Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIRE GUIDANCE SYSTEM AND METHOD OF USE
Document Type and Number:
WIPO Patent Application WO/2017/192983
Kind Code:
A1
Abstract:
Disclosed are garments with selective wire management systems, as well as ports for adapting garments without selective wire management systems. Garments for wire management may include one or more ports which define an aperture through which headphone wire is passed. The ports provide both support to the headphone wire as well as to the garment, thereby preventing tearing of the garment more than is necessary to accommodate the wire. Further, ports may be selectively placed on a garment, as desired, to provide optimal entrance and exit placement of headphone wire. In addition to the ports, a channel may connect the ports, thereby selectively routing the wire along the garment.

Inventors:
GELLINEAU LEON SIDNEY (US)
Application Number:
PCT/US2017/031288
Publication Date:
November 09, 2017
Filing Date:
May 05, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GELLINEAU LEON SIDNEY (US)
International Classes:
A41D1/00; A41D27/20
Foreign References:
US20090139013A12009-06-04
CN205017517U2016-02-03
US8625835B22014-01-07
US8411891B22013-04-02
Attorney, Agent or Firm:
LIKOUREZOS, George et al. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A port sealer comprising:

a port sealer membrane configured to couple to clothing fabric, the port sealer membrane defining a plane and an aperture therethrough,

wherein the aperture permits communication of wire through the port sealer.

2. The port sealer of claim 1, further comprising:

a first surface defined by the membrane;

a second surface defined by the membrane; and

a first buttress disposed along the first surface, the first buttress enclosing the aperture and extending outward from the plane defined by first surface,

wherein the first and second surface are on opposing sides of the membrane.

3. The port sealer of claim 2, further comprising a second buttress enclosing the first buttress, the second buttress located on the first surface of the port sealer membrane.

4. The port sealer of claim 3, wherein the second buttress is located along a periphery of the first surface.

5. The port sealer of claim 3, wherein the port sealer further comprises at least one fastener located on the second surface, the fastener configured to engage fabric.

6. A port sealing system comprising:

a port sealer comprising:

a port sealer membrane defining a plane, the membrane having a first and second surface, the port sealer membrane configured to couple to clothing fabric and defining an aperture therethrough,

wherein the aperture permits communication of wire through the port sealer membrane.

7. The port sealing system of claim 6, wherein

the port sealer further comprises:

a first buttress disposed along the first surface, the first buttress enclosing the aperture and extending outward from the plane defined by the first surface,

wherein the first and second surface are on opposing sides of the membrane.

8. The port sealing system of claim 7, wherein the port sealer further comprises a second buttress enclosing the first buttress, the second buttress being located on the first surface of the port sealer membrane.

9. The port sealer system of claim 8, wherein the second buttress of the port sealer is located along a periphery of the first surface.

10. The port sealer system of claim 8, wherein the port sealer further comprises at least one fastener located on the second surface, the at least one fastener configured to engage a fabric surface.

11. The port sealer system of claim 7, further comprising:

a second port sealer comprising:

a membrane defining a second plane, the membrane having a first and second surface; and

a first buttress disposed along the first surface, the first buttress enclosing an aperture defined by the membrane and extending outward from the second plane defined by the first surface,

wherein the first and second surface are on opposing sides of the membrane.

12. The port sealer system of claim 11,

wherein the second surface of the port sealer has a plurality of male connectors extending from the second surface, and

wherein the second surface of the second port sealer has a plurality of female connectors located thereon, the plurality of male connectors located on the port sealer corresponding to the plurality of female connectors located on the second port sealer, the plurality of male connectors configured to engage the plurality of female connectors.

13. A kit compri sing :

a first port sealing unit, including: a first port sealer including a first membrane defining a first aperture and a first fastener; and

a second port sealer including a second membrane defining a second aperture and a second fastener,

wherein the first and second port sealer are configured to couple to opposing sides of garments.

