Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WATER PURIFICATION DEVICE
Document Type and Number:
WIPO Patent Application WO/2012/146243
Kind Code:
A1
Abstract:
A device (1) for purification of water driven by gravity through a purification unit be- tween an upper dirt water container (2) and a lower clean water tank (3) that may be sealed against the environment for preventing contamination. The device may also be provided a vent tube (12) for venting of air from the upstream side of a membrane in the purification unit. Advantageously, the tube (12) extends upwards to the upper edge of the dirt water container (2). Also a backwash system may be integrated, the system comprising a receptacle (8) for accumulation of the backwash water to prevent consumption thereof by mistake.

Inventors:
VESTERGAARD FRANDSEN MIKKEL (CH)
FRAUCHIGER DANIEL (CH)
MADIER DE CHAMPVERMEIL JEAN-LUC (FR)
PASCAL JEAN-MARC (FR)
STOOPS LUC (NL)
Application Number:
PCT/DK2011/050132
Publication Date:
November 01, 2012
Filing Date:
April 27, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VESTERGAARD FRANDSEN SA (CH)
VESTERGAARD FRANDSEN MIKKEL (CH)
FRAUCHIGER DANIEL (CH)
MADIER DE CHAMPVERMEIL JEAN-LUC (FR)
PASCAL JEAN-MARC (FR)
STOOPS LUC (NL)
International Classes:
B01D24/14; C02F1/00; B01D61/14; B01D63/02
Domestic Patent References:
WO2009047492A12009-04-16
Foreign References:
US3260366A1966-07-12
US3342334A1967-09-19
US3428177A1969-02-18
US20090032455A12009-02-05
US6402949B12002-06-11
US5322625A1994-06-21
Attorney, Agent or Firm:
PATRADE A/S (Aarhus C, DK)
Download PDF:
Claims:
CLAIMS

1. A device (1) for water purification, the device (1) comprising a dirt water container (2) for accumulating dirt water and a purification unit (5) for purifying the dirt water, wherein the dirt water container (2) is arranged above the purification unit (5) for driving water through the purification unit (5) by gravity;

wherein the purification unit (5) comprises a filter housing (5') enclosing a purification medium that is separating an upstream side of the purification unit (5) from a downstream side of the purification unit (5) such that water in the purification unit (5) can flow from the upstream side to the downstream side only through the purification medium;

wherein the dirt water container (2) has a container outlet (10), and the filter housing (5') has an upstream inlet (19) to the upstream side, wherein the container outlet (10) and the upstream inlet (19) are fluid- flow-connected by a first flow connector (9) for receiving dirt water from the dirt water container (2) into the upstream side of the purification unit (5);

wherein the device comprises a clean water tank (3) fluid-flow connected to the downstream side through a downstream outlet (25) for receiving purified water from the downstream side.

2. A device according to claim 1, wherein the purification unit (5) is a filtration unit (5) and the purification medium is a microporous filtration membrane.

3. A device according to claim 2, wherein the filtration unit (5) has an upstream outlet (23) in the filter housing (5') for outlet of fluid from the upstream side, wherein a vent tube (12) is connected to the upstream outlet (23), the vent tube (12) extending upwards and having a vent opening (22) into atmosphere for venting of air from the upstream side, wherein the vent opening (22) is provided at a level closer to a top than to a bottom (16) of the dirt water container (2).

4. A device according to claim 3, wherein the vent opening (22) is provided at a reference height, the reference height being at most 5 cm from an upper edge (14) of the dirt water container (2).

5. A device according to claim 3 or 4, wherein the vent tube (12) extends upwards outside the dirt water container (2) and outside the clean water tank (3) and has a vent opening (22) into atmosphere outside the dirt water container (2).

6. A device according to claim 5, wherein an upper part (25) of the vent tube (12) is attached to an outer side of the dirt water container (2).

7. A device according to any one of the claims 3-6, wherein the device comprises a manually compressible backwash bulb (7) that is fluid- flow connected to the downstream side for receiving of clean water in the backwash bulb (7) for backwash purposes; wherein a backwash tube (12, 12A) is provided which is connected to the upstream side for receiving contaminated backflush water and connected to a backwash receptacle (8) for dispensing the contaminated backwash water into the backwash re- ceptacle when water is pressed from the downstream side through the membrane to the upstream side by compression of the backwash bulb and further from the upstream side through the backwash tube (12, 12A) into the backwash receptacle (8), wherein the backwash tube (12, 12A) is an integral part of the vent tube (12) for venting air from the upstream side and dispensing backwash water through the same tube (12, 12A).

8. A device according to claim 2, wherein the device comprises a manually compressible backwash bulb (7) that is fluid- flow connected to the downstream side for receiving of clean water in the backwash bulb (7) for backwash purposes; wherein a backwash tube (12, 12A) is provided which is connected to the upstream side for receiving con- taminated backflush water from the filtration unit (5) and connected to a backwash receptacle (8) for dispensing the contaminated backwash water into the backwash receptacle when water is pressed from the downstream side through the membrane to the upstream side by compression of the backwash bulb and further from the upstream side through the backwash tube (12, 12A) into the backwash receptacle (8).

9. A device according to claim 7 or 8, wherein the backwash tube (12A) is connected to the backwash receptacle (8) through a fluid entrance (8A) of the backwash recepta- cle, the fluid entrance being surrounded by multiple holes 8B for preventing drinking therefrom.

10. A device according to any one of the claims 7-9, wherein the backwash recep- tacle (8) is provided at a level lower than the filtration unit (5).

11. A device according to any one of the claims 7-10, wherein a one way check valve is provided between the dirt water container (2) and the upstream side of the filtration unit (5) for preventing backwash water to be pressed into the dirt water con- tainer (2).

12. A device according to any one of the claims 3-11, wherein the filtration unit (5) is elongate tubular with a longitudinal axis that is horizontal or oriented at most 45 degrees from a horizontal plane when the filtration unit (5) is in proper orientation for water filtration.

13. A device according to claim 12, wherein, when the filtration unit (5) is in proper orientation for water filtration, filtered water is dispensed from the downstream side through a downstream outlet (29A), wherein the downstream outlet (29 A) is pro- vided at a level above any uppermost microporous surface of the microporous filtration membrane for maintaining a water level in the filtration unit (5) above the uppermost microporous surface.

14. A device according to claim 2, wherein the filtration unit (5) is elongate tubu- lar with a longitudinal axis that is horizontal or oriented at most 45 degrees from a horizontal plane when the filtration unit (5) is in proper orientation for water filtration, wherein, when the filtration unit (5) is in proper orientation for water filtration, filtered water is dispensed from the downstream side through a downstream outlet (29A), wherein the downstream outlet (29A) is provided at a level above any uppermost mi- croporous surface of the microporous filtration membrane for maintaining a water level in the filtration unit (5) above the uppermost microporous surface.

15. A device according to any one of the claims 12-14, wherein the longitudinal axis that is horizontal or oriented at most 10 degrees from a horizontal plane when the filtration unit (5) is in proper orientation for water filtration, 16. A device according to any one of the claims 2-13, wherein the device (1) comprises a distributor (25), the distributor (25) comprising an inlet channel (29) for receiving filtered water from the downstream side, a first distributor outlet (20) for dispensing filtered water to a compressible backwash bulb (8), and a second distributor outlet (30) for providing filtered water into the clean water tank (3), the distributor (25) further comprising a one-way check valve (26A, 26B, 32) arranged between the first distributor outlet (20) and the second distributor outlet (30) for preventing backwash water from the compressible backwash bulb from entering the clean water tank (3) when water is forced backwards through the first distributor outlet (20) due to compression of the backwash bulb (8).

17. A device according to claim 16, wherein the check valve is a ball valve, comprising a valve housing (26A) containing a ball (26B) and with a ball seat (32) in a wall of the valve housing (26A) on a side adjacent to the second distributor outlet (30) and remote to the first distributor outlet (20).

