ,

(CpMe 5 )( 1 -methyl, 3 -ethylbenz[e] indenyl)HfMe 2 ,

(CpMe 4 n-propyl)(l,3-Me 2 benz[e]indenyl)HfMe 2 ,

(CpMe 4 -n-propyl)( 1 -methyl-3 -n-propylbenz[e] indenyl)HfMe 2 ,

(CpMe 4 -n-propyl) ( 1 -n-propyl,3 -methylbenz[e]indenyl)H£Me 2 ,

(CpMe 4 -n-propyl)(l-methyl-3-n-butylbenz[e]indenyl)HfMe 2 ,

(CpMe 4 -n-propyl)(l-n-butyl,3-methylbenz[e]indenyl)HfMe 2 ,

(CpMe 4 -n-propyl) ( 1 -ethyl,3 -methylbenz[e]indenyl)H£Me 2 ,

(CpMe 4 -n-propyl)(l -methyl, 3-ethylbenz[e]indenyl)H£Me 2 ,

(CpMe 4 n-buty 1)( 1 , 3 -Me 2 benz [e] indeny l)HfMe 2 ,

(CpMe 4 n-butyl)(l-methyl-3-n-propylbenz[e]indenyl)HfMe 2 ,

(CpMe 4 n-butyl)(l-n-propyl,3-methylbenz[e]indenyl)HfMe 2 ,

(CpMe 4 n-butyl)( 1 -methyl-3 -n-butylbenz[e] indenyl)HfMe 2 ,

(CpMe 4 n-butyl)( 1 -n-butyl,3 -methylbenz[e]indenyl)HfMe 2 ,

(CpMe 4 n-butyl)( 1 -ethyl,3 -methylbenz[e]indenyl)HfMe 2 ,

(CpMe 4 n-butyl)(l -methyl, 3-ethylbenz[e]indenyl)HfMe 2 , and the zirconium analogs thereof.

[0087] In an alternate embodiment, the "dimethyl" (Me 2 ) after the transition metal in the list of catalyst compounds above is replaced with a dihalide (such as dichloride or difluoride) or a bisphenoxide, particularly for use with an alumoxane activator.

Activator Component of Catalyst System

[0088] The terms "cocatalyst" and "activator" are used herein interchangeably and are defined to be any compound which can activate any one of the catalyst compounds described above by converting the neutral catalyst compound to a catalytically active catalyst compound cation. Non-limiting activators, for example, include alumoxanes, aluminum alkyls, ionizing activators, which may be neutral or ionic, and conventional-type cocatalysts. Preferred activators typically include alumoxane compounds, modified alumoxane compounds, and ionizing anion precursor compounds that abstract one reactive, σ-bound, metal ligand making the metal complex cationic and providing a charge-balancing noncoordinating or weakly coordinating anion. [0089] When the activator is an alumoxane (modified or unmodified), some embodiments select the maximum amount of activator at a 5000-fold molar excess Al/M over the catalyst precursor (per metal catalytic site). The minimum activator-to-catalyst-precursor is a 1 : 1 molar ratio. Alternate preferred ranges include up to 500: 1, alternately up to 200: 1, alternately up to 100: 1 alternately from 1 : 1 to 50: 1. In a preferred embodiment, little or no alumoxane is used in the process to produce the VT-HO polymers. Preferably, alumoxane is present at zero mol%, alternately the alumoxane is present at a molar ratio of aluminum to transition metal less than 500: 1, preferably less than 300: 1, preferably less than 100: 1, preferably less than 1 : 1. In an alternate embodiment, if an alumoxane is used to produce the VTM's then, the alumoxane has been treated to remove free alkyl aluminum compounds, particularly trimethyl aluminum. Further, in a preferred embodiment, the activator used herein to produce the VT-HO polymers is discrete.

[0090] Aluminum alkyl or organoaluminum compounds which may be utilized as co- activators (or scavengers) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, and the like.

[0091] In a preferred embodiment, little or no scavenger is used in the process to produce the VT-HO polymers Preferably, scavenger is present at zero mol%, alternately the scavenger is present at a molar ratio of scavenger metal to transition metal of less than 100: 1, preferably less than 50: 1, preferably less than 15: 1, preferably less than 10: 1.

Ionizing Activators

[0092] It is within the scope of this invention to use an ionizing or stoichiometric activator, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, a tris perfluorophenyl boron metalloid precursor, or a tris perfluoronapthyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983), boric acid (U.S. Patent No. 5,942,459), or combination thereof. It is also within the scope of this invention to use neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators. Much preferred activators are the ionic ones, not the neutral boranes.

[0093] Examples of neutral stoichiometric activators include tri-substituted boron, tellurium, aluminum, gallium and indium or mixtures thereof. The three substituent groups are each independently selected from alkyls, alkenyls, halogens, substituted alkyls, aryls, arylhalides, alkoxy, and halides. Preferably, the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds, and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and aryl groups having 3 to 20 carbon atoms (including substituted aryls). More preferably, the three groups are alkyls having 1 to 4 carbon groups, phenyl, napthyl, or mixtures thereof. Even more preferably, the three groups are halogenated, preferably fluorinated, aryl groups. Most preferably, the neutral stoichiometric activator is tris perfluorophenyl boron or tris perfluoronapthyl boron.

