Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIND TURBINE WHICH CAN BE MOVED IN TRANSLATION
Document Type and Number:
WIPO Patent Application WO/2016/027148
Kind Code:
A1
Abstract:
The invention relates to a wind generator, comprising a wind wheel which is mounted so as to be able to rotate about a horizontal or approximately horizontal axis of rotation and which has one or more wings or other wind guiding surfaces for converting flow energy of the wind into rotational energy, and at least one generator, coupled to the hub or shaft of the wind wheel or to the output shaft of a gearing connected thereto, for converting the rotational energy into electrical energy, wherein the centre of gravity of the wind wheel - together with the hub and rotor shaft and the parts that are coupled thereto, are able to move in rotation and rotate about the same axis of rotation - can be moved in translation in a direction entirely or predominantly parallel to the axis of rotation of the wind wheel.

Inventors:
FRANCK JAN (DE)
Application Number:
PCT/IB2015/001384
Publication Date:
February 25, 2016
Filing Date:
August 18, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRANCK JAN (DE)
International Classes:
F03D1/04; F03D7/02
Foreign References:
DE10212814A12003-02-27
US4715776A1987-12-29
Other References:
None
Attorney, Agent or Firm:
KÜCHLER, Stefan, T. (DE)
Download PDF:
Claims:
Patentansprüche

1. Windgenerator (1 ), umfassend ein um eine horizontale oder annähernd horizontale Drehachse drehbar gelagertes Windrad (4) mit einem oder mehreren Flügeln oder sonstigen Windleitflächen zur Umwandlung von Strömungsenergie des Windes in Rotationsenergie, sowie wenigstens einen an die Nabe oder Welle des Windrades oder an die Ausgangswelle eines daran angeschlossenen Getriebes angekoppelten Generator (5) zur Umwandlung der Rotationsenergie in elektrische Energie, dadurch gekennzeichnet, dass der Schwerpunkt des Windrades (4) samt Nabe und Rotorwelle sowie daran angekoppelter, drehbeweglicher und um die selbe Drehachse rotierender Teile in einer Richtung ganz oder überwiegend parallel zu der Drehachse des Windrades (4) translatorisch bewegbar ist.

2. Windgenerator (1 ) nach Anspruch 1 dadurch gekennzeichnet, dass die translatorische Bewegung des Windgenerators (1) parallel zu der Fläche eines Untergrundes geführt erfolgt, insbesondere parallel zu einer vorzugsweise horizontalen Ebene geführt.

3. Windgenerator (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Windwiderstand des Windrades (4) oder von Teilen desselben verstellbar ist, insbesondere indem der Anstellwinkel eines oder mehrerer Flügel oder sonstiger Windleitflächen veränderbar ist, oder indem das Windrad (4) gegenüber der Anströmrichtung verschwenkbar ist, oder indem eine vorzugsweise stromlinienförmige Verkleidung (11) vor das Windrad (4) schwenkbar ist.

4. Windgenerator (1 ) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Windgenerator (1 ) mobil ausgebildet ist, insbesondere mittels unterseitiger Räder (6).

5. Windgenerator nach Anspruch 4, dadurch gekennzeichnet, dass der Windgenerator (1 ) und/oder das Windrad (4) auf einem Fahrwerk (2) und/oder an Bord eines Fahrzeugs oder einer Gondel angeordnet ist.

6. Windgenerator (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass das Fahrwerk (2) oder Fahrzeug auf Schienen (7) fahren kann.

7. Windgenerator (1 ) nach Anspruch 6, dadurch gekennzeichnet, dass die Schienen (7) im Kreis verlegt sind.

8. Windgenerator (1 ) nach Anspruch 7, dadurch gekennzeichnet, dass die Schienen (7) auf einem Turm oder einem sonstigen, hoch aufragenden Bauwerk angeordnet sind.

9. Windgenerator (1 ) nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass der Windgenerator (1 ) und/oder dessen Windrad drehbewegungsmäßig nicht an eines der unterseitigen Räder (6) gekoppelt ist.

10. Windgenerator (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass die Gondel exzentrisch um eine vertikale Schwenkachse schwenkbar gelagert ist. 1. Windgenerator (1 ) nach Anspruch 0, dadurch gekennzeichnet, dass die Gondel exzentrisch um eine vertikale Schwenkachse im Kreis schwenkbar gelagert ist, wobei die Drehachse des Windrades (4) etwa tangential zu dem von der Gondel beschriebenen Kreis orientiert ist.

12. Windgenerator (1 ) nach einem der Ansprüche 5 bis 11 , gekennzeichnet durch eine Einrichtung zum Antrieb des Fahrzeugs oder Fahrwerks (2) oder der Gondel, insbesondere einen Motor (8).

13. Windgenerator (1 ) nach Anspruch 12, dadurch gekennzeichnet, dass die Antriebseinrichtung als Verbrennungsmotor ausgebildet ist oder als Elektromotor oder als ein um eine vertikale Achse drehbar gelagerter Propeller, der von einer vorzugsweise nach oben gerichteten Konvektionsströmung angetrieben wird.

14. Windgenerator (1 ) nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass sich die Projektion des Schwerpunktes der Einrichtung für den Antrieb des Fahrwerks (2) oder Fahrzeugs oder der Gondel, insbesondere des Motors (8), innerhalb eines von dem Fahrzeug oder Fahrwerk (2) oder der Gondel bei seiner/ihrer Bewegung beschriebenen Kreises befindet, vorzugsweise an oder nahe von dessen Mittelpunkt.