18. A device according to any one of the claims 2-17, wherein the filtration unit (5) comprises a plurality of microporous hollow fibre membranes.

19. A device according to claim 18, wherein the hollow fibre membranes are arranged in parallel and potted at both ends in a resin.

20. A device according to claim 18 or 19, wherein the filtration unit comprises an additional filtration medium downstream of the hollow fibre membranes, the additional filtration medium being a fibrous matrix containing electropositive adsorptive nano-particles.

21. A device according to claim 20, wherein the hollow fibre membranes are microfiltration membranes.

22. A device according to any preceding claim, wherein the dirt water container (2) is arranged above the clean water tank (2) and with a clearance of at least 5 cm between the clean water tank (3) and the dirt water container (2).

23. A device according to any preceding claim, wherein the clean water tank has an upper, closed top and the dirt water container has a closed bottom, and wherein the purification unit is arranged between the closed top of the clean water tank and the closed bottom of the dirt water container (2).

24. A device according to any preceding claim, wherein the purification unit (5) is arranged only in a space outside and above the clean water tank (3) and only outside and below the dirt water container (2). 25. A device according to any preceding claim, wherein the device is a portable device with dry weight of less than 30 kg, with a volume of the dirt water container of less than 30 liters, and with a volume of the clean water tank of less than 30 litres.

26. A device according to any preceding claim, wherein the clean water tank (2) has an enclosure sealed against the environment.

27. A device according to any preceding claim, wherein the device (1) has a connection (36, 36') between the clean water tank (3) and the dirt water container (2), the connection (26, 26') comprising means (37, 38, 47, 48) for varying the distance be- tween the clean water tank (3) and the dirt water container (2).

28. A device according to claim 27, wherein the connection (36, 36') has a first state where the clean water tank (3) and the dirt water container (2) are in a close position, which is a storage or transport state, and the connection (36, 36') has a second state where the clean water tank (3) and the dirt water container (2) are in a remote condition, which is an operational condition for water filtration, where the distance between the clean water tank and the dirt water container in the second condition is between 5 cm and 100 cm larger than in the close position.

29. A device according to claim 27 or 28, wherein the means for varying the distance comprises a set of profiles (37) in sliding cooperation with the outer side (38) of the clean water tank (3) or the outer side of the dirt water container (2) or both.

30. A device according to claim 29, wherein the clean water tank (3) has grooves (38) on its outer side which take up the profiles (37) in sliding cooperation.

31. A device according to claim 27 or 28, wherein the means for varying the dis- tance comprises a rotationally hinged (42) profile (47) with an angle varying relatively to the clean water tank (3) in dependency of the distance between the clean water tank (3) and the dirt water container (2).

32. A device according to claim 31, wherein the profile (47) is hinged in a first hinge (43, 44) at the clean water tank (3) and is hinged in a second hinge (42) at the dirt water container (3).

33. A device according to claim 31 or 32, wherein the dirt water container (2) has an upper opening (2') which is dimensioned larger than a cross section of the clean water tank in order to partly enclose the clean water tank inside the dirt water container (3) in storage condition

34. A device according to any one of the claims 1-26, wherein an intermediate module (4) is provided having a cross sectional dimension in the horizontal plane cor- responding to cross sectional dimensions of the dirt water container (2) and the clean water tank (3), wherein the intermediate module (4) is supported by the clean water tank (3) and, in turn, supports the dirt water container when in stacked conditions, wherein the dirt water container (2), the intermediate module (4) and the clean water tank (3) in such stacked conditions form an integrated three-module system.

Description:
Water purification device

FIELD OF THE INVENTION

The present invention relates to water purification devices. Especially, it relates to wa- ter purification devices with a filtration membrane and an upstream dirt water container.

BACKGROUND OF THE INVENTION Portable purification devices with serially arranged antimicrobial resins and air-tight membrane filters suffer from the fact that air may be trapped between the resin and the membrane which blocks for a proper flow of water through the system. For this reason, water purification systems have been developed with vent conduits that provide a passage into atmosphere from the volume between the resin and the membrane.

An example is disclosed in patent US6454941 for a gravity filter with a resin in a compartment above a membrane that formed as a vertically oriented cellular honeycomb structure. An air vent conduit extends from the volume between the resin and the filter membrane up to the upper edge of the resin below water inlet cap. Water in the device cannot by mistake be driven all the way up to the air vent conduit exit, because a goose-neck conduit for water consumption has its water exit below the air vent conduit exit, and water would leave that conduit first.

Another example is published in patent US6638426 for a gravity filter with a vent tube that is provided above a filter that has vertically arranged, hollow membrane fibres. The vent tube extends centrally through an upper resin chamber and ends higher than the top water inlet above the resin. The vent tube extends from a lower, tangential fluid divider, which has a form of an inverted funnel. The fluid divider has apertures for water to flow down from the resin through the apertures and into the housing with the filter. These systems have dedicated means for venting the volume above the membranes. Other water purification systems are disclosed with vent tubes extending through an upper dirt water container to above the water level in the dirt water container. Examples are given in US4749484, US4978449, US4759474, US4800018, and EP404573. Alternative systems with vent tubes outside the dirt water container are disclosed in GB1112072, US3709362, EP245585, US5281309. Further vent systems are disclosed in DE3828008, US3281108, US6159363, US7276169. As it appears from these disclosures, portable systems have vent tubes extending through the upper dirt water container, whereas for stationary systems, vent tubes that imply air escape from the up- stream side of the filter medium can extend through the upper dirt water container or extend outside the upper dirt water container. Thus, there seems to be a systematic limitation for portable devices in this respect, which is due to the desired compactness of these devices, although it implies some limitations for the possible design of the portable water filtration devices.

International patent application WO2008/110166 discloses in FIG. 7 a gravity driven water filtration system with an upper dirt water container connected by a tube to a filtration unit. In use, the filtration unit oriented vertically, and air from the filtration unit is exiting in an upward direction through the tube and into the dirt water container against the stream of dirt water from the container. In practice, this is no problem, although for start up, it is more convenient to open a forward flush valve in order to empty the device for air quickly.

If the filtration unit of the system disclosed in figure 7 of WO2008/110166 would have a horizontal orientation, air would be trapped in the filtration unit, which is also the reason, why the module has a vertical orientation when in use. However, even in a horizontal orientation, it would be possible to vent the system by opening a forward flush valve during feeding with dirt water from the opposite end. Once air is flushed out of the system, this flush valve could be closed again. An indication that the air is flushed out of the system is the appearance of water at the exit from the flush valve. Thus, also during proper operation in horizontal orientation, air trapping is no problem for operation of this device, in principle. Due to the relatively easy venting of the system of WO2008/110166 by using the forward flush valve, such a horizontal orientation of the filtration device may be tempting to use in other filtration systems, if space and compactness is a critical issue. Problem occurs however, if such a system is not understood properly by the end user. For ex- ample, for the user not familiar with the system, the procedure for air venting may no be obvious, and the user may regard the system as not proper functioning simply due to the fact that air trapped in the system prevents a proper water flow from the clean water exit valve. Also, the forward flush valve may be mistaken as the clean water supply, and the user may consume dangerously contaminated water coming from the dirt water container without having passed the filter membrane. These risks may appear hypothetical at first glance; however, it should be pointed out that such filter systems are used in emergency areas with sometimes hectic activity where a proper training of the user is not always possible due to lack of resources or lack of time. In such situations, the risk for mistakes is high and may cause fatal results for the user

The above described system also suffers from the fact that no proper clean water accumulator is provided, which implies a large risk for back-contamination, especially in emergency situations, where cleaning-water is scarce, and the focus is not especially on hygiene.

