Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WORKPIECE CARRIER SYSTEM
Document Type and Number:
WIPO Patent Application WO/2017/178243
Kind Code:
A1
Abstract:
The invention relates to a workpiece carrier system (1) comprising a free-floating workpiece carrier (2) and a reference surface (3), wherein the workpiece carrier (2) can be moved in a free-floating manner over the reference surface (3), wherein the reference surface (3) has a plurality of receiver electrodes (5) or a system formed by a plurality of first transmission electrodes (4) and a plurality of receiver electrodes (5), wherein the workpiece carrier (2) has a plurality of second transmission electrodes (6) and/or dielectric elements (7), wherein an electric field can be generated by the first transmission electrodes (4) that can be altered by the dielectric elements (7) and/or wherein an electric field can be generated by the second transmission electrodes (6), and wherein the generated electrical field can be detected by the receiver electrodes (5), such that a position of the workpiece carrier can be determined in relation to the receiver electrodes (3).

Inventors:
SEIZ DANIEL (DE)
HANISCH MARKUS (DE)
Application Number:
PCT/EP2017/057658
Publication Date:
October 19, 2017
Filing Date:
March 31, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
G01B7/02; G01D5/241
Domestic Patent References:
WO2013059934A12013-05-02
Foreign References:
DE19715078A11998-10-15
DE2217183A11972-12-28
DE68926355T21996-11-28
Other References:
DATABASE WPI Week 201179, 26 March 2013 Derwent World Patents Index; AN 2011-P30175, XP002770512
Attorney, Agent or Firm:
THÜRER, Andreas (DE)
Download PDF:
Claims:
Ansprüche

1 . Werkstückträgersystem (1 ), umfassend

- einen frei schwebenden Werkstückträger (2), und

- eine Referenzfläche (3),

- wobei der Werkstückträger (2) frei schwebend über der Referenzfläche (3) bewegbar ist,

- wobei die Referenzfläche (3) eine Vielzahl von Empfangselektroden (5) und/oder ein System aus einer Vielzahl von ersten Sendeelektroden (4) und einer Vielzahl von Empfangselektroden (5) aufweist,

- wobei der Werkstückträger (2) eine Vielzahl von zweiten

Sendeelektroden (6) und/oder dielektrischen Elementen (7) aufweist,

- wobei durch die ersten Sendeelektroden (4) ein von den dielektrischen Elementen (7) veränderbares elektrisches Feld erzeugbar ist und/oder wobei von den zweiten Sendeelektroden (6) ein elektrisches Feld erzeugbar ist, und

- wobei erzeugte elektrische Felder von den Empfangselektroden (5) detektierbar sind, sodass eine Position des Werkstückträgers relativ zu den Empfangselektroden (3) bestimmbar ist.

2. Werkstückträgersystem (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Empfangselektroden (5) streifenförmig ausgebildet sind, wobei die streifenförmigen Empfangselektroden (5) bevorzugt rasterförmig angeordnet sind.

3. Werkstückträgersystem (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass die ersten Sendeelektroden (4) und/oder Erdungselektroden (8) von vier streifenförmigen Empfangselektroden (3) unmittelbar umgeben sind.

4. Werkstückträgersystem (1 ) nach Anspruch 2 oder 3, dadurch

gekennzeichnet, dass zwei streifenförmige Empfangselektroden (5) mit einer Messschaltung (9), die zur Ermittlung einer Kapazität zwischen den streifenförmigen Empfangselektroden (5) ausgebildet ist, elektrisch verbunden sind, und/oder dass jede streifenförmige Empfangselektrode (5) mit einer Empfangsschaltung (14), die zum Bestimmen eines elektrischen Feldes gegenüber einem Nullpotential, insbesondere einer Erdung, elektrisch verbunden ist.

Werkstückträgersystem (1 ) nach Anspruch 4, dadurch gekennzeichnet, dass zumindest ein erstes Paar (10) von Empfangselektroden (5), zumindest ein zweites Paar (1 1 ) von Empfangselektroden (5), und zumindest ein drittes Paar (12) von Empfangselektroden (5) mit jeweils einer Messschaltung (9) elektrisch verbunden ist, wobei jede

Empfangselektrode (5) des ersten Paares (10) benachbart zu einer Empfangselektrode (5) des zweiten Paares (1 1 ) und zu einer

Empfangselektrode (5) des dritten Paares (12) angeordnet ist.

Werkstückträgersystem (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Empfangselektroden (5) rechteckig, insbesondere quadratisch, ausgebildet und mosaikförmig angeordnet sind, wobei zwei Reihen von Empfangselektroden (5) mit einer Messschaltung verbunden sind.

Werkstückträgersystem (1 ) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Steuerungseinheit (13), mit der aus dem von den Empfangselektroden (5) detektierten elektrischen Feld Histogramme berechenbar ist, wobei aus den Histogrammen eine Position und

Ausrichtung des Werkstückträgers (2) bestimmbar ist.

Werkstückträgersystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Sendeelektroden (6) und/oder die dielektrischen Elemente (7) streifenförmig ausgebildet und parallel zueinander ausgerichtet sind.

Werkstückträgersystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Sendeelektroden (6) und/oder die dielektrischen Elemente (7) asymmetrisch auf dem Werkstückträger (2) angeordnet sind.

Werkstückträgersystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Sendeelektroden (6) und/oder die dielektrischen Elemente (7) in einer Nullposition des Werkstückträgers (2) gegenüber den, insbesondere streifenförmig ausgebildeten, Empfangselektroden (5) abgewinkelt, insbesondere um einen Winkel von 45° abgewinkelt, sind.

Description:
Beschreibung

Titel

Werkstückträgersvstem Stand der Technik

Die vorliegende Erfindung betrifft ein Werkstückträgersystem. Insbesondere betrifft die Erfindung ein Werkstückträgersystem mit einem frei schwebenden Werkstückträger, wobei die Position des frei schwebenden Werkstückträgers bestimmbar ist.

Aus dem Stand der Technik sind Werkstückträgersysteme bekannt. Dabei ist außerdem bekannt, dass Werkstückträger, die insbesondere frei schwebend über einer Oberfläche bewegbar sind, überwacht werden müssen, um eine Position des Werkstückträgers zu ermitteln. Für solche Überwachungen sind beispielsweise kapazitive Sensoren bekannt, die jedoch aufgrund der benötigten Bauraumgröße in machen Anwendungen nicht eingesetzt werden können. Optische Sensoren, insbesondere Stereokameras, sind teuer und aufwändig zu installieren, wodurch solche Sensoren je nach Anwendungsfall nicht geeignet sind. Ein Werkstückträgersystem umfassend eine Stereokamera zur

Positionsbestimmung eines frei schwebenden Werkstückträgers ist

beispielsweise aus der WO 2013/059934 A1 bekannt.

Grundsätzlich ist an den aus dem Stand der Technik bekannten Systemen nachteilig, dass eine große Anzahl von Sensoren verwendet werden muss, wodurch das Werkstückträgersystem sehr teuer ist. Außerdem ist durch die Vielzahl von Sensoren eine große Bauhöhe von Nöten, die sich negativ auf die Leistungsfähigkeit des Werkstückträgersystems auswirkt.

Offenbarung der Erfindung Das erfindungsgemäße Werkstückträgersystem erlaubt eine genaue

Positionierung eines frei schwebenden Werkstückträgers über einer

Referenzfläche. Dabei wird nur ein geringer Bauraum benötigt, um die

notwendigen Sensoren bereitzustellen. Gleichzeitig ist das

Werkstückträgersystem sehr kostengünstig und aufwandsarm zu fertigen. Das erfindungsgemäße Werkstückträgersystem umfasst einen frei schwebenden Werkstückträger und eine Referenzfläche. Dabei ist vorgesehen, dass der Werkstückträger über der Referenzfläche frei schwebend bewegbar ist. Unter frei schwebend ist insbesondere vorgesehen, dass der Werkstückträger über einen elektromagnetischen Antrieb kontaktlos über die Referenzfläche bewegbar ist.

Der elektromagnetische Antrieb ist bevorzugt teilweise innerhalb der

Referenzfläche und teilweise innerhalb des Werkstückträgers angeordnet.

Insbesondere ist der Werkstückträger relativ zu der Referenzfläche in sechs Freiheitsgraden bewegbar. Die sechs Freiheitsgrade umfassen bevorzugt eine Rotation und eine Translation um je eine Raumachse, wobei die Raumachsen senkrecht zueinander orientiert sind. Es ist außerdem vorgesehen, dass die Referenzfläche eine Vielzahl von Empfangselektroden oder ein System aus einer Vielzahl von ersten Sendeelektroden und Empfangselektroden aufweist. Der Werkstückträger wiederum weist eine Vielzahl von zweiten Sendeelektroden und/oder dielektrischen Elementen auf. Bei den dielektrischen Elementen kann es sich vorteilhafterweise um dielektrische Bauteile des Werkstückträgers oder um zusätzlich angebrachte dielektrische Elemente handeln. Durch die ersten Sendeelektroden und/oder die zweiten Sendeelektroden ist ein elektrisches Feld erzeugbar. Das erzeugte elektrische Feld ist von den Empfangselektroden detektierbar. Auf diese Weise ist eine Position des Werkstückträgers relativ zu den Empfangselektroden bestimmbar. Dies erfolgt insbesondere dadurch, dass der Werkstückträger lediglich die zweiten Sendeelektroden aufweist, während die Referenzfläche lediglich die Empfangselektroden aufweist. In diesem Fall kann anhand des von den Empfangselektroden detektierten elektrischen Felds, das von den zweiten Sendeelektroden erzeugt wird, darauf geschlossen werden, wo sich die zweiten Sendeelektroden befinden. Auf diese Weise ist die Position des Werkstückträgers relativ zu der Referenzfläche bestimmbar. Alternativ weist die Referenzfläche das System von ersten Sendeelektroden und

Empfangselektroden auf, wobei der Werkstückträger die dielektrischen Elemente aufweist. In diesem Fall ist das von den ersten Sendeelektroden erzeugte elektrische Feld von den Empfangselektroden detektierbar. Dabei ist das erzeugte elektrische Feld von den dielektrischen Elementen veränderbar, insbesondere verstärkbar. Somit lässt sich an solchen Stellen, an denen die Empfangselektroden ein verstärktes elektrisches Feld detektieren, darauf schließen, dass sich die dielektrischen Elemente des Werkstückträgers oberhalb der detektierenden Empfangselektroden befinden. Somit lässt sich wiederum eine Position des Werkstückträgers relativ zu der Referenzfläche bestimmen. In einer besonders vorteilhaften Ausführung sind die genannten Alternativen kombiniert. Bei einer derartigen Kombination weisen die ersten Sendeelektroden und die zweiten Sendeelektroden unterschiedliche Frequenzen auf, sodass die Quelle des elektrischen Felds eindeutig identifizierbar ist. In diesem Fall wird vorteilhafterweise eine Positionserkennung gemäß der zuerst beschriebenen

Alternative durchgeführt, während eine Erkennung von Fremdobjekten gemäß der zweiten Alternative durchgeführt wird. Dazu ist vorgesehen, dass die

Fremdobjekte dielektrische Eigenschaften aufweisen. Die Unteransprüche haben bevorzugte Weiterbildungen der Erfindung zum

Inhalt.

