Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WHEEL DISC FOR A RAIL VEHICLE
Document Type and Number:
WIPO Patent Application WO/2014/177410
Kind Code:
A1
Abstract:
The invention concerns a wheel disc for a rail vehicle, comprising: a wheel hub surrounding a rotary shaft; a wheel flange; and a web connecting the wheel hub to the wheel flange. The invention is characterized in that a transition curve between the web and the wheel hub and/or a transition curve between the web and the wheel flange is/are formed on at least one axial side in each radial cutting plane such that the transition curve is formed by a Bezier curve, the Bezier curve merging at a constant tangent into the contour of the web and merging at a constant tangent into the contour of the wheel hub or of the wheel flange.

Inventors:
LUBOS FLORIAN (DE)
KAMPS ANDREAS (DE)
SCHNEIDER LARS (DE)
Application Number:
PCT/EP2014/058039
Publication Date:
November 06, 2014
Filing Date:
April 22, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VOITH PATENT GMBH (DE)
International Classes:
B60B17/00
Domestic Patent References:
WO2003064182A12003-08-07
Foreign References:
DE2320726A11974-11-14
EP0794872A11997-09-17
US20130026723A12013-01-31
EP0794872A11997-09-17
Attorney, Agent or Firm:
Dr. Weitzel & Partner (DE)
Download PDF:
Claims:
Patentansprüche

1 . Radscheibe (1) für ein Schienenfahrzeug mit

1 .1 einer eine Drehachse (2) umgebenden Radnabe (3);

1 .2 einem Radkranz (5); und

1 .3 einem die Radnabe (3) mit dem Radkranz (5) verbindenden Steg (4);

dadurch gekennzeichnet, dass

1 .4 eine Übergangskurve (6) zwischen dem Steg (4) und der Radnabe (3) und/oder eine Übergangskurve (6) zwischen dem Steg (4) und dem Radkranz (5) auf wenigstens einer axialen Seite in jeder radialen Schnittebene so ausgebildet ist, dass

1 .5 die Übergangskurve (6) als eine Bezierkurve (B) ausgebildet ist,

1 .6 die Bezierkurve (B) tangentenstetig in die Kontur des Stegs (4) übergeht; und

1 .7 die Bezierkurve (B) tangentenstetig in die Kontur der Radnabe (3) oder des

Radkranzes (5) übergeht.

2. Radscheibe (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Bezierkurve (B) als Bezierkurve (B) zweiten oder dritten Grades ausgebildet ist. 3. Radscheibe (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die

Bezierkurve (B) zwei Hauptpunkte (Ρο,Ρβ) und einen oder zwei Kontrollpunkte (Pi ,P2) aufweist, wobei die Hauptpunkte (Ρο,Ρβ) im dem Bereich liegen, in dem die Bezierkurve (B) tangentenstetig in die Kontur des Stegs (4) und der Radnabe (3) oder des Radkranzes (5) übergeht, und wobei die Kontrollpunkte (Pi ,P2) auf zwei Tangenten (ti ,t2) an den Hauptpunkten (Ρο,Ρβ) in den tangentenstetigen

Übergänge liegen.

4. Radscheibe (1) nach Anspruch 3, dadurch gekennzeichnet, dass die beiden

Kontrollpunkte (Pi ,P2) auf den Tangenten (ti ,t2) in einem Schnittpunkt (S) der Tangenten (ti ,t2) zu einem Kontrollpunkt zusammenfallen.

5. Radscheibe (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kontur der Radnabe (3) im Anschluss an die Bezierkurve (B) eine

Anschlusskontur in Form einer Geraden (10) aufweist, welche in einem von Null verschiedenen Winkel, insbesondere einem Winkel (γ) von mehr als 5°, zur axialen Richtung (A) verläuft.

6. Radscheibe (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kontur des Stegs (4) im Anschluss an die Bezierkurve (B) eine

Anschlusskontur in Form eines Bogens aufweist.

7. Radscheibe (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kontur des Stegs (4) im Anschluss an die Bezierkurve (B) eine

Anschlusskontur in Form einer Geraden (9) aufweist.

8. Radscheibe (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Steg (4) sich in Richtung von der Radnabe (3) hin zu dem Radkranz (3) verjüngt.

