Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIND POWER INSTALLATION
Document Type and Number:
WIPO Patent Application WO/2008/028675
Kind Code:
A2
Abstract:
The invention relates to a wind power installation, comprising a rotor (7) through which flow passes and which has a plurality of rotor blades (9, 10, 11) which can rotate about the rotation axis (8) which runs at right angles to the direction of the wind flow (S), and an inlet surface structure with a plurality of inlet surfaces (4, 5) which feed the wind flow (S) to the rotor blades (9, 10, 11), in which at least some of the inlet surfaces (4, 5) are aligned radially towards the rotation axis (8) of the rotor (7).

Inventors:
THEMEL RAMONA (DE)
Application Number:
PCT/EP2007/007826
Publication Date:
March 13, 2008
Filing Date:
September 07, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AEROVIGOR HUNGARIA KFT (HU)
THEMEL RAMONA (DE)
International Classes:
F03D1/06; F03D3/00; F03D3/04; F03D3/06
Domestic Patent References:
WO1991019093A11991-12-12
Foreign References:
DE19920560A11999-08-26
US20040036297A12004-02-26
EP0957265A21999-11-17
US20020109358A12002-08-15
DE29980074U12000-06-08
Attorney, Agent or Firm:
WEICKMANN & WEICKMANN (München, DE)
Download PDF:
Claims:

Ansprüche

1. Windkraftanlage, umfassend: einen Durchströmrotor (7) mit einer Mehrzahl von Rotorflügeln (9, 10,

11) , welche um eine quer zur Richtung der Windströmung (S) verlaufende Drehachse (8) drehbar sind, und eine Einleitflächenkonstruktion mit einer Mehrzahl von Einleitflächen (4, 5), welche die Windströmung (S) den Rotorflügeln (9, 10, 11) zuführen, dadurch gekennzeichnet, dass wenigstens ein Teil der Einleitflächen (4, 5) radial zu der Drehachse (8) des Rotors (7) hin ausgerichtet ist.

2. Windkraftanlage nach Anspruch 1 , dadurch gekennzeichnet, dass der Rotor (7) an einem Grundgerüst der Windkraftanlage drehbar gelagert ist und die Einleitflächenkonstruktion an dem Grundgerüst stationär gehalten ist, wobei die Einleitflächen (4, 5) mit Abstand zueinander um den Rotor (7) herum angeordnet sind.

3. Windkraftanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Einleitflächenkonstruktion große Einleitflächen (4) und kleine Einleitflächen (5) aufweist, wobei eine jeweilige kleine Einleitfläche (5) zwischen zwei großen Einleitflächen (4) angeordnet ist, wobei zwischen je zwei großen Einleitflächen (4) vorzugsweise wenigstens je eine, ganz besonders vorzugsweise genau eine, kleine Einleitfläche (5) angeordnet ist.

4. Windkraftanlage nach Anspruch 3, dadurch gekennzeichnet, dass die Einleitflächenkonstruktion zwischen 3 und 10, vorzugsweise sechs große Einleitflächen (4) und zwischen 3 und 10, vorzugsweise sechs kleine Einleitflächen (5) aufweist.

5. Windkraftanlage nach Anspruch 3 oder 4, dadurch gekennzeichnet,

dass die großen Einleitflächen (4) radial zur Drehachse (8) des Rotors (7) hin ausgerichtet sind.

6. Windkraftanlage nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die kleinen Einleitflächen (5) die Windströmung

(S) in Drehrichtung des Rotors (7) ablenken.

7. Windkraftanlage nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Rotor (7) in einem sechseckigen Schacht (14) eines Maschinenaufbaus (3) angeordnet ist, wobei die Drehachse (8) des

Rotors (7) parallel zur Längsachse des Schachts (14) verläuft und wobei die kleinen Einleitflächen (5) jeweils so ausgerichtet sind, dass sie in die gleiche Richtung wie die in Drehrichtung des Rotors (7) folgende Wand des Schachts (14) zeigen.

8. Windkraftanlage nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die großen Einleitflächen (4) jeweils eine Ausladung (23) haben, die mindestens dem als Radius des Rotors (7) bezeichneten Radius des Kreises (K) entspricht, auf dem die äußeren Enden der Rotorflügel (9, 10, 11) umlaufen.