Bevorzugt ist vorgesehen, dass die Empfangselektroden streifenförmig ausgebildet sind. Dabei sind die streifenförmigen Elektroden rasterförmig angeordnet. Unter rasterformiger Anordnung ist insbesondere zu verstehen, dass eine erste Vielzahl von streifenförmigen Empfangselektroden parallel angeordnet ist, wobei abgewinkelt dazu eine zweite Vielzahl von parallel angeordneten Empfangselektroden vorhanden ist. Ein Überlappungsbereich der einzelnen Empfangselektroden der ersten Vielzahl und der zweiten Vielzahl, der durch eine solche Anordnung zwangsläufig entsteht, ist vorteilhafterweise so gering wie möglich gehalten. Insbesondere ist ein Querschnitt der Empfangselektroden an den Überlappungsbereichen verringert. Auf diese Weise ist ein Übersprechen der von den einzelnen Empfangselektroden empfangenen Signale auf andere Empfangselektroden reduziert. Besonders bevorzugt ist die erste Vielzahl von Empfangselektroden rechtwinklig zu der zweiten Vielzahl von

Empfangselektroden angeordnet. Bei allen gemachten Winkelangaben ist insbesondere vorgesehen, dass ein Toleranzbereich von bis zu 10° vorhanden ist. Durch die Rasterform lässt sich eine Position des Werkstückträgers oberhalb der Referenzfläche eindeutig bestimmen. So können aus den empfangenen Signalen der Empfangselektroden zwei unabhängige Koordinaten ermittelt werden, die eine zweidimensionale Position des Werkstückträgers auf der Referenzfläche anzeigen. Eine Höhe des Werkstückträgers oberhalb der Referenzfläche lässt sich anhand einer Signalstärke des von den

Empfangselektroden empfangenen elektrischen Feldes ermitteln.

Besonders bevorzugt sind die ersten Sendeelektroden und/oder zusätzlich vorhandene Erdungselektroden von vier streifenförmigen Empfangselektroden unmittelbar umgeben. Die Erdungselektroden dienen vorteilhafterweise als Abschirmung der einzelnen Empfangselektroden, sodass eine genaue Messung ermöglicht ist. Durch eine derartige Anordnung ist vorteilhafterweise vorgesehen, dass eine Vielzahl von ersten Sendeelektroden und/oder Empfangselektroden und/oder Erdungselektroden auf der Referenzfläche platzsparend angebracht werden können.

Besonders vorteilhaft sind zwei streifenförmige Empfangselektroden mit einer Messschaltung verbunden. Die Messschaltung ist eingerichtet, eine Kapazität zwischen den zwei mit der Messschaltung verbundenen streifenförmigen

Elektroden zu ermitteln. In diesem Fall erfolgt die Messung unabhängig von einer Erdung. Für derartige Anwendungsfälle sind einfache und kostengünstige Messschaltungen vorhanden. Gleichzeitig ist eine genaue und lückenlose Erfassung einer Position des Werkstückträgers ermöglicht. Alternativ ist jede streifenförmige Elektrode mit einer Empfangsschaltung verbunden. Die

Empfangsschaltung ist zum Bestimmen eines elektrischen Feldes relativ zu einem Nullpotential ausgebildet. Das Nullpotential ist insbesondere eine Erdung, besonders vorteilhaft das Potential der beschriebenen Erdungselektroden. Weiterhin ist vorteilhafterweise vorgesehen, dass zumindest ein erstes Paar von

Empfangselektroden, zumindest ein zweites Paar von Empfangselektroden und zumindest ein drittes Paar von Empfangselektroden mit jeweils einer

Messschaltung verbunden sind. Dabei ist jede Empfangselektrode des ersten Paares benachbart zu einer Empfangselektrode des zweiten Paares und zu einer Empfangselektrode des dritten Paares angeordnet. Ebenso ist bevorzugt vorgesehen, dass jede Empfangselektrode des zweiten Paares benachbart zu einer Empfangselektrode des ersten Paares und zu einer Empfangselektrode des dritten Paares angeordnet ist. Eine Ausnahme hierfür gilt nur für

Randelektroden, die nur eine weitere benachbarte Elektrode aufweisen. Durch eine solche Anordnung ist eine Überlappung zwischen den Paaren von

Elektroden vorhanden. Durch die Überlappung ist eine lückenlose Erfassung der Position des Werkstückträgers ermöglicht. Somit ist eine genaue, sichere und zuverlässige Erfassung der Position des Werkstückträgers ermöglicht.

