Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WASTE TREATMENT METHOD AND CORRESPONDING ARRANGEMENT
Document Type and Number:
WIPO Patent Application WO/2009/135486
Kind Code:
A1
Abstract:
The invention relates to a recycling method for recycling fibre-reinforced and/or fibre-containing semi-finished products and/or components (11), that are to be used later in the production of fibre-reinforced and/or fibre-containing semi-finished products and/or components. Said semi-finished products and/or components (11 ) are made of fibres (2) and a matrix material (3) and the fibres (2) are arranged in the matrix material (3) in form of wovens, unidirectional layers and/or clusters, and/or individual reinforced fibres and/or reinforced fibre bundles. Said method consists of the following steps: the fibres (2) bound in the matrix material (3) are separated from the matrix material (3) in order to form free fibres (21 ) and the free fibres (21) are humidified, after separation, by means of a binder (4) in order to form humidified fibres. The invention also relates to a corresponding arrangement.

Inventors:
MEYER LEIF OLE (DE)
Application Number:
PCT/DE2009/075019
Publication Date:
November 12, 2009
Filing Date:
May 04, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CFK VALLEY STADE RECYCLING GMB (DE)
MEYER LEIF OLE (DE)
International Classes:
B29B17/02; B29B15/12
Foreign References:
EP0443051A11991-08-28
US20070017255A12007-01-25
DE19514543C11996-03-07
DE10026761C12002-01-10
DE4112172A11992-08-27
EP0636428A11995-02-01
EP0443051A11991-08-28
Other References:
MILLER A; BIBSON A G: "IMPREGNATION TECHNIQUES FOR THERMOPLASTIC MATRIX COMPOSITES", POLYMERS AND POLYMER COMPOSITES, RAPRA TECHNOLOGY, vol. 4, no. 7, 1 January 1996 (1996-01-01), pages 459 - 481, XP000658227, ISSN: 0967-3911
SCHUBERT T; EHRENSTEIN G: "REZYKLIERTES CFK ALS VERSTAERKUNGSSTOFF IN THERMOPLASTEN THERMISCHE ZERSETZUNG DER MATRIX", KUNSTSTOFFE, CARL HANSER VERLAG, MUNCHEN, DE, vol. 90, no. 2, 1 February 2000 (2000-02-01), pages 78 - 80,82, XP000936831, ISSN: 0023-5563
Attorney, Agent or Firm:
HANSEN, Jochen (DE)
Download PDF:
Claims:

P A T E N T A N S P R ü C H E

1. Recyclingverfahren zum Recyclen von faserverstärkten und/oder faserhaltigen Halbzeugen und/oder Bauteilen (11 ) zur späteren Verwendung in der Produktion von faserverstärkten und/oder faserhaltigen Halbzeugen und/oder Bauteilen, wobei die Halbzeuge und/oder Bauteile (1 1 ) aus Fasern (2) und einem Matrixwerkstoff (3) bestehen und die Fasern (2) in dem Matrixwerkstoff (3) in Form von Gewebe, unidirektionalem Lagen und/oder Gelegen und/oder einzelnen Verstärkungsfasern und/oder Verstärkungsfaserbündeln angeordnet sind, umfassend das Trennen der im Matrixwerkstoff (3) gebundenen Fasern (2) von dem Matrixwerkstoff (3) in freie Fasern (21 ), dadurch gekennzeichnet, dass unmittelbar nach dem Trennen ein Benetzen der freien Fasern (21 ) mit einem Bindemittel (4) zu benetzten Fasern (22) erfolgt.

2. Recyclingverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass vor dem Trennen der Fasern (2) von dem Matrixwerkstoff (3) die faserverstärkten und/oder faserhaltigen Halbzeuge und/oder

Bauteile (11 ) geschnitten werden, wobei die geschnittenen faserverstärkten und/oder faserhaltigen Halbzeuge und/oder

Bauteile (12) eine Kantenlänge im Bereich von 6 - 60 mm aufweisen.

3. Recyclingverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fasern (2) oder die benetzten Fasern (22) in Längsrichtung zueinander orientiert und ausgerichtet werden und/oder die Lagen-/Ge- webestruktur aufgetrennt wird.

4. Recyclingverfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass zum Benetzen der freien Fasern (21 ) mit dem Bindemittel (4) die freien Fasern (21 ) durch ein mit dem Bindemittel (4) gefülltes Tauchbad geführt und so zu benetzten Fasern (22) werden.

5. Recyclingverfahren nach Anspruch 1 ,2 oder 3, dadurch gekennzeichnet, dass zum Benetzen der freien Fasern (21 ) mit dem Bindemittel (4) die freien Fasern (21 ) mit dem Bindemittel (4) besprüht und so zu benetzten Fasern (22) werden.

6. Recyclingverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die von dem Matrixwerkstoff (3) getrennten freien Fasern (21 ) vor dem Benetzen mit dem Bindemittel (4) unterhalb einer von dem Bindemittel (4) abhängigen maximalen Temperatur abgekühlt werden, wobei die maximale Temperatur der freien Fasern (21 ) unterhalb der Verdampfungstemperatur des Bindemittels (4) liegt.

7. Recyclingverfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Lagen-/Gewebestruktur der benetzten Fasern (22) zu Faserbündeln (23) aufgetrennt wird und/oder die benetzten Fasern (22) in Längsrichtung zueinander zu Faserbündeln (23) orientiert und ausgerichtet werden.

8. Recyclingverfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Faserbündel (23) senkrecht zur Faserrichtung auf Länge geschnitten werden.

9. Recyclingverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass vor dem Trennen die zu recyclenden faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile (11 ) sortiert werden, wobei das Sortieren nach Werkstoffen, Halbzeugen und Bauteilen jeweils nach gleicher Faser, Faserart, insbesondere Gewebe und/oder unidirektionalen Lagen, und/oder Matrixwerkstoff erfolgt.

10. Recyclingverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass zur Trennung der Fasern (2) von dem

Matrixwerkstoff (3) die faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile (11 ) einen Pyrolyse-Prozess durchlaufen.

11. Recyclingverfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass nach Benetzen der freien Fasern (21 ) mit dem Bindemittel (4) die benetzten Fasern (22) getrocknet werden.

12. Recyclingverfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass der Bindemittelgehalt zwischen 3 und 30 Gewichtsprozent der mit Bindemittel (4) benetzten Fasern (22) liegt.

13. Recyclinganordnung zur Durchführung des Recyclingverfahrens nach den Ansprüchen 1 bis 12, mit

- einer Transporteinrichtung (6), die die zu recyclenden Fasern (2) in Prozessrichtung (X) transportieren und

- einer Trennanordnung (7) zur Trennung von Fasern (2) und Matrixwerkstoffen (3), dadurch gekennzeichnet, dass unmittelbar nach der Trennanordnung (7) eine in Prozessrichtung (X) nachfolgende Benetzungsanordnung (5) vorgesehen ist.

14. Recyclinganordnung nach Anspruch 13, dadurch gekennzeichnet, dass zum unmittelbaren Benetzen der freien Fasern (21 ) ein mit dem Bindemittel (4) gefülltes Tauchbad zum Durchführen der freien Fasern

(21 ), wodurch diese zu benetzten Fasern werden, angeordnet ist.

15. Recyclinganordnung nach Anspruch 13, dadurch gekennzeichnet, dass zum unmittelbaren Benetzen der freien Fasern (21 ) mit dem Bindemittel (4) eine Sprühanordnung nach der Trennanordnung (7) vorgesehen ist.

16. Recyclinganordnung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass eine Aufschluss- und/oder Kämmvorrichtung (8) nach der Benetzungsvorrichtung (5) vorgesehen ist.

17. Recyclinganordnung nach Anspruch 16, dadurch gekennzeichnet, dass die Aufschluss- und/oder Kämmvorrichtung (8) in Prozessrichtung (X) aus parallel zueinander orientiert angeordneten spitzen Schneidkeilen gebildet ist, wobei die Spitzen der Schneidkeile entgegen der Prozessrichtung (X) zeigen.

18. Recyclinganordnung nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass die Aufschluss- und/oder Kämmvorrichtung (8) aus mindestens zwei Einzelkämmen besteht, die insbesondere senkrecht zur Prozessrichtung (X) das Gewebe gegenläufig auseinanderkämmen.

