Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIND TURBINE WITH SEA LEVEL WAVE CHARACTERISTIC DETERMINATION
Document Type and Number:
WIPO Patent Application WO/2020/200696
Kind Code:
A1
Abstract:
The present invention is directed to a wind turbine (1) which is configured to be disposed in or above a sea floor (S). The wind turbine (1) comprises a tower (2) configured to protrude from a sea level (S) and having an transmitter (20, 20A; 30) configured to transmit an electromagnetic wave (100) to be reflected on the sea level (S) and a receiver (20, 20B; 40) configured to receive the reflected electromagnetic wave (200), wherein at least one of the transmitter (20, 20A; 30) and the receiver (20, 20B; 40) comprises a leaky feeder (20); and a processing unit (7) being in communication with the receiver (20, 20B; 40) and configured to analyse the reflected electromagnetic wave (200) such that a wave characteristic of the sea level (S) is determined.

Inventors:
NAGEL EIRIK (DE)
NIEUWENHUIZEN JOHN (DK)
Application Number:
PCT/EP2020/056845
Publication Date:
October 08, 2020
Filing Date:
March 13, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS GAMESA RENEWABLE ENERGY AS (DK)
International Classes:
G01S13/95; F03D17/00; G01S7/03; G01S7/41; G01S13/42; G01S13/88; G01S13/89; H01Q1/12; H01Q13/20; H01Q1/34
Domestic Patent References:
WO2014000744A22014-01-03
Foreign References:
US5469168A1995-11-21
US4053886A1977-10-11
EP3626965A12020-03-25
Other References:
REICHERT K ET AL: "WAMOS II: A RADAR BASED WAVE AND CURRENT MONITORING SYSTEM", vol. 3, 31 May 1999 (1999-05-31), pages 1 - 5, XP002666137, ISSN: 1098-6189, Retrieved from the Internet [retrieved on 20111219]
C. ZHAO: "Wind direction measurements using HF ground wave radars based on a circular receive array", 2017, PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM
Attorney, Agent or Firm:
ASPACHER, Karl-Georg (DE)
Download PDF:
Claims:
CLAIMS

1. A wind turbine (1) which is configured to be disposed in or above a sea floor (S), the wind turbine (1) comprising: a tower (2) configured to protrude from a sea level (S) and having an transmitter (20, 20A; 30) configured to trans mit an electromagnetic wave (100) to be reflected on the sea level (S) and a receiver (20, 20B; 40) configured to receive the reflected electromagnetic wave (200), wherein at least one of the transmitter (20, 20A; 30) and the receiver (20, 20B; 40) comprises a leaky feeder (20); and

a processing unit (7) being in communication with the receiver (20, 20B; 40) and configured to analyse the reflect ed electromagnetic wave (200) such that a wave characteristic of the sea level (S) is determined.

2. The wind turbine (1) according to the preceding claim, wherein

the leaky feeder (20, 20A, 20B) is shaped as an arc ex tending around a circumference of the tower (2) .

3. The wind turbine (1) according to any one of the preced ing claims, wherein

the transmitter (20A, 30) comprises a first leaky feeder (20A) and the receiver (20B, 40) comprises a second leaky feeder (20B) .

4. The wind turbine (1) according to any one of the preced ing claims, wherein

the processing unit (7) is configured to determine at least one of a wind speed, a wind direction, a wind forecast and a ship approximation condition from the determined wave characteristic of the sea level (S), wherein the ship approx imation condition is a condition that allows a ship to ap proximate or dock at the wind turbine (1) .

5. The wind turbine (1) according to the preceding claim, wherein the processing unit (7) is configured to determine the ship approximation condition from the determined wave charac teristic of the sea level (S) and from a load of the ship.

6. The wind turbine (1) according to any one of the preced ing claims, wherein

the processing unit (7) is configured to determine a target distance between the wind turbine (1) and a ship from the determined wave characteristic of the sea level (S) .

7. The wind turbine (1) according to any one of the preced ing claims, wherein

the processing unit (7) is configured to determine the wave characteristic based on an angle of a reflection plane (R) of the sea level (S) with respect to a horizontal (H) .