Die Empfangselektroden sind in einer vorteilhaften Alternative rechteckig, insbesondere quadratisch ausgebildet. Außerdem sind die Empfangselektroden insbesondere mosaikförmig angeordnet. Dabei sind zumindest zwei Reihen von Empfangselektroden mit einer Messschaltung verbunden. Die Messschaltung ist insbesondere identisch zu der zuvor beschriebenen Messschaltung. Da für eine derartige Messung insbesondere keine Erdungselektroden von Nöten sind, erlaubt die alternative Anordnung der Empfangselektroden ein großflächiges

Abdecken der Referenzfläche. Somit ist eine sichere und zuverlässige Detektion der Position des Werkstückträgers ermöglicht. Die Bestimmung der Position erfolgt dabei insbesondere analog wie zuvor beschrieben. Durch die

Verschaltung von zwei Reihen von Empfangselektroden lassen sich

insbesondere unabhängige Raumkoordinaten bestimmen, die eine

zweidimensionale Position des Werkstückträgers relativ zu der Referenzfläche anzeigen. Dazu sind die zwei zu einer Messschaltung verbundenen Reihen von Empfangselektroden insbesondere parallel zueinander orientiert. Weiterhin ist vorgesehen, dass eine Vielzahl von ersten Reihen und eine Vielzahl von zweiten Reihen vorhanden sind, wobei die ersten Reihen senkrecht zu den zweiten

Reihen orientiert sind.

Bevorzugt weist das Werkstückträgersystem eine Steuerungseinheit auf. Die Steuerungseinheit ist eingerichtet, aus den von den Empfangselektroden detektierten elektrischen Feldern ein Histogramm zu berechnen. Anhand des

Histogramms lässt sich insbesondere eine Position und Ausrichtung des

Werkstückträgers bestimmen. Das Histogramm ist insbesondere derart bestimmbar, dass eine Intensität, die von den, insbesondere streifenförmig ausgebildeten, Empfangselektroden detektiert wird. Eine grafische

Repräsentation des Histogramms ist somit ein Balkendiagramm, wobei jeder

Balken eine von einer Empfangselektrode bestimmte Intensität repräsentiert. Diese Balken lassen sich, unter Berücksichtigung einer Position der

detektierenden Empfangselektroden, zu einem zweidimensionalen Muster zusammensetzen, wobei die Höhe der Balken einer Entfernung des

Werkstückträgers von der Referenzfläche entspricht, während eine räumliche

Ausdehnung des Musters aus den zusammengesetzten Balken eine Position des Werkstückträgers repräsentiert. Über das Histogramm sind somit auf einfache und aufwandsarme Weise sowohl eine Position als auch eine Ausrichtung und insbesondere auch eine Höhe des Werkstückträgers relativ zu der

Referenzfläche ermittelbar.

Die zweiten Sendeelektroden und/oder die dielektrischen Elemente, die auf dem Werkstückträger angeordnet sind, sind vorteilhafterweise streifenförmig ausgebildet. Insbesondere sind die streifenförmig ausgebildeten zweiten

Sendeelektroden und/oder dielektrischen Elemente parallel zueinander angeordnet. Somit erfolgt eine sichere und zuverlässige Detektierung durch die Empfangselektroden.

Besonders vorteilhaft sind die zweiten Sendeelektroden und/oder dielektrischen Elemente asymmetrisch auf dem Werkstückträger angebracht. Durch eine solche Anordnung ist insbesondere ermöglicht, Rotationen des Werkstückträgers sicher und zuverlässig zu erkennen.

In einer weiteren vorteilhaften Ausführungsform sind die zweiten

Sendeelektroden und/oder dielektrischen Elemente in einer Nullposition des Werkstückträgers gegenüber den, insbesondere streifenförmig ausgebildeten, Empfangselektroden abgewinkelt. Ein derartiger Winkel beträgt insbesondere 45°. Unter Nullposition wird eine solche Position verstanden, die der

Werkstückträger bei Beginn der Positionsbestimmung einnimmt. Durch eine abwinkelung von 45° ist insbesondere sichergestellt, dass bei einer Rotation des Werkstückträgers sowohl die Richtung als auch der Winkelbetrag der Rotation eindeutig bestimmbar ist. Aufgrund der Anordnung der zweiten Sendeelektroden und/oder dielektrischen Elemente ist dies bis zu einer Rotation um 45° ermöglicht.

Kurze Beschreibung der Zeichnungen

Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung ist: eine schematische Ansicht eines Werkstückträgersystems gemäß einem ersten Ausführungsbeispiel der Erfindung, eine schematische Ansicht eines Werkstückträgersystems gemäß einem zweiten Ausführungsbeispiel der Erfindung, eine schematische Ansicht einer Verschaltung der

Empfangselektroden des Werkstückträgersystems gemäß einem vierten Ausführungsbeispiel der Erfindung, eine schematische Ansicht eines Werkstückträgersystems gemäß einem dritten Ausführungsbeispiel der Erfindung, eine schematische Ansicht des Werkstückträgersystems gemäß dem dritten Ausführungsbeispiel der Erfindung während einer Erkennung von Fremdobjekten, eine schematische Ansicht des Werkstückträgers des

Werkstückträgersystems gemäß dem ersten

Ausführungsbeispiel der Erfindung, eine schematische Ansicht eines alternativen Werkstückträgers des Werkstückträgersystems gemäß dem ersten

Ausführungsbeispiel der Erfindung, eine erste schematische Ansicht von Histogrammen, mit denen eine Position des Werkstückträgers bestimmbar ist, eine zweite schematische Ansicht von Histogrammen, mit denen eine Position des Werkstückträgers bestimmbar ist, eine dritte schematische Ansicht eines Histogramms, mit dem eine Position des Werkstückträgers bestimmbar ist, eine vierte schematische Ansicht eines Histogramms, mit dem die Position des Werkstückträgers bestimmbar ist, eine fünfte schematische Ansicht eines Histogramms, mit dem eine Position des Werkstückträgers bestimmbar ist, und Figur 13 eine schematische Ansicht einer Referenzfläche eines

Werkstückträgersystems gemäß einem vierten Ausführungsbeispiel der Erfindung.