A portable water purification system for emergency situations is published on the Internet on http :// espwaterproducts .com/ emergency-preparedness-water-disaster- relief.htm. The system comprises a top dirt water container covered by a prefilter for removing debris and large sediment particles when water is added. The dirt water con- tainer contains an iodine tablet for destroying bacteria and virus. Inside the dirt water container, a vertically arranged sediment pre-filter is provided for removing contaminants down to 0.5 microns in size, including cysts. The lid of the clean water tank contains a filter connector that is directly connecting the outlet of the sediment filter to the inlet of a vertically arranged multimedia cartridge which removes industrial and agricul- tural contaminants as well as chlorine, iodine, and bad tastes and odours. The multimedia cartridge is provided below the lid and inside the clean water tank. The clean water tank is provided with a tap for dispensing of the purified water. As the lid of the clean water tank is easily removable, contamination of purified water can easily become a problem if the lid is not properly placed, or it is removed in not sufficiently hygienic conditions. The latter is important when knowing that in emergency situations, but also in typical households in Africa's rural countryside, animals mix with humans and may get easily access to the purification system and its surroundings.

A further disadvantage of this system, as well as the systems disclosed in US6454941 and US6638426 is the fact that a continuous filling of water into the upstream tank leads to an overflow in any downstream part. Thus, the user has to keep track of how much water is in the tank upstream of the filter relatively to how much is in the downstream part in order not to waste water. The latter is an important issue in emergency situations, where water is scarce.

For these reason, there is an ongoing effort to improve portable water filtration systems in the direction of higher safety and user-friendliness, especially in connection with portable filters for use in emergency situations.

DESCRIPTION / SUMMARY OF THE INVENTION

It is therefore the objective of the invention to provide improvements in the art. Especially, it is the purpose to optimize user friendliness and minimize the risk for accidents when using the device. Some of the improvements are related to ease of transport and storage. Other improvements are related to prevention of air trapping in the filtration unit without the necessity of interference by the user, even in cases where the filtration unit is oriented horizontally.

The device comprising a dirt water container for accumulating dirt water, a clean water tank for accumulating purified water, and a purification unit, for example filtration unit, for purifying water from the dirt water container. The purification unit comprises a filter housing enclosing a purifying medium separating an upstream side of the purification unit from a downstream side of the purification unit, such that water inside the purification unit can flow from the upstream side to the downstream side only through the purification medium, for example porous filtration membrane. The upstream side is connected to the dirt water container for receiving dirt water into the upstream side and the downstream side is connected to the clean water tank for dispensing filtered water from the downstream side into the clean water tank. Optionally, the purification unit is arranged outside the clean water tank. The dirt water container is arranged above the purification unit for driving water through the purification unit by gravity. The dirt water container has a container outlet and the filter housing has an upstream inlet to the upstream side, wherein the container outlet and the upstream inlet are fluid- flow-connected by a first flow connector for receiving dirt water from the dirt water container into the upstream side of the purification unit. The device comprises a clean water tank fluid-flow connected to the downstream side through a downstream outlet for receiving filtered water from the downstream side. Optionally, the clean water tank is arranged below the purification unit.

Several options exist for the purifying medium, for example different resins that release antimicrobials. Examples are resins that release chlorine or iodine. Other options are granular activated carbon or other media that capture microbes and other particles. An example of such other adsorptive medium is disclosed in US6838005 by Tepper and Kaledin, where a fibrous matrix contains electropositive adsorptive nano-particles. In this case, alumina nano-fibres are provided in a porous glass fibre matrix filtering microbes by attachment to the nano-fibres. The microbes and anorganic sediments are attracted by the highly electropositive charged alumina and stay permanently, un- releasable in the filter matrix. The purifying medium may also be a combination of sev- eral different media, for example halogen resins in combination with activated carbon.

Alternatively, the purification unit is a filtration unit, and the purifying medium comprises a microporous filtration membrane. One preferred option is microporous hollow fibre membranes, for example a bundle of hollow fibre membranes, although other types of microporous membranes can be used as well. This can be combined with one or more of the other above-mentioned media, for example the fibrous matrix contains electropositive adsorptive nano-particles. A water purification device according to the above has a useful combination of features. In addition, it is useful for forming the basis for the following further improvements, especially for a portable device. A vent tube

One independent improvement concerns easy venting of the upstream side of the filtration unit, for which the following embodiment is useful. In this case, the upstream side of the filtration unit has an upstream outlet in the filter housing for outlet of fluid from the upstream side. A vent tube is connected to the upstream outlet; the vent tube ex- tends upwards, preferably outside the clean water tank, and has a vent opening for venting air from the upstream side into atmosphere. Optionally, the vent tube extends upwards outside the clean water tank, although it can also extend inside the dirt water tank. The water from the dirt water container will be pressed by gravity through the upstream side of the filtration unit and from the upstream side of the filtration unit into the vent tube. By this action, air will be pressed into the vent tube by the water. Thus, if the vent opening is provided higher than the bottom of the dirt water container, air in the vent tube will be pressed to a height corresponding to the water level in the dirt water container. Thus, only in case of the water level in the dirt water container being higher than the height at which the vent opening is arranged, a siphon effect will cause water to be forced out of the vent opening until the water level in the container has the same height than the height of the vent opening. In order not to lose water unnecessary, the height of the vent opening advantageously is closer to the top of the dirt water container than to the bottom of the dirt water container. Especially, it should be approximately adjusted to the maximum water level in the dirt water container or higher. For example, the vent opening is provided at a reference height, the reference height being at most 5 cm or 2 cm, or even only at most 1 cm, below an upper edge of the dirt water container, although it is also possible to provide the vent hole above the upper edge of the dirt water container.

An option in case of the vent tube extending upwards outside the dirt water container is to attach an upper part of the vent tube to an outer side of the dirt water container. Backwashing

One independent improvement concerns safety for backwashing of the filtration unit. Thus, in a further embodiment, the device comprises a backwash facility for the mem- brane filter in the filtration unit. In this case, the device comprises a manually compressible backwash bulb that is fluid-flow connected, advantageously by a flexible hose, to the downstream side for accumulation of clean water for backwash purposes.

Principles of such backwash facilities are generally known, for example from the above mentioned international patent application WO2008/110166. The term "bulb" is used as a general term and comprises the specific embodiments of the bulb being a balloon or a bellow or other resiliently compressible water chambers. A backwash tube is provided which is, for example with a first end, connected to the upstream side for receiving contaminated backflush water from the upstream side of the filtration unit and, for example with an opposite end, connected to a backwash receptacle for dispensing the into the backwash receptacle when water is pressed from the downstream side through the membrane to the upstream side by compression of the backwash bulb and further from the upstream side through the backwash tube into the backwash receptacle. Such a receptacle minimizes the risk for unintended consumption of contaminated backwash water.

As a further option, the backwash receptacle is provided at a level lower than the filtration unit, which assures a proper flow into the backwash receptacle. An even further option is provided if the backwash tube is connected to the backwash receptacle through a fluid entrance of the backwash receptacle, wherein the fluid entrance is surrounded by multiple holes for preventing drinking therefrom; this improves user safety.

In order for preventing backwash water to be pressed into the dirt water container during backwash, in a further embodiment, a one way check valve is provided between the dirt water container and the upstream side of the filtration unit.

Optionally, the above backwashing improvement is combined with the above independent vent tube embodiment. In case of such a combination, there is the possibility of a further improvement according to the following embodiment, where the backwash tube is an integral part of the vent tube. Thus, there is no need to provide a vent tube as well as a separate backwash tube, but it is sufficient to provide a single tube with a single tube interior that serves both purposes. Optionally, the combined vent and backwash tube has a tube part downstream of the vent opening, which tube part is connected to the backwash receptacle.

Membranes maintained in water

A further independent improvement which, optionally, is combined with one or more of the above independent improvements, is presented in the following. In this embodiment, the downstream side is connected to the clean water tank by a downstream outlet which is above the membranes when in proper use for filtration. This prevents emptying of the filtration unit such that the membranes are maintained immersed in water, which is important for polymer membranes, such as hollow fibre membranes, because a drying out can lead to collapse of the membrane pores. For example, the downstream outlet is provided in the upper part of the filter housing, especially in the case, where the filtration unit has a horizontal orientation or an inclination from horizontal of up to 45 degrees or up to 10 degrees, the downstream outlet is placed at a height above the membrane in the filtration unit in order to maintain a water level above the membranes in the filtration unit.