8. The wind turbine (1) according to any one of the preced ing claims, wherein

the processing unit (7) is configured to use the Bragg's law 2d-sin6 = n ·l in determining the wave characteristic, where

d is either a distance between two wave peaks or a peak- to-peak height of a wave of the sea level (S),

Q is a scattering angle of the reflected electromagnetic wave (200) with respect to a horizontal (H) ,

l is a wavelength of the electromagnetic wave (100,

200) , and

n is a positive integer.

9. A method of determining a wave characteristic of a sea level (S), the method comprising the following steps:

providing a tower (2) of a wind turbine (1), which pro trudes from a sea level (S), with a transmitter configured to transmit an electromagnetic wave (100) to be reflected on the sea level (S) and a receiver configured to receive the re flected electromagnetic wave (200), wherein at least one of the transmitter and the receiver comprises a leaky feeder (20) ; analysing the reflected electromagnetic wave (200); and determining a wave characteristic of the sea level (S) based on the analysed, reflected electromagnetic wave (200) .

10. The method according to the preceding claim, further comprising a step of:

determining at least one of a wind speed, a wind direc tion, a wind forecast and a ship approximation condition from the determined wave characteristic of the sea level (S), wherein the ship approximation condition is a condition that allows a ship to approximate or dock at the wind turbine (1) .

11. The method according to the preceding claim, wherein

the ship approximation condition is determined from the determined wave characteristic of the sea level (S) and from a load of the ship.

12. The method according to any one of the preceding claims 9 to 11, further comprising a step of:

determining a target distance between the wind turbine (1) and the ship from the determined wave characteristic of the sea level (S) .

13. The method according to any one of the preceding claims 9 to 12, wherein

the wave characteristic is determined based on an angle of a reflection plane (R) of the sea level (S) with respect to a horizontal (H) .

14. The method according to any one of the preceding claims 9 to 13, wherein

the wave characteristic is determined by use of the Bragg's law 2d-sin6 = n ·l, where

d is either a distance between two wave peaks or a peak- to-peak height of a wave of the sea level (S),

Q is a scattering angle of the reflected electromagnetic wave (200) with respect to a horizontal (H) , l is a wavelength of the electromagnetic wave (100,

200) , and

n is a positive integer. 15. The method according to any one of the preceding claims

9 to 14, wherein

signals for wave characteristics are directly measured by radar to obtain a 360° image around the wind turbine (1) and/or its support structure, in particular by use of syn- thetic aperture radar, SAR, and/or inverse synthetic-aperture radar, ISAR, algorithms.

16. The method according to any one of the preceding claims 9 to 15, wherein

a software defined radar, SDR, is used.

Description:
DESCRIPTION

Wind turbine with sea level wave characteristic determination

Field of invention

The present invention relates to the technical field of wind turbines. In particular, the present invention is directed to a wind turbine which is capable to determine a wave charac teristic of a sea level where the wind turbine is placed.

Art Background

In the above defined technical field, some radar applications such as LIDAR ( Light detection and ranging) and conventional weather measurement stations around a wind turbine were used to measure and predict the wind conditions. However, the ac curacy and the robustness of the conventional solutions can still be improved.

Summary of the Invention

It is the object of the present invention to provide a wind turbine and a method of determining a wave characteristic of a sea level, which are more accurate and more robust. This object is achieved by the subject matters of the independent claims. The present invention is further developed as defined in the dependent claims.

According to a first aspect of the present invention, a wind turbine is configured to be disposed in or above a sea floor and comprises a tower configured to protrude from a sea level and having an transmitter configured to transmit an electro magnetic wave to be reflected on the sea level and a receiver configured to receive the reflected electromagnetic wave, wherein at least one of the transmitter and the receiver comprises a leaky feeder. The wind turbine further comprises a processing unit being in communication with the receiver and configured to analyse the reflected electromagnetic wave such that a wave characteristic of the sea level is deter mined. The wave characteristic of the sea level can be a height or a speed of a wave in the sea level.

There is a remarkable advantage of the inventive wind turbine that side lobes of an antenna gain pattern can be reduced by the leaky feeders at the turbine tower. Conventionally, the side lobes caused problems in signal processing. Beyond that, the coverage of the leaky feeder can be extended to about 360° around the turbine tower.