19. Recyclinganordnung nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass die Trennanordnung (7) zur Trennung der Fasern (2) von dem Matrixwerkstoff (3) durch Pyrolyse mit Hilfe einer kontinuierlich arbeitenden Ofenanordnung erfolgt, wobei die freien Fasern (21 ) auf der Transporteinrichtung (6) relativ zu dieser keine Bewegung und/oder Lageänderung während des Pyrolyseprozesses erfahren.

20. Recyclinganordnung nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass die Transporteinrichtung (6) ein hitzebeständiges Förderband (61 ) hat.

21. Recyclinganordnung nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, dass das Bindemittel (4) aus einem Lösungsmittel, vorzugsweise einem organischen Lösungsmittel und einem in dem Lösungsmittel gelösten technischen Kunststoff, vorzugsweise einem Polymer besteht.

22. Recyclinganordnung nach einem der Ansprüche 13 bis 21 , dadurch gekennzeichnet, dass eine Trocknungsanordnung (9) zum Trocknen der benetzten Fasern (22) nach der Benetzungsanordnung (5) vorgesehen ist.

23. Recyclinganordnung nach Anspruch 22, dadurch gekennzeichnet, dass die Trocknungsanordnung (9) aus einem Wärmestrahler und/oder einem Warmluftgebläse besteht.

Description:

B E S C H R E I B U N G

Abfallaufbereitungsverfahren und Anordnung dazu

Die Erfindung betrifft ein Recyclingverfahren zum Recyclen von faserverstärkten und/oder faserhaltigen Halbzeugen und/oder Bauteilen zur späteren Verwendung in der Produktion von faserverstärkten und/oder faserhaltigen Halbzeugen und/oder Bauteilen, wobei die Halbzeuge und/oder Bauteile aus Fasern und einem Matrixwerkstoff bestehen und die Fasern in dem Matrixwerkstoff in Form von Gewebe, unidirektionalem Lagen und/oder Gelegen und/oder einzelnen Verstärkungsfasern und/oder Verstärkungsfaserbündeln angeordnet sind und weiter eine Vorrichtung zur Durchführung des Recyclingverfahrens.

Faserverstärkte Kunststoffbauteile werden seit einigen Jahrzehnten im zivilen und militärischen Flugzeugbau, im Sportbereich, Windenergieerzeugung oder dem Automobilbau als Leichtbaukonstruktionswerkstoff eingesetzt. Der große Vorteil von faserverstärkten Kunststoffen ist ihre hervorragende mechanische Eigenschaft und ihre geringe Dichte. Dies bringt eine deutliche Gewichtseinsparung gegenüber konventionellen Werkstoffen. Insbesondere wird an dieser Stelle auf die Besonderheiten der Kohlenstofffaser verstärkten Kunststoffe (CFK) verwiesen, die derzeit ein ungeahntes Nachfragevolumen haben.

Die ständige Beanspruchung von faserverstärkten Kunststoffen bedingt eine vorhersehbare Verwendungsgrenze dieser Leichtbauteile. Hierbei drängt sich sofort das Problem der geeigneten Wiederverwendung von faserverstärkten Kunststoffen auf. Inbesondere gilt im Automobilbau die Entwicklung von Recyclingverfahren als Notwendigkeit, da aufgrund der Altautoverordnung der Großteil eines Kfz wiederverwendbar sein muss.

Aus dem Stand der Technik sind unterschiedliche Trennverfahren bekannt, um faserverstärkte Kunststoffe zu recyclen. Nachfolgend seien die vier wichtigsten Trennverfahren genannt: Solvolyse; Katalyse, Hydrolyse, Pyrolyse, wobei als

aussichtsreichstes Verfahren in großtechnischem Maßstab die Pyrolyse zur Aufspaltung der Kunststoffmatrix bei Temperaturen > 350 0 C in kleinere organische Moleküle, welche verdampfen, gilt.

Die mittels eines Recyclingverfahrens zurückgewonnenen Fasern können in den Stoffkreislauf wieder überführt werden, um so in neue Kunststoffe eingearbeitet zu werden.