9. Radscheibe (1 ) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Bezierkurve (B) so ausgebildet ist, dass der tangentenstetige Übergang zur Anschlusskontur abgeschlossen ist, bevor in wenigstens einem der radialen Schnitte ein Anschlussbereich (7) für ein Aufnahmeelement und/oder

Anbauelement an dem Steg (4) angeordnet ist.

Description:
Radscheibe für ein Schienenfahrzeug

Die Erfindung betrifft eine Radscheibe für ein Schienenfahrzeug nach der im Oberbegriff von Anspruch 1 näher definierten Art.

Radscheiben für Schienenfahrzeuge sind aus dem allgemeinen Stand der Technik bekannt. Sie bestehen typischerweise aus einer um eine Drehachse umlaufenden Radnabe sowie einem Radkranz, welcher zum Abrollen auf den Schienen bestimmt ist. Die zentral liegende Radnabe und der am äußeren Umfang liegende Radkranz sind dabei über einen sogenannten Steg miteinander verbunden. Dieser Steg, welcher in radialer Richtung gerade, schräg oder gebogen ausgeführt wird, ist typischerweise als umlaufende Scheibe ausgebildet. Er kann insbesondere weitgehend

rotationssymmetrisch aufgebaut sein und somit in jedem radialen Schnitt dieselbe oder eine vergleichbare Kontur aufweisen. Unter der Kontur im Sinne der hier vorliegenden Erfindung ist dabei die seitliche begrenzende Oberflächenform der Radscheibe im radialen Schnitt zu verstehen. Eine gerade Radscheibe hätte also eine durch eine Gerade ausgebildete Kontur, eine gebogene Radscheibe eine durch einen S-förmigen oder C- förmigen Bogen ausgebildete Kontur. Nun ist es so, dass insbesondere die Übergangskurve von der Radnabe zum Steg und, insbesondere bei kleineren Radscheiben, auch oder alternativ dazu die Übergangskurve zwischen dem Steg und dem Radkranz einer sehr hohen Belastung unterliegt. Um dieser hohen Belastung entgegenzuwirken, sind entsprechende Materialstärken oder geeignete Bearbeitungsschritte zur Verfestigung des Materials in den kritischen Bereichen notwendig. Dies ist aufwändig und teuer und macht die Radscheibe beim Einsatz von hohen Materialstärken entsprechend schwer.

Um dieser Problematik entgegenzuwirken ist es aus der EP 0 794 872 A1 bekannt, dass durch eine komplexe Konstruktionsvorgabe für die Übergänge die Spannungen in der Radscheibe homogenisiert werden, sodass mit geringeren Materialstärken eine hohe Festigkeit erzielt werden kann. Der Aufbau ist dabei außerordentlich komplex und nutzt eine Funktion (Parabel) fünfter Ordnung zur Konstruktion der Übergänge. Dies ist einerseits bei der Konstruktion und andererseits bei der Fertigung aufwändig in der Programmierung. Die Aufgabe der hier vorliegenden Erfindung besteht nun darin eine Radscheibe für ein Schienenfahrzeug anzugeben, welche eine noch weiter verbesserte Festigkeit ermöglicht und welche darüber hinaus einfach und effizient konstruiert und hergestellt werden kann.

Erfindungsgemäß wird diese Aufgabe durch eine Radscheibe mit den Merkmalen im kennzeichnenden Teil des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den restlichen hiervon abhängigen Unteransprüchen.

Bei der erfindungsgemäßen Radscheibe für ein Schienenfahrzeug ist es vorgesehen, dass zumindest eine der Übergangskurven zwischen dem Steg und der Radnabe und/oder zwischen dem Steg und dem Radkranz auf wenigstens einer axialen Seite in jeder seiner radialen Schnittebenen so ausgebildet ist, dass die folgenden drei

Bedingungen erfüllt sind. Die Übergangskurve wird grundsätzlich durch eine Bezierkurve ausgebildet. Eine solche Bezierkurve ist einfach, effizient und ermöglicht einen sehr gleichmäßigen Übergang mit hoher Festigkeit und sehr guter Spannungsverteilung auf den gesamten Bereich des Übergangs. Diese Bezierkurve geht an ihrem einen Ende tangentenstetig in die Kontur des Stegs über. Außerdem geht die Bezierkurve an ihrem anderen Ende tangentenstetig in die Kontur der Radnabe und/oder des Radkranzes, je nachdem, welche der Übergangskruven sie ausbildet, über. Durch diesen

tangentenstetigen Anschluss der Bezierkurve an die Kontur entweder der Radnabe und/oder des Radkranzes entsteht ein Aufbau, welcher sehr einfach und effizient konstruiert und für die Fertigung programmiert werden kann. Er ermöglicht mit minimalem Materialeinsatz durch eine Vergleichmäßigung der Spannungsverteilung eine sehr hohe Festigkeit der Radscheibe.