The leaky feeders are easy to be installed, robust, sensitive and cheap. For example, the leaky feeder can be made of a ca ble which is a commercial available cable and easy to handle and to install. There are no optical parts which can pollute.

Beyond that, a closed loop control of the wind turbine can be influenced by the determined wave characteristic of the sea level, in particular if the wind turbine is floating and not ground based.

Preferably, the leaky feeder is shaped as an arc extending around a circumference of the tower. The arc may extend in a range of at least 360°. Preferably, the transmitter comprises a first leaky feeder and the receiver comprises a second leaky feeder.

Preferably, the processing unit is configured to determine at least one of a wind speed, a wind direction, a wind forecast and a ship approximation condition from the determined wave characteristic of the sea level, wherein the ship approxima tion condition is a condition that allows a ship to approxi mate or dock at the wind turbine. More preferred, the pro cessing unit is configured to determine the ship approxima tion condition from the determined wave characteristic of the sea level and from a load of the ship. Further, the pro cessing unit is configured to determine a target distance be- tween the wind turbine and a ship from the determined wave characteristic of the sea level.

With respect to the ship approximation condition, a decision can be made as to whether or not a ship is able to approxi mate or land next to a wind turbine, for example with mainte nance/service persons. The decision can avoid an unavailing docking of the ship to the wind turbine when the circumstanc es are not good.

Preferably, the processing unit is configured to determine the wave characteristic based on an angle of a reflection plane of the sea level with respect to a horizontal. Prefera bly, the processing unit is configured to use the Bragg' s law 2d-sin6 = n ·l in determining the wave characteristic, where d is either a distance between two wave peaks or a peak-to-peak height of a wave of the sea level, Q is a scattering angle of the reflected electromagnetic wave with respect to a horizon tal, l is a wavelength of the electromagnetic wave, and n is a positive integer.

The leaky feeder can provide a full 360° image around the wind turbine and its support structure such as a mono pile, a floating support structure or any other support structure.

For example, SAR (Synthetic Aperture Radar) and/or ISAR (In verse synthetic-aperture radar) algorithms can be used to ob tain 360° high resolution images of the sea level. In partic ular by the ISAR technology, the movements of individual waves in the sea level can be tracked and used for generating the image .

The following parameters can be derived: a basic sea level height, an individual wave height, a wave distance from the tower, a wave speed, a wave direction, a wave size, a wave shape, a wave acceleration and deceleration, a wave breaking on a wind turbine support structure, a number of waves per distance, etc. The following radar parameters/principles can be used: TOF (time of flight) , Doppler information, Ultra-wide band radar and other radar techniques.

In addition, by the use of SDR (software defined radar), a full sensing of a volume around the wind turbine and/or its supporting structure can be achieved. An SDR is a versatile radar system where most of the processing, like signal gener ation, filtering, up-and down conversion etc. can be per formed and adjusted by software. The SDR can produce any needed modulation scheme optimised for this application. The output power of the SDR can dynamically be adjusted to opti mise the range and the spatial resolution. This kind of data capture can support to predict and calculate the mechanical load of the wave forces towards the wind turbine and its sup port structures. With the knowledge of these loads, the inte gration of the data in the regulation of the wind turbine can be applied. Furthermore, the generated data be used as sec ondary data source for a condition monitoring system, for ex ample by means of sensor fusing where sensory data or data derived from disparate sources are combined to reduce an un certainty.

According to a second aspect of the present invention, a method of determining a wave characteristic of a sea level comprises the following steps: providing a tower of a wind turbine, which protrudes from a sea level, with an transmit ter configured to transmit an electromagnetic wave to be re flected on the sea level and a receiver configured to receive the reflected electromagnetic wave, wherein at least one of the transmitter and the receiver comprises a leaky feeder; analysing the reflected electromagnetic wave; and determining a wave characteristic of the sea level based on the analysed, reflected electromagnetic wave.

Preferably, the method further comprising a step of determin ing at least one of a wind speed, a wind direction, a wind forecast and a ship approximation condition from the deter- mined wave characteristic of the sea level, wherein the ship approximation condition is a condition that allows a ship to approximate or dock at the wind turbine. More preferred, the ship approximation condition is determined from the deter mined wave characteristic of the sea level and from a load of the ship.