Die DE 100 26 761 C 1 beschreibt ein Verfahren zur Wiederverwertung von Halbzeugen oder Bauteilen aus Faserverbundwerkstoffen. Hierbei erfolgt ein Trennen der im Matrixwerkstoff gebundenen Fasern in freie Fasern, so dass diese zunächst ohne den Matrixwerkstoff vorliegen. Dabei erfolgt die Trennung durch einen Energieeintrag in den zu recycelten Faserverbundwerkstoff über elektromagnetische Wellen, insbesondere Mikrowellen. Da überlicherweise durch die Matrix eine stärkere Absorption der elektromagnetischen Wellen erfolgt, führt es zu einer selektiven Erwärmung der Matrix, was zur Zersetzung der Matrix und der Trennung von Fasern und Matrix führt. Weiter kann zum Besseren Trennen zusätzlich ein Lösungsmittel eingesetzt werden.

Die DE 41 12 172 A 1 offenbart ein Verfahren zur Herstellung eines wiederaufbereitbaren Faserverbundwerkstoffs aus thermoplastischem Kunststoff. Dieser Entwicklung liegt die Aufgabe zugrunde, einen Faserverbundwerkstoff anzugeben, der nach der Wiederaufbereitung keine Mischung aus unterschiedlichen Bestandteilen, sondern einen sortenreinen Kunststoff bildet, der insbesondere auch als Matrixwerkstoff für die Neubildung eines Faserverbundstoffes Verwendung finden kann. Zur Verwendung als Verstärkungsfaser werden Synthesefasern aus aus einem thermoplastischen Kunststoff, dessen Struktur derjenigen des Matrix- Werkstoffes zumindest sehr ähnlich ist, verwendet. Insbesondere ist es nunmehr möglich den so hergestellten Faserverbundwerkstoff später zu recyclen, da keine unterschiedlichen Materialien vorliegen, sondern vielmehr nur Kunststoffe, nämlich synthetische Faser und Matrixwerkstoff.

Aus der EP 0 636 428 A1 (Druckschrift D5) ist ein Verfahren zum Wiederverwerten von kohlenstofffaserhaltigen Verbundwerkstoffen bekannt. Bei dem hier beschriebenen Verfahren werden Teile aus den Kohlenstofffaser verstärkten Verbundwerkstoffen so aufbereitet, dass ein neues Ausgangsmaterial bestehend aus Kohlenstofffasern, die durch eine Kohlenstoffmatrix gebunden sind, entsteht. Dieses Ausgangsmaterial wird zu einem neuen Kohlenstofffaser verstärkten Verbundwerkstoff mit Kohlenstoffmatrix (CFC) mittels eines geeigneten Bindemittels verkokt. Um eine möglichst hohe Kohlenstoffausbeute zu erzielen, wird ein relativ geringer Temperaturgradient und eine lange Verkokungszeit von ca. 1 Woche bei maximalen Temperaturen zwischen 800 und 1200 0 C angewendet. In jedem Falle werden mit diesem Verfahren Kohlenstofffaser verstärkte Verbundwerkstoffe auf Kohlenstoffmatrix erstellt, die beispielsweise für Brems- und Reibbeläge, thermische Isolierplatten für Hochtemperaturöfen etc. verwendbar sind.

In der Praxis werden derzeit Fasern nach deren Trennung von der Matrix gemahlen, um so in den Stoffkreislauf rücküberführt zu werden. Problematisch hierbei ist die Qualität der recycelten Fasern, die nach einem Pyrolyse- und Mahlprozess nachlässt. Alternativ zu dem Mahlen von Fasern gab es Versuche, die Fasern nach dem Pyrolyseprozess zu entwirren, da diese zuvor in einem Bauteil in Gewebe- und Verstärkungslagen miteinander verwoben waren. Die Aufspaltung solcher Strukturen nach einem Pyrolyseprozess sind derzeit nicht möglich, da sich hierbei Verschlaufungen, sog. Pillings bilden, die sich anschließend kaum wieder aufschließen lassen. So wird die Weiterverarbeitung der zurückgewonnenen Verstärkungsfasern unmöglich.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Anordnung aufzuzeigen, die es ermöglichen, faserverstärkte und/oder faserhaltige Halbzeuge, die während der Produktion von Bauteilen angefallen sind oder aber ein vorgegebenes Verfallsdatum erreicht haben, und/oder faserverstärkte und/oder faserhaltige Bauteile, die beispielsweise am Ende ihres Lebenszykluses stehen, fehlerhaft produziert wurden, oder derart beschädigt sind, dass diese nicht weiter für ihre ursprüngliche Gebrauchsbestimmung verwendet werden können, derart zu