14. The kit of claim 13, wherein the first fastener is a male fastener and the second fastener is a female fastener.

15. The kit of claim 14, further comprising:

a channel membrane configured to be in operative communication with the first port sealing unit at a first channel membrane end; and

a second port sealing unit designed to be in operative communication with the channel membrane at a second channel membrane end.

16. The kit of claim 15, wherein the port sealing unit further includes:

a first port sealer buttress located on the first port sealer.

17. The kit of claim 16, wherein the port sealing unit further includes:

a second port sealer buttress located on the second port sealer.

18. The kit of claim 17, further comprising a fabric punch.

19. The kit of claim 18, further comprising a plurality of port sealing units.

20. A garment for managing selective wire translation through the garment, the garment comprising:

an originating port capable of receiving headphone wire;

a first channel coupled to the originating port at a first portion of the first channel; and a terminating port coupled to a second portion of the first channel,

wherein the first channel defines a path for translating wire between the originating port and the terminating port.

21. The garment of claim 20, further comprising a third port coupled to the first channel, the third port permitting translation of wire therethrough.

22. The garment of claim 20, further comprising a second channel extending between the originating port or the terminating port and a fourth port, the second channel defining a second path for translation of wire therealong.

23. The garment of claim 20, further comprising a second channel extending between a second originating port and a second terminating port, wherein the second channel defines a second path for translation of wire therealong.

24. The garment of claim 21, wherein the originating port includes an originating port sealer and the terminating port includes a terminating port sealer.

25. The garment of claim 24, wherein the first channel is removably coupled to the originating port and the terminating port.

Description:
WIRE GUIDANCE SYSTEM AND METHOD OF USE CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is related to U.S. Provisional Patent Application Serial No. 62/391,612, titled "In re Patent Application of Leon Sidney Gellineau for a Garment with Wire Management System," filed on May 6, 2016, and U.S. Provisional Patent Application Serial No. 62/411, 136 titled "WIRE CONTROL SYSTEMS FOR CLOTHING AND CONTROL SYSTEM ACCESSORIES," filed on October 21, 2016, the entire contents of both of which are hereby incorporated by reference.

TECHNICAL FIELD

[0002] The present disclosure relates to garments designed to route peripheral wires associated with media player headphones; more particularly, to fabric piping and attachments which permit routing of wire through an article or articles of clothing.

BACKGROUND

[0003] The advent of portable audio playback devices, and their subsequent improvement over the years, has led to increasing consumer demand for not only portable music players, but the peripherals associated with these devices.

[0004] Among such peripherals are headphones which generally come with at least one ear piece and a wire to be connected to the portable audio playback device. Though headphone technology has expanded into the wireless spectrum, many headphone manufacturers continue to produce and sell wired headphones for public consumption. Wired headphones are often selected due to their known interoperability with an individual's portable audio playback device, their reduced maintenance needs due to often simpler construction, and familiarity of use to the individual.

[0005] Though headphones are often a more ergonomic and long-term solution to an individual's peripheral needs, they are not without their limitations. Often, headphone manufacturers must select wire lengths commiserate with the activity being performed by the user, must consider how the portable audio playback device will be located on the individual, and whether the wire may be compromised by foreign objects to the individual using the headphones as well as elements such as sweat and water.

[0006] While various solutions exist to route cables through garments, such solutions are often tailored to ergonomic use and routing for largely sedentary individuals, or individuals otherwise engaging in casual activities.

SUMMARY

[0007] In addition to routing cables through garments in an ergonomic fashion, individuals may desire cables routed for both comfort and ease of concealment while engaging in heightened physical activity. Likewise, individuals may also prefer a variety of routing configurations designed to address different physical activity wire routing requirements, or even the ability to fit garments with custom wire routing paths.