9. Windkraftanlage nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die kleinen Einleitflächen (5) nur ein Drittel der Ausladung (23) der großen Einleitflächen (4) haben.

10. Windkraftanlage nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die großen Einleitflächen (4) an ihrem dem Rotor (7) zugewandten Ende jeweils mit einer in Drehrichtung des Rotors (7) zeigenden Krümmung (22) ausgestattet sind.

11. Windkraftanlage nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass je eine kleine Einleitfläche (5) in der Umfangsrichtung des Rotors (7) in der Mitte zwischen zwei

benachbarten großen Einleitflächen (4) angeordnet ist.

12. Windkraftanlage nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Drehrichtung des Rotors (R) gegen den Uhrzeiger- sinn zeigt.

13. Windkraftanlage nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Rotor (7) mehrere vertikal übereinander angeordnete Etagen aufweist, die durch jeweilige Rotoretagenböden (16) voneinander getrennt sind, wobei der Rotor (7) in jeder Etage

Rotorflügel (9, 10, 11 ) aufweist, wobei die Einleitflächenkonstruktion ebenfalls mehrere vertikal übereinander angeordnete Etagen mit jeweils großen Einleitflächen (4) und kleinen Einleitflächen (5) aufweist, die durch jeweilige Etagenböden (6) voneinander getrennt sind.

14. Windkraftanlage nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass diese einen Maschinenaufbau (3) aufweist, der die Einleitflächenkonstruktion umfasst, und einen Maschinenraum (2) aufweist, der die Form einer konisch nach oben laufenden Bienenwabe besitzt, wobei der Maschinenaufbau (3) turmartig auf dem

Maschinenraum (2) sitzt, und als obere Begrenzung ein gewölbtes Dach (13) hat.

15. Windkraftanlage nach Anspruch 14, dadurch gekennzeichnet, dass unterhalb des Rotors (7) im Maschinenraum (2) ein Generator (28) vorgesehen ist.

16. Windkraftanlage nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die Rotoretagenböden (16) und die Einleitflächen-Etagenböden (6) auf gleicher Höhe angeordnet sind, wobei die großen Einleitflächen (4) sowie die kleinen Einleitflächen (5) im gesamten Maschinenaufbau (3) fluchtend übereinander angeordnet sind.

17. Windkraftanlage nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass auf den Rotoretagen böden (16) die Rotorflügel (9, 10, 11 ) einer jeweiligen Etage (12) angeordnet sind.

18. Windkraftanlage nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Rotor (7) eine Mehrzahl von Rotorflügeln (9, 10, 11) mit einem aerodynamisch geformten Profil aufweist, deren äußeres Ende auf einem Kreis (K) um die Drehachse des Rotors (7) verläuft, dessen Durchmesser den Rotordurchmesser (19) definiert, und deren kleines Ende (20) ebenfalls auf einem Kreis (Ki) um die Drehachse (8) des Rotors (7) verläuft.

19. Windkraftanlage nach Anspruch 18, dadurch gekennzeichnet, dass der Durchmesser des Kreises (Ki) um den Mittelpunkt der Rotorachse (8), auf dem das innere Ende (20) der Rotorflügel (9, 10, 11 ) umläuft, ein Viertel des Rotordurchmessers (19) beträgt.

20. Windkraftanlage nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die Rotorflügel (9, 10, 11) an ihrem der Außenseite des Rotors (7) zugewandten Ende einen Flachmetallansatz (21) oder einen Rundstab aus Metall (26) besitzen.

21. Windkraftanlage nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass zwischen zwei und sechs Rotorflügel vorgesehen sind, vorzugsweise drei Rotorflügel (9, 10, 11) vorgesehen sind, die so angeordnet sind, dass die Verbindungslinien ihrer äußeren Enden mit der Drehachse (8) des Rotors (7) jeweils einen Winkel von 120° zueinander bilden.

22. Windkraftanlage nach einem der Ansprüche 18 bis 21 , dadurch gekennzeichnet, dass die Rotorflügell (9, 10, 11 ) ein Profil aufweisen, das zusammengesetzt ist aus einer in Drehrichtung des Rotors (7)

zeigenden im Wesentlichen konvex gewölbten Profiikontour und einer gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour, die schwächer konvex, geradlinig oder/und konkav gewölbt ist, so dass von dem äußeren Ende des Rotorflügels (9, 10, 11) her anströmende Luft entlang der in Drehrichtung des Rotors (7) zeigenden Profilkontour schneller strömt als entlang der gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour.