recyclen, dass die aus dem Recyclingprozess gewonnenen Fasern in den Produktionszyklus zurückgeführt werden können.

Gelöst wird diese Aufgabe mit einem Verfahren nach Anspruch 1 und einer Anordnung nach Anspruch 13.

Dadurch, dass das eingangs genannte Verfahren die Schritte: Trennen der im Matrixwerkstoff gebundenen Fasern von dem Matrixwerkstoff in freie Fasern und Benetzen der freien Fasern nach dem Trennen mit einem Bindemittel zu benetzten Fasern umfasst, erhält man recycelte Verstärkungsfasern, die in Paketen von benetzten Fasern vorliegen und keine Verschlaufungen, sog. Pillings, aufweisen. Die Fasern haben hierbei die Gewebe- bzw. Lagenstruktur der ursprünglichen faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile. Diese so gewonnenen recycelten Fasern dienen der weiteren Produktion von faserverstärkten Halbzeugen und/oder Kunststoffbauteilen. Besonders wichtig ist hierbei, dass die freien Fasern nach der Trennung von der Matrix bis zum Benetzen mit einem Bindemittel nicht weiter gehandhabt werden, also nicht bewegt werden.

Wenn vor dem Trennen der Fasern von dem Matrixwerkstoff die faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile geschnitten werden, wobei die geschnittenen faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile eine Kantenlänge im Bereich von 6 - 60 mm aufweisen, dann erhält man Faserbündel, die zumindest eine ähnliche Länge aufweisen, so dass diese entsprechend ihrer Länge in einem weiteren Herstellungsprozess von faserverstärkten Kunststoffbauteilen verwendet werden können.

Um Stapelfasern bzw. benetzte Fasern in unidirektionalen Lagenpaketen zur weiteren Verarbeitung zu erhalten, werden die Fasern oder die benetzten Fasern in Längsrichtung zueinander orientiert und ausgerichtet und/oder die Lagen-/Ge- webestruktur aufgetrennt. Gleich orientierte Fasern innerhalb einer Stapelfaseranordnung sind im weiteren Verarbeitungsprozess während der Herstellung eines faserverstärkten Kunststoffbauteils leichter zu dosieren und zu handhaben, sowie

leichter mittels Computersoftware zu berechnen (Steifigkeit, Festigkeit des Gesamtbauteils).

Wenn zum Benetzen der freien Fasern mit dem Bindemittel die freien Fasern durch ein mit dem Bindemittel gefülltes Tauchbad geführt und so zu benetzten Fasern werden, erfahren die freien Fasern nach dem Pyrolyseprozess keine Relativbewegung. Hierdurch werden Verschlaufungen, sog. Pillings, verhindert. Alternativ können zum Benetzen der freien Fasern mit dem Bindemittel die freien Fasern mit dem Bindemittel besprüht und so zu benetzten Fasern werden. Die freien Fasern können hierbei ohne Relativbewegung zueinander auf der Transporteinrichtung unter dem Sprühstrahl hindurchbewegt werden.

Wenn die von dem Matrixwerkstoff getrennten freien Fasern vor dem Benetzen mit dem Bindemittel unterhalb einer von dem Bindemittel abhängigen maximalen Temperatur abgekühlt werden, wobei die maximale Temperatur der freien Fasern unterhalb der Verdampfungstemperatur des Bindemittels oder weiterer Hilfsstoffe liegt, dann wird die Bindung zwischen den Fasern und dem Bindemittel maximiert. Gleichzeitig wird ein Verdampfen des Bindemittels verhindert.

