Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIND POWER PLANT
Document Type and Number:
WIPO Patent Application WO/2010/110697
Kind Code:
A2
Abstract:
The wind power plant comprises at least one wind generator, consisting of blades that extract wind energy and at least one electromechanical converter that is connected to said blades. The wind generator blades are secured in such a way that they are capable of performing flexural vibrations transverse to the flow and torsional vibrations along their own elastic axis (flutter). The wind generator is positioned in the meshes of a net in such a way as to be capable of rotating 180º about a vertical axis under the action of the wind, for which purpose the blades are situated behind the axis of rotation. With the aid of frames and guys, nets are hung in several rows with a certain distance therebetween. Each wind generator is provided with a hub that is connected to a horizontal torsion bar and has blades mounted therein in such a way that the blades are able to rotate about their own axes. Each blade is provided with a torsion bar, the axis of which coincides with the longitudinal axis of the blade and which joins the blade and the hub, and the centre of mass of each blade is offset backwards in the direction of flow of the wind relative to the axis of the blade. The invention provides for an increase in the range of working velocities of the flow.

Inventors:
GOLUSHKO SERGEY KUZMICH (RU)
MERKULOV VLADIMIR IVANOVICH (RU)
Application Number:
PCT/RU2010/000129
Publication Date:
September 30, 2010
Filing Date:
March 23, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OBSCHESTVO S OGRANICHENNOY OTV (RU)
GOLUSHKO SERGEY KUZMICH (RU)
MERKULOV VLADIMIR IVANOVICH (RU)
International Classes:
F03D1/00; F03D5/06; F03D11/00
Foreign References:
RU2007104713A2008-09-27
RU2313002C22007-12-20
RU2135822C11999-08-27
US4217501A1980-08-12
Attorney, Agent or Firm:
GOLUSHKO, SERGEY KUZMICH (RU)
ГОЛУШКО, Сергей Кузьмич (RU)
Download PDF:
Claims:
Формула изобретения

1. Ветроэнергетическая установка, содержащая, по меньшей мере, один ветрогенератор, состоящий из лопастей, воспринимающих энергию ветра и связанного с ними, по меньшей мере, одного электромеханического преобразователя, при этом лопасти ветрогенератора закреплены так, что они имеют возможность совершать изгибные колебания - поперек потока, и крутильные колебания - вдоль собственной оси жесткости (флаттер), а вeтpoгeнepaтop(ы) paзмeщeн(ы) в ячейках сети с возможность поворота вокруг вертикальной оси на 180° под действием ветра, для чего лопасти расположены сзади от оси поворота, при этом сети, растянутые на рамах, закреплены на одной мачте в перпендикулярных вертикальных плоскостях, кроме того, сети с помощью мачт и растяжек вывешены в несколько рядов с некоторым интервалом между ними, причем одна система рядов расположена перпендикулярно другой системе рядов и поверхности земли, о т л и ч а ю щ а я с я тем, что каждый ветрогенератор снабжен связанной с торсионом ступицей, в которой установлены лопасти с возможностью поворота вокруг своей оси, при этом каждая лопасть снабжена установленным в ней торсионом, ось которого совпадает с продольной осью лопасти и который соединяет лопасть и ступицу, а центр масс каждой лопасти вынесен назад по направлению потока ветра по отношению к оси лопасти, ветрогенератор снабжен концевым обтекателем, направленным навстречу потоку ветра, при этом электромеханический преобразователь связан муфтой с горизонтальным торсионом в месте крепления ступицы.

2. Ветроэнергетическая установка по п.1, о т л и ч а ю щ а я с я тем, что длины средней, концевой и корневой хорд лопастей определяют из условия равномерного перекрытия потока при отклонении лопасти от нейтрального положения по потоку ветра. 3. Ветроэнергетическая установка по п.1, о т л и ч а ю щ е е с я тем, что в ступице установлено N лопастей, где N=I или N>1 с ограничителями угла поворота лопасти от ее нейтрального положения в каждую сторону не более чем на 180°/N.