Eine vorteilhafte Weiterbildung der erfindungsgemäßen Radscheibe sieht es dabei vor, dass die Bezierkurve als Bezierkurve zweiten oder dritten Grades ausgegbildet ist. Eine solche quadratische oder kubische Bezierkurve hat dabei den Vorteil, dass sie lediglich drei oder vier Stützpunkte (Haupt- und Kontrollpunkte) benötigt und deshalb besonders einfach und effizient in der Berechnung ist. Durch einen höheren Grad der Bezierkurve werden die Ergebnisse hinsichtlich der mechanischen Belastbarkeit nicht oder nur unwesentlich verbessert, sodass eine quadratische oder kubische Bezierkurve mit dem entsprechenden verringerten Berechnungsaufwand für die erfindungsgemäße

Radscheibe von besonderem Vorteil ist.

Gemäß einer besonders günstigen Ausgestaltung der erfindungsgemäßen Radscheibe kann es ferner vorgesehen sein, dass die Bezierkurve zwei Hauptpunkte und einem oder zwei Konrollpunkte aufweist, wobei die Hauptpunkte in dem Bereich liegen, indem die Bezierkurve tangentenstetig in die Kontur des Stegs und der Radnabe oder des

Radkranzes übergeht, und wobei die beiden Kontrollpunkte auf zwei Tangenten an den Hauptpunkten in den tangentenstetigen Übergängen liegen. Bei dieser besonders günstigen Ausgestaltung der erfindungsgemäßen Übergangskurve in Form einer

Bezierkurve handelt es sich also um eine kubische Bezierkurve mit vier Stützpunkten. Die beiden Hauptpunkte liegen dabei genau in den Punkten, in denen die Anschlusskontur endet und die Bezierkurve beginnt beziehungsweise die Bezierkurve endet und die Anschlusskontur beginnt. Die beiden Kontrollpunkte liegen dann auf Tangenten, welche die tangentenstetigen Übergänge in den beiden Hauptpunkten entsprechend verlängern. Bevorzugt liegen die Kontrollpunkte dabei zwischen den Hauptpunkten und dem typischerweise immer auftretenden Schnittpunkt der beiden Tangenten. Mit minimalem Berechnungsaufwand lässt sich so eine Radscheibe mit einem sehr stabilen Übergang zwischen dem Steg und der Radnabe beziehungsweise dem Steg und dem Radkranz erzielen.

In einer weiteren sehr günstigen Ausgestaltung hiervon ist es nun ferner vorgesehen, dass die beiden Kontrollpunkte auf den Tangenten in einem Schnittpunkt der Tangenten zu einem Kontrollpunkt zusammenfallen. Durch die direkte Wahl der beiden

Kontrollpunkte, indem diese einen gemeinsamen Kontrollpunkt ausbilden, welcher genau auf dem Schnittpunkt der Tangenten liegt, wird der Berechnungsaufwand weiter vereinfacht, wodurch die Konstruktion, die Programmierung und die Fertigung nochmals effizienter wird. In einer weiteren sehr günstigen Ausgestaltung der Radscheibe ist es ferner vorgesehen, dass die Kontur der Radnabe im Anschluss an die Bezierkurve eine Anschlusskontur in Form einer Geraden aufweist, welche in einem von null verschiedenen Winkel, insbesondere einem Winkel von mehr als 5°, zur axialen Richtung verläuft. Die

Radscheibe kann in dieser sehr günstigen Ausgestaltung also so ausgebildet sein, dass die Radnabe und der Radkranz nicht mittig übereinander liegen, sondern von einem schräg verlaufenden Steg, welcher in seiner Gesamtform den Mantel eines

Pyramidenstumpfs ähnlich ist, miteinander verbunden sind. Dies kann hinsichtlich der eingeleiteten Kräfte und/oder des Bauraums für eventuelle an dem Steg zu befestigende Anbauteile von entscheidendem Vorteil sein.