[0094] Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound.

[0095] Ionic catalysts can be preparedly reacting a transition metal compound with some neutral Lewis acids, such as Bf ^F^, which upon reaction with the hydrolyzable ligand (X) of the transition metal compound forms an anion, such as ([B(C6F5)3(X)] " ), which stabilizes the cationic transition metal species generated by the reaction. The catalysts can be, and preferably are, prepared with activator components which are ionic compounds or compositions.

[0096] Compounds useful as an activator component in the preparation of the ionic catalyst systems used in the process of this invention comprise a cation, which is preferably a Bronsted acid capable of donating a proton, and a compatible non-coordinating anion which anion is relatively large (bulky), capable of stabilizing the active catalyst species (the Group 4 cation) which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic, diolefinic and acetylenically unsaturated substrates or other neutral Lewis bases, such as ethers, amines, and the like. Two classes of compatible non-coordinating anions have been disclosed in EP 0 277,003 A and EP 0 277,004 A, published 1988: 1) anionic coordination complexes comprising a plurality of lipophilic radicals covalently coordinated to and shielding a central charge-bearing metal or metalloid core, and 2) anions comprising a plurality of boron atoms, such as carboranes, metallacarboranes, and boranes.

[0097] In a preferred embodiment, the stoichiometric activators include a cation and an anion component, and may be represented by the following formula:

(L-H) d + (Ad-) (14)

wherein L is an neutral Lewis base; H is hydrogen; (L-H) + is a Bronsted acid; A d " is a non- coordinating anion having the charge d-; and d is 1, 2, or 3. [0098] The cation component, (L-H) d + may include Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species.

[0099] The activating cation (L-H)^ "1" may be a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, Ν,Ν-dimethylaniline, methyldiphenylamine, pyridine, p-bromo Ν,Ν-dimethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxoniums from ethers, such as dimethyl ether diethyl ether, tetrahydrofuran, and dioxane, sulfoniums from thioethers, such as diethyl thioethers and tetrahydrothiophene, and mixtures thereof.

[00100] The anion component A d" include those having the formula [M k+ Q n ] d_ wherein k is 1, 2, or 3; n is an integer from 2, 3, 4, 5, or 6; n - k = d; M is an element selected from Group 13 of the Periodic Table of the Elements, preferably boron or aluminum, and Q is independently a hydride, bridged or unbridged dialkylamido, halide, alkoxide, aryloxide, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, and halosubstituted- hydrocarbyl radicals, said Q having up to 20 carbon atoms with the proviso that in not more than 1 occurrence is Q a halide. Preferably, each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms, more preferably each Q is a fluorinated aryl group, and most preferably each Q is a pentafluoryl aryl group. Examples of suitable A d" also include diboron compounds as disclosed in U.S. Patent No. 5,447,895, which is fully incorporated herein by reference.

[00101] Illustrative, but not limiting examples of boron compounds which may be used as an activating cocatalyst in the preparation of the catalyst system of the processes of this invention are tri-substituted ammonium salts, such as:

trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate,

tripropylammonium tetraphenylborate, tri(n-butyl)ammonium tetraphenylborate, tri(t- butyl)ammonium tetraphenylborate, Ν,Ν-dimethylanilinium tetraphenylborate, N,N- diethylanilinium tetraphenylborate, N,N-dimethyl-(2,4,6-trimethylanilinium)

tetraphenylborate, tropillium tetraphenylborate, triphenylcarbenium tetraphenylborate, triphenylphosphonium tetraphenylborate triethylsilylium tetraphenylborate, benzene(diazonium)tetraphenylborate, trimethylammonium

tetrakis(pentafluorophenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, tripropylammonium tetrakis(pentafluorophenyl)borate, tri(n-butyl)ammonium

tetrakis(pentafluorophenyl)borate, tri(sec-butyl)ammonium

tetrakis(pentafluorophenyl)borate, Ν,Ν-dimethylanilinium tetrakis(pentafluorophenyl)borate, Ν,Ν-diethylanilinium tetrakis(pentafluorophenyl)borate, N,N-dimethyl-(2,4,6- trimethylanilinium) tetrakis(pentafluorophenyl)borate, tropillium

tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, triphenylphosphonium tetrakis(pentafluorophenyl)borate, triethylsilylium

tetrakis(pentafluorophenyl)borate, benzene(diazonium) tetrakis(pentafluorophenyl)borate, trimethylammonium tetrakis-(2,3,4,6-tetrafluorophenyl) borate, triethylammonium tetrakis- (2,3,4,6-tetrafluorophenyl)borate, tripropylammonium tetrakis-(2,3,4,6- tetrafluorophenyl)borate, tri(n-butyl)ammonium tetrakis-(2,3 ,4,6-tetrafluoro-phenyl)borate, dimethyl(t-butyl)ammonium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, N,N- dimethylanilinium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, Ν,Ν-diethylanilinium tetrakis- (2,3,4,6-tetrafluorophenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis-(2,3,4,6- tetrafluorophenyl)borate, tropillium tetrakis-(2,3,4,6-tetrafluorophenyl)borate,