A distributor

A further independent improvement which, optionally, is combined with one or more of the above independent improvements, is presented in the following. In this case, the improvement concerns a distributor for distribution of water from the downstream side of the filtration unit. For transport of water from the downstream side of the filtration unit and into the clean water tank, the downstream side of the filtration unit is connected to the clean water tank for flow of filtered water from the downstream side in the filtration unit and into the clean water tank. In a further embodiment, this connec- tion is achieved by a distributor. The distributor comprises an inlet channel for receiving filtered water from the downstream side, a first distributor outlet for dispensing filtered water to the backwash bulb, and a second distributor outlet for dispensing water into the clean water tank. Advantageously, the distributor also comprises a one-way check valve arranged between the first distributor outlet and the second distributor outlet for preventing backwash water from the compressible backwash bulb from entering the clean water tank when water is forced backwards through the first distributor outlet due to compression of the backwash bulb. For example, the check valve is a ball valve. Such a valve can be provided in comprising a valve housing containing a ball and with a ball seat in a wall of the valve housing on a side adjacent to the fluid flow connector and remote to the second filter housing outlet.

In a further embodiment, the distributor also comprises one-way vent valve for venting air from the sealed clean water tank when water enters the tank from the filtration unit. As the one way valve only allows air to leave the clean water tank when there is more than atmospheric pressure in the clean water tank due to filling of water in the tank, the valve is only open in combination with an outgoing air flow, which prevents dust and microbes to enter the clean water tank. However, in a further embodiment as an addi- tional safety measure, the valve is provided with an air permeable membrane that prevents microbes and dust to back enter the clean water tank. In this case, the valve may, optionally, be a two way valve such that air can enter the clean water tank, when water is dispensed from it through the tap, which further minimizes the risk for back contamination. In an even further embodiment, in order to prevent water escaping though the vent valve in case of overfilling of the clean water tank, the air permeable membrane is a hydrophobic membrane that prevents water to pass the vent valve. Alternatively, in order to prevent water escaping though the vent valve in case of overfilling of the clean water tank, the valve is provided with a water stop, for example including a ball valve that closes the valve when the clean water tank is filled.

Transportation

Further independent improvements which, optionally, are combined with one or more of the above independent improvements and various embodiments above, are presented in the following. In this case, the improvement concerns handling, storage and trans- portation. These embodiments are of general nature and useful not only for the embodiment where the purification unit is a filtration unit but for embodiments with various types of purification media. In order for the purification unit to be protected against damage when handling the device, the purification unit is advantageously arranged inside the clean water tank or, alternatively, in a space between the clean water tank and the dirt water container, that is, above the clean water tank and below the dirt water container. The latter configura- tion gives access to the purification unit, for example in case of replacement, which can be advantageous relatively to the case, where the purification unit is inside the sealed clean water tank.

Advantageously, this space is defined by an intermediate module having cross sectional dimensions in the horizontal plane corresponding to cross sectional dimensions of the dirt water container and the clean water tank. For example, the dirt water container, the intermediate module, and the clean water tank form an integrated three-module system in stacked conditions, where the intermediate module is supported by the clean water tank and, in turn, supports the dirt water container. In order to ease mount and demount of the purification unit, the first fluid flow connector between the dirt water container and the upstream side of the purification unit is a flexible hose.

Some embodiment, especially, good for storage and transport of the device comprise the following improvement. In these cases, the device has a connection between the clean water tank and the dirt water container, the connection comprising means for varying the distance between the clean water tank and the dirt water container. The connection has a first state where the clean water tank and the dirt water container are in a close position, which is a storage or transport state, and the connection has a second state where the clean water tank and the dirt water container are in a remote con- dition, which is an operational condition for water filtration. For example, the distance between the clean water tank and the dirt water container in the second condition is between 5 cm and 100 cm larger than in the close position.

Such means for varying the distance, optionally, comprises a set of profiles in sliding cooperation with the outer side of the clean water tank or the outer side of the dirt water container or both. For example, the clean water tank has grooves on its outer side which take up the profiles in sliding cooperation. Alternatively, the dirt water container could comprise such grooves. In an alternative embodiment, the means for varying the distance comprises a rotation- ally hinged profile with an angle varying relatively to the clean water tank in dependency of the distance between the clean water tank and the dirt water container. For example, the profile is hinged in a first hinge at the clean water tank and is hinged in a second hinge at the dirt water container. Optionally, in addition, the dirt water container has an upper opening which is dimensioned larger than a cross section of the clean water tank in order to partly enclose the clean water tank in storage condition. When this embodiment is combined with the vent tube improvement above, the vent tube advantageously extends upwards inside the dirt water container in order not to get entangled with the other mechanical parts.

Various embodiments

In the following, various embodiment are described that may be combined with the independent improvements above.

In order to provide sufficient gravity force for driving water through the membrane of the purification unit, in a further embodiment for the device, the dirt water container is arranged above the clean water tank at a distance from the clean water tank of at least 10 cm or at least 20 cm, and, optionally, at most 40 cm or 30 cm. For example, the dirt water container is arranged above the clean water tank and with a clearance of at least 5 cm, or at least 10 cm or at least 20 cm between the clean water tank and the dirt water container. The distance is relatively short with a corresponding low pressure on the purification unit.

Especially in the case of the purification unit being a filtration unit with a microporous filtration membrane, the low gravity pressure implies an advantage, as particulate matter is kept relatively loose on the influent surface of the membrane, making backfiush and cleaning easy and prolonging the lifetime of the membrane filter. Due to the accumulating clean water tank, the flow through the purification unit can be accepted to be rather low, because the device can filter water without interaction and surveillance by the user. For example, the dirt water container is filled in the evening, and the device may filter the water slowly during the night in order to provide a tank full of water the next morning. Even in the case that the dirt water container is filled despite the clean water tank not being empty, in which case there is more water in the dirt water container than acceptable by the clean water tank, this is no problem, because the clean water tank is sealed and the water filtration will stop as soon as the clean water tank is filled.

For example, the device is in the form of a portable device dimensioned to be easily carried by a single human. For example, the portable device has a dry weight of less than 30 kg. In addition, the volume of the dirt water container is, optionally, less than 30 liters. As a further additional option, the volume of the clean water tank is less than 30 litres. However, the invention is not limited to be a portable device and the inventive features apply equally well to a larger facility, for example as a clean water facility for a school, a hotel, or even a community. The connections between the dirt water container and the purification unit or the connection between the purification unit and the clean water tank may be rigid tubes, however, in order to facilitate assembling the device and for easing mount and demount of the purification unit, the first flow connector is advantageously a flexible hose, although this is not strictly necessary. Optionally, the vent tube is also a flexible tube.

The clean water tank may be provided with an enclosure that can be opened for cleaning. In an alternative embodiment, in order to minimize the risk for back contamination, the clean water tank has an enclosure sealed against the environment. The term "sealed against the environment" means that there are no holes in the enclosure, where dirt or microbes can enter the clean water tank directly from the environment. The term "sealed against the environment" is also valid in view of the tap that is provided with a drain valve for dispensing water from the clean water tank through the tap, because, normally, the tap is closed. In addition, an opening in the clean water tank is necessary for the connection to the purification unit from which clean water is received; although, in principle, there is a connection from the clean water tank through the purification medium, for example membrane, of the purification/filtration unit and through the connection to the dirt water container and out into atmosphere, this connection can also be regarded as sealed, as no dust nor microbes can enter the clean water tank through the membrane. There may be provided further openings, like vent valves, that open to the atmosphere in the environment; however, this kind of opening only occurs in a controlled manner during outflow and possibly inflow of air when water is filled into the clean water tank or released from it. Such valves are also normally closed, thus, pre- venting entrance of dust and microbes, why also such valves are not in contradiction to the term "sealed against the environment" for the clean water tank. In addition, such valves may comprise an air permeable but not water permeable microporous membrane preventing dust and microbes to pass such openings. In order to safeguard that the clean water in the clean water tank is not subject to contamination, the clean water tank may be provided with biocidal means. An option is a biocide that is added to the water, for example by a dispenser or by dissolution of a solid agent containing the biocide. Alternatively, or in addition, the clean water tank may comprise a biocidal agent on and/or in the walls of the clean water tank. For ex- ample, the inner wall may be provided with a biocide that prevents proliferation of microbes on the inner walls of the clean water tank.