15. Windgenerator (1 ) nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass sich die Projektion des Schwerpunktes der Einrichtung für den Antrieb des Fahrzeugs oder Fahrwerks (2), insbesondere des Motors (8), auf den das Fahrzeug führenden Untergrund außerhalb eines von den Aufstandsbereichen der unterseitigen Räder (6) auf dem Untergrund aufgespannten Vielecks befindet.

16. Windgenerator (1 ) nach einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, dass sich die Projektion des Schwerpunktes des Windrades (4) oder Windgenerators (1 ) auf den das Fahrzeug führenden Untergrund innerhalb eines von den Aufstandsbereichen der unterseitigen Räder (6) auf dem Untergrund aufgespannten Vielecks befindet.

17. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Windrad (4) nicht innerhalb eines Windkanals angeordnet oder von Windleitblechen umgeben ist.

18. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchmesser des Windrades (4) größer ist als die größte Breite des Fahrzeugs oder Fahrwerks, insbesondere größer als der seitliche Abstand zwischen zwei unterseitigen Rädern desselben an unterschiedlichen Seiten des Fahrzeugs oder Fahrwerks.

19. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an einer Führungseinrichtung gleichzeitig mehrere Fahrwerke oder Gondeln geführt sind.

20. Windgenerator (1 ) nach Anspruch 19, dadurch gekennzeichnet, dass mehrere, an der selben Führungseinrichtung geführte Fahrwerke oder Gondeln miteinander verbunden oder gekoppelt sind, um synchrone Bewegungen auszuführen.

21. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vom Wind (W) anzuströmenden Seiten der Windräder (4) an mehreren Fahrwerken (2) oder Gondeln in die derselben Bewegungsrichtung des Verbindungsmittels entsprechenden, lokalen Richtungen weisen.

22. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vom Wind (W) anzuströmenden Seiten der Windräder (4) an mehreren Fahrwerken (2) oder Gondeln in die entgegengesetzten Bewegungsrichtungen des Verbindungsmittels entsprechenden, lokalen Richtungen weisen.

23. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Flügel eines Windrades (4) um ihre Längsachsen verstellbar sind, um an unterschiedliche Relativgeschwindigkeiten der anströmenden Luft angeasst werden zu können.

24. Windgenerator (1 ) nach Anspruch 23, dadurch gekennzeichnet, dass die Flügel eines Windrades (4) kontinuierlich verstellbar sind, also über beliebige, unbegrenzte Anstellwinkel hinaus, um an eine Umkehr der Relativdrehrichtung gegenüber der anströmenden Luft angepasst werden zu können.

Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Regelung, welche mehrere, vorzugsweise zwei, untereinander verbundene Windräder (4) stets gegen den Wind (W) ausrichtet, indem jeweils der Anstellwinkel der Flügel des in der jeweiligen Anströmrichtung vorderen Windrades (4) derart verstellt wird, dass der Windwiderstand dieses Windrades (4) erhöht wird und also von dem anströmenden Wind (W) zurückgedrängt wird.

Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Einrichtung zur Einspeisung der gewonnenen Elektroenergie als Strom in ein Stromnetz, insbesondere in ein Wechselstrom- oder Drehstromnetz.

27. Windgenerator (1 ) nach Anspruch 26, gekennzeichnet durch eine Einrichtung zur Synchronisation des einzuspeisenden Stroms mit der Frequenz der Spannung in dem Wechselstrom- oder Drehstromnetz.

Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen einem Windrad (4) und dem jenem zugeordneten Elektrogenerator (5) ein Freilauf angeordnet ist, so dass bei einer Gegenbö trotz des abgebremsten Windrades (4) der Elektrogenerator (5) im Freilauf nahezu ungebremst weiter rotieren kann.

29. Windgenerator (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an dem Windrad (4), vorzugsweise strömungsaufwärts oder strömungsabwärts desselben, eine Einrichtung vorgesehen ist zur Umlenkung von Gegenböen oder von sonstigen, für die normale Drehrichtung des Windrades ungünstiger Luftströmungen.

Windgenerator (1 ) nach Anspruch 29, dadurch gekennzeichnet, dass die Einrichtung zur Umlenkung von Gegenböen oder von sonstigen, für die normale Drehrichtung des Windrades ungünstiger Luftströmungen als lamellenartiger Vorhang (11 ) ausgebildet ist, dessen Lamellen bei normaler Anströmrichtung der Luft geöffnet werden, bei entgegengesetzter Anströmrichtung der Luft dagegen geschlossen werden.

***

Description:
TRANSLATORISCH BEWEGBARE WIND KRAFTANLAGE

Die Erfindung richtet sich auf einen Windgenerator, umfassend ein um eine horizontale oder annähernd horizontale Achse drehbar gelagertes Windrad mit einem oder mehreren Flügeln oder sonstigen Windleitflächen zur Umwandlung von Strömungsenergie des Windes in Rotationsenergie, sowie wenigstens einen an die Nabe oder Welle des Windrades angekoppelten Generator zur Umwandlung der Rotationsenergie in elektrische Energie.

Zur Ergänzung und Entlastung der bisherigen Energieträger werden seit der sogenannten Energiewende verstärkt auch erneuerbare Energien nutzbar gemacht, insbesondere auch Windenergie.

Allerdings weht der Wind in vielen Gegenden eher unregelmäßig, und nicht selten sind zwischen windreichen Zeiten auch Phasen mit einer Flaute oder Windstille zu überbrücken. Ferner kann häufig in windschwachen Zeiten der massereiche Rotor einer Windkraftanlage nicht in Gang gebracht werden, so dass Windenergieanlagen im Allgemeinen erst bei höheren Windgeschwindigkeiten Energie liefern können.