[0008] Described herein are wire control systems and control system accessories for custom routing of wires through garments. In one embodiment in accordance with the present disclosure there is disclosed a garment for managing the translation of a wire through the garment, the garment comprising: an originating port, the originating port capable of receiving headphone wire; a terminating port, the terminating port capable of receiving headphone wire through the port; and a first channel coupled to the originating port and terminating port, defining a path for wire translation between the originating port and the terminating port. The garment further comprises a third port disposed along the first channel and operatively connected to the first channel, permitting transmission of wire through the garment. The garment further comprises a third channel extending between either the originating port, terminating port, or a third port, and terminating at a forth port, thereby defining a path for wire translation between either the originating port, terminating port, third port, and forth port. The garment further comprises a second channel extending between a second originating port and a second terminating port, the second channel defining a path for wire translation between the second originating port and the second terminating port.

[0009] According to aspects of the present disclosure, there is disclosed a port sealer, comprising: a port sealer membrane; and an aperture, the aperture being contained within the port sealer membrane and permitting communication between an exterior surface and an interior surface. The port sealer further comprises a buttress enclosing the aperture, the buttress being located on the exterior surface of the port sealer membrane. The port sealer further comprises a second buttress enclosing the first buttress, the second buttress being located on the exterior surface of the port sealer membrane. The port sealer further comprises at least one fastener, the fastener configured to be fixed to garment. The port sealer further comprises at least one receiver, the receiver configured to be coupled to a fastener attached to a second port sealer. The port sealer further comprises at least one fastener, the fastener configured to be attached to garment.

[0010] In aspects of the present disclosure, there is disclosed a kit comprising: a port sealing apparatus including a first port sealer with a membrane and at least one fastener and a second port sealer with a membrane and at least one receiver, the first and second port sealer designed to be coupled with garment between the first and second port sealer and further including an aperture. The kit further comprises a channel, the channel including a membrane and designed to be in operative communication with the first port sealing apparatus; and a second port sealing apparatus designed to be in operative communication with the channel. The port sealing apparatus further includes a buttress enclosing the aperture located on the membrane. The first and second port sealing apparatus further include a buttress enclosing the aperture located on the membrane. The kit may further include a fabric punch.

[0011] According to aspects of the present disclosure, a port sealer may include a port sealer membrane. The port sealer membrane may be configured to couple to clothing fabric. The port sealer membrane may define a plane and an aperture therethrough. The aperture may permit communication of wire through the port sealer.

[0012] In aspects, the port sealer may include a first and second surface defined by the membrane, and a first buttress disposed along the first surface. The first buttress may enclose the aperture and extend outward from the plane defined by the first surface. The first and second surfaces may be on opposing sides of the membrane.

[0013] The port sealer may further include a second buttress enclosing the first buttress. The second buttress may be located on the first surface of the port sealer membrane. The second buttress may be located along a periphery of the first surface.

[0014] The port sealer may further include at least one fastener located on the second surface. The fastener may be configured to engage fabric.

[0015] According to aspects of the present disclosure, a port sealing system is disclosed including a port sealer. The port sealer may include a port sealer membrane configured to couple to clothing fabric. The port sealer may define a plane with an aperture therethrough. The aperture may permit communication of wire through the port sealer membrane. The port sealing system may further include a first buttress disposed along the first surface of the port sealer. The first buttress may enclose the aperture and extend outward from the plane defined by the first surface. The first and second surface may be on opposing sides of the membrane.

[0016] The port sealing system may further include a second buttress located on the port sealer. The second buttress may be located on the first surface of the port sealer membrane. The second buttress may also be located along a periphery of the first surface. At least one fastener may be located on the second surface, the at least one fastener configured to engage a fabric surface.

[0017] According to aspects, the port sealer system may include a second port sealer including a membrane defining a second plane, the membrane having a first and second surface. The second port sealer may include a first buttress disposed along the first surface of the second port sealer, the first buttress of the second port sealer enclosing an aperture defined by the membrane of the second port sealer. The first buttress of the second port sealer may extend outward from the second plane defined by the first surface. The first and second surface may be on opposing sides of the membrane.