4. Ветроэнергетическая установка по п.1, отличающееся тем, что горизонтальный торсион жестко защемлен в концевом обтекателе на регулируемом расстоянии от ступицы.

5. Ветроэнергетическая установка по п.l, отличающееся тем, что концевые обтекатели ветрогенераторов закреплены в ячейках сети.

6. Ветроэнергетическая установка поп.l , отличающееся тем, что шаг сетей, вывешенных в несколько рядов с помощью мачт и растяжек, составляет не менее 5 H метров, где H - средняя высота расположения сетей.

7. Ветроэнергетическая установка по п.l и п.6, отличающееся тем, что сети с помощью мачт и растяжек смонтированы на плавучей платформе, платформа закреплена якорем, а ветроэнергетическая установка соединена с системой распределения электроэнергии через кабель-трос.

8. Ветроэнергетическая установка по п.l , отличающееся тем, что сеть является декоративной частью здания или сооружения и закреплена на крыше здания или сооружения.

9. Ветроэнергетическая установка по п.l , отличающееся тем, что сеть является декоративной частью здания или сооружения и закреплена в сквозном проеме здания или сооружения.

Description:
Ветроэнергетическая установка

Изобретение относится к области возобновляемой энергетики, в частности, к ветроэнергетике, а именно, к устройствам для генерирования электроэнергии посредством использования энергии ветра. Изобретение может быть использовано для строительства экономически эффективных и надежных ветроэнергетических станций, не создающих шума и визуальных помех в ландшафтах и устроенных в виде вантовых сетей, в узлах которых размещены миниатюрные ветроэнергетические установки, работающие с использованием принципа флаттера с ограниченным амплитудным колебанием в широком диапазоне скоростей ветра, например, 4 - 16 м/сек, но не ограниченным указанным диапазоном.

Благодаря своим техническим параметрам предлагаемое изобретение может найти применение как для создания крупных ветрогенерирующих станций мощностью в несколько мегаватт в прибрежных районах, на шельфах, на возвышенностях в гористой местности, на равнинах, в ущельях и каньонах, так и для создания ветрогенерирующих станций вблизи населенных пунктов и в населенных пунктах для коллективного или индивидуального использования. Такие ветроэнергетические установки могут обеспечивать электроэнергией отдельных потребителей или группы потребителей. Из-за низкого уровня шумов такие устройства могут монтироваться на крышах и в сквозных проемах зданий и сооружений, на отдельно стоящих мачтах и подавать электроэнергию непосредственно потребителям. При этом излишки электроэнергии могут подаваться в централизованные сети. Предлагаемые ветроэнергетические установки, благодаря своим параметрам, могут использоваться в качестве архитектурных элементов зданий и сооружений и крытых переходов между ними.

Известны ветрогенерирующие установки, преобразующие энергию ветра в кинетическую энергию вращения, а кинетическую энергию вращения - в электрическую энергию. К таким установкам относятся, например, крупноразмерные роторные ветрогенераторы с горизонтальной осью вращения, например, ротор ветроэнергетической установки, известный из патента Канады CA2591536 [1], с вертикальной осью вращения, например, ветряной - водяной ротор с вертикальной осью, работающий от энергии волны и ветряной генератор, известный из патента Японии JP2003120499 [2]. К ним можно также отнести ветрогенерирующие установки, состоящие из микрогенераторов, например, ветрогенераторы для производства большого количества электроэнергии при малых скоростях ветра, известный из патента Японии JP2002233117 [3]. Основным недостатком роторных ветрогенераторов является преобразование энергии ветра в электрическую энергию путем использования принципа вращения. Это приводит к большой сложности конструкций устройства, высокому уровню шума и нарушению целостности ландшафта, что не дает возможности создавать ветроэнергетические станции вблизи поселений. Более того, указанные устройства характеризуются большой материалоемкостью в пересчете на 1 Вт генерируемой мощности, высоким уровнем капитальных затрат, большими эксплуатационными затратами, низкой надежностью работы ветрогенераторов.