Aus den Nachteilen des beschriebenen Standes der Technik resultiert das die Erfindung initiierende Problem, einen Windgenerator derart auszubilden, dass die anströmende, relative Windgeschwindigkeit so groß als möglich ist bzw. gemacht werden kann.

Die Lösung dieses Problems gelingt dadurch, dass der Schwerpunkt des Windrades samt Nabe und Rotorwelle sowie daran angekoppelter, drehbeweglicher und um die selbe Drehachse rotierender Teile translatorisch oder näherungsweise translatorisch bewegbar ist. Als translatorische Bewegung wird insbesondere jegliche durch eine derartige Lagerung oder Führung zugelassene Bewegung angesehen, bei welcher die betreffenden Teile zumindest lokal in einer horizontalen oder näherungsweise horizontalen Richtung bewegbar sind, insbesondere in Richtung der Drehwelle des Windrades. Mit anderen Worten, die Bahn der translatorischen Bewegung kann entlang einer Kurve verlaufen und muss nicht gerade gestreckt sein. Durch einen solchen Freiheitsgrad der Bewegung besteht einerseits die Möglichkeit, einer Sturmbö unmittelbar ausweichen zu können und dadurch die Relativ-Strömungsgeschwindigkeit reduzieren zu können. Andererseits kann dann aber auch - beispielsweise nach Abklingen einer solchen Bö - durch eine Rückstellbewegung des Windrades die Relativ-Strömungsgeschwindigkeit wieder erhöht und damit die Energieausbeute gesteigert werden. Dabei wird die Möglichkeit genutzt, das Windrad translatorisch antreiben lassen zu können, um die Anströmgeschwindigkeit des Windes virtuell zu erhöhen. Wenn hierfür eine möglichst günstig zur Verfügung stehende Antriebsenergie genutzt wird, lässt sich damit sogar bei geringer oder ausbleibender Windströmung elektrische Energie erzeugen. Als Primärenergie kommen dabei andere Strömungsenergien in Betracht, bspw. eine Wasserströmung in einem Fluss (Wasserkraft) oder in Küstennähe (Gezeitenkraft) oder eine vertikale Luftströmung (Konvektionsenergie), gegebenenfalls unterstützt durch Elektroenergie oder andere fossile Energieträger, beispielsweise zum Zwecke eines Anlaufs. Wie weiter unten beschrieben wird, ist es allerdings auch denkbar, auch für die erfindungsgemäße, translatorische Bewegung Windenergie als Primärenergie zu nutzen.

Es hat sich als günstig erwiesen, dass die translatorische Bewegung des Windgenerators parallel zu der Fläche eines Untergrundes geführt erfolgt, insbesondere parallel zu einer vorzugsweise horizontalen Ebene geführt. Da der Wind fast immer überwiegend horizontal bläst, kann damit sichergestelt werden, dass die überwiegende Windrichtung und die translatorische Bewegung innerhalb der selben Ebene liegen, beispielsweise etwa innerhalb einer horizontalen Ebene. Ferner kann der Windwiderstand des Windrades oder von Teilen desselben verstellbar sein, insbesondere indem der Anstellwinkel eines oder mehrerer Flügel oder sonstiger Windleitflächen veränderbar ist, oder indem das Windrad gegenüber der Anströmrichtung verschwenkbar ist, oder indem eine vorzugsweise stromlinienförmige Verkleidung vor das Windrad schwenkbar ist. Damit kann die Umwandlung von Windenergie in Rotationsenergie gesteuert werden. Dabei haben die beispielhaft aufgezählten Maßnahmen zur Einflussnahme auf den Windwiderstand unterschiedliche Auswirkungen auf den Umwandlungsgrad:

Werden die Flügel oder sonstigen Windleitflächen eher quer zur Windrichtung eingestellt, erhöht sich der Windwiderstand und auch der Umwandlungsgrad von Windenergie in Rotationsenergie; werden dese Flügel oder Windleitflächen eher parallel zur Windrichtung eingestellt, reduzieren sich der Windwiderstand und auch der Umwandlungsgrad von Windenergie in Rotationsenergie.

Wird die Dehachse des Windrades möglichst steil gegen die Windrichtung angestellt - im Idealfall antiparallel zu jener - so steigen der Windwiderstand und auch der Umwandlungsgrad von Windenergie in Rotationsenergie; wird das Windrad aus dem Wind gedreht, also der Zwischenwinkel zwischen Windrichtung und der Drehachse des Windrades erhöht, so sinken Windwiderstand und gleichzeitig auch der Umwandlungsgrad von Windenergie in Rotationsenergie.

Wird schließlich eine stromlinienförmige Verkleidung vor das Windrad geschwenkt, so erhöht sich einerseits der Windwiderstand, während andererseits die Energieausbeute, also der Umwandlungsgrad von Windenergie in Rotationsenergie, sinkt.

Wie man daraus erkennt, kann je nach Maßnahme das Änderungsverhältnis zwischen Windwiderstand und Energieausbeute gleichsinnig sein, also bei steigendem Windwiderstand steigt auch die Energieausbeute, aber auch gegensinnig, d.h., bei steigendem Windwiderstand sinkt die Energieausbeute.

Die Erfindung Iässt sich beispielsweise realisieren, indem der Windgenerator mobil ausgebildet ist, insbesondere mittels unterseitiger Räder. Damit besteht die Möglichkeit, ein Windrad bei Bedarf zu bewegen und damit eine Geschwindigkeit gegenüber der umgebenden Luft zu erzeugen, die es erlaubt, dass der Rotor (an-) laufen kann und Strom erzeugt.