One example of providing the antimicrobial surface is by coating with an antimicrobial substance. A large number of different coatings are available. Examples of antimicro- bial organosilane coatings are disclosed in US patent No 6.762,172, No. 6,632,805, No

6.469.120, No. 6,120,587, No. 5,959,014, No. 5,954,869, No. 6,1 13,815, No.

6.712.121, No. 6,528,472, and No. 4,282,366.

Another possibility is an antimicrobial coating that contains silver, for example in the form of colloidal silver. Colloidal silver comprising silver nanoparticles (lnm to lOOnm) can be suspended in a matrix. For example, the silver colloids can be released from minerals such as zeolites, which have an open porous structure. Silver can also be embedded in a matrix such as a polymer surface film. Alternatively, it may be embedded in the matrix of the entire polymer of the clean water tank wall during plastic form- ing processes, typically known as injection moulding, extrusion or blow moulding.

A silver containing ceramic, applicable for the invention, is disclosed in US patent No. 6,924,325 by Qian. Silver for water treatment is disclosed in US patents No. 6,827,874 by Souter et al, No. 6, 551,609 by King, and it is known in general to use silver enhanced granular carbon for water purification. Silver coating for water tanks is disclosed in European patent application EP1647527. Other antimicrobial metals that may be employed in connection with the invention are copper and zinc, which, alternatively or in addition, may be incorporated in an antimicrobial coating. An antimicrobial coating containing silver and other metals is disclosed in US patent No 4,906,466 by Edwards and references therein. A coating may, in addition or alternatively, comprise titanium dioxide. Titanium dioxide can be applied as a thin film that is synthesized by sol-gel methods. As anatase T1O 2 is a photo catalyst, thin films with titanium dioxide are useful on external surfaces that are exposed to UV and ambient light. Also, nanocrystals of titanium dioxide may be embedded within polymers. In addition, silver nanoparticles can be complexed with titanium dioxide for enhanced effectiveness.

For example, a thin film coating may have a thickness as little as a few micrometer. A coating may in addition, or alternatively, comprise a reactive silane quaternary ammonium compound, like it is known from the company AEGIS® under the trademark Microbe Shield™ used for air conditioning. When applied as a liquid to a material, the active ingredient in the AEGIS Antimicrobial forms a colourless, odourless, positively charged polymer coating, which chemically bonds & is virtually irremovable from the treated surface. Further options include quaternary ammonium coatings, for example polyethylene imine coatings with biocidal quaternary ammonium.

Some antimicrobial substances are able to migrate through polymer matrices. This implies that the coating may contain antimicrobial substances that are continuously re- newed due to the migration from the inside of the coating to the surface of the coating. Therefore, in a further embodiment, the material of the wall of the clean water tank is made of a material containing an antimicrobial substance. This antimicrobial substance has the property to migrate from the inside of the material to the surface of the material.

Depending of the technology of coating, an inner wall biocidal surface coating can also be achieved by dipping into a bath. Processes like spraying may be applied of the respective dedicated surface or surfaces.

An additional option that may be incorporated in the clean water tank is an ultra violet (UV) lamp, for example as it is disclosed in US patent application No. 2005/258108. Such a lamp may be used in addition to the biocidal means.

Apart or as an alternative to dispensing antimicrobials in the clean water tank, the clean water tank may be provided with a reservoir releasing nutrients and/or pharmaceuticals to the clean water in the clean water tank. For example, clean water from the purifica- tion unit flows into the reservoir and enriches the water by dissolving a slow-soluble matrix inside the reservoir. For example, the matrix contains an agent that is liberated upon dissolution of the matrix. A possibility is water soluble glass that can contain a releasable agent either dissolved in the glass itself or in voids between sintered glass beads.

An example of a membrane filter inside the filtration unit is a ceramic filter or a semipermeable polymer filter for microfiltration or ultrafiltration. For example, the filtration unit comprises a plurality of hollow fibre microporous membranes, optionally with the hollow fibre membranes being arranged in parallel and potted at both ends in a resin or being bend and potted only in one end. An example is given in international patent applications WO2008/110166 and WO2008/110172. Optionally, the hollow fibre membranes have an outer side of the membranes towards the upstream side and the inner side of the membranes towards the downstream side; this is normally called an outside-in flow configuration. Alternatively, the hollow fibre membranes have their inner side towards the upstream side and the outer side towards the downstream side, this is normally called an inside-out flow configuration. The term "microporous" covers microfiltration porosity as well as ultrafiltration porosity. Advantageously, the membrane filter unit is configured for stopping virus, bacteria and parasites with a size of more than 0.2 microns. For example, hydrophilic membranes are used with a microbe separation layer with a pore size of less than 0.2 microns. Optionally, the filtration unit comprises a microporous membrane, for example a bundle of hollow microporous fibres, having a membrane surface area of between 0.05 and 0.6 m 2 , for example between 0.1 and 0.3 m 2 .

As an additional safety measure, a further embodiment comprises an additional filtration or otherwise purifying media downstream of the microporous membrane. An ex- ample of this additional filtration medium comprises a fibrous matrix containing electropositive adsorptive nano-particles. An example of such filtration medium is disclosed in US6838005 by Tepper and Kaledin. In this case, alumina nano-fibres are provided in a porous glass fibre matrix filtering microbes by attachment to the nano-fibres. The microbes and anorganic sediments are attracted by the highly electropositive charged alumina and stay permanently, un-releasable in the filter matrix. The lifetime of the filter depends on the level of contaminants in the influent water and the capacity of the filter. Further such matrices are described in WO2008 110167.

For example, a bundle of hollow fibre microfiltration membranes is followed with a fibrous matrix containing electropositive adsorptive nano-particles. Virus not held back by the microfiltration hollow fibre membranes would then be captures by the matrix. The advantage is a higher flow rate as compared to hollow fibres with ultrafiltration capabilities. Also, the matrix would capture microbes and other particles in case that the membrane ruptures or the potting material for the membrane loses its hermitical seal; in view of the matrix being such kind of redundant safety means, a combination of a bundle of hollow fibre ultrafiltration membranes followed by a fibrous matrix containing electropositive adsorptive nano-particles is also useful. Instead of hollow fibre membranes, other microporous membranes can be used in a filtration unit as described. Combinations of microporous filters and a fibrous matrix containing electropositive adsorptive nano-particles are disclosed in WO2008/110166. An advantageous material for the capillary membranes is a composition comprising PolyEtherSulfone (PES), Polyvinylpyrrolidone (PVP) and zirconium oxide (ZrC^), for example as described in European patent EP 241 995 or in WO2009/019592.

In a further embodiment, the purification unit, for example filtration unit, has a filter housing that is elongate tubular with a longitudinal axis and is oriented with the longitudinal axis within at most 45 degrees or 25 degrees or 10 degrees from a horizontal plane. For example, the purification/filtration unit has a horizontal longitudinal axis or an approximately horizontal axis.

Compactness of the purification unit for portable systems is achieved to a great degree, if the filter housing is a tubular filter housing with relatively small dimensions, for example with cross sectional dimensions having a circumscribed circle with a diameter of 100 mm at most. Another useful dimension of the purification unit is a length of less than 50 cm, for example less than 30 cm.

As an option, the dirt water container may comprise an antimicrobial source, for example a halogen source. A tablet containing releasable chlorine, for example by dissolution from a chamber containing such tablet, is one possible option, although also other kinds of dispensers may be used. Non limiting alternatives are micro dosing systems releasing fluidic biocides, for example iodine or chlorine. Other alternatives include resins capable of releasing halogen biocides or biocides based on non-halogenic substances.