23. Windkraftanlage nach Anspruch 22, dadurch gekennzeichnet, dass die in Drehrichtung des Rotors (7) zeigende Profilkontour eine Abknickung

(30) aufweist.

24. Windkraftanlage nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass die Drehrichtung des Rotors (7) zeigende Profilkontour in ihrem dem inneren Ende (20) des Rotorfllügels (9, 10, 11) benachbarten

Abschnitt (17) geradlinig ausgebildet ist, wobei sich an den geradlinigen Abschnitt (17) ein konvex gekrümmter Abschnitt (18) anschließt.

25. Windkraftanlage nach Anspruch 24, dadurch gekennzeichnet, dass die Länge des geradlinigen Abschnitts (17) ein Sechstel des Durchmessers (19) des Rotorkreises (K) beträgt.

26. Windkraftanlage nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass die Krümmung des konvex gekrümmten Abschnitts (18) ein

Achtel des Durchmessers (19) des Rotorkreises (K) beträgt.

27. Windkraftanlage, umfassend: einen Rotor (7) mit einer Mehrzahl von Rotorflügeln (9, 10, 11 ), die jeweils ein Profil aufweisen, das zusammengesetzt ist aus einer in

Drehrichtung des Rotors (7) zeigenden im Wesentlichen konvex gewölbten Profilkontour und einer gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour, die schwächer konvex, geradlinig oder/und

konkav gewölbt ist, so dass von dem äußeren Ende des Rotorflügels (9, 10, 11 ) her anströmende Luft entlang der in Drehrichtung des Rotors (7) zeigenden Profilkontour schneller strömt als entlang der gegen die Drehrichtung des Rotors (7) zeigenden Profilkontour, dadurch gekennzeichnet, dass die in Drehrichtung des Rotors (7) zeigende Profilkontour eine Abknickung (30) aufweist oder/und die Drehrichtung des Rotors (7) zeigende Profilkontour in ihrem dem inneren Ende (20) des Rotorfllügels (9, 10, 11) benachbarten Abschnitt (17) geradlinig ausgebildet ist, wobei sich an den geradlinigen Abschnitt (17) ein konvex gekrümmter Abschnitt (18) anschließt.

28. Windkraftanlage nach Anspruch 27, gekennzeichnet durch ein beliebiges der in Ansprüchen 1 bis 21 , 25 oder 26 genannten Merkmale.

Description:

Windkraftanlage

Beschreibung

Die Erfindung betrifft eine Windkraftanlage mit einem Rotor, dessen Drehachse quer zur Windströmung angeordnet ist, zur Energiegewinnung, wobei ein Rotor nach dem Durchströmungsprinzip die Energie umsetzt und eine äußere Einleitflächenkonstruktion vorgesehen ist, um dem Rotor Luft zuzuführen. Die Einsatzgebiete dieser Anlagen sind der Industriebereich, Windparks und der Eigenheimbereich.

Aus der DE 299 00 664 ist eine solche Strömungsenergieanlage bekannt. Damit bei dieser Anlage das Leitwerk überhaupt arbeitet, bedarf es zur Nachführung in Windrichtung einer sehr hohen Windgeschwindigkeit. Der Wind strömt an der Anlage nur vorbei, weil keine Strömungsantrichterung vorhanden ist. Das bedeutet, dass die Strömung an der freien Seite ausweicht. Es entsteht dabei ein Wirbelpolster, wobei die Strömung vorbeigeleitet wird. Dieser Zustand tritt sofort ein, wenn die Sättigung des Aufnah- mevolumens im Rotor erfolgt ist. Es ist weiterhin nachteilig, dass der Rotor ohne Durchströmung arbeitet. Die Anlage besitzt auch keine ausreichende Frequenzkonsistenz und fängt erst bei relativ hohen Windgeschwindigkeiten an zu arbeiten. Dabei wird aber nicht sofort Leistung erzeugt.