Es hat sich als günstig erwiesen, dass der Windgenerator an Bord eines Fahrzeugs angeordnet ist. Es kann sich hierbei um ein vorzugsweise motorisiertes Straßenfahrzeug oder um ein Schienenfahrzeug handeln.

Die Erfindung Iässt sich dahingehend weiterbilden, dass das Fahrzeug auf Schienen fahren kann. Solchenfalls ist eine translatorische Bewegung in Richtung der Schienen möglich, eine andere Bewegung quer dazu jedoch nicht.

Ferner entspricht es der Lehre der Erfindung, dass die Schienen im Kreis verlegt sind. Dadurch kann ein darauf geführtes Fahrzeug oder Fahrwerk in beiden Richtungen unbegrenzt lange fahren.

Es liegt im Rahmen der Erfindung, dass die Schienen auf einem Turm oder einem sonstigen, hoch aufragenden Bauwerk angeordnet sind. Damit befindet sich das Windrad auf einem höheren Niveau gegenüber dem umgebenden Terrain, wo naturgemäß höhere Windgeschwindigkeiten herrschen, so dass eine gesteigerte Energieausbeute erreichbar ist.

Der Windgenerator und/oder dessen Windrad sollte(n) drehbewegungsmäßig nicht an eines der unterseitigen Räder gekoppelt sein. Mit anderen Worten, die Rotationsenergie des Windrades sollte nicht oder nicht unmittelbar auf die unterseitigen Räder übertragen werden, weil solchenfalls der Wikrungsgrad der Anordnung geschmälert würde.

Die Erfindung lässt sich dahingehend weiterbilden, dass die Gondel exzentrisch um eine vertikale Schwenkachse dreh- oder schwenkbar gelagert ist. Bei einer solchermaßen oberhalb des Erdbodens geführten Gondel sind die entlang des Umfangs eines Kreises verlegten Schienen ersetzt durch eine zentrale Lagerung um eine vertikale Schwenkachse.

Die Erfindung empfiehlt, dass die Gondel exzentrisch um eine vertikale Schwenkachse im Kreis schwenkbar gelagert ist, wobei die Drehachse des Windrades etwa tangential zu dem von der Gondel beschriebenen Kreis orientiert ist. Solchenfalls gibt es eine maximale Kopplung zwischen der anströmenden Windenergie und der daraus umgewandelten Rotationsenergie.

Vorzugsweise ist das Fahrzeug oder Fahrwerk oder die Gondel mit einer Einrichtung zu seinem/ihrem translatorischen Antrieb versehen oder gekoppelt, insbesondere mit einem Motor. Ein aktiv beeinflussbarer Leistungsfluss zu/von einem Motor bietet die Möglichkeit, die translatorische Bewegung entsprechend bestimmter Erfordernisse zu steuern oder gar zu regeln.

Die Antriebseinrichtung kann als Verbrennungsmotor ausgebildet seih oder als Elektromotor oder als ein um eine vertikale Achse drehbar gelagerter Propeller, der von einer vorzugsweise nach oben gerichteten Konvektionsströmung angetrieben wird. Die Art des Motors richtet sich nach der Art der eingesetzten Primärenergie. Die Ankopplung des Motors kann auf unterschiedliche Weise erfolgen, um die Windenergieanlage in eine translatorische Bewegung zu versetzen. Einerseits können davon unmittelbar die unterseitigen Räder eines Fahrzeugs oder Fahrwerks angetrieben werden, woraus sich dann indirekt dessen translatorische Bewegung ableitet. Oder der Motor ist mit dem Chassis des Fahrzeugs oder Fahrwerks verbunden oder gekoppelt, um dieses mit sich fortzuführen. Dabei ist zum Einen an einen Bügel oder Ausleger zu denken, welcher einen zentral angeordneten Motor mit dem entlang einer umlaufenden Peripherie verfahrbaren Fahrzeug oder Fahrwerk verbindet; andererseits könnte die Kopplung zwischen Motor und Fahrzeug oder Fahrwerk auch über ein Zugmittel erfolgen, beispielsweise über ein Seil, welches sich entlang der Strecke des Fahrzeugs oder Fahrwerks erstreckt.

Weitere Vorzüge ergeben sich dadurch, dass sich die Projektion des Schwerpunktes der Einrichtung für den Antrieb des Fahrwerks oder Fahrzeugs oder der Gondel, insbesondere des Motors, innerhalb eines von dem Fahzeug oder Fahrwerk oder der Gondel bei seiner/ihrer Bewegung beschriebenen Kreises befindet, vorzugsweise an oder nahe von dessen Mittelpunkt. Der Motor könnte dabei an Bord des Fahrzeugs oder Fahrwerks angeordnet sein; bevorzugt ist bei einer solchen Anordnung der Motor jedoch stationär angeordnet, bewegt sich also mit dem Fahrzeug nicht mit, sondern ist nur mit jenem gekoppelt. Dank seiner zentralen Position muss der Motor dem Fahzeug oder Fahrwerk oder der Gondel nicht folgen, sondern bleibt mit jenem über Zug-, Schub- oder Schwenkmittel gekoppelt.

Einer bevorzugte Anordnung zeichnet sich dadurch aus, dass sich die Projektion des Schwerpunktes der Einrichtung für den Antrieb des Fahrzeugs, insbesondere des Motors, auf den das Fahrzeug führenden Untergrund außerhalb eines von den Aufstandsbereichen der unterseitigen Räder auf dem Untergrund aufgespannten Vielecks befindet, was sich beispielsweie dadurch realisieren lässt, dass das Antriebsmittel sich nicht an Bord des Fahrzeugs befindet, sondern an einem externen Ort.