Preferably, the method further comprising a step of determin ing a target distance between the wind turbine and the ship from the determined wave characteristic of the sea level.

Preferably, the wave characteristic is determined based on an angle of a reflection plane of the sea level with respect to a horizontal. Preferably, the wave characteristic is deter mined by use of the Bragg's law 2d-sin6 = n ·l, where d is ei ther a distance between two wave peaks or a peak-to-peak height of a wave of the sea level, Q is a scattering angle of the reflected electromagnetic wave with respect to a horizon tal, l is a wavelength of the electromagnetic wave, and n is a positive integer.

Preferably, signals for wave characteristics are directly measured by radar to obtain a 360° image around the wind tur bine and/or its support structure, in particular by use of synthetic aperture radar, SAR, and/or inverse synthetic- aperture radar, ISAR, algorithms.

Preferably, a software defined radar, SDR, is used.

The above method can achieve the same advantages like the wind turbine according to the present invention.

Brief Description of the Drawings

The aspects defined above and further aspects of the present invention are apparent from the examples of embodiment to be described hereinafter and are explained with reference to the examples of embodiment. The invention will be described in more detail hereinafter with reference to examples of embodi- ment to which the invention is not limited.

Fig. 1 shows a schematic section of a wind turbine according to an embodiment of the present invention.

Fig. 2 shows a schematic view of an uncoiled leaky feeder according to an embodiment of the present invention.

Fig. 3 shows a cross section view of the tower and the leaky feeder according to an embodiment of the present in vention .

Fig. 4 shows a schematic view of uncoiled leaky feeders ac cording to an embodiment of the present invention, where a plurality of leaky feeders is used.

Fig. 5 shows a configuration of the leaky feeders and a pro cessing unit according to an embodiment of the pre sent invention.

Fig. 6 shows a detail of the processing unit according to another embodiment of the present invention.

Fig. 7 shows a principle of analysing a reflected electro magnetic wave such that the wave characteristic of the sea level is determined according to an embodi ment of the present invention.

Detailed Description

The illustrations in the drawings are schematically. It is noted that in different figures, similar or identical ele ments are provided with the same reference signs.

Fig . 1 shows a schematic section of a wind turbine 1 accord ing to an embodiment of the present invention. The wind tur bine 1 is configured to be disposed in or above a sea floor (offshore) . The wind turbine 1 is support by a support struc ture (not shown) like a mono pile or a floating support structure. Any other support structure can be used. The wind turbine 1 comprises a tower 2, which is mounted on a non- depicted fundament to protrude from a sea level S. The wind turbine 1 can also be disposed above the sea floor S in a floating manner. A nacelle 3 is arranged on top of the tower 2. In between the tower 2 and the nacelle 3 a yaw angle ad justment device (not shown) is provided, which is capable of rotating the nacelle around a vertical yaw axis Z. The wind turbine 1 further comprises a wind rotor 5 having one or more rotational blades 4 (in the perspective of Fig. 1 only two blades 4 are visible) . The wind rotor 5 is rotatable around a rotational axis Y. In general, when not differently speci fied, the terms axial, radial and circumferential in the fol lowing are made with reference to the rotational axis Y. The blades 4 extend radially with respect to the rotational axis Y. The wind turbine 1 comprises an electric generator 6 hav ing a stator 11 and a rotor 12. The rotor 12 is rotatable with respect to the stator 11 about the rotational axis Y to generate electrical power. The electric generator 6 and the generation of electrical power through the present invention is not a specific object of the present invention and there fore not described in further detail.