Известны способы генерирования электроэнергии посредством использования энергии ветра, которые исключают вращательное движение. Эти способы преобразуют колебательные движения лопастей устройств, получаемых за счет использования энергии ветра. Так, из патента США US4536674 [4], известен ветрогенератор электрической энергии, использующий пьезоэлектрический преобразователь, смонтированный на гибкой лопатке, которая в свою очередь смонтирована на независимом гибком поддерживающем элементе, при этом поток, обтекающий лопатку, приводит к возникновению напряжения изгиба в пьезоэлектрическом полимере, который производит электрическую энергию. Основным недостатком способа генерирования является образование срывного флаттера за поверхностью лопатки при ее обтекании, что приводит к диссипации энергии и низкому КПД преобразования энергии ветра в электрическую.

Из патента Японии JP2007016756 [5] известно устройство ветрогенератора, содержащее направленную к ветру лопасть в виде свернутой вдвое трапециевидной пластины и генератора, генерирующего энергию за счет преобразования вибрации лопасти. Лопасть подвергается упругой крутильной вибрации, а пьезоэлектрические пластины генерируют электроэнергию за счет деформации. Вибрация направлена преимущественно под прямым углом к направлению ветра. Недостатком такого способа генерации электроэнергии является то, что ветрогенератор имеет низкий КПД. Кроме того в таком устройстве требуется большое количество лепестков, так как энергия отнимается от воздуха только в пределах ширины лепестка. В целом, существующие микро ветроэнергетические установки (кратко «микpo-BЭУ») имеют малую удельную мощность, низкий КПД, тяжелый генератор и корпус.

Известна ветроэнергетическая установка (Авторское свидетельство SUl 645603 [6]), в которой предлагается устанавливать ветрогенераторы в ячейках сетки, а сетку с помощью мачт и растяжек крепить на поворотной платформе. Также известна электростатическая емкостная машина для преобразования энергии ветрового потока (Патент RU2241300 [7]), состоящая из воздушного канала, который улавливает, фокусирует и направляет воздушный поток на подвижные электроды емкостного электромеханического преобразователя. Воздушный поток вызывает поперечные колебания подвижных электродов, благодаря чему происходит преобразование энергии ветра в электрическую энергию. Недостатком указанных устройств является их большая материалоемкость, низкий КПД и, как следствие, малая удельная мощность.

Из авторского свидетельства SUl 793095 [8] известна ветроэнергетическая установка, содержащая мачты, снабженные оттяжками и установленные по периметру правильного многоугольника ветродвигатели, размещенные между мачтами и связанные с ними посредством гибких сеток, при этом ветродвигатели выполнены в виде многоярусных вертикальных роторов. Недостатком указанного устройства является наличие подшипникового узла в каждом ветродвигателе, что увеличивает материалоемкость устройства и снижает ее ресурс.

Наиболее близким по совокупности признаков к предлагаемому изобретению является ветроэнергетическая установка профессора Меркулова по заявке 2007104713/06 [9], состоящая из лопастей, воспринимающих энергию ветра и связанных с ними электромеханических преобразователей, при этом лопасти ветрогенератора закреплены так, что они имеют возможность совершать изгибные - поперек потока и крутильные - вдоль собственной оси жесткости колебания (флаттер), при этом инерционные, упругие и геометрические параметры лопастей выбирают из условия: т l (K h /m - о? J (KJI-CO 2 J-S 2 ω 4 =0, (1) где: ω - частота колебания лопасти, 1/ceк; т - масса лопасти, кг;

/ - момент инерции лопасти относительно собственной оси жесткости, кг-м 2 ;

K a - крутильная жесткость лопасти относительно этой оси, Н-м; S - статический дисбаланс лопасти относительно этой оси, кг-м;