triphenylcarbenium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, triphenylphosphonium tetrakis-(2,3,4,6-tetrafluorophenyl)borate, triethylsilylium tetrakis-(2,3,4,6- tetrafluorophenyl)borate, benzene(diazonium) tetrakis-(2,3,4,6-tetrafluorophenyl)borate, trimethylammonium tetrakis(perfluoronaphthyl)borate, triethylammonium

tetrakis(perfluoronaphthyl)borate, tripropylammonium tetrakis(perfluoronaphthyl)borate, tri(n-butyl)ammonium tetrakis(perfluoronaphthyl)borate, tri(t-butyl)ammonium

tetrakis(perfluoronaphthyl)borate, Ν,Ν-dimethylanilinium tetrakis(perfluoronaphthyl)borate, Ν,Ν-diethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethyl-(2,4,6- trimethylanilinium) tetrakis(perfluoronaphthyl)borate, tropillium

tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylphosphonium tetrakis(perfluoronaphthyl)borate, triethylsilylium

tetrakis(perfluoronaphthyl)borate, benzene(diazonium) tetrakis(perfluoronaphthyl)borate, trimethylammonium tetrakis(perfluorobiphenyl)borate, triethylammonium

tetrakis(perfluorobiphenyl)borate, tripropylammonium tetrakis(perfluorobiphenyl)borate, tri(n-butyl)ammonium tetrakis(perfluorobiphenyl)borate, tri(t-butyl)ammonium

tetrakis(perfluorobiphenyl)borate, Ν,Ν-dimethylanilinium tetrakis(perfluorobiphenyl)borate, Ν,Ν-diethylanilinium tetrakis(perfluorobiphenyl)borate, N,N-dimethyl-(2,4,6- trimethylanilinium) tetrakis(perfluorobiphenyl)borate, tropillium

tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylphosphonium tetrakis(perfluorobiphenyl)borate, triethylsilylium

tetrakis(perfluorobiphenyl)borate, benzene(diazonium) tetrakis(perfluorobiphenyl)borate, trimethylammonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triethylammonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, tripropylammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, tri(n-butyl)ammonium tetrakis(3 ,5- bis(trifluoromethyl)phenyl)borate, tri(t-butyl)ammonium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, Ν,Ν-dimethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, Ν,Ν-diethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, tropillium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triphenylphosphonium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate, triethylsilylium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, benzene(diazonium) tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, and dialkyl ammonium salts such as: di-(i- propyl)ammonium tetrakis(pentafluorophenyl)borate, and dicyclohexylammonium tetrakis(pentafluorophenyl)borate; and additional tri-substituted phosphonium salts such as tri(o-tolyl)phosphonium tetrakis(pentafluorophenyl)borate, and tri(2,6- dimethylphenyl)phosphonium tetrakis(pentafluorophenyl)borate.

[00102] Most preferably, the ionic stoichiometric activator (L-H)^ "1" (A d_ ) is, N,N- dimethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethylanilinium tetrakis(perfluorobiphenyl)borate, Ν,Ν-dimethylanilinium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5- bis(trifluoromethyl)phenyl)borate, or triphenylcarbenium tetrakis(perfluorophenyl)borate.

[00103] In one embodiment, an activation method using ionizing ionic compounds not containing an active proton but capable of producing a bulky ligand metallocene catalyst cation and their non-coordinating anion are also contemplated, and are described in EP 0 426 637 A, EP 0 573 403 A, and U.S. Patent No. 5,387,568.

[00104] The term "non-coordinating anion" (NCA) means an anion which either does not coordinate to said cation or which is only weakly coordinated to said cation thereby remaining sufficiently labile to be displaced by a neutral Lewis base. "Compatible" non- coordinating anions are those which are not degraded to neutrality when the initially formed complex decomposes. Further, the anion will not transfer an anionic substituent or fragment to the cation so as to cause it to form a neutral four coordinate metallocene compound and a neutral by-product from the anion. Non-coordinating anions useful in accordance with this invention are those that are compatible, stabilize the metallocene cation in the sense of balancing its ionic charge at +1, yet retain sufficient lability to permit displacement by an ethylenically or acetylenically unsaturated monomer during polymerization. In addition to these activator compounds or co-catalysts, scavengers are used such as tri-isobutyl aluminum or tri-octyl aluminum.

[00105] Inventive processes also can employ cocatalyst compounds or activator compounds that are initially neutral Lewis acids but form a cationic metal complex and a noncoordinating anion, or a zwitterionic complex upon reaction with the invention compounds. For example, tris(pentafluorophenyl) boron or aluminum act to abstract a hydrocarbyl or hydride ligand to yield an invention cationic metal complex and stabilizing noncoordinating anion, see EP 0 427 697 A and EP 0 520 732 A for illustrations of analogous Group-4 metallocene compounds. Also, see the methods and compounds of EP 0 495 375 A. For formation of zwitterionic complexes using analogous Group 4 compounds, see U.S. Patent Nos. 5,624,878; 5,486,632; and 5,527,929.