Andererseits sollte sich die Projektion des Schwerpunktes des Windrades oder Windgenerators auf den das Fahrzeug führenden Untergrund innerhalb eines von den Aufstandsbereichen der unterseitigen Räder auf dem Untergrund aufgespannten Vielecks befinden. Mit anderen Worten, das Windrad ist an Bord des Fahrzeugs oder Fahrwerks gelagert, wobei aus Gründen einer maximalen Stabilität eine symmetrische Gewichtsverteilung angestrebt wird, wobei sich der das Windrad oder der gesamte Windgenerator möglichst mittig an dem Fahrzeug oder Fahrwerk befindet.

Ein erfindungsgemäßes Windrad sollte nicht innerhalb eines Windkanals angeordnet oder von Windleitblechen umgeben sein, um bei jeder Orientierung des Windrades stets ein Maximum der anströmenden Luft einfangen zu können. Auerdem könnte ein Windkanal oder dergleichen bei einer schrägen Anströmung durch den Wind eine erhöhte Windangriffsfläche bieten, mit der Gefahr von Instabilitäten.

Der Durchmesser des Windrades sollte größer sein als die größte Breite des Fahrzeugs oder Fahrwerks, insbesondere größer als der seitliche Abstand zwischen zwei unterseitigen Rädern desselben an unterschiedlichen Seiten des Fahrzeugs oder Fahrwerks. Dadurch kann ein Maximum an Windenergie eingefangen und in Rotationsenergie umgewandelt werden.

An einer Führungseinrichtung - also auf Schienen oder an einer vertikalen Schwenkachse - können gleichzeitig mehrere Fahrwerke oder Gondeln geführt sein. Dadurch kann die Effizienz der Anlage weiter gesteigert werden, weil die Energieausbeute im Allgemeinen etwa proportional zu der Anzahl der Windräder bzw. Windgeneratoren ist.

Die Erfindung sieht weiterhin vor, dass mehrere, an der selben Führungseinrichtung geführte Fahrwerke oder Gondeln miteinander verbunden oder gekoppelt sind, um synchrone Bewegungen auszuführen. Eine solche Verbindung zieht einerseits eine Synchronität der Bewegungen nach sich, nur eben phasenversetzt, und bietet andererseits die Möglichkeit, Kräfte zwischen den verschiedenen Fahrwerken oder Gondeln übertragen zu können, insbesondere auch Antriebskräfte für die erfindungsgemäße translatorische Bewegung. Die vom Wind anzuströmenden Seiten der Windräder an mehreren Fahrwerken oder Gondeln können in die derselben Bewegungsrichtung des Verbindungsmittels entsprechenden, lokalen Richtungen weisen. Mit anderen Worten, sie befinden sich beispielsweise jeweils an der in Bewegungsrichtung gesehen vorderen Seite. Bei einer Kreisführung - also mit im Kreis verlegten Schienen oder mit einer zentralen Schwenkachse - sind dann die betreffenden Windräder beispielsweise jeweils im Uhrzeigersinn vorne angeordnet, oder alternativ dazu jeweils im Uhrzeigersinn hinten. Bei einem gemeinsamen Umlauf bei Windstille erfahren dann alle Windräder etwa gleiche Anströmungen; bei einer Windströmung wird von zwei Windrädern dagegen stets ein Windrad vom Wind angetrieben, während das andere gleichzeitig abgebremst wird.

Andererseits gibt es auch eine Anordnung, wobei die vom Wind anzuströmenden Seiten der Windräder an mehreren Fahrwerken oder Gondeln in die entgegengesetzten Bewegungsrichtungen des Verbindungsmittels entsprechenden, lokalen Richtungen weisen. Dann gäbe es eine Umlauf-Position, in der beide Windräder der anströmenden Luft des Windes zugewandt sind und also von jenem in Rotation versetzt werden.

Die Erfindung lässt sich dahingehend weiterbilden, dass die Flügel eines Windrades um ihre Längsachsen verstellbar sind, um an unterschiedliche Relativgeschwindigkeiten der anströmenden Luft angeasst werden zu können. Diese Funktion ist vor allem bei Wind vorteilhaft, wenn sich das Windrad längs einer gebogenen Kurve translatorisch bewegt und sich demzufolge die relative Anströmgeschwindigkeit der Luft ändert.

Wenn die Flügel eines Windrades kontinuierlich verstellbar sind, also über beliebige, unbegrenzte Anstellwinkel hinaus, so lässt sich auch eine Anpassung an eine Umkehr der Relativdrehrichtung gegenüber der anströmenden Luft bewerkstelligen. Wenn mehrere Windräder bewegungsmäßig miteinander gekoppelt und zur Kraftübertragung untereinander verbunden sind, so lässt sich eine Regelung implementieren, welche mehrere, vorzugsweise zwei, untereinander verbundene Windräder stets gegen den Wind ausrichtet, indem jeweils der Anstellwinkel der Flügel des in der jeweiligen Anströmrichtung vorderen Windrades derart verstellt wird, dass der Windwiderstand dieses Windrades erhöht wird und also von dem anströmenden Wind zurückgedrängt wird. Da für die Verstellung der Anstellwinkel der Blätter nur eine minimale Energie benötigt wird, lässt sich auf diesem Wege der Wirkungsgrad der Anlage verbessern; die eigentliche Energie zur Ausrichtung der Windräder liefert der Wind selbst.

