Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AMINOALCOHOL DERIVATIVES
Document Type and Number:
WIPO Patent Application WO/2002/024635
Kind Code:
A2
Abstract:
The present invention relates to a compound formula (I) wherein X¿1? is bond or -O-CH¿2?-, (II) or (III) R?1¿ is hydrogen or an amino protective group, a is phenyl, indolyl or carbazolyl, each of which may be substituted with one or two substituent(s), and B is hydrogen; halogen; lower alkyl; lower alkoxycarbonyl; cyclo(lower)alkyl; or a heterocyclic group, naphthyl, 1,2,3,4-tetrahydronaphthyl, benzyl or phenyl, each of which may be substituted with one or two substituent(s), or a salt thereof. The compound (I) of the present invention and pharmaceutically acceptable salts thereof are useful for the prophylactic and/or the therapeutic treatment of pollakiures or urinary incontinence.

Inventors:
SAKURAI MINORU (JP)
WASHIZUKA KENICHI (JP)
HAMASHIMA HITOSHI (JP)
TOMISHIMA YASUYO (JP)
IMANISHI MASASHI (JP)
NAKAJIMA YUTAKA (JP)
OHTAKE HIROAKI (JP)
KORADA SATORU (JP)
MURATA MASAYOSHI (JP)
KAYAKIRI HIROSHI (JP)
FUJII NAOAKI (JP)
TANIGUCHI KIYOSHI (JP)
Application Number:
PCT/JP2001/008155
Publication Date:
March 28, 2002
Filing Date:
September 19, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FUJISAWA PHARMACEUTICAL CO (JP)
SAKURAI MINORU (JP)
WASHIZUKA KENICHI (JP)
HAMASHIMA HITOSHI (JP)
TOMISHIMA YASUYO (JP)
IMANISHI MASASHI (JP)
NAKAJIMA YUTAKA (JP)
OHTAKE HIROAKI (JP)
KORADA SATORU (JP)
MURATA MASAYOSHI (JP)
KAYAKIRI HIROSHI (JP)
FUJII NAOAKI (JP)
TANIGUCHI KIYOSHI (JP)
International Classes:
A61K31/167; A61K31/17; A61K31/18; A61K31/216; A61K31/327; A61K31/341; A61K31/381; A61K31/40; A61K31/404; A61K31/415; A61K31/4184; A61K31/421; A61K31/426; A61K31/4406; A61K31/4409; A61K31/47; A61K31/472; A61K31/498; A61P1/00; A61P3/00; A61P3/04; A61P3/10; A61P9/00; A61P13/00; A61P13/02; C07C53/18; C07C231/02; C07C231/08; C07C231/10; C07C233/36; C07C233/43; C07C233/62; C07C233/75; C07C233/80; C07C235/56; C07C273/02; C07C275/40; C07C275/42; C07C275/54; C07C303/38; C07C311/08; C07D207/34; C07D207/416; C07D209/08; C07D209/18; C07D209/40; C07D209/42; C07D209/88; C07D213/40; C07D213/56; C07D213/75; C07D213/81; C07D213/82; C07D215/38; C07D215/40; C07D215/48; C07D215/50; C07D217/18; C07D217/22; C07D217/26; C07D231/14; C07D231/56; C07D233/90; C07D235/06; C07D235/08; C07D235/16; C07D237/28; C07D241/20; C07D241/42; C07D241/44; C07D249/08; C07D261/14; C07D261/18; C07D261/20; C07D263/18; C07D263/34; C07D277/28; C07D277/56; C07D295/215; C07D307/54; C07D307/66; C07D307/68; C07D307/82; C07D333/36; C07D333/38; C07D333/66; C07D333/70; C07D487/04; C07D207/40; (IPC1-7): C07C275/40; A61K31/17; A61K31/395; A61P9/00; A61P13/00; A61P3/00; A61P1/00; C07C233/80; C07C235/56; C07D207/40; C07D213/82; C07D209/08; C07C233/43; C07C275/42; C07C275/54; C07D209/88; C07C311/08; C07D215/48; C07D263/34; C07D231/14; C07D235/06; C07D209/42
Domestic Patent References:
WO2000040560A12000-07-13
WO2000012462A12000-03-09
Attorney, Agent or Firm:
Tabushi, Eiji (Ltd. Osaka Factory 1-6 Kashima 2-chome Yodogawa-ku, Osaki-shi Osaka, JP)
Download PDF:
Claims:
CLAIMS