[0018] According to aspects, the second surface of the port sealer may have a plurality of male connectors extending from the second surface. The second surface of the second port sealer may have a plurality of female connectors located thereon. The plurality of male connectors located on the port sealer may correspond to the plurality of female connectors located on the second port sealer. The plurality of male connectors may be configured to engage the plurality of female connectors. [0019] According to aspects of the present disclosure, there is a kit provided having a first port sealing unit including a first port sealer and a second port sealer. The first port sealer may have a first membrane and a first fastener disposed on the membrane. The second port sealer may have a second membrane and a second fastener. The first and second port sealer may be configured to couple to opposing sides of garments. The first and second port sealer defines a first and second aperture, respectively.

[0020] In aspects, the first fastener is a male fastener and the second fastener is a female fastener.

[0021] According to aspects, the kit further includes a channel membrane configured to be in operative communication with the first port sealing unit at a first channel membrane end, and a second port sealing unit located at a second channel membrane end.

[0022] In aspects, the port sealing unit includes a first port sealer buttress located on the first port sealer. A second port sealer buttress may be located on the second port sealer.

[0023] According to aspects, the kit further includes a fabric punch.

[0024] In aspects, the kit further includes a plurality of port sealing units.

DESCRIPTION OF THE FIGURES

[0025] FIG. 1 is an illustration of a garment fitted with a wire control system in accordance with aspects of the present disclosure;

[0026] FIG. 2A is an illustration of a port sealer in accordance with aspects of the present disclosure;

[0027] FIG. 2B is an illustration of the port sealer of FIG. 2A located on a garment;

[0028] FIG. 2C is an illustration of the port sealer of FIG. 2A;

[0029] FIG. 2D is another illustration of the port sealer of FIG. 2A; [0030] FIG. 3 is an illustration of a wire control system fitted in a garment in accordance with aspects of the present disclosure;

[0031] FIG. 4 is an illustration of a wire control system of a wire control system fitted in a garment in accordance with aspects of the present disclosure;

[0032] FIG. 5 is an illustration of a first garment and a second garment with complementary wire control systems in accordance with aspects of the present disclosure; and

[0033] FIG. 6 is an illustration of a kit according to aspects of the present disclosure.

DETAILED DESCRIPTION

[0034] The present disclosure addresses problems associated with the routing of wires through garments by providing systems which, when installed in a garment, provide for both selective and ergonomic wire management. The disclosures provided herein are not intended to be indicative of a particular wire management system to be implemented within a garment, but rather are employed to describe arrangements of garment wire management systems for illustrative purposes.

[0035] The term headphone, headphone wire, and headphone jack, are intended to refer to an electronic accessory which, when connected to an electronic device, can supply sound to an individual's ears. Similarly, the terms portable audio playback device, portable media devices, or devices, are intended to refer to an electronic device capable of receiving a headphone jack and supplying electronic signals to the headphone jack for transmission to the headphone via a headphone wire. For clarity, the term "wire" may be interchanged with the term "headphone wire" or other wires and cables which are to be routed through the garment throughout.

[0036] The phrase "in some embodiments" and variations on this phrase generally are understood to mean that a particular feature, structure, system, or method being described includes at least one iteration of the disclosed technology. Such phrase should not be read or interpreted to mean that the particular feature, structure, system or method described is either the best or only means by which the embodiment can be implemented. Rather, such a phrase should be read to mean that discussed afterward is a specific way in which the described technology could be implemented, but need not be the only way to do so.

[0037] Where the terms "may," "could," or likewise permissive terms are used, the elements following or preceding associated with the permissive term are optional components, features, or steps which need not be included in the overall system or method being described.

[0038] Referring to FIG. 1, illustrated is an embodiment of a wire control system embedded within a garment 100, specifically a t-shirt. The garment 100 as illustrated in FIG. 1 includes a left portion 170A, right portion 170B, upper portion 170C, and lower portion 170D.