Ausführungsformen der Erfindung

Figur 1 zeigt schematisch ein Werkstückträgersystem 1 gemäß einem ersten Ausführungsbeispiel der Erfindung. Das Werkstückträgersystem 1 umfasst eine Referenzfläche 3 sowie einen Werkstückträger 2. Der Werkstückträger 2 ist frei schwebend über der Referenzfläche 3 bewegbar. Um eine Position sowie eine Ausrichtung des Werkstückträgers 2 relativ zu der Referenzfläche 3 zu ermitteln, ist ein kapazitives Sensorsystem vorhanden.

Das kapazitive Sensorsystem umfasst einerseits Elektroden, die an dem

Werkstückträger 2 angebracht sind. So sind Erdungselektroden 8 und zweite Sendeelektroden 6 an dem Werkstückträger 2 angeordnet. Über die zweiten Sendeelektroden 6 ist der Werkstückträger 2 eingerichtet, ein elektrisches Feld zu erzeugen.

An der Referenzfläche 3 ist eine Vielzahl von Empfangselektroden 5 angeordnet. Die Empfangselektroden 5 dienen zum Detektieren des von den zweiten

Sendeelektroden 6 erzeugten elektrischen Feldes.

Um eine Positionserkennung des Werkstückträgers 2 durchführen zu können, sind die Empfangselektroden 5 streifenförmig ausgebildet. Die

Empfangselektroden 5 unterteilen sich in eine erste Vielzahl von

Empfangselektroden 5 und in eine zweite Vielzahl von Empfangselektroden 5, wobei die erste Vielzahl senkrecht zu der zweiten Vielzahl angeordnet ist. An solchen Bereichen, an denen sich die Empfangselektroden 5 überschneiden, weisen diese einen verminderten Querschnitt auf, um einen

Überlappungsbereich der Empfangselektroden 5 zu minimieren. Auf diese Weise ist ein Übersprechen eines von einer Empfangselektrode 5 empfangenen Signals auf eine andere Empfangselektrode 5 vermieden. Die streifenförmigen

Empfangselektroden 5 sind mit Empfangsschaltungen 14 verbunden, über die eine Bestimmung eines elektrischen Feldes bezüglich Erdungselektroden 8 ermöglicht ist. Zwischen den Empfangselektroden 5 sind Erdungselektroden 8 angeordnet. Dies bedeutet, dass jede Erdungselektrode 8 von vier unterschiedlichen

Empfangselektroden 5 eingerahmt ist. Durch die Erdungselektroden 8 sind die einzelnen Empfangselektroden 5 abgeschirmt, sodass ein sicheres und zuverlässiges Empfangen von Signalen ermöglicht ist. Somit ist eine

Verfälschung der Signale verhindert.

Um eine Position des Werkstückträgers 2 zu bestimmen, ist vorgesehen, dass die von den jeweiligen Empfangselektroden 5 empfangene Intensität des von den zweiten Sendeelektroden 6 erzeugten elektrischen Feldes ermittelt wird. Da die

Empfangselektroden 5 aufgrund ihrer Anordnung ein Raster bilden, lässt sich somit eine Position des Werkstückträgers 2 bestimmen. Dies wird nachfolgend anhand der Figuren 8 bis 12 beschrieben. Figur 2 zeigt schematisch ein zweites Ausführungsbeispiel der Erfindung. Dabei unterscheidet sich die Referenzfläche 3 von der Referenzfläche 3 des

Werkstückträgersystems 1 gemäß dem ersten Ausführungsbeispiel derart, dass anstatt der Erdungselektroden 8 erste Sendeelektroden 4 vorhanden sind. Die ersten Sendeelektroden 4 senden ein Signal aus, das von den

Empfangselektroden 5 empfangbar ist. Nicht eingezeichnet ist eine

darunterliegende, großflächige Erdungselektrode, welche das Bezugspotential für die Sendeelektroden 4 und die Empfangselektroden 5 bildet. Die

Empfangsschaltungen 14 sind somit zum Bestimmen eines elektrischen Feldes bezüglich der großflächigen Erdungselektrode ausgebildet.

Der Werkstückträger 2 unterscheidet sich von dem ersten Ausführungsbeispiel dadurch, dass dieser lediglich dielektrische Elemente 7 aufweist. Die

dielektrischen Elemente 7 können entweder dielektrische Bauteile des

Werkstückträgers 2 selbst sein, oder alternativ zusätzlich aufgebrachte dielektrische Elemente 7, insbesondere in Form von dielektrischen

Materialstreifen. Auf diese Weise empfangen Empfangselektroden 5 ein stärkeres Signal, wenn sich der Werkstückträger 2 oberhalb von diesen

Empfangselektroden 5 befindet, da die dielektrischen Elemente 7 die kapazitive Kopplung zwischen ersten Sendeelektroden 4 und Empfangselektroden 5 verstärken. Somit empfangen die Empfangselektroden 5 an solchen Stellen ein verändertes, insbesondere verstärktes, Signal, an denen sich der

Werkstückträger 2 befindet. Eine Positionsbestimmung erfolgt wiederum vorteilhafterweise analog zu dem ersten Ausführungsbeispiel und ist nachfolgend anhand der Figuren 8 bis 12 beschrieben.