Number references in the claims are not intended to limit the scope of the claims.

SHORT DESCRIPTION OF THE DRAWINGS

The invention will be explained in more detail with reference to the drawing, where FIG. 1 is a drawing of the device, where A) illustrates the device in an overview drawing; B) illustrates tube connections ; C) shows a cut-away illustration; and D) a view with the dispenser tap;

FIG. 2 is an exploded view of the device; FIG. 3 illustrates the distributor, where A) is a line drawing of the upper side, B) is a drawing of the lower side, and C) a cross sectional drawing;

FIG. 4 illustrates a telescopic embodiment in A) an overview image and B) an exploded drawing, C) an illustration of the tubing, and D) a cross sectional drawing;

FIG. 5 illustrates an embodiment with dirt water container connected rotatably relatively to the clean water tank, where A) is an assembly drawing, B) is an exploded drawing, C) shows part of the tubing, and D) shows the device in a collapsed state;

FIG. 6 illustrates an embodiment slightly amended relatively to FIG. 5 with a non- detachable backwash bulb;

FIG. 7 show an embodiment of a filtration device in A) a three dimensional drawing and B) a cut-away three dimensional drawing.

DETAILED DESCRIPTION / PREFERRED EMBODIMENT

FIG. 1 A is a drawing illustrating a device 1 with a dirt water container 2 for accumulating dirt water and a clean water tank 3 for accumulating filtered water. An intermediate module 4 is provided between the dirt water container 2 and the clean water tank 3. This intermediate module 4 defines the distance between the dirt water container 2 and the clean water tank 3 when in stacked conditions as illustrated. In addition, the intermediate module 4 houses a filtration unit 5, which is shown in FIG. IB, where the intermediate module 4 is removed for sake of illustration. The filtration unit 5 comprises a filter housing 5' enclosing a microporous membrane filter and is on the filter's upstream side fluid-flow connected to the dirt water container 2 for receiving dirt water and is on the filter's downstream side fluid- flow connected to the clean water tank 3 for dispensing filtered water into the clean water tank 2. As illustrated, the dirt water container 2 is arranged a distance above the filtration unit 5 for driving water through the filtration unit 5 and into the clean water tank 3 by gravity. Typically, the intermediate module 4 has a height of between 0.1 and 0.4 m.

The clean water tank 3 also has on its outer side a first cavity 6 for accommodating a compressible backflush bulb 7, which during normal operation is filled with clean water and rests inside the cavity 6. For backwash, the backwash bulb 7 may be removed from the cavity 6 and manually compressed, by which water is pressed backwards through the membrane in the filtration unit 5 in order to remove particulate matter and biofilm from the influent surface of the membrane on the upstream side. The pressure gener- ated in the upstream side by the backwash water closes a check valve between the upstream side in the filtration unit 5 and the dirt water container 2 such that the backwash water is not pressed back into the dirt water container 2. Instead, the backwash water is guided from the upstream side by a tube arrangement (shown as 12, 12A in FIG. IB) into a back wash receptacle 8, which is accommodated in a second cavity 9 in the outer side of the enclosure of the clean water tank 2.

In order to minimize the risk for a user placing a drinking cup in the backwash cavity 9 and filling the drinking cup with backwash water for consumption, the upper part of the backwash receptacle 8 and the housing of the clean water tank 3 may be equipped with an additional valve (not shown) that only opens when the backwash receptacle is properly placed in the backwash cavity 9.

As a further precautionary measure, the fluid entrance, reference 8A in FIG. 2 and in greater detail in FIG. 6, of the backwash receptacle 8 is provided with multiple holes 8B around the fluid entrance, making drinking from it extremely difficult, which indicates for the user, that the backwash receptacle is not intended for containing water for consumption.

FIG. IB is a different drawing without the intermediate module in order to illustrate the tubing. A flexible dirt water tube 49 as a first fluid-flow connector connects a dirt water container outlet 10 with the upstream side of the filtration unit 5. A flexible hose 11 as a third fluid-flow connector connects the backwash bulb 7 with the downstream side of the filtration unit 5. When the backwash bulb 7 is compressed, clean water from inside the backwash bulb 7 is pressed backwards through the membrane into the up- stream side in the filtration unit 5 and through upstream outlet 23 out of the housing 5' of the filtration unit 5 and into a flexible backwash tube 12, the distant end of which is connected to the upper part of the backwash receptacle 8 for receiving the backwash water with the particulate and biological matter from the backwash action. In the case that the microporous membrane filter is a bundle of hollow fibre membrane filters, optionally, the fibres are pottet at both ends and have an inside-out flow for filtration. In this case, biofilm formation and accumulation of particles occurs inside the hollow fibres. Examples of likewise principles are disclosed in WO2008/110166 and WO2008/110172.

Actually, the backwash tube 12 also works as a vent tube in having a vent opening at its uppermost part 13, where it bends. Alternatively, instead of using a single tube for venting as well as for backwash water, two separate tubes may be provided, one for venting and one for the backwash water.

When dirt water from the dirt water container 2 enters the upstream side in the filtration unit 5, air resident on the upstream side of the filtration unit 5 is pressed along the membrane and out of the filtration unit 5 and into the vent tube/backwash tube 12, after which the air in the vent tube 12 is followed by dirt water from the upstream side of the filtration unit 5. The dirt water in the vent tube 12 will rise to the same level as the dirt water in the dirt water container 2. For this reason, the uppermost part 13 with the vent opening in the vent tube 12 should be above the normal maximum level of the dirt water in the dirt water container 2. For this reason, the location of the vent opening is near the upper edge 14 of the dirt water container 2, which is less than 5 cm from the upper edge 14, or rather 1-2 cm from the upper edge 14, as illustrated. However, the uppermost part 13 with the vent opening could also be above the edge of the dirt water container 2.

FIG. 1C is a drawing with a cut-away of a portion of the device 1. As illustrated, the dirt water container 2 has an elevated outlet 15, for example 1-3 cm, above the bottom 16 of the dirt water container 2. This way, it is assures that the heaviest particulate matter is collected at the bottom 16 of the dirt water container 2 and prevented from entering the dirt water tube (shown with reference 49 in FIG. IB) and entering the filtration unit 5 through upstream inlet 19 of the filter housing 5. The dirt water container 2 is covered by a lid 17 which has a sloping surface towards an entrance opening which is closed by a closure member 18. The downwards sloping surface of the lid 17 acts as a funnel when filling water into the dirt water container 2 when the closure member 18 is removed. Also, the lid 17 is removable for cleaning purposes.

The dirt water container 2 may, advantageously, comprise a coarse filter at its fluid inlet. A further option for the device is an antimicrobial source in the dirt water container, for example a halogen source. A chlorine tablet is one option for a halogen source.

As illustrated in FIG. 1C, the clean water tank 3 has an enclosure that is entirely closed and sealed against the environment apart from a tap (shown as reference 24 in FIG. ID) for dispensing of water from the clean water tank 2 through the tap 24. However, alternatively, it may be provided openable, for example by a lid, in order to give access to the clean water tank for cleaning. It should be noted that the clean water tank 3 has a sloping upper surface 33 in order not to accumulate water that may have been spilled on the surface 33.

As illustrated in FIG. ID, the device 1 is compact due to its modular build-up with the mutually stacked dirt water container 2, intermediate module 4, and clean water tank 3. The stacked principle is aesthetically attractive, minimizes accumulation of dirt around the tubing and the filtration unit 5 and also allows an easy cleaning of the device 1.

FIG. 2 is an exploded drawing illustrating some of the above mentioned features in more detail. In addition, is illustrates an agent reservoir 31, in which a source for an agent is added to the clean water in the clean water tank 3. Examples of an agent are nutrients, pharmaceuticals, or antimicrobials, or combinations thereof. This agent reservoir 31 is provided inside the clean water tank 3. Clean water from the filtration unit 5 flows into the agent reservoir 31 and enriches the water by dissolving a slow-soluble matrix in side the agent reservoir 31. For example, the matrix contains an agent that is liberated upon dissolution of the matrix.