[0039] Depicted are a series of channels for guiding wire through a garment 100, including an upper channel 130, a lower channel 140, and an elongated channel 120. The upper channel 130 provides primary communication between a left port 110F, a right port HOB, and a center port 110A. The elongated channel 120 provides primary communication between upper port 110A and lower center port 110F. The lower channel 140 provides primary communication between the lower left port HOD, lower center port 110F and lower right port HOC. As a result of the placement of the upper channel 130 toward the top of a garment 100, and individual is permitted to route a wire 150 through the garment 100 in a manner which permits a shortened directed path from the top of the garment 100 to the left port 110F and right port HOB. Likewise, connection of the upper channel 130 to the elongated channel 120 and lower channel 140 permits selective routing of a wire 150 in a manner which an individual finds most ergonomic, depending on their intended activity. It is contemplated that the upper, lower and elongated channel 120, 130, 140 may selectively couple to the garment 100 via, without limitation, buttons, clasps, or other fasteners known in the art.

[0040] Consider, for illustrative purposes only, the following example. An individual wearing a garment 100 while cycling might want to run the wire from the center port 110A to either the lower left port HOD or the lower right port HOC. The described network permits such selective wire translation and communication, facilitating connection of a wire 150 to a device attached at the hip or behind the individual.

[0041] Similarly, an individual who is using a garment 100 in conjunction with the sport of running might want to run the wire from the center port 110A to either the right port HOB or left port 110F. Such a configuration would permit ultimate connection of a wire 150 to a device located on the upper or lower arm of the individual.

[0042] Placement of the upper channel 130 in such a manner, further permits consolidation of excess wire 150 which may reside between the entrance of the wire into the garment 100 and ultimate exit from the garment.

[0043] The upper channel 130, lower channel 140 and elongated channel 120 are also interconnected via an upper intersection 160B and a lower intersection 160A. Specifically, the upper channel 130 is connected to the elongated channel 120 at the upper intersection 160B, and the elongated channel is also connected to the lower channel 130 at lower intersection 160A. As a result, a wire 150 may be routed initially via any of the six ports 110A-110F enclosed in the garment 100 of FIG. 1 and may exit the garment through any of the six ports 110A-110F.

[0044] Upper channel 130, lower channel 140, and elongated channel 120 further include an upper channel membrane 132, lower channel membrane 142 and elongated channel membrane 122 which restrict the movement of a wire 150 as the wire is translated through the respective channels. The upper channel membrane 132, lower channel membrane 142 and elongated channel membrane 122 terminate at upper channel membrane ends 132A, 132B, elongated channel ends 122A, 122B, and lower channel ends 142A, 142B, respectively.

[0045] Ports 110A-110F can be any threshold which permits passage of a wire into and out of a channel membrane 122, 132, 142. Ports may be permanently attached to the garment 100 by stitching, gluing, or any other suitable method of affixing an object to fabric. Alternatively, ports may be created through selective cutting and stitching of a garment 100. In one embodiment, a port is created by creating a small incision into the garment 100, and reinforcing the incision with stitching to buttress the opening on either side of the incision, thereby creating a reinforced opening. Such openings are commonly referred to as single-welts.

[0046] In alternative embodiments, port 110A-110F incisions can be reinforced by folding over the fabric or adding additional fabric to the area surrounding the port 110A-110F incision, buttressing the incision to prevent tearing of the fabric. Once the fabric has been folded over, it may be stitched, glued or otherwise affixed to the adjoining fabric.

[0047] The upper channel 130, lower channel 140 and elongated channel 120 can be fixed to the garment 100 in a variety of ways including, but not limited to, stitching, gluing, or connecting with a fastener. In one embodiment, the upper, lower, and elongated channel 130, 140, 120 are stitched along two tracts in a continuous fashion, providing for a rigid channel network within the garment 100. In alternative embodiments, zippers, buttons, or other fastening methods known in the art may be used to affix the upper, lower, and elongated channel 130, 140, 120 to the garment 100. [0048] Upper channel 130, lower channel 140 and elongated channel 120 may also be created by layering the fabric of the garment 100 and stitching a channel within the inner and outer layers of the garment 100.

[0049] FIGS. 2A-2D are illustrations of embodiments of a port sealer 200.