Basically, the tower 2 has an transmitter 20, 30 configured to transmit an electromagnetic wave 100 to be reflected on the sea level S and a receiver 20, 40 configured to receive the reflected electromagnetic wave 200, wherein at least one of the transmitter and the receiver comprises a leaky feeder 20. In the embodiment of Fig. 1, the tower 2 has a leaky feeder 20 in which both functions of the transmitter and the receiver are implemented. Other embodiments may use a first leaky feeder for transmitting the electromagnetic wave and a second leaky feeder for receiving the reflected electromag netic wave, which is described later. The wind turbine 1 further comprises a processing unit 7 (Fig. 5) being in communication with the receiver 20, 40 and configured to analyse the reflected electromagnetic wave 200 such that a wave characteristic of the sea level S is deter mined. The wave characteristic of the sea level S can be a height or a speed of a wave in the sea level S. Due to or by a time of flight, an angle of flight and/or a Doppler effect of the reflected electromagnetic wave 200, the processing unit 7 can determine a height and a movement (speed) of a wave of the sea level S. For example, the time of flight t flight of the reflected electromagnetic wave 200 can be calcu lated as t flight = d/ (2 -Co) , wherein Co is the speed of light. The distance d between the receiver 20, 40 to the wave of the sea level S, where the electromagnetic wave 200 has been re flected, is then calculated as d = (t f n ght -co)/2.

The leaky feeder 20 is an elongated component, which leaks the electromagnetic wave 100 along the component. The leaky feeder 20 may be constituted by a leaky coaxial cable or a leaky waveguide or a leaky stripline. The leaky feeder 20 is connected to an electromagnetic transmitter driver 30 in or der to transmit a first electromagnetic signal 100 along the leaky feeder 20 towards the sea level. The electromagnetic transmitter driver 30 can comprise or be an HF amplifier. The leaky feeder 20 comprises a plurality of slots to allow the first electromagnetic signal 100 to leak out of the leaky feeder 20 along its entire length towards the sea level S.

The slots may be, according to possible embodiments, regular ly distributed along the length of the leaky feeder 20. Ac cording to other possible embodiments of the present inven tion, the leaky feeder 20 is a normal coaxial cable with low optical coverage of the outside conductor (mesh or

slots/apertures), which also leaks electromagnetic waves.

The leaky feeder 20 may be provided with a heating system (not shown) in case severe over icing conditions are possi ble. Heating may be provided by air flowing between in and outside conductor or by electrical current which runs in in ner or outer conductor of the leaky feeder 20.

The first electromagnetic signal 100 may be, according to possible embodiments, a radar signal such as a multi

frequency radar or LIDAR or an ultrasonic signal. In cases where the first electromagnetic signal 100 is a radar signal or an ultrasonic signal, the leaky feeder 20 is preferably configured as a coaxial leaky cable.

According to other embodiments, particularly where the first electromagnetic signal 100 is of higher frequency, the leaky feeder 20 is preferably configured as a leaky waveguide. In general, according to the different embodiments of the pre sent invention, the first electromagnetic signal 100 may be of any frequency, provided that it can be transmitted to and reflected by the sea level S.

When the first electromagnetic signal 100 impinges the sea level S, the reflected second electromagnetic signal 200 is transmitted towards the leaky feeder 20.

The plurality of slots of the leaky feeder 20 allow the sec ond electromagnetic signal 200 to leak into the leaky feeder 20 towards the electromagnetic converter 40.

The processing unit 7, which is in communication with the electromagnetic converter 40, analyses the second electromag netic signal 200 (and if necessary the first electromagnetic signal 100) for determining a wave characteristic of the sea level S.

Fig . 2 shows a schematic view of an uncoiled leaky feeder ac cording to an embodiment of the present invention. This em bodiment uses only the one leaky feeder 20. The leaky feeder 20 extends between a first end 21 and a second end 22. The first end 21 is connected to an electromagnetic transceiver 45 comprising one electromagnetic transmitter driver 30 and one electromagnetic converter 40. The second end 22 is con nected to one final resistance 50. According to embodiments of the present invention, the electromagnetic transmitter driver 30 and the electromagnetic converter 40 may be both connected to the first end 21 or to the second end 22 via a signal splitter or y-adapter. According to other embodiments of the present invention, the electromagnetic transmitter driver 30 is connected to the first end 21 and the electro magnetic converter 40 is connected to the second end 22.

In some cases, if a single leaky feeder 20 is used, the de termined wave characteristic of the sea level S can have a uncertainty if the electromagnetic transmitter 30 and the electromagnetic receiver 40 are at the same end 21 or 22. Therefore, it is preferred if the electro-magnetic transmit ter 30 is at one end of the leaky feeder 20 and the electro magnetic receiver 40 is on the other end of the leaky feeder 20.