In einer vorteilhaften Weiterbildung der erfindungsgemäßen Radscheibe kann es ferner vorgesehen sein, dass die Kontur des Stegs im Anschluss an die Bezierkurve eine Anschlusskontur in Form eines Bogens aufweist. Ein solcher Bogen welcher

tangentenstetig in die Bezierkurve übergeht, tritt insbesondere bei gebogenen Stegen, also im radialen Schnitt S-förmig oder C-förmig verlaufenden Stegen, auf. In einer alternativen Ausgestaltung hiervon ist es dagegen vorgesehen, dass die Kontur des Stegs im Anschluss an die Bezierkurve eine Außenkontur in Form einer Geraden aufweist.

In einer günstigen Ausgestaltung ist der Steg in Richtung des Radkranzes verjüngt. Unabhängig von der genauen Ausgestaltung des Stegs beispielsweise über gerade oder bogenförmig verlaufende Außenkonturen kann sich der Steg in Richtung von der Radnabe zum Radkranz hin verjüngen. Ein Winkel dieser Verjüngung gegenüber der Mittelachse des Stegs kann dabei vorzugsweise mehr als 0,5° betragen. Er wird im Allgemeinen weniger als 20°, vorzugsweise weniger als 15° betragen. Ein geeignet ausgewählter Winkel in diesem Bereich ermöglicht so einen sehr harmonischen tangentenstetigen Übergang von der Bezierkurve in die Kontur des Stegs und verringert damit Spannungsspitzen im Bereich des Stegs, sodass mit minimalem Materialeinsatz die Festigkeit weiter erhöht werden kann.

In einer sehr vorteilhaften Weiterbildung hiervon ist es, unabhängig davon, ob die Anschlusskontur als Gerade oder als Bogen ausgebildet ist, vorgesehen, dass die Bezierkurve so ausgebildet ist, dass der tangentenstetige Übergang zur Anschlusskontur abgeschlossen ist, bevor in wenigstens einem der radialen Schnitte ein Anschlussbereich für ein Aufnahmeelement und/oder Anbauelement an dem Steg angeordnet ist. Die Bezierkurve als Übergangskurve in die Anschlusskontur des Stegs ist in ihrer radialen Ausdehnung so ausgewählt, dass diese in jedem Fall abgeschlossen ist, bevor

Anbauelemente und/oder Aufnahmeelemente, beispielsweise Aufnahmeelemente für eine Bremsscheibe oder andere an der Radscheibe anzuschließende Elemente, vorgesehen sind. Dies garantiert, dass solche Anbauelemente und/oder Aufnahmeelemente, welche den Verlauf der angedachten Bezierkurve stören würden, in deren Bereich nicht auftreten. Die Bezierkurve wird also in ihrer radialen Ausdehnung so angepasst, dass der harmonische durch die Bezierkurve geschaffene Übergang mit besten

Festigkeitseigenschaften nicht von solchen„Störstellen" unterbrochen wird. Dies gewährleistet die beste Festigkeit. Ungeachtet dessen kann es vorgesehen sein, dass im Fußbereich des Stegs, im Material der Radnabe eine Ölabpressbohrung oder eine Schmierölbohrung zur Schmierung der Radnabe auf einer Achse vorgesehen ist. Eine solche Bohrung ist dabei nicht als Störstelle im Sinne der hier vorliegenden Erfindung zu verstehen.

Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Radscheibe ergeben sich aus dem Ausführungsbeispiel, welches nachfolgend unter Bezugnahme auf die Figuren näher beschrieben wird.

Dabei zeigen:

Figur 1 eine Seitenansicht einer Radscheibe;

Figur 2 einen radialen Schnitt durch eine Hälfte einer Radscheibe;

Figur 3 mehrere mögliche Ausgestaltungen der Radscheibe in schematischen

Darstellungen analog zu der Darstellung in Figur 2; und

Figur 4 eine erfindungsgemäße Ausgestaltung des Übergangs zwischen der

Radnabe und dem Steg.