[0050] FIG. 2A is an embodiment of a port sealer 200. The port sealer 200 has a membrane 214 and an aperture 210 defined by the membrane. The aperture 210 allows for communication between a front and back portion of the port sealer 200. The aperture 210 may have a cross-hair shape which permits a variety of wires 150 to pass through the aperture 210 while maintaining an appropriate amount of tension on the wire 150. It is contemplated that the aperture may have varying shapes and configurations as desired. The port sealer's aperture is also supported by a port sealer buttress 212 which, in conjunction with the port sealer material, reinforces the aperture 210 and allows for repeated insertion of a wire 150 without compromising the aperture 210

[0051] The port sealer 200 membrane can be made of any material which can be bent during insertion of a wire 150 or while a wire 150 is engaged with the port sealer. Some examples of appropriately malleable materials which can form a membrane include plastic, rubber, cotton, nylon, or polyester. Further, the port sealer 200 may be made of multiple materials. It is contemplated that the port sealer 200 may have a first and second portion which are separated by the port sealer buttress 212. An outer portion of the port sealer 200 which is not enclosed by the port sealer buttress 212 may be made of a hard rubber, plastic, metal, or other rigid material. Additionally, an inner portion of the port sealer 200 may be made of a softer or more pliable material, such as silicone, or softer rubber relative. This combination of a harder exterior material and a softer interior material may allow the port sealer to protect a wire 150 as it is engaged with the port sealer 200 while maintaining the position of the wire 150 relative to the port sealer 200.

[0052] FIG. 2B shows an embodiment of a port membrane of FIG. 2A affixed to a garment 100. The garment 100 includes an incision providing for communication between an outer and inner surface of the garment 100, and is bounded by the aperture 210 of the port sealer 200, the port sealer being stitched to the fabric of the garment 100. As a result of fixing the port sealer 200 to the garment 100, the aperture 210, in conjunction with the incision in the garment 100 permits a wire to pass through the garment 100 in a predefined location. The port sealer 200 also prevents the garment 100 from tears which may result in repeated insertion of a wire 150, or which may result from tugging or other lateral movement against the incision by the wire 150 passing through the garment 100.

[0053] In alternative embodiments, the port sealer 200 may be affixed to the garment 100 with any suitable adhesive (e.g. fabric glue, etc.) for attaching the port sealer 200 to the garment 100. The adhesive may be applied to the port sealer by the individual installing the port sealer 200 in order to ensure adequate application of the adhesive. Alternatively, the adhesive may be pre-applied to the port sealer 200. It is contemplated that, where an adhesive is pre-applied, the adhesive may bond immediately on contact with the garment 100, or alternatively may bond once external energy is applied to the garment 100. For example, an individual may apply the port sealer 200, reposition the port sealer 200 as is necessary to line up the port sealer 200 with the port 110A-110F, and then apply heat via an iron to the port sealer 200 and garment 100 so as to activate and bind the adhesive to the garment 100.

[0054] FIG. 2C is a diagram of a male port sealer 220 and a female port sealer 230 prior to and after coupling. Male port sealer 220 is the port sealer described in FIG. 2A, further including a set of garment 100 fasteners 222 which are received by a receiver 232. Fasteners 222 can be of a variety of types such as studs, eyelets, sockets or buttons.

[0055] FIG. 2D is an illustration of the male and female port sealers 220, 230 fixably engaged. As the male port sealer 220 is aligned with the female port sealer 230, when pressure is applied the fasteners 222 located along the male port sealer 220 engage the receivers 232 located along the female port sealer 230. It is contemplated that such engagement of the male and female port sealers 220, 230 may be permanent or selective.

[0056] In use, the male and female port sealers 220, 230 operably couple to one another, the fasteners 222 aligning with the receivers 232. The male and female port sealers 220, 230 are positioned over the incision in the garment 100 to bind the incision. The male and female port sealers 220, 230 may, upon coupling, be permanently fixed to one another, and the garment 100 by stitching around the perimeter of the male and female port sealers 220, 230. Alternatively, the male port sealer 220, female port sealer 230, or both male and female port sealers 220, 230 may have an adhesive such as fabric glue applied prior to positioning on the garment 100 and subsequent coupling with one another.