The leaky feeder 20 may not be connected directly to the electromagnetic transmitter driver 30 and to the electromag netic receiver converter 40, e.g. a non-leaky feeder cable (i.e. a normal coaxial cable) may be interposed between the leaky feeder 20 and the electromagnetic transmitter driver 30 and/or the electromagnetic receiver converter 40. A normal coaxial cable may be connected directly to the electromagnet ic transmitter driver 30 and to the electromagnetic receiver converter 40 or it may be used for interconnection.

The leaky feeder 20, which is shown in an uncoiled state in Fig. 2, is geometrically actually configured as an arc of ap proximately 360° or more.

Fig . 3 shows a cross section view of the tower 2 and the leaky feeder 20 according to an embodiment of the present in vention. The leaky feeder 20 is shaped as an arc extending around a circumference of the tower 2, i.e. the leaky feeder 20 is geometrically configured as a circular loop surrounding the tower 2 or the wind turbine support structures. The leaky feeder 20 can thus transmit the electromagnetic wave 100 or receive the reflected electromagnetic wave 200 around an an gle of 360° .

According to other embodiments of the present invention, any other geometrical configuration is possible, provided that the first electromagnetic signal 100 can be transmitted to wards the sea level S and the second electromagnetic signal 200 can be reflected by the sea level S towards the leaky feeder 20.

The leaky feeder 20 the electromagnetic transmitter driver 30 and the electromagnetic receiver converter 40 are installed on the tower 2. According to other embodiments of the present invention, the leaky feeder 20 the electromagnetic transmit ter driver 30 and the electromagnetic receiver converter 40 may be not directly installed on the wind turbine 1, i.e. distanced from the wind turbine 1.

Fig . 4 shows a schematic view of uncoiled leaky feeders 20A, 20B according to an embodiment of the present invention, where a plurality of leaky feeders 20A, 20B is used. The em bodiment of Fig. 4 uses two leaky feeders 20A, 20B being in parallel to each other and extending between respective first ends 21 and second ends 22, respectively adjacent to each other. The two leaky feeders 20A, 20B are configured accord ing to an antiparallel configuration, where a first leaky feeder 20 extends between an electromagnetic transmitter driver 30 connected to the first end 21, and a final re sistance 50 connected to the second end 22; while a second leaky feeder 20 extends between a final resistance 50 con nected to the first end 21, and an electromagnetic receiver converter 40 connected to the second end 22.

In such embodiment, the first leaky feeder 20A connected to the electromagnetic transmitter driver 30 is dedicated for the transmission of the first electromagnetic signal 100, while the second leaky feeder 20B connected to the electro magnetic receiver converter 40 is dedicated for receiving the first electromagnetic signal 200.

Fig . 5 shows a configuration of the leaky feeders 20A, 20B and the processing unit 7 according to an embodiment of the present invention. The receiver converter 40 can be an Ana- log-to-Digital-converter (A/D) . The reflected and analog sec ond electromagnetic signal 200 can be received from the leaky feeder 20A and converted to an digital signal by the A/D- converter 40. The digital signal is then transmitted to a central processing unit (CPU) 71. The CPU 71 actually anal yses the received second electromagnetic signal 200 and de termines the wave characteristic of the sea level S based on the analysed second electromagnetic signal 200. The CPU 71 is further connected to storage means such as a RAM 72 and a hard disk (HDD) 73. The CPU 71 is further connected to a com munication unit (not shown) by which the determined wave characteristic of the sea level S can be transmitted to a control and/or monitoring system (not shown) . Preferably, the communication is made via wires, fibre optics or wireless.

Fig . 6 shows a detail of the processing unit 7 according to another embodiment of the present invention. The CPU 71 com prises a filter 711, which filters the digital signal from the receiver converter 40, and a Fast-Fourier-Transformation unit (FFT unit) 712 which performs for example one or two fast Fourier-transformation operations of the filtered sig nal. The CPU 71 is further connected to a storage means 75 and to the electromagnetic transmitter driver 30 of the transmitting leaky feeder 20A to control the same.