Zur Maximierung der Unidirektionalität der Verstärkungsfasern werden die Lagen- /Gewebestrukturen der benetzten Fasern zu Faserbündeln aufgetrennt und/oder die benetzten Fasern in Längsrichtung zueinander zu Faserbündeln orientiert und ausgerichtet.

Wenn die Faserbündel senkrecht zur Faserrichtung auf Länge geschnitten werden, erhält man ein lieferfähiges Endprodukt, wobei die Fasern bei unidirektionaler Ausrichtung alle die gleiche Länge aufweisen. Gleichwohl besteht auch die Möglichkeit bei unidirektionalen Halbzeugen, bei denen die Fasern mittels des hier beschriebenen Recyclingverfahrens aus dem Matrixwerkstoff herausgetrennt werden, die freien Fasern nicht zu schneiden, sondern als Endlosfaser weiter zu prozessieren.

Dadurch, dass vor dem Trennen die zu recyclenden faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile sortiert werden, wobei das Sortieren nach Werkstoffen, Halbzeugen und Bauteilen jeweils nach gleicher Faser, Faserart, insbesondere Gewebe und/oder unidirektionalen Lagen, und/oder Matrixwerkstoff erfolgt, lassen sich unterschiedliche Faserkategorien bündeln, um ein Gemisch von unterschiedlichen Fasern zu verhindern. Ebenfalls können hierdurch Prozessoptimierungen durchgeführt werden, da beispielsweise bei einem bei geringeren Temperaturen trennbaren Kunststoff die Temperaturen während der Trennung geringer gehalten werden können und so recourcen- schonend verfahren wird. Ebenfalls würde bei einer Vorsortierung nach Gewebe und entsprechend unidirektionalen Faserlagen eine Optimierung des späteren Ausrichtens vollzogen werden.

Wenn zur Trennung der Fasern von dem Matrixwerkstoff die faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile einen Pyrolyse-Prozess durchlaufen, lässt sich so ein kontinuierlicher Ofenprozess realisieren, indem beispielsweise auch rund um die Uhr faserverstärkte und/oder faserhaltige Halbzeuge und/oder Bauteile recycelt werden können. Gleichwohl können aber auch zur Pyrolyse ähnliche Verfahren verwendet werden, hier sei beispielsweise die chemische Trennung von Matrixwerkstoff und Faser genannt. Hierbei ist ein diskontinuierlicher, als auch ein kontinuierlicher Prozess durchführbar.

Wenn nach Benetzen der freien Fasern mit dem Bindemittel die benetzten Fasern getrocknet werden, dann lassen sich rieselfähige Stapelfasern generieren, die zur späteren Herstellung von neuen Teilen verwendet werden können. Eine Verklumpung wird durch die sofortige Trocknung ausgeschlossen.

Zur Vermeidung von Pillings reicht eine ausreichende Benetzung der Fasern mit einem Bindemittelgehalt von 3 Gew.-% aus. Zur weiteren Verwendung ist ein Bindemittelgehalt zwischen 3 und 30 Gew.-% jedoch optimal, da so eine ausreichende Kunststoffdichte im späteren Produkt erzielt werden kann.

Eine Vorrichtung zur Durchführung des Recyclingverfahrens weist bevorzugt eine Transporteinrichtung, die die zu recyclenden Fasern in Prozessrichtung transportieren, eine Trennanordnung zur Trennung von Fasern und Matrixwerkstoffen und eine in Prozessrichtung nachfolgende Benetzungsanordnung auf.

Wenn zum unmittelbaren Benetzen der freien Fasern ein mit dem Bindemittel gefülltes Tauchbad zum Durchführen der freien Fasern, wodurch diese zu benetzenden Fasern werden, angeordnet ist, dann werden die freien Fasern entsprechend kostengünstig mit dem Bindemittel benetzt. Hierzu ist es vorteilhaft, wenn die Transporteinrichtung derart ausgestaltet ist, dass sich diese mit einer variablen Geschwindigkeit bewegen kann. Hierdurch lässt sich ein individueller Grad der Benetzung einstellen. Der individuelle Grad der Benetzung kann ebenso durch die Variation des Bindemittelgehalts eingestellt werden. Hierzu kann die Menge des in der aufgesprühten Bindemittellösung vorhandenen Lösungsmittels variiert werden. Alternativ kann die pro Zeiteinheit versprühte Menge an Bindemittellösung variiert werden.