In der Darstellung der Figur 1 ist rein beispielhaft eine Seitenansicht einer Radscheibe 1 zu erkennen. Eine solche Radscheibe 1 wird als Rad für Schienenfahrzeuge verwendet. Der Aufbau ist aus dem in Figur 1 mit II - II bezeichneten Schnitt, welcher in Figur 2 zu erkennen ist, näher dargestellt. Der dargestellte Aufbau der Figur 2 ist dabei rein schematisch zur Verdeutlichung der Elemente einer Radscheibe zu verstehen. Der erfindungsgemäße Aufbau wird dann anhand der Figur 4 später noch näher erläutert. In dem radialen Schnitt der Figur 2 ist zu erkennen, dass die Radscheibe 1 aus einer eine Drehachse 2 umgebenden Radnabe 3 besteht. Diese Radnabe 3 wird über ein scheibenförmiges Bauteil, welches als Steg 4 bezeichnet wird, mit einem Radkranz 5, welcher beim Einsatz der Radscheibe 1 auf den Schienen abrollt, verbunden. Dieser Aufbau, wie er in Figur 2 dargestellt ist, ist allgemein bekannt und üblich. Es handelt sich bei der Darstellung in Figur 2 um einen Aufbau mit einem sogenannten geraden Steg 4, welcher senkrecht zur Drehachse 2 in radialer Richtung verläuft.

Anstelle eines solchen geraden Stegs 4 können auch andere Konstruktionen vorgesehen sein. Diese sind schematisch in Figur 3 angedeutet. In der Figur 3a) ist dabei ein schräg verlaufender Steg 4 zu erkennen, dessen Mittelachse M in einem Winkel α gegenüber der radialen Richtung R geneigt ausgebildet ist. Der Winkel α kann dabei bevorzugt mehr als 5° betragen. In der Darstellung der Figur 3b) ist ein im radialen Schnitt C-förmig gebogener Steg 4 zu erkennen, in Figur 3c) ein S-förmiger Steg 4. Die C-förmige bzw. S- förmige Ausbildung des Stegs 4 setzt sich entsprechend aus einem gleichlaufenden beziehungsweise zwei oder mehr gegenläufigen Bögen, welche die Außenkontur des Stegs 4 ausbilden, zusammen.

Besonders kritisch bei Radscheiben 1 sind Übergangskurven 6 zwischen der Radnabe 3 und dem Steg 4 beziehungsweise dem Steg 4 und dem Radkranz 5. Deshalb ist es vorgesehen, dass zumindest eine dieser in der Darstellung der Figur 2 mit 6 bezeichneten Übergangskurven in der nachfolgend in Figur 4 am Beispiel eines Übergangs zwischen der Radnabe 3 und dem geraden Steg 4 beschriebenen Art und Weise ausgebildet ist. Die Übergangskurve 6 ist dabei so ausgestattet, dass sie in der radialen senkrecht auf der Drehachse 2 bzw. der axialen Richtung A stehenden Richtung R jeweils endet, bevor der in der Darstellung der Figur 2 verdickt dargestellte Anschlussbereich 7 beginnt, welcher zur Aufnahme von Anbauelementen oder Aufnahmeelementen für

Anbauelemente vorgesehen ist. Beispielhaft ist dies in der Darstellung der Figur 2 durch eine Bohrung 8 angedeutet, welche zur Aufnahme von Anbauelementen dient. Dies können beispielsweise Bremsscheiben, Radschallabsorber oder dergleichen sein.

Die Übergangskurven 6 oder zumindest eine der in Figur 2 eingezeichneten

Übergangskurven 6 der Radscheibe 1 sind nun wie, nachfolgend an einem bevorzugten Ausführungsbeispiel erläutert, ausgeführt. Dieses ist in der schematischen Darstellung der Figur 4 zu erkennen. Die einzelnen Abschnitte sind dabei nicht maßstabsgerecht dargestellt. Die Darstellung der Figur 4 ist schematisch zu verstehen und dient dazu, die Beschreibung der Kontur zu erleichtern. Die Übergangkurve 6 wird dabei durch eine in der Darstellung der Figur 4 mit B bezeichnete Bezierkurve, ausgebildet.