[0057] Referring again to FIG. 2C, the male port sealer 220 may include fasteners 222 which do not require engagement with a receiver 232 to be secured to a garment 100. One example of such a male port sealer 220 would be one which has button-type fasteners (not shown) affixed to the male port sealer 220, thereby permitting the male port sealer 220 to be affixed to the fabric of the garment 100.

[0058] It is contemplated that male port sealer 220 and female port sealer 230 may be made in part of a magnetic substance. As a result of an at least partial magnetic construction, male port sealer 220 and female port sealer 230 may be constructed without fasteners 222 or receivers 232. The result may provide a male and female port sealer 220, 230 which are easily removable before or after laundering the garment 100. The male and female port sealer 220, 230 may also be constructed of a material designed to enclose the magnetic substance, thereby protecting the magnetic substance from drops and potential demagnetization as well as add comfort if the male and female port sealer 220, 230 come into contact with the individual's skin.

[0059] FIG. 3 is another embodiment of a wire control system embedded within a garment 300. The garment 100 as illustrated in FIG. 3 includes a left portion 370A, right portion 370B, upper portion 370C, and lower portion 370D.

[0060] Depicted are a series of channels which form an asymmetric wire management network. The wire management network is joined with garment 300 and includes an upper channel 330 and an elongated channel 320, which are connected at upper intersection 360B. Located at upper intersection 360B is also center port 310A which permits entry and exit of wire 350. The elongated channel terminates at lower center port 310C, permitting entry and exit of wire 350. Likewise, upper channel 330 terminates at right port 310B, permitting entry and exit of wire 350. Further, the configuration of the upper channel 330 and the elongated channel 320 permit an individual to route wires in various configurations for various activities, or in conjunction with other garments.

[0061] FIG. 4 is an embodiment of a wire control system embedded within an undergarment 400. The garment 400 as illustrated in FIG. 4 includes a left portion 470A, right portion 470B, upper portion 470C, and lower portion 470D.

[0062] Depicted are a series of channels 420, 430 which create a wire management network in a female undergarment 400. Left channel 420 originates at left port 410C and terminates at center port 410A. Center intersection 460A permits communication of a wire 450 through left channel 420 and right channel 430, ultimately permitting passage of a wire from any of left port 410C, center port 410B, or right port 410A via a continuous channel across the female undergarment 400.

[0063] Configuration of the channels 420, 430 along the undergarment in the manner disclosed permits multiple wiring configurations, thereby providing the individual the ability to route a wire or wires 150 as needed for their chosen activity. Notably, depending on the activity, an individual may chose certain wiring configurations such that obstruction of the individual's range of motion while engaging in the chosen activity is not hindered by any wire or wires 150. For instance, if an individual were to design a configuration for running, they may choose to use channel 420, so that when the wire 150 passes outward toward their ears the wire is located central to their body (not shown). Additionally, when the wire passes outward through port 410C, the wire 150 is easily directed to the individual's pocket or running pack (not shown).

[0064] FIG. 5 is an embodiment of a network of channels in a garment system 500, which allow a wire 150 to be coupled to the garment of FIG. 1, as illustrated. The garment 500 as illustrated in FIG. 1 includes a left portion 570A, right portion 570B, upper portion 570C, and lower portion 570D.

[0065] Depicted are a series of channels 520, 530 which create a wire management network within garment 500. Right channel 520 is operably connected to upper channel 530 at upper intersection 560B, allowing for continues routing of a wire 550 through upper port 510A to either of right port 510B or lower port 510C.

[0066] Notably, when used in combination, the garment 100 of FIG. 1 and the garment 500 of FIG. 5 allow for ergonomic translation of a wire 150, 550 through multiple garments 100, 500. Such configurations are possible either by coordinating pre-manufactured garments, or alternatively by adapting garments to operably receive wire with the port sealers 200, 220, and/or 230. Such results are likewise achievable by combining any of the garments described in this application, or by combining garments generally which are fitted with selective wire control systems.