Aus der DE 195 14 499 ist eine weitere Windkraftanlage bekannt. Diese Anlage arbeitet nach dem Winddruckprinzip. Da sie keinen Durchströmrotor besitzt, werden nur etwa 20% aus der Strömung in Energie umgesetzt. Selbst der Winddruck kann sich in diesem Rotor nicht richtig entfalten. Wegen der schlechten Frequenzkonstanz unterliegen solche Anlagen großen Ausfallzeiten. Selbst bei Windgeschwindigkeiten von 10 bis 30 m/s bleiben sie immer Langsamläufer. Diese Anlage wird gegenüber anderen Anlagen, die mit aerodynamischer Flügelform und Durchströmung arbeiten, immer benachteiligt sein, da diese in der Lage sind, etwa 42% aus der Strömung

umzusetzen. Da der nach dem Winddruckprinzip arbeitende Rotor immer sehr viel langsamer laufen wird als die Strömungsgeschwindigkeit, leidet die Statik der Anlage und auch das Drehmoment vor allem bei hohen Windlasten.

Aus der DE 199 20 560 ist eine weitere Strömungsanlage bekannt. Die dort vorgesehenen 12 Leitvorrichtungen erlauben nur eine 70%ige Nutzung der Frontanströmung. Durch die drei Rotorflügel und deren Form entsteht in der Rotormitte eine Drucksäule, die gleichermaßen die Durchströmung abbaut. Die aerodynamische Flügelform kann sich deshalb auch nicht entfalten.

Weiterhin ist aus der WO 81/00463 eine weitere Windkraftanlage bekannt. Die Anlage besitzt 12 vertikale Einleitflächen und 12 horizontale Einleitflächen. Im Rotor dieser Anlage sind 24 Schaufeln angeordnet. Nachteilig wirken in dieser Anlage die zu flach anliegenden Einleitflächen. Dadurch baut sich eine zu hohe Rückströmung in den Einleitflächen auf, welche die eigentliche Einströmung zum Rotor nicht zulässt. Dabei wird bereits ein hoher Anteil an Energie vernichtet. Die 24 Schaufeln im Rotor besitzen keine Durchströmung, wodurch die dringend nötige Durchströmung von etwa 15% stark unterschritten wird. Dadurch kann die einzige arbeitende Druckkraft von theoretisch 15% nicht einmal umgesetzt werden. Die Strömung bricht zusammen. Der Strömungsdruck arbeitet in den Rotorflügeln nur bis zum jeweiligen Leitflächenende und entlädt den Druck im nachfolgenden Fach. Die Folge ist ein unerwünschter Gegendruck.

Die DE 31 29 660 offenbart eine weitere Lösung für eine Windkraftanlage. Die Umsetzung der Windenergie in Rotationsenergie erfolgt mit einer Vielzahl von Rotorblättem an den Rotoren. Die Rotorachse selbst steht dabei orthogonal zur Ebene der möglichen Windrichtung. Dieser Vertikalläufer er- zeugt seine Leistung, indem der Rotor von seinem Stator umgeben ist, der eine Vielzahl von gleich beabstandeten Statorblättern aufweist. Diese Statorblätter bilden zum Rotor hin sich verjüngende Kanäle, die schräg zum Rotor angeordnet sind. Diese Anlage weist den Nachteil auf, dass sie mit

der konstruktiven Anordnung der Einleitflächen einen zu geringen Teil der Frontalanströmfläche zur Energieumsetzung nutzt. Die Ursache für diesen Nachteil liegt in den zu flach anliegenden Einleitflächen, wodurch nur höchstens 75% der Frontalanströmfläche genutzt werden kann. Die verbleibenden 25% werden einfach um die Anlage herum nach außen abgeleitet. Die dringend nötige Durchströmung von mindestens 15% wird auf jeden Fall unterschritten, da dieser Rotor keine Durchströmmöglichkeit besitzt. Es kann sogar der Fall eintreten, dass die Strömung zusammenbricht oder die Anlage nur bei besonders hohen Strömungsgeschwindigkeiten ab etwa 30 m/s ar- beitet. Selbst bei so hohen Strömungsgeschwindigkeiten ist eine derartige Anlage nur in der Lage, höchstens 15% der auftreffenden Arbeitsströmung in Energie umzusetzen. Rotor und Einleitflächen praktizieren in der aufgeführten Anordnung und in der Energieumsetzung kein effektives Zusammenwirken.