In order for microbes not to proliferate inside the clean water tank 2, the internal walls of the clean water tank 2 may be provided with an antimicrobial surface. Non-limiting examples of antimicrobials for such purpose are silver and quaternary ammonium, both having the advantage of being long lasting. Further examples are given in International patent application WO2008/067817. The dirt water container 2 comprises on its outer side a set of snap-on connectors 21 for the vent tube / backwash tube 12. The vent tube 12 has a vent opening 22 at its uppermost part 13, where it is bent.

A distributor 25 is attached to the upper part of the filtration unit and received water from the downstream side through an opening in the filter housing 5', the opening working as a downstream outlet of clean water. It receives clean water from the downstream side for distribution into the clean water tank 3 and into the backwash bulb 7. It is also configured to prevent the water from the bulb 7 entering the clean water tank 3 during backwash as it comprises a check valve that blocks the fluid passage between the backwash bulb 7 and the clean water tank 3 during backwash.

As it appears from the drawing, the distributor 25 is located attached to the upper side of the filtration unit 25. As the water exits from the downstream side of the filtration unit 5 at the top of the filtration unit 5 above the membrane in the filtration 5 unit, the filtration unit 5 is not drained, thus, minimizing the risk for drying out of the porous membrane in the filtration unit 5, which is important for polymer membranes, such as hollow fibre membranes, because a drying out can lead to collapse of the membrane pores. For an alternative embodiment, it should be mentioned that the filter housing 5 ' could also be connected to the distributor 25 through a tube.

As illustrated in FIG. 3A, the distributor 25 also comprises a vent valve 28A for venting air from the sealed clean water tank 3 when water enters the tank 3 from the filtra- tion unit 5. In FIG. 3B, a vent channel 28B is shown, which received the air and which is in connection with the vent valve 28A. Also shown in FIG. 3B and FIG. 3C is the inlet channel 29 for receiving filtered water from the downstream side through the downstream outlet 29A and into the distributor 25. This filtered water from the down- stream side is distributed either through the first distributor outlet 20 for feeding into the backwash bulb 7 or through second distributor outlet 30 for feeding into the clean water tank 3. As illustrated in FIG. 3A and 3C, the distributor 25 also comprises a ball valve housing 26 with ball 26B. The opening 26A seen on top of the ball valve housing 26 in FIG. 3A is only used during assembly for placing a ball 31 inside the valve housing 26 and would normally be covered by a plate 27 as illustrated in FIG. 3C. Inside the ball valve housing 26, a ball 26B is provided for sealing against valve seat 32 when pressure is exerted on the ball 26B from pressurised backwash water flowing into the ball valve housing 26 from the backwash bulb 7 backwards through the second filter housing outlet 20.

Under normal operational conditions, gravity forces water from the dirt water con- tainer 2 through the membranes in the filtration unit 5 and into the downstream side of the filtration unit 5. From the downstream side of the membrane in the filtration unit 5, filtered water enters the distributor 25 through an inlet channel 29. Through the distributor, the water will first flow into the first distributor outlet 20 and fill the backwash bulb 7 before the water slowly under low pressure flows through the ball valve housing 26 A and into the second distributor outlet 30 and further into the clean water tank 3. During this low pressure flow, the ball 26B floats on top of the water in the ball valve housing 26. If the backwash bulb 7 is compressed, the water from the bulb 7 will flow backwards through the first distributor outlet 20 and into the inlet channel 29. As, the compression of the bulb 7 causes a flow speed of the backwash water much higher than the normal flow speed of the water from the filtration unit under normal gravity filtering conditions, the water presses the ball 26B in the ball valve housing 26 against the seat 32, preventing water to enter the second distributor outlet for the clean water tank 2. Instead, the backwash water flows into the downstream side inside the filtration unit 5 and exerts backwash pressure on the membrane for forcing clean water from the bulb 7 backwards through the membrane pores. The ball valve system is a simple arrangement that guides the backwash water to the correct location without the necessity of interference by the user apart from compressing the backwash bulb 7. When the backwash water is pressed into the downstream side of the membrane in the filtration unit 5 and further backwards through the membrane into the upstream side of the filtration unit 5, a check valve (not shown), for example a corresponding one way ball valve, prevents the backwash water to enter the tube 49 to the dirt water tank 2, see FIG. 2 in this respect. Instead, the backwash water exits the upstream outlet 23 for flowing through backwash tube (vent tube) 12, 12A and into the backwash receptacle 8. The backwash receptacle 8 minimizes the risk of users drinking the backwash water by mistake. For example, the device of FIG. 3 comprises a selection or all of the following features in combination,

- the clean water tank has an enclosure sealed against the environment,

- the dirt water container is arranged at least 10 cm above the clean water tank,

- the filtration unit is arranged in a space above the clean water tank and below the dirt water container,

- the porous filtration membrane is an ultrafiltration membrane or microfiltration membrane,

- the membrane is a bundle of hollow microporous fibres;

- the space is defined by an intermediate module having cross sectional dimensions in the horizontal plane corresponding to cross sectional dimensions of the dirt water container and the clean water tank,

- the intermediate module is supported by the clean water tank and, in turn, supports the dirt water container when in stacked conditions,

- the dirt water container, the intermediate module and the clean water tank in such stacked conditions form an integrated three-module system,

- the first flow connector comprises a tube,

- the filtration unit is oriented with the longitudinal axis within less than 10 degrees from a horizontal plane, and

- the device is portable.

FIG. 4A and 4B illustrate an embodiment that can be decreased in size for storage or transport. This device comprises a dirt water container 2 and a clean water tank 3 and a filtration unit 5 as explained above, as well as backflush bulb 7 and backwash recepta- cle 8. As an option, the dirt water container 2 also has an upper coarse filter 34. The filtration unit 5 is inserted into a corresponding compartment 41 and covered by a lid 35 which is fastened to the clean water tank 3 by snap connectors 40. The dirt water container 2 is connected to the clean water tank 3 by a connector 36. The connector has an upper platform 39 for supporting the dirt water container 2. This connector has profiles 37 that slidingly cooperate with grooves 38 in the outer side of the clean water tank 3 in a telescopic manner. By pushing the connector 36 downwards with the profiles 37 sliding in the grooves 38, the platform 39 is lowered until it rests upon lid 35. This is a good position for the connector during storage, because the volume of the device is decreased and it is more stable. For use, the connector 36 with the platform 39 is pulled away from the clean water tank 3 until a maximum height. This height may be secured by a snap lock, for example. The advantage of the greater distance between the dirt water container 2 and the clean water tank 3 is a higher gravity pressure on the water. For portable models of the device as illustrated in FIG. 4, the height of the connector is typically between 10 and 50 cm, for example between 15 and 30 cm.

In a further embodiment, the dirt water container 2 is made of a flexible, collapsible material and can be pressed into a flat structure taking up very little volume, which decreased the volume even further for transport and storage.

FIG. 4C illustrates the tubing including the dirt water tube 49 from the dirt water container to the filtration unit 5, the vent tube 12 with the extension 12A to the backwash receptacle 8, and the tube between the distributor 25 and the backwash bulb 7.

FIG. 4D is a cross sectional drawing of the device 1, which illustrates the backwash receptacle 8 having an opening 8A for receiving backwash water. In addition, it comprises a number of smaller holes 8B around the opening 8A, which makes it difficult to drink from the backwash receptacle 8 and indicates for the user that the water in the backwash receptacle is not intended for consumption. In addition, the opening 8A is provided lower than the upper surface 8C of the backwash receptacle 8, such that it is difficult to pair the opening 8 with lips from a mouth of a user for drinking. FIG. 5A-D illustrate an embodiment that can be decreased in size for storage or transport. FIG. 5A illustrates an assembled drawing, FIG. 5B an exploded drawing, FIG: 5C illustrates the tubing, and FIG. 5D shows a collapsed state of the device. This device comprises a dirt water container 2 and a clean water tank 3 and a filtration unit 5 as explained above, as well as backflush bulb 7 and backwash receptacle 8. The dirt water container has a lid 17 with a coarse filter 34. The filtration unit 5 is inserted into a corresponding compartment 41. Once the filtration unit 5 inserted into the compartment

41, the clean water tank is covered by a lid 35 which is fastened to the clean water tank 3.