[0067] In some embodiments, port sealer 200 may also be used to create uniquely located ports on garments which are not initially fitted with ports 110A-110F or channels during the garment manufacturing process. As described, the port sealers 200 shown in FIG. 2A-2C may be applied to a garment either before or after an incision is made into the garment, thereby permitting communication of a wire between the interior and exterior of a garment.

[0068] In some embodiments, port sealer 200 may be used in conjunction with wiring channels which may also be affixed to a garment after the garment manufacturing process. As a result of selectively positioning port sealers 200 an individual may route wires through garments either according to their personal preference, or in response to the activity which they are performing.

[0069] In some embodiments, port sealer 200 may be operably positioned on a series of garments, such as a shirt and a pair of pants, thereby permitting ergonomic routing of wires through multiple garments. By aligning port sealers along multiple garments, an individual may be permitted to create extended wiring networks which address the routing of wires beyond a single garment. Such routing, in turn, can minimize the amount of wire which must be exposed, thereby reducing the chance that a wire may be caught on a foreign object.

[0070] With reference to FIG. 6, it is the port sealer 220 may be combined with a fabric punch 600 as part of a kit for attaching a port sealer 220 to a garment 100. The kit may be included in a package (not shown). Reference will be made to the fabric punch 600 herein using the positional terms "proximal" and "distal", where the term "proximal" herein refers to portions of an object or directions which are translated toward an individual, and the term "distal" herein refers to portions or directions which are translated away from or further form an individual. The fabric punch 600 includes a first and second arm 602, 604 which are configured to be gripped in a hand of the individual. The first and second arm 602, 604 extend distally, and are pivotally coupled by a pin 616. A first and second head member 606, 608 are located distally along the first and second arm 602, 604. The first head member 606 has a cutting member 610 extending therefrom toward the second head member 608, the cutting member 610 configured to be advanced into a receiving portion 614 defined by the second head member 608. The cutting member 610 comprises a hollow cylinder which is sharpened and configured to engage with fabric. More specifically, the cutting member 610 is configured to form a circular hole in fabric as the first and second arm 602, 604 are engaged, thereby driving the cutting member 610 into the receiving portion 614.

[0071] With continued reference to FIG. 6, the kit includes the fabric punch 600, a plurality of port sealers 200, 220, 230. The kit may additionally include fabric glue (not shown), a needle and thread (not shown), or other adhesive and/or fixation compounds and materials to couple the port sealers 200, 220, 230 to fabric.

[0072] As a result of combining both a fabric punch and a port sealer 220, an individual cutting into a garment 100 prior to or during the affixing of a port 110A-110F can make the cut into the garment 100 without unnecessarily cutting the garment 100 more than is required to permit communication therethrough. As a result of having a cleaner cut prior to placing a port sealer 220 over the newly created port 110A-110F, the port sealer 220 may better protect the port 110A-110F from further tearing into the remaining garment 100 fabric. [0073] It is further contemplated that, in embodiments, the port sealers 200, 220, 230 described may be coated with fabric glue, or an adhesive activated by heat (e.g., iron on adhesives) for coupling the port sealer 200, 220, 230 to fabric. The port sealers 200, 220, 230 may also selectively couple to the upper, lower and elongated channel 120, 130, 140 to permit selective engagement of the upper, lower, and elongated channel 120, 130, 140 to the garment 100 or any other garment on which the port sealers 200, 220, 230 are coupled.

[0074] In conclusion, the disclosed technology provides embodiments for purposes of illustration and disclosure. The embodiments disclosed within are not intended to be exhaustive or limiting of the disclosed technology, but rather are discussed to enable one skilled in the art to understand the disclosures described. Various alternatives and equivalents will also become apparent to one of ordinary skill in the art without varying or departing from the spirit of the invention. For example, when the embodiments described above refer to particular features, components, or combinations thereof, such features, components, and combinations may be substituted with functionally equivalent substitutes which may or may not contain the elements as originally described or arranged.