Aus der WO 91/19093 ist eine weitere Windkraftanlage bekannt. Sie arbeitet nach dem Prinzip der Durchströmung. Diese Anlage setzt den Winddruck und einen Teil der Aerodynamik um. Der achtflüglige Rotor ist auf die 16 Einleitelemente abgestimmt. Das offengelegte Einleitflächenprinzip erbringt nur eine etwa 85%ige Frontflächennutzung, ohne dem Idealzustand nahe zu kommen. Der Kapzitätsverlust liegt an der Abfälschung der Strömung. Trotz der eingearbeiteten Durchströmfähigkeit bilden die acht Rotorflügel einen zu extremen Trichter. Die Folge ist eine Behinderung der Durchströmung. Die Rotorflügel sind zu kurz und bieten der Windströmung einen zu kurzen Arbeitsweg. Bei dieser Bauart ist es auch nicht möglich, eine voll arbeitsfähige Aerodynamik unterzubringen. Es arbeitet die Durchströmung auch nicht von innen nach außen. Aufgrund des Trichterverhaltens kann die Strömung nicht aktiv werden. Der Abstand des Gehäuses zum Rotor ist zu groß, weil der Druck unkompliziert entweichen kann.

Die Erfindung stellt sich daher die Aufgabe, eine Windkraftanlage der genannten Art zu schaffen, mit dem Ziel, möglichst viel Strömungsenergie in Bewegungsenergie des Rotors umzusetzen.

- A -

Die Aufgabe wird gemäß einem ersten Aspekt der Erfindung gelöst durch eine Windkraftanlage mit den im Anspruch 1 aufgezeigten technischen Merkmalen, sowie gemäß einem zweiten Aspekt der Erfindung durch eine Windkraftanlage mit den im Anspruch 27 aufgezeigten technischen Merkmalen.

In den Unteransprüchen sind weitere bevorzugte Ausgestaltungen der Erfindung genannt.

Erfindungsgemäß findet in erster Linie eine ideale Aufnahme der Strömung statt und wird die Strömung genau auf der richtigen Seite der Strömung komprimiert. Durch ein gutes Zusammenwirken von Strömungsdruck und Aerodynamik mit den Leitflächen kann eine ideale Umsetzung der Strö- mungsenergie erfolgen. Die Anlagenstatik wird dadurch geschont, dass durch die erreichte gute Frequenzkonstanz eine ideale Gewichts- und Massenausgewogenheit stattfindet. Die Erfindung ermöglicht ferner, dass die Aerodynamik an den Rotorflügeln schnellstmöglich zu arbeiten beginnt. In der erfindungsgemäßen Ausgestaltung der Profile der Rotorflügel wird daher sowohl als bevorzugte Ausgestaltung der Anordnung der

Einleitflächenkonstruktion gemäß dem ersten Aspekt der Erfindung als auch als eigenständiger zweiter Aspekt der Erfindung ein Schutz gesehen und beansprucht. Die Anlage kann, ohne Schaden zu nehmen und ohne, dass sie abgeschaltet werden muss, bis zum Orkan laufen. Die Anlage passt ferner in das Landschaftsbild und stellt sich nicht so aufdringlich dar, wie es bei den Anlagen mit Horizontalachse der Fall ist. Es können kostengünstige Materialien zum Bau der Anlage verwendet werden, um einen positiven Kosten-/Nutzeneffekt zu erzielen.

Die erfindungsgemäße Anlage kann windrichtungsunabhängig arbeiten. Sie kann ein Fundament, einen Maschinenraum, einen turmartigen Maschinenaufbau und ein Dach umfassen. Der Maschinenaufbau besteht dann vorzugsweise als Korpus aus zwei oder mehreren Grundböden,