Figur 3 zeigt ein Verschalten der Empfangselektroden 5, insbesondere bei dem Werkstückträgersystem 1 gemäß einem vierten Ausführungsbeispiel, um die

Position des Werkstückträgers 2 ermitteln zu können. Zusätzlich zu der Position ist außerdem eine Ausrichtung des Werkstückträgers 2 ermittelbar. Dazu sind zwei Empfangselektroden 5 mit einer Messschaltung 9 verbunden. Die

Messschaltung 9 ist insbesondere zum Bestimmen einer Kapazität zwischen den mit der Messschaltung 9 verbundenen Empfangselektroden 5 ausgebildet.

Insbesondere sind auf diese Weise drei verschiedene Paare von

Empfangselektroden 5 mit jeweils einer Messschaltung 9 verbunden. Dabei ist vorgesehen, dass Empfangselektroden 5 eines ersten Paares 10 jeweils benachbart zu Empfangselektroden 5 eines zweiten Paares 1 1 sowie eines dritten Paares 12 angeordnet sind. Ebenso sind Empfangselektroden 5 des zweiten Paares 1 1 benachbart zu Empfangselektroden 5 des ersten Paares 10 sowie des dritten Paares 12 angeordnet. Eine Ausnahme hiervon gilt lediglich für Empfangselektroden 5 an einem Rand der Referenzfläche 3. An einem Rand sind zwei Variationen möglich. Gemäß einer ersten Variation befindet sich an einer Stelle eine Lücke, da eines der Paare 10, 1 1 , 12 aufgrund des Randes nicht mehr gebildet werden kann. Alternativ kann in einer zweiten Variation vorgesehen sein, dass zwei Referenzflächen 3 aneinander grenzen. In diesem Fall ist eines der Paare 10, 1 1 , 12 bevorzugt flächenübergreifend vorgesehen, so dass eines der Paare 10, 1 1 , 12 jeweils eine Empfangselektrode 5 in jeder der beiden aneinandergrenzenden Referenzflächen 5 umfasst. Durch die genannte

Verschachtelung der Paare 10, 1 1 , 12 von Empfangselektroden 5 ist eine Überlappung der Messbereiche vorhanden. Somit ist sowohl eine Position als auch eine Ausrichtung des Werkstückträgers 2 lückenlos erfassbar. Bei den Messschaltungen 9 kann es sich vorteilhafterweise um C2D-Konverter handeln. Diese ermöglichen eine sehr schnelle Wandlung der Kapazität in einen digitalen

Wert. Außerdem ist eine Zeitmessung bei einer Ladekurve und/oder einer Endladekurve der Kapazität vorhanden. Die Messung erfolgt dabei unabhängig von Erdungselektroden 8. Vorteilhafterweise sind derartige Messschaltungen 9 sehr kostengünstig und über eine serielle Schnittstelle 17 mit einer

Steuerungseinheit 13 verbindbar. Somit erfolgt eine Weiterverarbeitung der von den Messschaltungen 9 bestimmten Kapazitäten über die Steuerungseinheit 13. Die Steuerungseinheit 13 bestimmt insbesondere die Position anhand von Histogrammen, was nachfolgend mit Bezug auf die Figuren 8 bis 12 beschrieben wird.

Die Referenzfläche 3 kann vorteilhafterweise in mehrere Module unterteilt werden. Dabei umfasst ein Modul eine vordefinierte Anzahl an

Empfangselektroden 5. Um eine Positionsbestimmung des Werkstückträgers 2 auch dann durchführen zu können, wenn dieser sich von einem Modul zu einem nächsten Modul bewegt, ist vorteilhafterweise eine Verbindung zwischen den Modulen vorhanden, um Positionsdaten, insbesondere in Form von gemessenen Kapazitäten der Empfangselektroden 5, austauschen zu können.

Der Steuerungseinheit 13 ist außerdem eine Abmessung der Referenzfläche 13 bekannt. Somit ist anhand der Steuerungseinheit 13 bestimmbar, wann sich der Werkstückträger 13 an einem Rand der Referenzfläche 3 befindet. In diesem Fall erfolgt ein Berechnen der Position lediglich anhand solcher Kapazitäten, die von dem Werkstückträger 3 beeinflusst werden.

Das zuvor beschriebene erste Ausführungsbeispiel des Werkstückträgersystems 1 hat den Vorteil, dass sich eine Detektion der Position lediglich auf den

Werkstückträger 2 bezieht. Zusätzliche Gegenstände, wie insbesondere

Überbauten, Hände eines Benutzers, oder sonstige Elemente oberhalb der Referenzfläche 3 bleiben bei der Positionsbestimmung unberücksichtigt. Somit ist eine sehr robuste und genaue Positionsbestimmung ermöglicht. Das erste Ausführungsbeispiel hat jedoch den Nachteil, dass eine Stromversorgung an dem Werkstückträger 2 benötigt wird. Eine solche Stromversorgung kann insbesondere durch eine Batterie, einen Akkumulator oder über induktive

Kopplung realisiert sein.

Das zweite Ausführungsbeispiel weist den Vorteil auf, dass auch Fremdobjekte 15 (vgl. Figur 5) erkannt werden. Außerdem benötigt der Werkstückträger 2 keinerlei Stromversorgung.