Bevorzugt umfasst eine erfindungsgemäße Windenergieanlage eine Einrichtung zur Einspeisung der gewonnenen Elektroenergie als Strom in ein Stromnetz, insbesondere in ein Wechselstrom- oder Drehstromnetz. Zur Übertragung größerer Leistungen ist es dabei unerlässlich, dass die erfindungsgemäße Windenergieanlage durch ein Kabel mit dem Stromnetz verbunden ist, wenigstens durch ein zweiadriges Kabel im Fall von Wechselstrom-Einspeisung, oder durch wenigstens ein dreiadriges Kabel im Fall von Drehstrom-Einspeisung. Bei umlaufenden Anordnungen kann es erforderlich sein, den Strom von einem Windgenerator über Schleifringe zu einem ortsfesten Anschlusskabel zu transportieren.

In Mitteleuropa werden öffentliche Drehstromnetze und Wechselstromnetze als Teil davon mit einer Frequenz von 50 Hz betrieben, in anderen Ländern wie Nordamerika dagegen mit 60 Hz. In jedem Fall ist daher eine eine Einrichtung zur Synchronisation des einzuspeisenden Stroms mit der Frequenz der Spannung in dem Wechselstrom- oder Drehstromnetz erforderlich. Üblicherweise wird dazu der in einem Windgenerator erzeugte Strom von einem Wechselrichter oder einem Umrichter auf die betreffende Frequenz transformiert und dann gegen die Spannung des Netzes in jenes hineingeschoben. Üblicherweise wird dazu die Netzspannung abgetastet und daraus die gewünschte Phasenlage des Stroms und sodann auch dessen Amplitude berechnet und dann der Wechselrichter oder Umrichter entsprechend gesteuert, was durch eine geeignete Taktung der Stromventile erfolgt.

Erfindungsgemäß kann weiterhin vorgesehen sein, dass zwischen einem Windrad und dem jenem zugeordneten Elektrogenerator ein Freilauf angeordnet ist, so dass bei einer Gegenbö trotz des abgebremsten Windrades der Elektrogenerator im Freilauf nahezu ungebremst weiter rotieren kann. Solchenfalls wird dem rotierenden Generator durch eine Gegenbö keine Energie entzogen, wodurch der Wirkungsgrad weiter optimiert wird.

Außerdem kann an dem Windrad, vorzugsweise strömungsaufwärts oder strömungsabwärts desselben, eine Einrichtung vorgesehen sein zur Umlenkung von Gegenböen oder von sonstigen, für die normale Drehrichtung des Windrades ungünstigen Luftströmungen. Beispielsweise kann ein umlaufendes Windrad während seines Rücklaufs mit dem Wind von hinten angeströmt werden anstatt von vorne, wie üblich. Diese umgekehrte Anströmrichtung würde das Windrad abbremsen, und daher sollte eine solche unübliche Wind-Anströmung während eines Rücklaufs von dem Windrad ferngehalten werden. Dies kann durch Umlenkung dieser Strömung erfolgen.

Schließlich entspricht es der Lehre der Erfindung, dass die Einrichtung zur Umlenkung von Gegenböen oder von sonstigen, für die normale Drehrichtung des Windrades ungünstiger Luftströmungen als lamellenartiger Vorhang ausgebildet ist, dessen Lamellen bei normaler Anströmrichtung der Luft geöffnet werden, bei entgegengesetzter Anströmrichtung der Luft dagegen geschlossen werden.

Man kann hierbei denken an eine Vielzahl von zueinander parallelen Lamellen, jeweils mit horizontaler Längsachse. Diese sind jeweils um eine ihrer Längskanten schwenkbar gelagert, insbesondere um die jeweils ober Längskante, beispielsweise in seitlichen Lagern. Bei den üblichen Strömungsverhältnissen werden sie von dem Wind in eine etwa horizontale Lage gesteuert, so dass die Zwischenräume zwischen den Lamellen frei sind und der Wind nahezu ungehindert bis zu dem Windrad strömen kann, um dieses in der üblichen Drehrichtung anzutreiben. Bei „unüblichen" Strömungsverhältnissen fallen die Lamellen jedoch in eine etwa vertikale Ebene herab, können aber dank dortiger Anschlagelemente nicht weiter verschwenken, sondern bleiben in dieser Ebene und verschließen daher gemeinsam den gesamten anströmbereich, halten also den ungünstigen Wind von dem Windrad fern. Dieses wird daher nicht abgebremst. Darüber hinaus kann der nun auf den Lamellen lastende Staudruck des Windes als translatorischer Antrieb verwendet werden, bis das betreffende Windrad solchermaßen translatorisch beschleunigt wieder einen Bereich mit üblichen Windverhältnissen erreicht und daraus sodann Rotationsenergie schöpfen kann, die schließlich in Elektroenergie umgewandelt wird.

Weitere Merkmale, Einzelheiten, Vorteile und Wirkungen auf der Basis der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform der Erfindung sowie anhand der Zeichnung. Hierbei zeigt:

Fig. 1 eine Windkraftanlage mit einem auf Schienen verfahrbaren Windrad und Windgenerator;

Fig. 2 eine andere Windkraftanlage mit zwei auf Schienen verfahrbaren

Windrädern samt je einem Windgenerator, wobei eine automatische Regelung der Azimut-Ausrichtung gegen den Wind implementiert ist; sowie

Fig. 3 eine abermals abgewandelte Windkraftanlage mit zwei auf Schienen verfahrbaren Windrädern samt je einem Windgenerator, wobei die Windräder mit variablen Strömungsblenden versehen sind, um ungünstige Strömungsverhältnisse von dem betreffenden Windrad fernzuhalten. Die erfindungsgemäße mobile Windkraftanlage 1 gemäß Fig. 1 umfasst ein Fahrwerk 2 mit einem Gerüst 3 für ein Windrad 4 sowie einen daran gekoppelten Elektrogenerator 5, beispielsweise über ein Getriebe.