[00106] The typical NCA(or any non-alumoxane activator) activator-to-catalyst ratio is a 1 : 1 molar ratio. Alternate preferred ranges include from 0.1 : 1 to 100: 1, alternately from 0.5: 1 to 200: 1, alternately from 1 : 1 to 500: 1 alternately from 1 : 1 to 1000: 1. A particularly useful range is from 0.5: 1 to 10: 1, preferably 1 : 1 to 5: 1.

[00107] "Bulky activator" as used herein refers to anionic activators represented by the formula:

where:

each R 1 is, independently, a halide, preferably a fluoride; each R 2 is, independently, a halide, a to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R2 is a fluoride or a perfluorinated phenyl group); each R3 is a halide, to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R3 is a fluoride or a perfluorinated aromatic hydrocarbyl group); wherein R2 and R3 can form one or more saturated or unsaturated, substituted or unsubstituted rings (preferably R2 and R3 form a perfluorinated phenyl ring);

L is an neutral Lewis base; (L-H) + is a Bronsted acid; d is 1, 2, or 3;

wherein the anion has a molecular weight of greater than 1020 g/mole; and

wherein at least three of the substituents on the B atom each have a molecular volume of greater than 250 cubic A, alternately greater than 300 cubic A, or alternately greater than 500 cubic A.

[00108] In addition to these activator compounds, scavengers or co-activators may be used. Aluminum alkyl or organoaluminum compounds which may be utilized as co- activators (or scavengers) include, for example, trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, and tri-n-octylaluminum.

[00109] In embodiments herein, the catalyst system may comprise an inert support material. Preferably the supported material is a porous support material, for example, talc, and inorganic oxides. Other support materials include zeolites, clays, organoclays, or any other organic or inorganic support material and the like, or mixtures thereof.

[00110] Preferably, the support material is an inorganic oxide in a finely divided form. Suitable inorganic oxide materials for use in metallocene catalyst systems herein include Groups 2, 4, 13, and 14 metal oxides such as silica, alumina and mixtures thereof. Other inorganic oxides that may be employed either alone or in combination with the silica, or alumina are magnesia, titania, zirconia, and the like. Other suitable support materials, however, can be employed, for example, finely divided functionalized polyolefins such as finely divided polyethylene. Particularly useful supports include magnesia, titania, zirconia, montmorillonite, phyllosilicate, zeolites, talc, clays, and the like. Also, combinations of these support materials may be used, for example, silica-chromium, silica-alumina, silica-titania and the like. Preferred support materials include AI2O3, Zr02, S1O2, and combinations thereof, more preferably S1O2, AI2O3, or S1O2/AI2O3. [00111] The support material should be dry, that is, free of absorbed water. Drying of the support material can be effected by heating or calcining at 100°C to 1000°C, preferably at least 600°C. When the support material is silica, it is heated to at least 200°C, preferably 200°C to 850°C, and most preferably at 600°C; and for a time of 1 minute to 100 hours, from 12 hours to 72 hours, or from 24 hours to 60 hours. The calcined support material must have at least some reactive hydroxyl (OH) groups to produce the catalyst system of this invention. The calcined support material is then contacted with at least one polymerization catalyst comprising at least one metallocene compound and an activator.

EXAMPLES

Product Characterization

[00112] Products were characterized by l R NMR and 13 C NMR as follows:

1 3 C NMR

[00113] 13 C NMR data was collected at 120°C at a frequency of at least 100 MHz, using a Bruker 400 MHz NMR spectrometer. A 90 degree pulse, an acquisition time adjusted to give a digital resolution between 0.1 and 0.12 Hz, at least a 10 second pulse acquisition delay time with continuous broadband proton decoupling using swept square wave modulation without gating was employed during the entire acquisition period. The spectra were acquired with time averaging to provide a signal to noise level adequate to measure the signals of interest. Samples were dissolved in tetrachloroethane-d2 at concentrations between 10 to 15 wt% prior to being inserted into the spectrometer magnet.

[00114] Prior to data analysis spectra were referenced by setting the chemical shift of the TCE solvent signal to 74.39 ppm.

[00115] Chain ends for quantization were identified using the signals shown in the table below. N-butyl and n-propyl were not reported due to their low abundance (less than 5%) relative to the chain ends shown in the table below.

!H MR

[00116] !fi NMR data was collected at either room temperature or 120°C (for purposes of the claims, 120°C shall be used) in a 5 mm probe using a Varian spectrometer with a frequency of at least 250 MHz. Data was recorded using a maximum pulse width of 45°C, 8 seconds between pulses and signal averaging 120 transients. Spectral signals were integrated and the number of unsaturation types per 1000 carbons was calculated by multiplying the different groups by 1000 and dividing the result by the total number of carbons. Mn was calculated by dividing the total number of unsaturated species into 14,000, and has units of g/mol.

[00117] The chemical shift regions for the olefin types are defined to be between the following spectral regions.