Die Figuren 4 und 5 zeigen ein Werkstückträgersystem 1 gemäß einem dritten Ausführungsbeispiel der Erfindung, wobei das dritte Ausführungsbeispiel eine Kombination aus dem ersten Ausführungsbeispiel und dem zweiten

Ausführungsbeispiel darstellt. Figur 4 zeigt eine schematische Ansicht des Werkstückträgersystems 1 gemäß dem dritten Ausführungsbeispiel der Erfindung, während Figur 5 das Werkstückträgersystem 1 gemäß dem dritten Ausführungsbeispiel der Erfindung zeigt, während Fremdobjekte 15 erkannt werden. Grundsätzlich ist der Aufbau des Werkstückträgersystems 1 gemäß dem dritten

Ausführungsbeispiel der Erfindung identisch zu dem Aufbau des

Werkstückträgersystems 1 gemäß dem ersten Ausführungsbeispiel der

Erfindung. Allerdings sind einige der Erdungselektroden 8 der Referenzfläche 3 durch erste Sendeelektroden 4 ersetzt. Die ersten Sendeelektroden 4 und die zweiten Sendeelektroden 6 senden Signale mit einer unterschiedlichen Frequenz aus. Alternativ können andere Verfahren angewandt werden, um die Signale der ersten Sendeelektroden 4 von den Signalen der zweiten Sendeelektroden 6 zu unterscheiden. Bei solchen Verfahren kann es sich insbesondere um einen Zeitmultiplex und/oder um einen Codemultiplex handeln.

Bevorzugt ist vorgesehen, dass eine Positionserkennung des Werkstückträgers 2 analog zu dem ersten Ausführungsbeispiel erfolgt. Über die ersten

Sendeelektroden 4 und die Empfangselektroden 5 ist zusätzlich ein Erkennen von Fremdobjekten 15 ermöglicht. Dabei folgt das Erkennen der Fremdobjekte 15 den Prinzipien des zweiten Ausführungsbeispiels. Durch Fremdobjekte 15 ist sichergestellt, dass nur solche Bereiche der Referenzfläche 3 von dem

Werkstückträger 2 angefahren werden, die nicht durch Fremdobjekte 15 belegt sind. Durch das genaue Bestimmen der Position der Fremdobjekte 15, wie dies im Zusammenhang mit dem zweiten Ausführungsbeispiel der Erfindung beschrieben wurde, ist ein sicheres und zuverlässiges Umfahren von

Fremdobjekten 15 ermöglicht.

Figur 6 zeigt schematisch den Werkstückträger 2 gemäß dem ersten

Ausführungsbeispiel der Erfindung. Figur 7 zeigt eine alternative Ausführung des Werkstückträgers 2, der in dem Werkstückträgersystem gemäß dem ersten

Ausführungsbeispiel der Erfindung eingesetzt werden kann.

Der Werkstückträger 2 umfasst eine Vielzahl von zweiten Sendeelektroden 6, wobei die zweiten Sendeelektroden 6 von Erdungselektroden 8 eingerahmt sind. Somit sind die zweiten Sendeelektroden 6 durch die Erdungselektroden 8 abgeschirmt. Auf diese Weise ist ein definiertes Aussenden von Signalen ermöglicht. Insbesondere ist verhindert, dass sich von den zweiten Sendeelektroden 6 ausgesandte Signale Undefiniert in alle Raumrichtungen ausbreiten.

Die zweiten Sendeelektroden 6 sowie die Erdungselektroden 8 sind

insbesondere asymmetrisch auf der Oberfläche des Werkstückträgers 2 angeordnet. Dies ist insbesondere aus Figur 7 ersichtlich. Durch ein solches asymmetrisches Anordnen lässt sich eine Rotation des Werkstückträgers 2 aufgrund der veränderten Signale eindeutig erkennen. Somit liegen unabhängig von einer Verdrehung des Werkstückträgers 2 keinerlei Beschränkungen bei der Erfassung der Position und der Ausrichtung des Werkstückträgers 2 vor.

In Figur 6 ist gezeigt, dass die zweiten Sendeelektroden 6 sowie die

Erdungselektroden 8 lediglich um 45° gegenüber dem Werkstückträger 2 verdreht sind. Insbesondere ist vorgesehen, dass die in Figur 6 gezeigte Orientierung des Werkstückträgers 2 einer Orientierung des Werkstückträgers 2 in einer Nullposition entspricht. Die Nullposition ist insbesondere diejenige Position, die der Werkstückträger 2 bei Beginn der Positionsbestimmung einnimmt. Somit sind die zweiten Sendeelektroden 6 sowie die

Erdungselektroden 8 auch gegenüber den Empfangselektroden 5 der

Referenzfläche 3 um 45° verdreht. Dies ermöglicht eine Erkennung einer

Rotation des Werkstückträgers 2, wenn die Rotation des Werkstückträgers 2 maximal 45° beträgt. Dies wird nachfolgend mit Bezug auf Figuren 8 und 9 erklärt. Die Figuren 8 bis 12 zeigen unterschiedliche Histogramme 16, die mittels der

Steuerungseinheit 13 erstellbar sind. Dabei dienen die Histogramme zu einer Positionsbestimmung sowie zu einer Bestimmung der Ausrichtung des

Werkstückträgers 2. Insbesondere zeigen die Figuren 8 und 9 eine Bestimmung einer Verdrehung des Werkstückträgers 2 sowie einer Position des

Werkstückträgers 2, während die Figuren 10 bis 12 die Bestimmung einer Höhe des Werkstückträgers sowie einer Verkippung des Werkstückträgers anzeigen.