zwischen welchen sich die Einleitkonstruktionen befinden. Die Etagen werden bevorzugt durch die Grundböden gebildet, wobei sich zwischen zwei Grundböden immer eine Etage befindet. Zwei Etagen haben somit drei Grundböden. Die maximale Höhe der Anlage wird durch die zugelassene Statikberechnung bestimmt, sowie die Möglichkeiten des Anlagendurchmessers und die möglichen Rotorachslängen. Aus Statikgründen sind günstigerweise die Leitflächen in den einzelnen Etagen direkt übereinander angeordnet. Die Strömung in der Anlage wird in Richtung der Rotoren verdichtet, so dass die Strömungsgeschwindigkeit erhöht wird. Die Leitflächen sitzen bevorzugt so in der Anlage, dass „zurücklaufende Flügel" (d.h. nicht von der Windströmung in Soll-Drehrichtung angetriebene Flügel) von der Frontanströmung freigestellt werden. Der Rotor besitzt vorzugsweise drei Flügel, die nach dem Durchströmungsprinzip arbeiten. Der Maschinenraum hat bevorzugt die Grundfläche einer Bernardschen Zelle und stellt eine konisch nach oben laufende Bienenwabenform dar. Der Vorteil dieser

Ausgestaltung liegt darin, dass der Wind durch diese Schräge besser in die Anlage geleitet wird. Die Anordnung der Einleitflächen ist so gestaltet, dass die Strömung immer auf die in Drehrichtung des Rotors zeigende Seite des Rotors strömt. An ihrem jeder Ecke des sechseckigen Korpusses benachbarten Ende zeigen die großen Einleitflächen bevorzugt in Richtung Rotorachse und sind am Ende in Drehrichtung des Rotors gebogen. Dazwischen sitzen vorzugsweise die 6 kleinen Einleitflächen, die bevorzugt zur in Drehrichtung nachfolgenden Korpuskante in paralleler Richtung stehen. Diese kleinen Einleitflächen entsprechen bevorzugt einem Drittel der großen Leitflächen in ihrer Aufladung.

Das Dach kann in der Mitte eine Erhebung aufweisen und somit vorstehen, damit die ganze Anlage abgedeckt wird. Die Flügel des Rotors können im Innenteil aus einem geraden Stück bestehen und im äußeren, der Windströmung zugewandten Teil aus einer Rundung bestehen. Das gerade Stück hat dann vorzugsweise die Länge von einem Sechstel des Durchmessers des Rotorkreises und die Rundung ist vorzugsweise genau die Krümmung von einem Achtel des Durchmessers des Rotorkreises. An

der Vorderkante der Rotorflügel kann noch eine Abschrägung angebracht sein. Die großen Leitflächen haben durch die sechseckige Ausführung des Korpusses noch einen Abstand zum Rotor. Dieser Platz kann genutzt werden, um in Drehrichtung des Rotors zeigende Krümmungen einzufügen. Es lohnt sich auch, als Variante eine Druckseitentangente einzuziehen, damit der Unterdruck und der überdruck besser hervortreten. Anstelle der Abschrägung an der Vorderkante der Flügel wäre ein Rundstab, der mit der Flügelform eingearbeitet ist, von Vorteil. Die Rotoretagenböden und die Etagenböden sitzen in der Regel auf gleicher Höhe.

Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden. In den dazugehörigen Zeichnungen zeigt:

Fig. 1 einen Vertikalschnitt einer Windkraftanlage als Großanlage;

Fig. 2 einen Horizontalschnitt der Windkraftanlage;

Fig. 3 einen Vertikalschnitt einer Windkraftanlage in kleiner

Ausführung;

Fig. 4 einen Horizontalschnitt eines Rotors mit drei Flügeln;

Fig. 5 eine große Einleitfläche mit Rechtskrümmung;

Fig. 6 einen Horizontalschnitt eines Flügels, Variante I;

Fig. 7 einen Horizontalschnitt eines Flügels, Variante II; und

Fig. 8 einen Maschinenraumkorpus in Form eines sechseckigen Körpers.

Auf einem Fundament 1 befindet sich ein Maschinenraum 2, welcher mit einem Maschinenaufbau 3 verbunden ist. Der Maschinenaufbau 3 besteht

aus sechs Stück großen Einleitflächen 4, aus sechs Stück kleinen Einleitflächen 5, den Etagenböden 6 und dem Rotor 7. Der Maschinenaufbau 3 kann aus einer unterschiedlichen Anzahl von Etagen 12 bestehen. Jede Etage besteht aus einem Etagenboden 6 oben und einem Etagenboden 6 unten, sowie aus großen Einleitflächen 4 und kleinen Einleitflächen 5.