Viscosity was measured using a Brookfield Digital Viscometer.

[00119] All experiments were performed under air free and moisture free conditions using nitrogen- filled gloveboxes and Schlenk lines. Toluene, 1-decene, and 1-hexene were purchased from Sigma Aldrich (Milwaukee, WI) and dried with alumina beads previously calcined at 300°C. Dimethylaniliniumtetrakis(perfluoronaphthyl)borate was purchased from Albemarle (Baton Rouge, LA) and used as received. l,3-bis(2,4,6-trimethylphenyl)-4,5- dihydro-2-yliddene[2-(i-propoxy)-5-(N,N-dimethyl- aminosulfonyl)phenyl]methyleneruthenium(II) dichloride was purchased from Strem Chemicals (Newburyport, MA) and used as received.

Scavengers and Co-catalysts

[00120] Triisobutyl aluminum (TIBAL) was obtained from Akzo Chemicals, Inc. (Chicago, IL) and used without further purification. Tri n-octyl aluminum (TNOAL) was obtained from Akzo Chemicals, Inc. and used without further purification.

Metallocenes Used In Examples [00121] Metallocenes A to C, below, were synthesized. Typical dry-box procedures for synthesis of air-sensitive compounds were followed including using dried glassware (90°C, 4 hours) and anhydrous solvents purchased from Sigma Aldrich (St. Louis, MO) which were further dried over 3 A sieves.

Synthesis Of Metallocene E and Metallocene F;

[00122] Metallocenes E and F were synthesized as indicated below.

[00123] Synthesis of Compounds la + lb: Compound A (2-methyl indene, 10 g, 76.9 mmol) was dissolved in diethyl ether (150 mLs) and deprotonated with nBuLi (10 M, hexanes, 77 mmol). After 4 hrs propyl bromide (CH^CH^CH^Br, 18 g, 146 mmol) was added to the reaction mixture followed by tetrahydrofuran (THF, 50 mLs) and the reaction was stirred for 12 additional hours at room temperature. The reaction was quenched with water and the organic layer dried over anhydrous magnesium sulfate (MgS0 4 ). Removal of volatiles gave an isomeric mixture of la and lb as yellow oil (10.5 g, 83% yield). NMR (C 6 D 6 , 500 MHz) δ ppm; Compound la: 6.22 (s), 3.05 (m), 1.79 (s) 0.75 (t). Compound lb: 2.91 (s), 2.36 (t, 1.79 (s), 0.85 (t).

[00124] Synthesis of Compound 2: The mixture of la and lb was dissolved in hexane (200 mL) and deprotonated with n-butyl lithium (nBuLi, 6.1 mL of a 10 M solution in hexane, 61 mmol). After 12 hours at room temperature, solids were collected onto a glass frit, washed with additional hexane (2 X 50 mLs), and dried in vacuo to give Compound 2 as a white solid (10.8 g, quantitative yield). l K NMR (THF-d8, 500 MHz) δ ppm; Compound 2: 7.09 (m, C 6 H 4 ring), 6.30 (m, C 6 H 4 ring), 5.47 (s, C 5 H ring), 2.70 (t, C 5 -CH 2 -), 2.17 (s, C 5 -Me), 1.50 (m, C 5 -CH 2 -CH 2 -), 0.89 (t, -C 2 H 4 -Me).

[00125] Synthesis of Compounds 4 + lb: All of the lithiated ligand Compound 2 was dissolved in THF (100 niL) and reacted with dichlorodimethylsilane (M^SiC^, 3.8 g, 29 mmol) for 10 hours at room temperature, !fi NMR indicated the formation of 4 and lb. Compound 4 was purified by column chromatography (75% hexane/25% ethyl acetate v/v) on silica gel (200-400 mesh).

[00126] Synthesis of Compound 5: The hexane extracts containing Compound 4 were reacted with nBuLi (5 g, 10 M in hexanes) to afford a solid. The white solid product 5 was filtered onto a glass frit, washed with hexanes (2 X 30 mLs) and dried in vacuo (9.1 g, 84% based on la, lb). Compound 5: X H NMR (THF-d8, 250 MHz) 8 ppm; 7.57 (m), 7.12 (m), 6.30 (m), 3.55 (t), 2.70 (t), 2.34 (s), 1.46 (m), 0.85 (t), 0.59 (s).

Synthesis Of Metallocene E

[00127] The synthesis of Metallocene E illustrated, below.

[00128] Synthesis of Compound 6: Compound 5 (6.6 g, 16.0 mmol) was slurried in diethyl ether (100 mLs) and reacted with hafnium tetrachloride (HfCl 4 , 4.2 g, 13.1 mmol). After 1 hour 50 mLs diethyl ether were removed and compound 6 (dimethylsilylbis(2- methyl,3-propylindenyl)hafniumdichloride) was collected as a bright yellow solid on a glass frit (4.2 g, 49.5%).