An dem Fahrwerk 2 sind Räder 6 mit Radkränzen gelagert, welche auf Schienen 7 verfahrbar sind. Dadurch kann die Windkraftanlage 1 entlang der Schienen 7 verfahren werden.

Ein Antrieb für das Fahrwerk 2 kann vorgesehen sein, beispielsweise durch einen daran gekoppelten Motor oder über einen mit einem zentral innerhalb eines Schienenkreises angeordneten Motor 8 gekoppelten Ausleger 9.

Ferner besteht die Möglichkeit, anstelle eines Motors 8 auch eine andere Art des Antriebs vorzusehen, beispielsweise ein Konvektionsrad mit einer vertikalen Achse, so dass aufsteigende, erwärmte Luft als Antriebsenergie nutzbar gemacht werden kann, um die Anströmgeschwindigkeit zu erhöhen, insbesondere bei geringer oder ausbleibender Luftströmung.

Ein Vorteil der Erfindung besteht darin, dass das Windrad 4 mitsamt des Fahrwerks 2 bei einem zu starken Wind längs der Schienen 7 zurückgenommen werden kann, so dass sich die Anströmgeschwindigkeit virtuell reduziert. Bei nachlassender Windgeschwindigkeit kann dann das Fahrwerk 2 mitsamt dem Windrad 4 wieder nach vorne gefahren wreden, wodurch sich die Anströmgeschwindigkeit virtuell steigert. Insgesmt lässt sich damit eine relativ konstante, virtuelle Anströmgeschwindigkeit realisieren.

In der Zeichnung ist das Windrad 4 exzentrisch zu dem Fahrwerk 2 angeordnet, also nicht über dessen Schwerpunkt. Allerdings lässt sich dies im Rahmen einer anderen Anordnung entsprechend abändern, insbesondere so, dass der Schwerpunkt der Gesamtanordnung aus Fahrwerk 2, Gerüst 3, Windrad 4 und Elektrogenerator 5 sich etwa im Zentrum der von den vier Rädern 6 aufgespannten Fläche befindet, so dass die Gefahr eines Kippens minmiert ist.

Einem Kippen des Fahrwerks 2 mitsamt seiner Aufbauten kann auch dadurch entgegengewirkt werden, indem die Schienen 7 nicht nur eine obere Laufbahn aufweisen, sondern auch eine untere Laufbahn, die von geeignet geführten Rädern 6 Untergriffen wird.

In Fig. 2 ist eine Weiterbildung der Anordnung nach Fig. 1 zu sehen. Hierbei sind jeweils zwei Fahrwerke 2a, 2b vorgesehen, welche je ein Windrad 4a, 4b und je einen Elektrogenerator 5a, 5b tragen. Die Anordnung ist spiegelsymmetrisch zu einer genau zwischen den beiden Fahrwerken 2a, 2b hindurchlaufenden Symmetriachse 10.

Eine optimale Anströmung durch den Wind ist dann gegeben, wenn die Windrichtung parallel zu der Symmetrieachse 10 ist. Dann sind auch die Strömungsverhältnisse mit guter Näherung zueinander symmetrisch, und damit auch die auf die beiden Windräder 4a, 4b einwirkenden Kräfte. Damit halten sich diese Kräfte die Waage.

Da die beiden Fahrwerke 2a, 2b durch die Ausleger 9a, 9b starr miteinander verbunden sind, nehmen sie stets einander diametral gegenüber liegende Positionen längs des Schienenkreises 7 ein, bezogen auf dessen Mittelpunkt, wo sich der zentrale Motor 8 befindet.

Die Gesamtanordnung aus Fahrwerken 2a, 2b und Auslegern 9a, 9b ist in sich starr und kann daher allenfalls um eine zentrale Achse hin und her schwingen, wobei die beiden Fahrwerke 2a, 2b längs der Schienen 7 fahren. Diese Eigenschaft kann für eine selbsttätige Ausrichtung der beiden Windräder 4a, 4b im Hinblick auf die anströmende Wind- oder Luftströmung genutzt werden. Dies kann u.a. dadurch bewerkstelligt werden, dass die Anstellwinkel der Flügel desjenigen Windrades 4a, 4b, welches sich an dem gegenüber dem Wind jeweils vorderen Fahrwerk 2a, 2b befindet, flacher gestellt werden, also in eine Ebene quer zu der aktuellen Windrichtung. Dadurch vergrößert sich die dem Wind ausgesetzte Fläche dieses Windrades 4a, 4b, und es entsteht ein Drehmoment, welches das betreffende Windrad 4a, 4b wieder nach hinten drückt, wobei dann das andere Windrad 4b, 4a längs der Kreisbahn 7 wieder nach vorne fährt. Die dazu erforderliche Kraft bzw. Antriebsenergie liefert der Wind.

Im Übrigen hat natürlich eine Verdoppelung oder Vervielfachung der Windräder 4a, 4b eine entsprechend gesteigerte Leistungsumwandlung zur Folge.

Während sich bei der Windkraftanlage V nach Fig. 2 die Gesamtanordnung zumeist in einem Gleichgewicht befindet und daher stets nur kleine Ausgleichbewegungen ausführt, ist die Windkraftanlage 1 " für einen umlaufenden Betrieb mit einer Drehzahl D optimiert, insbesondere auch bei anströmendem Wind W.