Die großen Einleitflächen 4 und die kleinen Einleitflächen 5 sind mit den Etagenböden 6 die statischen Bauteile in der Etage 12. Die Verbindung dieser Bauelemente erfolgt durch Verschweißung. Die oberste Etage 12 erhält ein Dach 13. Im sechseckigen Schacht 14 ist die vertikale Rotoranlage angeordnet, welche den um die Rotorachse 8 drehbaren Rotor 7 umfasst. Zur Rotoranlage gehören außerdem ein Generator 15 und Rotoretagenböden 16. Auf den Rotoretagenböden 16 sind die Rotorflügel 9, 10 und 11 je Etage 12 angeordnet. Die Drehrichtung des Rotors R ist gegen den Uhrzeigersinn gerichtet. Die Rotorflügel 9, 10 und 11 haben in ihrer Ausführung im Innenbereich ein geradliniges Profil 17 mit einer Länge von einem Sechstel des Rotordurchmessers 19. Im nach außen anschließenden Bereich 18 verlaufen die Rotorflügel 9, 10, 11 kreisförmig gekrümmt, wobei der Krümmungsdurchmesser gleich einem Achtel des Durchmessers 19 des Rotoraußenkreises K ist. Die von der Windströmung angeströmten äußeren Kanten der Rotorflügel 9, 10 und 11 liegen zur Rotorachse 8 genau 120° auseinander. Das innere Ende 20 der Rotorflügel 9, 10, 11 liegt auf einem Kreis Ki um den Mittelpunkt der Rotorachse 8, dessen Durchmesser ein Viertel des Durchmessers 19 des Rotoraußenkreises K beträgt.

Die Rotorflügel 9, 10 und 11 besitzen in Variante I (Fig. 6) an ihrer Frontseite einen Flacheisenansatz 21. Die großen Einleitflächen 4 und die kleinen Einleitflächen 5 haben die besondere Aufgabe, die zurücklaufenden Rotorflügel 9, 10 und 11 abzudecken und die Strömung insgesamt auf die in Drehrichtung des Rotors vorne liegende Seite zu leiten. Die großen

Einleitflächen 4 sind an den Rotor 7 angrenzend in Drehrichtung des Rotors R (dessen Drehrichtung gegen den Uhrzeigersinn gerichtet ist) mit einer Rechtskrümmung 22 versehen, so dass die Luft in Drehrichtung umgeleitet

wird. Die Ausladung 23 der großen Einleitflächen 4 entspricht mindestens dem Radius des Rotoraußenkreises K und sie sind genau auf die Mitte der Rotorachse 8 ausgerichtet. Die kleinen Einleitflächen 5 sind in Umfangsrichtung genau in der Mitte zwischen den großen Einleitflächen 4 angeordnet. Diese kleinen Einleitflächen 5 haben nur ein Drittel der

Ausladung 23 der großen Einleitflächen 4 und sind immer so ausgerichtet, dass sie in die gleiche Richtung zeigen wie die in Drehrichtung des Rotors folgende Sechskantlinie 24. In der Strömungsrichtung S des Windes wird die Anlage so umströmt, dass auf der rechten (d. h. der in Drehrichtung liegenden) windabgewandten Seite der Magnus-Effekt mitarbeitet und ein weiteres Fach 25 bedient. Die Statik wird bei Orkanstärken nur mit dem Flettner-Effekt belastet, was nicht bedrohlich wird. Die in Fig. 7 gezeigte zweite Variante der Flügel 9, 10 und 11 hat anstelle des Flacheisenansatzes 21 einen Rundstab aus Eisen 26 und eine untergebaute Druckseitentangente 27. Beim Austreten der Strömung S aus dem Rotor drückt der Flacheisenansatz 21 und der Rundstab aus Eisen 26 an der Strömung S und drückt noch ein letztes Mal an die Rotorflügel 9, 10 und 11. Durch die eingesetzte Druckseitentangente 27 vergrößert sich der Umströmungsunterschied und es kommt zu einem höheren aerodyna- mischen Auftrieb und zu einer besseren Kraftübertragung. Die Oberfläche der Rotorflügel 9, 10 und 11 sowie die großen Einleitflächen 4 und die kleinen Einleitflächen 5 müssen eine glatte Oberfläche besitzen. Die Rotoretagenböden 16 und die Etagenböden 6 sitzen auf gleicher Höhe.