Es ist vorgesehen, dass die Steuerungseinheit 13 für jede Empfangselektrode 5 eine Intensität eines empfangenen Signals bestimmt. Die Intensität ist in dem Histogramm 16 als Balken dargestellt. Dabei ist auf einer Achse des

Koordinatensystems des Histogramms 16 eine Intensität des empfangenen Signals dargestellt, während auf einer anderen Achse ein Maß für die räumliche Anordnung der jeweiligen Empfangselektrode 5 abgetragen ist. Da die

Empfangselektroden 5 rasterförmig angeordnet sind und insbesondere in zwei Gruppen unterteilt sind, wobei die Gruppen von Empfangselektroden 5 senkrecht zueinander orientiert sind, ergibt sich für das Bestimmen von Position und Ausrichtung ein Vergleich von zwei Histogrammen 16. Dabei entspricht jeweils ein Histogramm einer der Gruppen der Empfangselektroden 5. Werden diese Histogramme 16 in einem zweidimensionalen Koordinatensystem

zusammengeführt, so lässt sich die Orientierung der zweiten Sendeelektroden 6 oder der dielektrischen Elemente 7 des Werkstückträgers 2 darstellen. Da eine Orientierung der zweiten Sendelektroden 6 sowie der dielektrischen Elemente 7 bekannt ist, ist auch eine Position und Ausrichtung des Werkstückträgers 2 bekannt.

Figur 8 zeigt einen Fall, in dem der Werkstückträger 2 keine Verdrehung aufweist. In diesem Fall sind die Histogramme 16 der beiden Raumachsen, die durch jeweils eine Gruppe an Empfangselektroden 5 repräsentiert werden, identisch. Sind die Histogramme nicht identisch, so tritt der in Figur 9 gezeigte Fall ein. Ein Vergleich der Histogramme offenbart daher, dass eine Verdrehung des Werkstückträgers 2 vorliegt.

Figur 10 zeigt ein Histogramm 16 des Werkstückträgers 2 in einer Grundposition. Abweichend davon zeigt Figur 1 1 ein Histogramm 16 des Werkstückträgers 2, wenn ein Abstand zu der Referenzfläche 3 gegenüber der Grundposition vergrößert ist. In diesem Fall ist ersichtlich, dass die Intensität des Histogramms abnimmt. Dies führt dazu, dass der Steuerungseinheit 13 bekannt ist, welche Höhe der Werkstückträger 2 über der Referenzfläche 3 aufweist.

Selbiges gilt für eine Verkippung des Werkstückträgers 2. Dieser Fall ist in Figur 12 dargestellt. Ein Vergleich mit Figur 10 zeigt, dass das Histogramm 16 einseitig abfällt. Somit ist der Steuerungseinheit 13 bekannt, dass der Werkstückträger 2 keine konstante Höhe über der Referenzfläche 3 aufweist, sondern vielmehr gegenüber der Referenzfläche 3 verkippt sein muss.

Aus den Figuren 8 bis 12 ist somit ersichtlich, dass mittels der innerhalb der Referenzfläche 3 angebrachten Empfangselektroden 5 sowohl eine Position im dreidimensionalen Raum als auch eine Ausrichtung des Werkstückträgers 2 sicher und zuverlässig bestimmt werden kann. Dabei sind die Empfangselektroden 5 einfach und kostengünstig bereitstellbar, insbesondere mittels Leiterkarten. Außerdem benötigen die Empfangselektroden 5 sowie die Erdungselektroden 8 und/oder die ersten Sendeelektroden 4 nur eine geringe Bauhöhe, sodass nur ein geringer Abstand zwischen dem Werkstückträger 2 und der Referenzfläche 3 benötigt wird, um die Empfangselektroden 5 und die ersten Sendeelektroden 4 sowie die Erdungselektroden 8 anzubringen.

Figur 13 zeigt eine Referenzfläche 3 gemäß einem alternativen

Ausführungsbeispiel. Insbesondere entspricht das alternative

Ausführungsbeispiel dem vierten Ausführungsbeispiel, wobei eine alternative Elektrodenform der Empfangselektroden 5 verwendet ist. Die Referenzfläche 3 umfasst wiederum eine Vielzahl von Empfangselektroden 5, wobei die

Empfangselektroden 5 quadratisch ausgebildet sind. Außerdem ist vorgesehen, dass die Empfangselektroden 5 an äußeren Ecken mit benachbarten

Empfangselektroden 5 verbunden sind, sodass sich Reihen solcher

Empfangselektroden 5 ergeben. Die Empfangselektroden 5 sind mosaikförmig angeordnet, wodurch die gesamte Oberfläche der Referenzfläche 3 mit den Empfangselektroden 5 bedeckt ist. Es ist vorgesehen, dass zwei verschiedene Gruppen von Empfangselektroden 5 vorhanden sind. So umfasst eine erste Gruppe parallele Reihen von verbundenen Empfangselektroden 5. Die zweite Gruppe umfasst ebenso parallele Reihen von verbundenen Empfangselektroden 5, wobei die parallelen Reihen der ersten Gruppe senkrecht zu den parallelen Reihen der zweiten Gruppe orientiert sind. Wiederum sind zumindest zwei solcher parallelen Verbünde mittels einer Messschaltung 9 verbunden.