Während also die Gesamtanordnung aus Windrädern 4a, 4b, Fahrwerken 2a, 2b und Auslegern 9a, 9b um den Mittelpunkt des Schienenkreises 7 rotiert, ist stets eines der beiden Windräder 4a, 4b dem Wind W zugewandt, das jeweils andere dagegen zu just dem selben Zeitpunkt abgewandt, wird also von hinten angeströmt, was die Rotation dieses Windrades 4a, 4b abbremsen würde.

Ein solcher nachteiliger Effekt kann beispielsweise dadurch vermieden werden, dass jeweils zwischen einem Windrad 4a, 4b und dem zugeordneten Elektrogenerator 6a, 6b jeweils ein Freilauf angeordnet ist, welcher nur antreibende Drehmomente in der üblichen Drehrichtung überträgt, dagegen keine bremsenden Drehmomente. 15 v » J u i! i j g 4

Um ein Abbremsen eines Windrades 4a, 4b zu vermeiden, kann außerdem im Bereich jedes Fahrwerks 2a, 2b je ein lamellenartiger Vorhang 11a, 11 b vorgesehen sein, in unmittelbarer Nähe hinter einem Windrad 4a, 4b.

Die lamellenartigen Vorhänge 11a, 11 b sind so beschaffen, dass ein von vorne auf das betreffende Windrad 4a, 4b anströmender Wind die um ihre Längskanten, vorzugsweise um ihre oberen Längskanten verschwenkbaren Lamellen nach hinten auslenken kann, also in Windrichtung W. Die Lamellen schwenken also aus einer gemeinsamen Ebene heraus und stellen sich parallel zueinander ein, wobei zwischen benachbarten Lamellen ein großer Zwischenraum entsteht, welcher den Wind nahezu ungehinder passieren lässt.

Ist die Windrichtung W jedoch engegengesetzt, so wird ein entsprechendes Wegschwenken der Lamellen in der anderen Richtung durch Anschlagelemente verhindert. Die Lamellen bleiben also in einer gemeinsamen Ebene, der Lamellenvorhang bleibt geschlossen, der Wind kann nicht bis zu dem betreffenden Windrad 4a, 4b passieren und dieses also auch nicht abbremsen.

Gleichzeitig liefert der auf dem geschlossenen Lamellenvorhang lastende Staudruck des Windes W ein die Gesamtanordnung aus Fahrwerken 2a, 2b, Windrädern 4a, 4b und Elektrogeneratoren 6a, 6b in Umlaufrichtung antreibendes Drehmoment, welches das jeweils vordere Windrad 4a, 4b gegen den Wind antreibt, so dass in der in Fig. 3 gezeigten Stellung maximal eine virtuelle Strömung S entsteht, die gegeben ist zu

S = W + D * 2 R l wobei R der mittlere Abstand eines Windrades 4a, 4b von dem Mittelpunkt 12 des Schienenkreises 7 bedeutet. 16 * ^ i J ' u u i j o 4

Während dabei der Summand D * 2 π R unabhängig von der jeweiligen Position des betreffenden Fahwerks 2a, 2b näherungsweise konstant bleibt, hängt der Einfluss des Summanden W von der augenblicklichen Position des betreffenden Windrades 4a, eb ab, etwa gemäß einer Sinus- oder Kosinusfunktion, so dass sich die Anströmung etwa wie folgt ergibt:

S = W * sin α + D * 2 π R, wobei α der Umlaufwinkel ist, bezogen auf einen Nullpunkt auf dem dem Wind W abgewandten Schenkel der Symmetrieachse 10.

Ein oben beschriebener Freilauf wie auch der weiter oben geschilderte Lamellenvorhang 11a, 11 b verhindert dabei eine abbremsende Wirkung, insbesondere falls der Faktor sin α kleiner als Null ist. Daher gilt in diesem Falle immer:

S > D * 2 π R, da W * sin α für Werte kleiner als Null ausmaskiert wird. Das antreibende Drehmoment Dliefert dabei jeweils der in Fig. 3 gerade links von der Symmetrielinie 10 befindliche Lamellenvorhang 11a, welcher geschlossen ist und die anströmende Luft auffängt und über die Ausleger 9a, 9b auf beide Windräder 4a, 4b verteilt.

Diese höhere virtuelle Strömung S hat eine höhere Drehzahl des Windrades 4a, 4b zur Folge, und daraus folgt unter anderem ein leichterer Anlauf der Anlage.

Bei einer weiteren, alternativen Ausführungsform kann die Windkraftanlage 1 miniaturisiert ausgebildet und an Bord eines straßentauglichen Fahrzeugs angeordnet sein, so dass dieses aus seiner Bewegungsenergie Strom erzeugen kann, bspw. während eines Bremsvorgangs. Bevorzugt ist dazu eine solche Windkraftanlage innerhalb der Karosserie angeordnet, bspw. unterhalb der Motorhaube, und kann bei Bedarf zugeschaltet werden, sobald überschüssige Bewegungsenergie zur Verfügung steht, bspw. während eines Bremsvorgangs oder während einer hangabwärtigen Fahrt. Zu diesem Zweck kann das Windrad hinter einer stromlinienförmigen Verkleidung verborgen sein, die bei Bedarf geöffnet werden kann, während Beschleunigungsvorgängen dagegen geschlossen ist, um keinen Luftwiderstand zu erzeugen.

Bezugszeichenliste Windkraftanlage

Fahrwerk

Gerüst

Windrad

Elektrogenerator

Räder

Schienen

Motor

Ausleger

Symmetrieachse

Lamellenvorhang

Mittelpunkt