K h - жесткость крепления лопасти к валу, Н/м, кроме того, должно выполняться соотношение: HB=U 2 /(π-ω 2 ), (2) где: U - скорость ветра, м/сек;

В - ширина лопасти, м;

H- амплитуда колебания конца лопасти, м; ω - частота колебания лопасти, 1/ceк, а ветрогенераторы размещены в ячейках сетки с возможностью поворота вокруг вертикальной оси на 180° под действием ветра, для чего лопасти расположены сзади от оси поворота, а сети с помощью мачт и растяжек расположены в несколько рядов с некоторым интервалом между ними, причем одна система рядов расположена перпендикулярно другой системе рядов. Основными недостатками указанного устройства является его использование в узком диапазоне рабочих скоростей ветра и небольшая надежность устройства.

Задачей, решаемой настоящим изобретением, является расширение диапазона рабочих скоростей ветра, при которых возможно эффективное применение предлагаемого устройства, повышение надежности устройства, снижение материалоемкости и трудоемкости изготовления устройств, повышение эксплуатационной надежности, снижение эксплуатационных затрат. Поставленная техническая задача решается путем достижения следующих технических результатов: замена вращения ветрогенератора на его колебание вокруг оси ветрогенератора за счет упругой связи лопастей со ступицей, вынос центра масс лопастей назад по направлению потока ветра по отношению к лопасти, подбор соотношения корневой, средней и концевой хорд каждой лопасти таким образом, чтобы обеспечить полное обтекание всей лопасти потоком ветра.

Указанные технические результаты достигаются за счет того, что каждый ветрогенератор ветроэнергетической установки снабжен связанной с торсионом ступицей, в которой установлены N лопастей, где N=I или N>1, с возможностью поворота вокруг своей оси, при этом каждая лопасть снабжена установленным в ней торсионом, ось которого совпадает с продольной осью лопасти и который соединяет лопасть и ступицу, а центр масс каждой лопасти вынесен назад по направлению потока ветра по отношению к оси лопасти, ветрогенератор снабжен концевым обтекателем, направленным навстречу потоку ветра, при этом электромеханический преобразователь связан муфтой с горизонтальным торсионом в месте крепления ступицы. Смещение центра масс по ходу потока позволяет обеспечить режим устойчивых колебаний (автоколебаний) лопастей и уменьшить общую массу ветрогенератора. Кроме этого, амплитуду колебаний горизонтального торсиона ограничивают жестким закреплением конца торсиона в корпусе электромеханического преобразователя.

Кроме этого, корпусы электромеханических преобразователей закрепляют неподвижно в ячейках сети, состоящей из вантов, а ванты натягивают на раму и обеспечивают улавливание ветра с большой площади.

Кроме этого, длины средней, концевой и корневой хорд лопастей определяют из условия равномерного перекрытия потока при отклонении лопасти от нейтрального положения по потоку ветра. Уменьшение хорд лопастей до размеров, которые меньше тех, которые получены из указанных выше условий (1) и (2), может вызвать паразитное явление - "галопирование", которое может существенно снизить КПД устройства. При этом такая геометрия лопастей исключает образование срывного флаттера, который в противном случае мог бы гасить колебания и приводить к снижению КПД генерирования электроэнергии.

Кроме этого, в ступице в различных вариантах технического осуществления устройства может быть установлено N лопастей, где N=I или N>1. Например, в ступице может быть установлена одна, две, три, четыре, пять, шесть или более лопастей. При этом ограничивают угол поворота лопасти от ее условно нейтрального положения на угол не более 180°/N в обе стороны.