In addition or as an alternative to the FFT unit 712, a sig nal processing unit can be provided by which time domain and frequency domain data can be analysed to determine the wave characteristic of the sea level S. Preferably, the processing unit 7 is configured to determine at least one of a wind speed, a wind direction and a wind forecast from the determined wave characteristic of the sea level S.

Preferably, the processing unit 7 is configured to determine a ship approximation condition from the determined wave char acteristic of the sea level S, wherein the ship approximation condition is a condition that allows a ship to approximate the wind turbine 1. Then, a decision can made whether or not the ship is able to dock or land next to the wind turbine 1, for example with maintenance/service persons. For example, if the determined wave characteristic such as the wave height, the wave speed or the wind speed exceeds a predetermined threshold value, a decision is made that the ship is not al lowed to approximate, to dock or to land next to the wind turbine 1. More preferred, the processing unit 7 is config ured to determine the ship approximation condition from the determined wave characteristic of the sea level S and in ad dition from a load of the ship. The processing unit 7 can be configured to determine a target distance between the wind turbine 1 and the ship from the determined wave characteris tic of the sea level S. Based on the determined target dis tance between the wind turbine 1 and the ship, an automatic control of the distance between the wind turbine 1 and the ship can be implemented. Alternatively, the crew of the ship can be supported in navigating the ship by transmitting the determined target distance between the wind turbine 1 and the ship to the crew.

Fig . 7 shows a principle of analysing the reflected electro magnetic wave 200 such that the wave characteristic of the sea level S is determined according to an embodiment of the present invention. The wave characteristic of the sea level S is indirectly measured by the height of the waves of the sea level S around the wind turbine 1. The wind causes waves in the sea level S. The stronger the wind is, the higher the waves are and the distance between peaks of the waves in- creases. It has been found out that there is a correlation between the wind speed/wind direction and a direction of the reflected electromagnetic wave 200. In more detail, the elec tromagnetic wave 100, for example the radar signal 100, is reflected by the waves in the sea level S. A basic principle in determining the wave characteristic is schematically shown in Fig. 7 under use of the Bragg's law 2d-sin6 = n ·l, where d is a distance between two peaks of waves of the sea level S,

Q is a scattering angle of the reflected electromagnetic wave 200 with respect to a horizontal H, l is a wavelength of the electromagnetic wave 100, 200, and n is a positive integer which usually indicates a diffraction order.

The top view in Fig. 7 shows a condition of low wind, whereas the bottom top view in Fig. 7 shows a condition of strong wind. The top view in Fig. 7 shows reflection planes R of the sea level S having a smaller angle with respect to the hori zontal H, whereas the top view in Fig. 7 shows reflection planes R of the sea level S having a larger angle with re spect to the horizontal H. Based on the angle of the reflec tion planes R, the scattering angle Q is changed.

Depending on the distance of the waves d, the reflection an gle of the reflected electromagnetic wave 200 with respect to the horizontal H is different. This effect is known as Bragg effect or Bragg reflection which can be used in the field of meteorology for a calculation of the wind speed or direction.

To calculate the wind speed and direction, first and second order Bragg peaks have to be investigated. The leaky feeder 20 itself operates in a frequency band, where the wave length l = co/f is in a range d as either a distance between two wave peaks or a peak-to-peak height of a wave of the sea lev el S. A multi-frequency radar and also a Doppler effect of moving waves in the sea level S can be used. To calculate the wind speed, the first order backscatter is used with X/2 as wavelength. To estimate the wind direction, two first order scatters can be used. Typical frequencies of the electromag- netic wave 100 are 7.5 to 25 Mhz . This offers a range of some kilometres with sufficient power of the electromagnetic (ra dar) transmitter driver 30. A frequency modulated interrupted continuous wave (FMIC) ra dar can be used for such type of weather radar.

C. ZHAO et. al . , " Wind direction measurements using HF ground wave radars based on a circular receive array", published in 2017 Progress in Electromagnetics Research Symposium, Singa pore 2017, discloses some more advanced measurement algo rithms. For example, the wind direction can be calculated by the ratio of two first order Bragg reflections. It should be noted that the term "comprising" does not ex clude other elements or steps and "a" or "an" does not ex clude a plurality. Also elements described in association with different embodiments may be combined. It should also be noted that reference signs in the claims should not be con strued as limiting the scope of the claims.