[00129] Synthesis of Metallocene E: Compound 6 was slurried in diethyl ether (50 mL) and toluene (80 mL) and reacted with methyl magnesium iodide (MeMgl, 5.6 g, 3M in diethyl ether) at room temperature for 16 hours. Dimethoxyethane (DME, 6 g) was added to the crude reaction mixture, the mixture filtered through a medium glass frit, and the filtrate collected. The volume of the filtrate was reduced, pentane added (30 mL), and the filtrate cooled to -35°C. Compound 7 (rac-dimethylsilylbis(2-methyl,3-propylindenyl) hafnium dimethyl) was collected as a first crop of crystals (pure rac-7, 0.6 g, 16%) and as a second crop (5% meso-7 and 95% rac-7, 0.7 g, 19%). Compound 7: l H NMR (CD 2 C1 2 , 500 MHz) 8 ppm; 7.4 (d), 7.3 (d), 7.08 (t), 6.75 (t), 2.68 to 2.22 (complex m), 1.87 (s), 1.41 (m), 0.97 (s), 0.81 (t), -1.95 (s).

9 F where Me is methyl.

[00130] Synthesis of Compound 9: Compound 5 (8.2 g, 19.9 mmol) was slurried in diethyl ether (150 mLs) and reacted with ZrCl 4 (4.2 g, 17.9 mmol) at room temperature. After 4 hrs, an orange solid was collected on a medium frit and washed with additional diethyl ether (2 X 30 mLs). The product was dried in vacuo to yield pure rac-9 (3.8 g, 38%). !H NMR (CD 2 C1 2 , 500 MHz) δ ppm; 7.63 (d), 7.41 (d), 7.3 (m), 6.96 (m), 2.57 (d of m), 2.04 (s), 1.42 (m), 1.31 (s), 0.88 (t).

[00131] Synthesis of Metallocene F: Compound 9 (1.12 g, 2.0 mmol) was slurried in diethyl ether (80 mL) and reacted with MeMgl (1.7 g, 4.5 mmol, 3.0 M) at room temperature. The reaction mixture was stirred for 48 hrs at room temperature. Volatiles were removed in vacuo and the crude reaction mixture extracted with hexane (3 X 20 mLs). Reduction of hexane solution to 20 mLs and cooling to -35°C gave F as a yellow crystalline solid (0.8 g, 77%). !H NMR (CD 2 C1 2 , 500 MHz) δ ppm; 7.38 (m), 7.15 (t), 6.78 (t), 2.52 (d of m), 1.85 (s), 1.57 (m), 1.06 (s), 0.86 (t), -1.71 (s).

Metallocene C Synthesis

[00132] 3H-Benz[e]indene (Benzo(4,5)indene) was purchased from Boulder Scientific (Boulder, Colorado). Pentamethylcyclopentadiene was purchased from Norquay. All other reagents were purchased from Sigma-Aldrich.

Synthesis of rLiiri .3-Dimethylbenzre1indene1

[00133] [Li][Benz[e]indene] was generated in ether by the reaction of 3H-Benz[e]indene (12.0 g, 0.072 mol) with 1.1 equivalents of n-BuLi (7.90 mLs of 10 M/hexane, 0.079 mol) which was added slowly. After 2 hours, the [Li][Benz[e]indene] was isolated by removal of the ether under vacuum. The residue was triturated with hexane to give an off-white solid. The solid was collected on a medium sized glass frit by vacuum filtration, washed with excess hexane and dried in vacuo, providing pure [Li][Benz[e]indene] as an off-white solid (12.0 g, 97%). The product was characterized by Ή NMR: (THF-d 8 , 250 MHz) δ ppm: 8.02 (d, J=10 Hz, C 10 H 6 , 1H), 7.47 (t, J=6.3 Hz, C 10 H 6 , 2H), 7.09 (t, J=6.2 Hz, C 10 H 6 , 1H), 6.91 (t, J=l Hz, C 10 H 6 , 1H), 6.74 (d, J=10 Hz, C 10 H 6 , 1H), 6.59 (s, indenyl proton, 1H), 6.46 (s, indenyl proton, 1H), 6.46 (s, indenyl proton, 1H), 6.09 (s, indenyl proton, 1H).

[00134] [Li][Benz[e]indene] (12.0 g, 0.070 mol) was dissolved in ether, cooled to -35°C and reacted with 6.0 equivalents of Mel (59.34 g, 0.418 mmol). The reaction was allowed to warm to ambient temperature. After 12 hours, the reaction was quenched with water and extracted with ether. The organics were concentrated to yield a crude oil which was distilled using Kugelrohr apparatus to provide a clear oil which was a clean mixture of 3-methyl-3H- benz[e]indene and 1 -methyl- lH-benz[e]indene isomers (7.58 g, 58%). The product was characterized by l H NMR: (CD 2 C1 2 , 250 MHz) δ ppm: 8.25-7.42 (m, C 10 H 6 , 10H), 7.15 (d, J=6.3 Hz, C 10 H 6 , 2H), 7.09 (t, J=6.2 Hz, C 10 H 6 , 1H), 6.91 (t, J=l Hz, C 10 H 6 , 1H), 6.74 (d, J=10 Hz, C 10 H 6 , 1H), 6.59 (s, indenyl proton, 1H), 6.46 (s, indenyl proton, 1H), 6.46 (s, indenyl proton, 1H), 6.09 (s, indenyl proton, 1H).