Например, при установке в ступице трех лопастей ограничители углов поворота лопастей от нейтрального положения обеспечивают угол поворота каждой лопасти в каждую сторону не более 60°, а при установке в ступице шести лопастей ограничители углов поворота лопастей от нейтрального положения обеспечивают угол поворота каждой лопасти в каждую сторону не более 30°. Выбор количества лопастей, монтируемых в ступице ветрогенератора, зависит от средней расчетной скорости ветра в месте монтажа ветрогенерирующей установки. При этом, чем выше средняя скорость ветра, тем меньше лопастей следует устанавливать, т.к. чем меньше лопастей, тем больше их допустимая амплитуда колебаний. Такие соотношения рабочей скорости ветра, количества лопастей и ограничения углов поворота обеспечивают максимальную площадь ометания лопастями ветрогенераторов и максимальный ресурс работы устройства. Это, в свою очередь, обеспечивает максимальный КПД ветроэнергетической установки. Превышение указанных углов отклонения может привести к конструктивному разрушению лопастей ветрогенераторов, а отклонение на меньшие углы приведет к снижению ометаемой поверхности и уменьшению КПД устройства. Кроме этого, горизонтальный торсион жестко защемлен на регулируемом расстоянии от ступицы. Такое защемление горизонтального торсиона позволяет обеспечить режим автоколебаний (режим флаттера) ветрогенератора в заданном диапазоне скоростей. В одном из вариантов технического осуществления ветроэнергетической установки сети, содержащие ветрогенераторы, расставляют с шагом рядов не менее 5H метров, где H - средняя высота установки ветросети, м. Расстановка сетей с меньшим шагом приведет к уменьшению мощности потока ветра, набегающего на следующие по направлению потока ветра сети.

В другом варианте технического осуществления ветроэнергетической установки сети с помощью мачт и растяжек монтируют на плавучей платформе, платформу закрепляют якорем, а ветроэнергетическую установку соединяют с системой распределения электроэнергии через кабель-трос. Такое размещение ветроэнергетической установки позволяет использовать постоянные потока ветра в прибрежных районах.

Еще в одном варианте технического осуществления ветроэнергетической установки в виде сети с ветрогенераторами являются декоративной частью здания или сооружения и закреплены на крыше здания или сооружения.

Кроме того, ветроэнергетическая установка в виде сети с ветрогенераторами может быть декоративной частью здания или сооружения и закреплена в сквозном проеме здания или сооружения. Такое размещение ветроэнергетической установки позволит частично обеспечить потребности зданий и сооружений в электроэнергии.

Существо заявляемых способа и устройства и примеры их промышленного применения поясняется Фиг.l, Фиг.2, Фиг.З, Фиг.4, Фиг.5, Фиг.6, Фиг.7., Фиг.8, Фиг.9, Фиг.10. На Фиг. 1 показан боковой вид ветрогенератора. Ветрогенератор состоит из лопастей 1, характеризующихся высотой h и длиной хорд: концевой хорды 2 длиной Li, средней хорды 3 длиной ∑ 2 , где ∑ 2 =B (ширина лопасти) и корневой хорды 4 длиной Zj. При этом средняя хорда находится на высоте h/2 от корня лопасти. Лопасть 1 закреплена с помощью лопастного торсиона 5 в ступице 6. Ступица 6 жестко закреплена на горизонтальном торсионе 7. На торсионе 7 неподвижно закреплена муфта электромеханического генератора 8. Ветрогенератор снабжен корпусом 9, который защищает электромеханический генератор 8 от атмосферных воздействий и служит опорой для торсиона 7. Корпус 9 закреплен на ванте 10, являющимся частью сети. Обтекатель корпуса 9 обращен к потоку ветра 11. На Фиг. 2 показан фронтальный вид ветрогенератора с тремя лопастями 1. Ветрогенератор снабжен корпусом 9, закрепленном на ванте 10, являющимся частью сети. Ограничители углов поворота лопастей от условно вертикальной оси обеспечивают угол поворота каждой лопасти в каждую сторону не более, чем на 60°. На Фиг. 3 показан фронтальный вид ветрогенератора с четырьмя лопастями 1. Ветрогенератор снабжен корпусом 9, закрепленном на ванте 10, являющимся частью сети. При этом ограничители углов поворота лопастей от условно вертикальной оси обеспечивают угол поворота каждой лопасти в каждую сторону не более 45°. На Фиг. 4 показан фронтальный вид ветрогенератора с двенадцатью лопастями 1. Ветрогенератор снабжен корпусом 9, закрепленном на вертикальном ванте 10, являющимся частью сети. Ограничители углов поворота лопастей от условно вертикальной оси обеспечивают угол поворота каждой лопасти в каждую сторону не более 15°. Количество лопастей ветрогенератора выбирается в зависимости от средней расчетной скорости ветра в месте монтажа устройства, прочностных параметров материала лопасти и горизонтального торсиона. Чем выше прочность материала лопасти и горизонтального торсиона, тем меньше лопастей можно использовать. На Фиг. 5 показан боковой вид фрагмента сети, в которой ванты сети