The dirt water container 2 is connected to the clean water tank 3 by a connection 36'. The connection 36' is connected to the dirt water container 2 by first a rotatable hinge

42, best seen in FIG. 5A, with two cooperating hinge parts 42A and 42B, best seen in FIG. 5B, and connected to the clean water container 3 by a second hinge comprising a third hinge part 43 and a sliding groove 44. By rotating the connection 36' in the hinges 42 and due to the third hinge part 43 in cooperating groove 44, the dirt water container 2 is lifted upwards relatively to the clean water tank 3 and can likewise be lowered in order to take up less space. In order to stabilize the connection 36', it com- prises two connection parts 47, 48. The second part 48 is hinged by the fourth hinge part 45 in bushing 46. The first and the second connection parts 47 and 48 are also mutually hinged by hinge part 50 and a corresponding cooperating hinge part (not shown) in the second connection part 48. When the dirt water container 2 is lowered by a scissor action of the two connection parts 47, 48, it may also be rotated in addition around the hinge 42 and, when the lid 17 is removed, through its opening 2A embrace partly the clean water tank 3 in the volume of the dirt water container 2, as it is illustrated in FIG. 5D. This adds to the compactness for storage and transport and protects the tap 24 against transport dam- age.

In FIG. 5A, the vent tube and the tube connections between the dirt water container 2 and the filtration unit 5 and further to the backwash bulb 7 and the backwash recepta- cle 8 are not illustrated in detail but are similar to the embodiment in FIG. 1 and FIG. 2. Optionally, also, the distributor as illustrated in FIG. 3 may be applied for the embodiments of FIG. 4 and 5. FIG. 5C illustrated the possible tubing for the FIG. 5A embodiment in line with the tubing in the embodiment as explained for FIG. 2, where tubing 49 connects the dirt water container 2 with the filtration unit 5, tubing 11 connects the distributor 25 of filtration unit 5 with the backwash bulb 7, and tubing 12 is a vent/backwash tube extended with tubing 12A into the backwash receptacle 8.

FIG. 6 illustrates a slightly amended embodiment relatively to the embodiment of FIG. 5, where the backwash bulb 7 and the backwash receptacle 8 are differently oriented. The backwash bulb 7 is fastened permanently to the device such that it is not removable, which simplifies the handling of the device even further, because it can be easily compressed in the shown location.

For example, the devices above comprises a combination of the following features,

- the clean water tank has an enclosure sealed against the environment,

- the dirt water container is arranged at least 10 cm above the clean water tank, - the filtration unit is arranged in a space above the clean water tank and below the dirt water container,

- the porous filtration membrane is an ultrafiltration membrane or microfiltration membrane,

- the porous filtration membrane is a bundle of hollow fibre membranes

- the intermediate module is supported by the clean water tank and, in turn, supports the dirt water container when in stacked conditions,

- the first flow connector comprises a tube,

- the filtration unit is oriented with the longitudinal axis within less than 10 degrees from a horizontal plane, and

- the device is portable.

Exemplary, non limiting dimensions for the device as described above and according to the claims are as follows. The volumes of the dirt water container and the clean water tank are between 5 and 30 litres or 5 and 20 litres, for example between 8 and 12 litres. The length of the filtration unit is between 10 and 50 cm. The height of the intermediate module is between 10 and 40 cm. In case that a bundle of hollow fibre membranes is used for the filtration unit, the number of fibres is between 50 and 400 and the cross sectional outer diameter of each fibre is between 1 and 3 mm.

It should be mentioned that the above embodiments described in relation to the drawings can be modified by exchanging the filtration unit with other purification units, for example comprising resins for chemical purification as well as adsorption media. In such cases, the aspects of the vent tube and the backwash bulb and receptacle may be avoided, however, keeping the overall technical solution of the interplay between the dirt water container (2), the clean water tank (3) and the intermediate module (4), as described in FIG. 1 and 2, or the telescopic arrangement as described in FIG. 4, or the rotational means for collapsing the device, as illustrated in FIG. 5 and 6.

FIG. 7A and 7B illustrate a possible embodiment for a filtration module 5. The upstream inlet 19 and the upstream outlet 23 are arranged differently that in the embodiment of FIG. 2 but has the same effect. Through the upstream inlet 19, water from the dirt water container (not shown) enters the filtration module 5 into the upstream side 52. Air and water can exit the upstream side 52 through upstream outlet 23. The dirt water is enters the inner channels of the microporous hollow filtration membranes 50, which are potted at both ends in a polymer potting 51 , and is filtered in an inside out flow into the downstream side 53. From the downstream side 53, it enters distributor 25 and exits the distributor through first distributor outlet 20 into a backwash bulb (not shown) and through second distributor outlet 30 into the clean water tank (not shown). The distributor's ball valve system with ball 26B is explained in connection with FIG. 2.

During backwash, clean water is pressed backwards through the membrane 50 bundle from the downstream side 53 into the upstream side 54, and the water with the particles that are removed from the hollow fibre membrane 50 bundle leaves the upstream side 52 through upstream outlet 23. A ball valve 54 with ball 55 prevents the backwash water to flow back into the dirt water tank (not shown). Number list

1 - device

2 - dirt water container

3 - clean water tank

4 - intermediate module

5 - filtration unit

5 ' - filter housing

6 - cavity in clean water tank enclosure for backwash bulb

7 - backwash bulb

8 - backwash receptacle

8A - opening in the backwash receptacle for receiving backwash water

8B - holes surrounding the opening 8A

8C - upper surface of backwash receptacle 8

9 - cavity in clean water tank enclosure for backwash receptacle

10 - container outlet

11 - hose between backwash bulb 7 and filtration unit 5 (third flow connector)

12 - vent tube

12A - backwash tube

13 - uppermost part of the backwash tube / vent tube

14 - upper edge of dirt water container

15 - elevated part of container outlet

16 - bottom of dirt water container

17 - lid of dirt water container

18 - closure member in lid 17

19 - upstream inlet in filter housing

20 - first distributor outlet from distributor to backwash bulb 7

21 - snap connectors for vent tube 12

22 - vent opening

23 - upstream outlet from filter housing

24 - tap 25 - distributor (second flow connector)

26 - valve housing

26A - valve opening covered by cover 27

26B - ball

27 - cover for opening 26 A of ball valve housing 26

28 A - vent valve

28B - vent valve channel

29 - inlet channel in distributor

29A - downstream outlet from outlet side

30 - second distributor outlet from distributor 25 to clean water tank 3

31 - agent reservoir

32 - ball seat

33 - sloping upper surface of clean water tank 3

34 - prefilter

35 - lid of clean water tank 3

36 - connector

37 - connector profile

38 - grooves in clean water tank 3 cooperating with connector profile 37

39 - platform support for dirt water container 2

40 - snap connectors of lid 35

41 - compartment for filtration unit 5 on top of clean water tank 3

42 - hinge between connection 36' and dirt water container 2

42 A, 42B - first and second hinge parts between connection 36' and dirt water container 2

43 - third hinge part between connection 36' and dirt water tank 2

44 - groove in lid 35 for third hinge part 43

45 - fourth hinge part between lid 35 and second part 48 of connection 36'

46 - bushing in clean water lid 35 for fourth hinge part 45

47 - first part of connection 36'

48 - second part of connection 36'

49 - tube between dirt water tank 2 and filtration unit 5 (first flow connector)

50 - hollow fibre microfiltration membranes

51 - potting of the membranes - upstream side

- downstream side

-check valve for preventing backflow into dirt water container 2 - ball for check valve 54.