[00135] Similarly, [Li][methylbenz[e]indene] was generated in ether by the reaction of the isomer mix of 3-methyl-3H-benz[e]indene and l-methyl-lH-benz[e]indene (7.58 g, 0.041 mol) with 1.1 equivalents of n-BuLi (4.45 mLs of 10 M/hexane, 0.045 mol) which was added slowly. After 2 hours, the [Li][methylbenz[e]indene] was isolated by removal of the ether under vacuum. The residue was triturated with hexane to give an off-white solid. The solid was collected on a medium sized glass frit by vacuum filtration, washed with excess hexane and dried in vacuo, providing pure [Li][methylbenz[e]indene] as an off-white solid (6.97 g, 85%).

[00136] [Li][methylbenz[e]indene] (6.97 g, 0.037 mol) was dissolved in ether, cooled to -35°C and reacted with 3.7 equivalents of Mel (19.52 g, 0.138 mmol). The reaction was allowed to warm to ambient temperature. After 12 hours, the reaction was quenched with water and extracted with ether. The organics were concentrated to yield a yellow oil which was a mixture of l,3-dimethyl-3H-benz[e]indene, l,3-dimethyl-lH-benz[e]indene, 3,3- dimethyl-3H-benz[e]indene, and l, l-dimethyl-lH-benz[e]indene isomers (6.63 g, 91%).

[00137] Similarly, [Li][l,3-Dimethylbenz[e]indene] was generated in ether by the reaction of the dimethylbenzindene isomer mixture above (6.63 g, 0.034 mol) with 1.1 equivalents of n-BuLi (3.74 mLs of 10 M/hexane, 0.037 mol) which was added slowly. After 2 hours, the [Li][l,3-Dimethylbenz[e]indene] was isolated by removal of the ether under vacuum. The residue was triturated with hexane to give an off-white solid. The solid was collected on a medium sized glass frit by vacuum filtration, washed with excess hexane and dried in vacuo, providing pure [Li][l,3-Dimethylbenz[e]indene] as an off-white solid (5.43 g, 79%). The product was characterized by l H NMR: (THF-d 8 , 250 MHz) δ ppm: 8.19 (d, J=7.5 Hz, 1H), 7.48 (d, J=7.5 Hz, 1H), 7.33 (d, J=7.5 Hz, 2H), 7.09 (t, J=1.4 Hz, 1H), 6.91 (t, J=1.2 Hz, 1H), 6.67 (d, J=8.5 Hz, 1H), 5.98 (s, 1H), 2.65 (s, 3H), 2.34 (s, 3H).

Synthesis of (CpMe ? )(l ,3-Me2benzre1indenyl)HfMe2 (Metallocene C)

Me Metallocene C

[00138] CpMe 5 HfCl 3 (3.8 g) was reacted with [Li][l,3-Me 2 benz[e]indenyl] (2.5 g, 4.3 mmol) in Et20 (80 ml) for 48 hr. (Crowther, D.; Baenziger, N.; Jordan, R.; J. Journal of the American Chemical Society (1991), 113(4), pp. 1455-1457). The pale yellow product was collected by filtration over a glass frit and dried to yield crude (CpMes)(l,3- Me 2 benz[e]indenyl)HfCl 2 (3.2 g) as a mixture with LiCl. l R NMR (CD 2 C1 2 , 250 MHz) δ ppm; 8.13, 7.80 (d, Ha, Ha' , 1H), 7.59 to 7.36 (multipletes, Hb, Hb', He, He', 4 H) 6.10 (s, Hd, 1H), 2.62, 2.45 (s, l,3Me 2 C 9 H 5 , 3 H), 2.10 (s, CpMe 5 ).

[00139] (CpMe 5 )(l,3-Me 2 benz[e]indenyl)HfCl 2 (2.5 g) was slurried in toluene (100 ml) and reacted with MeMgl (4.2 g, 2.1 equiv, 3.0 M in Et20). The reaction mixture was heated to 80°C for 3 hrs. After cooling the volatiles were removed in vacuo to yield a solid which was extracted with hexane (4 X 40 ml). Hexane was removed from the combined extractions to yield solid yellow (CpMe 5 )(l,3-Me2C 9 H5)HfMe2 ( 1.6 g). l H NMR (C 6 D 6 , 300 MHz ) δ ppm; 7.55-7.48 (m, C 6 H 4 , 2H), 7.20-7.16 (m, C 9 H 5 , 3H), 2.00 (s, l,3Me 2 C 9 H 5 , 6H), 1.76 (s, CpMe 5 , 15H), -0.95 (s, Hf-Me, 6H).

[00140] Metallocenes A, B, and C were used in the examples below.

Metallocene Structure

Synthesis of 13 C Labeled 1-Decene.