Das Bindemittel, welches durch Tauchen oder durch Sprühen auf die Fasern gelangt kann bei entsprechender Ausgestaltung der Transporteinrichtung einfach durch diese hindurchdringen oder aber auch bei entsprechender Ausgestaltung der Transporteinrichtung in dieser verweilen um größere Kunststoffmengen den Fasern beizugeben.

Dadurch, dass zum unmittelbaren Benetzen der freien Fasern mit dem Bindemittel eine Sprühanordnung nach der Trennanordnung vorgesehen ist, lässt sich alternativ zu einem Tauchbad das Bindemittel von oben auf die freien Fasern aufsprühen. Hierbei ist eine Dosierung der aufgebrachten Bindemittelmenge möglich.

Wenn eine Aufschluss- und/oder Kämmvorrichtung nach der Benetzungs- vorrichtung vorgesehen ist, dann lassen sich nicht parallel liegende unidirektionale Fasern in eine Richtung ausrichten/orientieren und Gewebe auflösen.

Wenn die Aufschluss- und/oder Kämmvorrichtung in Prozessrichtung aus parallel zueinander orientiert angeordneten spitzen Schneidkeilen gebildet ist, wobei die Spitzen der Schneidkeile entgegen der Prozessrichtung zeigen, lassen sich die mehr oder weniger vereinzelt vorliegenden Fasern zu Faserbündeln zusammenführen.

Dadurch, dass die Aufschluss- und/oder Kämmvorrichtung aus mindestens zwei Einzelkämmen besteht, die insbesondere senkrecht zur Prozessrichtung das Gewebe gegenläufig auseinanderkämmen, können Gewebe aufgetrennt werden und so weiter zu Stapelfasern verarbeitet werden.

Wenn die Trennanordnung zur Trennung der Fasern von dem Matrixwerkstoff durch Pyrolyse mit Hilfe einer kontinuierlich arbeitenden Ofenanordnung erfolgt, wobei die freien Fasern auf der Transporteinrichtung relativ zu dieser keine Bewegung und/oder Lageänderung während des Pyrolyseprozesses erfahren, lassen sich die Fasern kontinuierlich verarbeiten.

Dadurch, dass die Transporteinrichtung ein hitzebeständiges Förderband hat, kann eine kontinuierliche Bewegung der Fasern durch die Gesamtanordnung ohne Relativbewegung zueinander realisiert werden. Dabei ermöglicht die Verwendung eines hitzebeständigen Förderbandes die Förderung durch die Trennanordnung. Weiterhin kann das Förderband derart ausgestaltet sein, dass überschüssiges Bindemittel während oder nach dem Benetzungsprozess das Förderband durchdringt und darunter zur Weiterverwendung aufgefangen wird.

Wenn das Bindemittel aus einem Lösungsmittel, vorzugsweise einem organischen Lösungsmittel und einem in dem Lösungsmittel gelösten technischen Kunststoff, vorzugsweise einem Polymer besteht, lässt sich das Bindemittel leicht dosieren, verarbeiten und wieder auffangen.

Wenn eine Trocknungsanordnung zum Trocknen der benetzten Fasern nach der Benetzungsanordnung vorgesehen ist, lässt sich eine kürzere Prozessstrecke realisieren, da ansonsten eine längere Trocknungsphase der benetzten Fasern

nötig wäre, um das Zusammenkleben von einzelnen Stapelfaserpaketen zu verhindern.

Dadurch, dass die Trocknungsanordnung aus einem Wärmestrahler und/oder einem Warmluftgebläse besteht, kann so eine kostengünstige Trockungs- anordnung realisiert werden. Beispielsweise wäre auch eine Kombination aus der Trockungsanordnung und der Trennanordnung denkbar, an der die Prozesswärme der Trennanordnung für die Trockungsanordnung genutzt wird.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der beiliegenden Zeichnung detailliert beschrieben.

Darin zeigt:

Fig. 1 eine schematische Darstellung der Recyclinganordnung.