10 крепятся к жесткой раме 12.

На Фиг. 6 показан фронтальный фрагмент сети, в которой ванты сети 10 крепятся к жесткой раме 12. Сеть сформирована вантами, образующими ячейки в форме шестигранников 13, которые закреплены в раме 12.

Ветрогенераторы расположены в ячейках сети и закреплены на вертикальных вантах 10. При этом сеть из шестигранников 13 и рама 12 - не поворотные. Каждый ветрогенератор имеет возможность поворота в своей шестигранной ячейке вокруг оси, образованной вертикальным вантом

10.

На Фиг. 7 показана рама 12 с ветросетью, состоящей из множества ветрогенераторов, закрепленная с помощью вант 14 на стойке - мачте 15. Мачта 15 закреплена в проектном положении регулируемым расчалками 16 в фундаментах - анкерах 17. Рама с ветросетью 12 может вращаться на 180° вокруг своей оси для «yлaвливaния» потока ветра.

На Фиг. 8 показана наземная ветроэнергетическая станция, состоящая из множества ветросетей 12, смонтированных с помощью вантов 14 на мачтах 15, удерживаемых регулируемыми расчалками 16 в фундаментах - анкерах 17.

Отсутствие больших лопастей позволяет использовать стойки - мачты 15 на расчалках 16. В отличие от консольных мачт, которые подвергаются большим изгибным усилиям, эти мачты не нуждаются в глубоком фундаменте, имеют малую массу и потому оказываются дешевыми в изготовлении и в монтаже. Перпендикулярно расположенные ветросети ловят ветер при любом его направлении. При этом шаг ветросетей составляет 5H, где H - средняя высота установки ветросети, м.

Такие сети могут обеспечить выработку энергии на уровне, например, 200 кВт с каждого гектара при расчетной скорости ветра 8 м/сек и высоте мачт 30 м. В отличие от роторных ВЭУ, которые являются источником сильного шума, такие сети могут располагаться вблизи населенных пунктов, на пастбищах и других сельскохозяйственных угодьях. Более того, они могут использоваться как архитектурные элементы, декорации, например, на горнолыжных курортах, украшать окрестности пляжей и рыбацких поселков. На Фиг. 9 показана ветроэнергетическая станция, смонтированная в каньоне, фьорде или горном ущелье. Ущелья простираются от вершин гор с низкой температурой до долин с высокой температурой, что создает постоянный поток воздуха. И если в других, даже ветренных местах, например, на побережьях, ветер сменяется периодом безветрия, то в ущельях дует постоянный ветер. Например, воздушная плотина из ветросети, перегораживающая горное ущелье шириной 2 километра, способна выдавать в сеть энергию мощности несколько мегаватт.