[00141] A 2.0 gram amount of 1-decene was placed in a 125 ml pressurized reaction vessel equipped with a magnetic stir bar and a 5.0 milligram amount of l,3-bis(2,4,6- trimethylphenyl)-4,5-dihydro-2-yliddene[2-(i-propoxy)-5-(N,N - dimethylaminosulfonyl)phenyl]methylene ruthenium(II) dichloride. The solution was put in a bath of liquid nitrogen and placed under vacuum. 13 C labeled ethylene (500 mis, 1 atm) was condensed into the pressurized reaction vessel. The liquid nitrogen bath was removed. After the solution thawed, the bottle was heated to 50°C with stirring for two hours. The bottle was depressurized, and the solution was filtered through a gram of silica to remove the catalyst residue. The 1-decene was distilled via short path distillation. Separation of the homometathesis product, 9-octadecene, was not obtained, (approximately 30 mol%, by NMR). A NMR of the sample revealed approximately 60% incorporation of 13 C label. !pTNMR (500 MHz, CD 2 C1CD 2 C1), δ ppm: 5.78 (m, 1H), 5.4 (m, vinylenes from octadecene in sample), 5.2.-4.8 (m, 2H; 13 C labeled vinyls ½. c = 154 Hz) 1.99 (m, 2H), 1.3 (m, 12H), 0.88 (t, 3H).

Polymerization of 13 C-labeled 1-decene.

[00142] A 1.0 gram of 13 C labeled 1-decene was placed in a 20 ml scintillation vial equipped with a stir bar. Two drops of TIBAL were added to the 1-decene. A separate solution of activated catalyst was prepared by combining 16 mgs of Metallocene A with 27 mgs of dimethylaniliniumtetrakis(perfluoronaphthyl)borate in 1 1.0 grams of toluene. The Metallocene E solution (100 mgs) was combined with the 1-decene at 50°C for two hours. The resulting oligomer was characterized by NMR spectroscopy. 13 C NMR (500 MHz, CD 2 C1CD 2 C1), δ ppm: 1 15 (labeled vinyl carbon, Figure 1).

Polymerizations of 1-decene.

Example 1

[00143] A solution of activated catalyst was prepared by combining 15 mgs of Metallocene E with 32 mgs of dimethylaniliniumtetrakis(perfluoronaphthyl)borate in 7.0 grams of toluene. The activated metallocene solution (100 mgs) was added to 10.0 grams of 1-decene in a 20 ml scintillation vial which had been preheated to 85°C and contained two drops of TIBAL. After two hours, unreacted 1-decene was removed under a stream of nitrogen. Yield of poly( 1-decene) was 8.3 grams. The polymer was analyzed by NMR spectroscopy: Mn = 5,644 g/mol (by l R NMR); End group analysis: vinyls = 42 mol%, vinylidene = 43 mol%, vinyl enes = 15 mol%.

Example 2

[00144] An oven dried, lOOmL round bottom flask was charged in a dry box with a stir bar, 1-decene (40 g, 285 mmol), and TIBAL (approximately 60 mg, 0.23 mmol) and heated to 50°C. As the solution stirred, metallocene C (422 μg, 0.78 μιηοΐ) and dimethylaniliniumtetrakis(perfluoronaphthyl)borate (650 μg, 0.57 μιηοΐ) were added in one portion as a solution in toluene (400 μί). After 6 hours, the reaction was quenched with 1 mL of a 10% (v/v) isopropanol in pentane mixture. The more volatile components of the mixture were removed by heating the solution to 160°C under a vacuum of 1500 mTorr. After distillation, 32.5g (80%) of a heavy oil remained in the distillation pot. The polymer was analyzed by ¾ NMR spectroscopy: Mn = 12,700 g/mol; end group analysis: vinyls = 36 mol%.

Reactor Description and Preparation [00145] Polymerizations were conducted in an inert atmosphere ( 2) drybox using 48 Cell Parallel Pressure Reactors (PPR) equipped with external heaters for temperature control, glass inserts (internal volume of reactor = 22.5 mL), septum inlets, regulated supply of nitrogen, and equipped with disposable PEEK (PolyEtherEtherKetone) mechanical stirrers (800 RPM). The PPRs were prepared for polymerization by purging with dry nitrogen at 150°C for 5 hours and then at 25°C for 5 hours.

Polymerizations of 1-hexene/l-octene.

[00146] 1-octene and 1-hexene were added as indicated in the table below, and isohexane was then added such that the total volume of the solution was 5.0 ml. TNOAL was used as scavenger at a concentration of 1 M. A solution of dimethylaniliniumtetrakis (perfluoronaphthyl)borate in toluene was added first, followed by a solution of the metallocene, such that the activator to metallocene ratio was 1 : 1. The cells were heated to 85°C and the reaction allowed to proceed for 1 hour. The reaction was quenched with air and unreacted monomers were removed in vacuo. Analysis of some of the cell products are listed in Table 1.

Table 1. Decene/Hexene Polymer

Olefin Activity, Kg Mn by

Polymer Mol%

Run Metallocene (ml octene : polymer/g 1H

yield, g Vinyls ml hexene) cat.hr NMR

H6 F 1 : 1 0.088 1.8 - -

[00147] The inventors have surprisingly produced vinyl terminated octene/hexene copolymers, in the absence of propylene.