Grundsätzlich und unabhängig von einer in Figur 4 dargestellten spezifischen

Ausführungsform lässt sich die Bezierkurve B wie folgt mittels des Bernsteinpolynoms mathematisch darstellen:

Dabei sind P ; die Richtungsvektoren zu den Stützpunkten (Haupt- und Kontrollpunkte)

Für kubische Bezierkurven gilt beispielsweise:

X(t) = . y■ (l - 1) 3 " P, = (l - 1) 3■ P 0 + 3t(l 3t 2 (l-t) -P 2 +t 3 -P 3

X(t) = (-P 0 + 3 P 1 -3 P 2 + P 3 ) t 3 +(3 P 0 -6 P 1 + 3 P 2 ) t 2 + (-3 P 0 + 3 P 1 ) t + P 0 Mit Einführung der vektoriellen Faktoren gilt:

D -P 0 + 3 P 1 -3 P 2 + P 3

C = 3 P 0 -6 P 1 +3 P 2

B = -3 P 0 + 3 P 1

Ä = P 0

Somit ergibt sich die Parameterform der Bezierkurve B:

X(t) = D-t 3 + C-t 2 + B-t + A

Werden alle PunkteXfür t e [θ;ΐ] berechnet, so ergibt sich die Bezierkurve B zwischen P 0 und P 3 mit den Kontrollpunkten P t und P 2 . Die Hauptpunkte P 0 und P 3 der der Bezierkurve B liegen dabei am Übergang einer Geraden 9, welche um einen Winkel ß gegenüber der radialen Richtung R geneigt ausgebildet ist, und der Bezierkurve B. Der andere Hauptpunkt P 3 liegt am Übergang der Bezierkurve B in eine weitere Gerade 10, welche in dem in Figur 4 dargestellten

Ausführungsbeispiel Teil der Radnabe 3 ist, und welche in einem Winkel γ zur axialen Richtung A geneigt ausgebildet ist. Die Radnabe 3 verjüngt sich also in dem in Figur 4 dargestellten Ausführungsbeispiel ausgehend vom Steg 4 in Richtung ihres axialen Endes. Ebenso verjüngt sich der Steg 4 ausgehend von der Radnabe 3 in Richtung des hier nicht dargestellten Radkranzes 5. Die Winkel ß, γ liegen dabei typischerweise unter 20°, der Winkel ß im Bereich des sich verjüngenden Stegs 4 typischerweise zwischen 1 ,5 - 2°, der Winkel γ in der Größenordnung zwischen 5 und 15°.

Die Übergänge zwischen der Bezierkurve B und den Geraden 9, 10, welche bei anderer Ausgestaltung gegebenenfalls auch als Bögen ausgebildet sein können, erfolgt dabei in den jeweiligen Hauptpunkten P 0 , P3 tangentenstetig. Die Tangente ti , t 2 an den

Hauptpunkten P 0 , P3 sind in der Darstellung der Figur 4 punktiert eingezeichnet.

Beispielsweise bei einer kubischen Ausgestaltung der Bezierkurve B würde nun jeweils einer der Kontrollpunkte P1 , P 2 auf der jeweiligen Tangente ti , t 2 liegen und könnten auf dieser zur Ausgestaltung der Bezierkurve B entsprechend verschoben werden. In dem hier dargestellten besonders günstigen Ausführungsbeispiel fallen die beiden

Kontrollpunkte P1 , P 2 zusammen und liegen beide auf einem Schnittpunkt S zwischen den beiden Tangenten ti , t 2 . Dieser Schnittpunkt S bildet also gleichzeitig beide

Kontrollpunkte P1 , P 2 aus. Wir haben hier also den Sonderfall einer quadratischen Bezierkurve B, welche ihren dritten Kontrollpunkt Ρ-ι = P 2 genau im Schnittpunkt S der beiden Tangenten ti , t 2 aufweist. Dies ist besonders einfach und effizient in der

Berechnung und dementsprechend in der Programmierung der für die Fertigung benötigten Maschinen. Die so ausgestaltete Radscheibe 1 lässt sich also besonders einfach und effizient im Bereich ihrer Übergangskurve 6 herstellen. Insgesamt erlaubt der Aufbau durch eine Harmonisierung der Spannungsverteilungen eine sehr hohe Festigkeit bei minimalem Materialeinsatz und ohne dass aufwändige Verfahren wie beispielsweise eine Verfestigung des Materials im Bereich des Übergangs notwendig werden. Ungeachtet dessen kann die Festigkeit durch solche Verfahren zur Oberflächenverfestigung weiter gesteigert werden. Die Verfahren können dabei sowohl mechanisch (Kugelstrahlen, Rollieren, etc.) als auch werkstofftechnisch/chemisch (Einsatzhärten, Nitrieren, etc.) ausgebildet sein.