На Фиг. 10 показана ветроэнергетическая станция, смонтированная на плавучей платформе. Множество ветрогенераторов, смонтированных на рамах 12, крепят к мачтам 15 расчалками 16. Такая плавучая конструкция может быть закреплена якорями на таком удалении от берега, которое обеспечивает постоянный поток ветра. Кабель для подачи электроэнергии может быть проложен по дну шельфа или закреплен на бакенах. Ветроэнергетическая установка работает следующим образом. В тех местах природного ландшафта, где имеются постоянные сильные воздушные потоки, например, в каньонах, фьордах, прибрежных районах и шельфах монтируют ветросети на мачтах с расчалками и используют в стационарном режиме на земле или в подвижном режиме на плавучей платформе. Электрические ветрогенераторы размещают на вертикальных вантах 10 в рамах 12 с возможностью поворота ветрогенераторов на вантах 10 вокруг вертикальной оси на 180° под действием ветра. Сети могут быть вывешены в несколько рядов с некоторым интервалом между ними во взаимно перпендикулярном направлении. Струи ветра вызывают изгибно- крутильные колебания лопастей 1 ветрогенераторов. За счет обеспечения трех степеней свободы лопастей 1 ветрогенератора, соотношения длин хорд 2, 3 и 4 и выноса центра масс из плоскости лопасти 1 по направлению ветра обеспечивают устойчивые колебания (флаттер). Энергию колебания лопастей 1 ветрогенератора преобразуют в энергию колебания горизонтального торсиона 7 вокруг его оси, ограничивают угол вращения лопастей 1 и амплитуду колебания горизонтального торсиона 7. Механическую энергию колебания горизонтального торсиона 7 преобразуют в электрическую с помощью электромеханических преобразователей 8.

Энергия от отдельных ветрогенераторов суммируется и подается по кабелю на трансформаторную подстанцию, откуда поступает непосредственно потребителями или в централизованную сеть.

Работоспособность ветроэнергетической установки доказана на конструкции ветрогенераторов с 1, 2, 3, 4, 5, 6 и l2 лопастями, с ометаемым диаметром около 0.085 м. Опытным путем показано, что оптимальный диаметр окружности, ометаемый лопастями, находится в диапазоне 0.075 - 0.1м. Масса лопасти со смещением центра масс, провоцирующим флаттер на минимальных скоростях 8 — 16 м/с, составляла величину менее 10 г. Концевая хорда каждой лопасти составила -0,02 м, корневая -0,01 м, средняя хорда -0,015 м, а длина лопасти -0,03 м. Диаметр ступицы ветрогенератора был равен -0,02 м, общий диаметр по концевым хордам лопастей составил ~0,085 м. Частота флаттера изменялась в интервале в зависимости от скорости ветра 10 ... 15 Гц. При частоте флаттера 10-15 Гц, площади ометания 0.05 м 2 , мощность одного ветрогенератора в зависимости от скорости ветра составила от 0,4 до 3.2 Вт. Для получения мощности IKBT необходима ветросеть - ветроэнергетическая установка, состоящая множества микроветрогенераторов количеством от 2.5 тысяч до 25 тысяч штук. В случае монтажа ветросетей на мачте мачты высотой 100 м позволяют смонтировать ветросети общей площадью 1250м 2 , которые будут вырабатывать энергии мощностью 125кВт.

Литература:

1. Патент Канады CA2591536, дата публикации 2006-06-01.

2. Патент Японии JP2003120499, дата публикации 2003-04-23.

3. Патент Японии JP2002233117, дата публикации 2002-08- 16.

4. Патент США US4536674, дата публикации 1985-08-20. 5. Патент Японии JP2007016756, дата публикации 2007-01-25.

6. Авторское свидетельство SU Na 1645603, дата публикации 30.04.91. 7. Патент RU 2241300, дата публикации 27.11.04.

8. Авторского свидетельство SUl 793095, дата публикации 07.02.1992.

9. Заявка на выдачу патента 2007104713/06, дата публикации 2008.09.27




 
Previous Patent: STOCK SPECULATOR

Next Patent: SPECTRAL SPHERO-PRISMATIC GLASSES