In Fig. 1 ist eine schematische Darstellung eines Ausführungsbeispiels der Recyclinganordnung 1 dargestellt. Die Recyclinganordnung 1 besteht aus einer Transporteinrichtung 6, hier ein Förderband 61. Das Förderband 61 dient dazu, die mittels einer Zuführungsvorrichtung 62 zugeführten faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile 11 innerhalb der Recyclinganordnung 1 zu transportieren und so von einer Prozessstation zur nächsten zu führen.

Nachdem die faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile 11 dem Förderband 61 zugeführt worden sind, bewegt das Förderband diese zu einer Trennanordnung 7. Innerhalb dieser Trennanordnung 7, die beispielsweise eine Ofenanordnung sein kann, werden die faserverstärkten und/oder faserhaltigen Halbzeuge und/oder Bauteile 11 , die aus einer Faser 2 und einem Matrixwerkstoff 3 bestehen derart getrennt, so dass eine freie Faser 21 überbleibt. Die freien Fasern 21 liegen wie ursprünglich innerhalb des faserverstärkten und/oder faserhaltigen Halbzeugs und/oder Bauteils vor, wobei

genauer gesagt deren Gewebestruktur und/oder Lagenausrichtung unverändert ist.

Nachdem die freien Fasern 21 die Trennanordnung 7 auf dem Förderband 61 verlassen haben, werden diese der Benetzungsanordnung 5 zugeführt. Die Benetzungsanordnung 5 kann hierbei als Tauchbad (hier nicht dargestellt) oder beispielsweise als Sprühanordnung, wie hier dargestellt, ausgestaltet sein. Kurz bevor die freien Fasern 21 mit einem Bindemittel 4, welches aus einem Lösungsmittel und einem technischen Kunststoff besteht mittels der Benetzungsanordnung 5 auf die freien Fasern aufgetragen wird, müssen diese unterhalb einer maximalen Temperatur liegen, die abhängig ist von der

Verdampfungstemperatur des Bindemittels. In diesem Schritt wird aus der freien Faser 21 eine benetzte Faser 22. Die Faser ist nunmehr mit einem technischen Kunststoff umhüllt, der beispielsweise ein Polymer sein kann. Die Ausgestaltung des technischen Kunststoffs richtet sich nach der späteren Verwendung der nunmehr kunststoffumhüllten Faser.

Mittels der Transporteinrichtung 6 werden die benetzten Fasern 22 durch eine Aufschluss- und/oder Kämmvorrichtung 8 mit Schneidkeilen und Kämmen hindurchgeführt, die dafür sorgt, dass die Gewebestruktur und/oder die vereinzelten Fasern entsprechend orientiert bzw. aufgelöst werden, so dass nach dem Durchqueren der Aufschluss- und/der Kämmvorrichtung 8 die mit dem Bindemittel 4 benetzten Fasern 22 orientiert in kleinen Stapeln vorliegen.

Nunmehr erfolgt der Weitertransport zur Trocknungsanordnung 9, die beispielsweise durch einen Wärmestrahler oder ein Warmluftgebläse realisiert ist. Hier werden die Faserbündel 23, die sich aus den benetzten Fasern 22 mittels des Bindemittels 4 gebildet haben getrocknet. Hierbei entsteht ein rieselfähiges

Produkt, welches in einem Sammelbehälter 63 am Ende der Förderstrecke der Transporteinrichtung 6 aufgefangen wird. Die Prozessrichtung des hier dargestellten Verfahrens ist durch den Pfeil X dargestellt.

Bezugszeichenliste

1 Recyclinganordnung

11 faserverstärktes und/oder faserhaltiges Halbzeug und/oder Bauteil

12 geschnittenes faserverstärktes und/oder faserhaltiges Halbzeug und/oder Bauteil

2 Faser

21 freie Faser

22 benetzte Faser

23 Faserbündel

3 Matrixwerkstoff

4 Bindemittel

5 Benetzungsanordnung

6 Transporteinrichtung

61 Förderband

62 Zuführungsvorrichtung

63 Sammelbehälter

7 Trennanordnung

8 Aufschluss- und/oder Kämmvorrichtung

9 Trocknungsanordnung

X Prozessrichtung