1. A compound of the general formula [I]: wherein X1 is bond or0CH2, X2 is (in which R2 is hydrogen or lower alkyl and n is an integer of 1 or 2) or which Y1 is (in which R3 is hydrogen or lower alkyl), (in which R4 is hydrogen or lower CH2CH2,CH=CHor (in which Y2 is lower alkylene)], R1 is hydrogen or an amino protective group, A is phenyl, indolyl or carbazolyl, each of which may be substituted with one or two substituent (s) selected from the group consisting of halogen, hydroxy, hydroxy (lower) alkyl and benzyloxy, and B is hydrogen; halogen ; lower alkyl ; lower alkoxycarbonyl; cyclo (lower) alkyl ; or a heterocyclic group, naphthyl, 1,2,3,4 tetrahydronaphthyl, benzyl or phenyl, each of which may be substituted with one or two substituent (s) selected from the group consisting of halogen, lower alkoxy, mono (or di or tri) halo (lower) alkoxy, carboxy (lower) alkoxy, lower alkoxycarbonyl (lower) alkoxy, phenoxy, lower alkyl, mono (or di or tri) halo (lower) alkyl, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, benzoyl, mono (or di) (lower) alkylcarbamoyl, (lower alkylsulfonyl) carbamoyl, (lower alkylsulfonyl) amino, (lower alkoxycarbonyl) amino, amino, nitro, pyridyl, triazolyl, thiazolyl optionally substituted with phenyl or lower alkyl, and phenyl optionally substituted with mono (or di or tri) halo (lower) alkyl, or a salt thereof.
2. A compound of claim 1, wherein X1 is bond or0CH2, (in which R2 is hydrogen or lower alkyl and n is an integer of 1 or 2) [in which Y1 is (in which R3 is hydrogen or lower alkyl), (in which R4 is hydrogen or lower alkyl),CH2CH2,CH=CHor (in which Y2 is lower alkylene)], R1 is hydrogen, A is phenyl which may be substituted with one or two substituent (s) selected from the group consisting of halogen, hydroxy, hydroxy (lower) alkyl and benzyloxy, B is pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, piperidyl, indolyl, benzimidazolyl, quinolyl, isoquinolyl, quinoxalinyl, cinnolinyl, indazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, benzofuranyl, benzothienyl, naphthyl, benzyl or phenyl, each of which may be substituted with one or two substituent (s) selected from the group consisting of halogen, lower alkoxy, mono (or di or tri) halo (lower) alkoxy, carboxy (lower) alkoxy, lower alkoxycarbonyl (lower) alkoxy, phenoxy, lower alkyl, mono (or di or tri) halo (lower) alkyl, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, benzoyl, mono (or di) (lower) alkylcarbamoyl, (lower alkylsulfonyl) carbamoyl, (lower alkylsulfonyl) amino, (lower alkoxycarbonyl) amino, amino, nitro, pyridyl, triazolyl, thiazolyl optionally substituted with phenyl or lower alkyl, and phenyl optionally substituted with mono (or di or tri) halo (lower) alkyl.
3. A compound of claim 2, wherein (in which R2 is hydrogen and n is an integer of 1) or R1 is hydrogen, A is phenyl which may be substituted with one or two substituent (s) selected from the group consisting of halogen, hydroxy, hydroxy (lower) alkyl and benzyloxy, B is pyrrolyl, pyridyl, naphthyl or phenyl, each of which may be substituted with one or two substituent (s) selected from the group consisting of halogen, lower alkoxy, carboxy (lower) alkoxy, lower alkoxycarbonyl (lower) alkoxy, lower alkyl, mono (or di or tri) halo (lower) alkyl, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, mono (or di) (lower) alkylcarbamoyl, (lower alkylsulfonyl) carbamoyl, (lower alkylsulfonyl) amino, (lower alkoxycarbonyl) amino and nitro.
4. A compound of claim 3, which is (1) N[4[(2S)3hydroxy2[[(2S)2hydroxy3 phenoxypropyl] amino] propyl] phenyl]lHpyrrole2 carboxamide; (2) N [4 [ (2S)3hydroxy2 [ [ (2S)2hydroxy3 phenoxypropyl] amino] propyl] phenyl]N'phenylurea ; (3) N [4 [ (2S)3hydroxy2 ( [ (2S)2hydroxy3 phenoxypropyl] amino] propyl] phenyl]1naphthamide ; (4) N (3fluorophenyl)N' [4 [ (2S)3hydroxy2 [ [ (2S)2 hydroxy3phenoxypropyl] amino] propyl] phenyl] urea ; (5) N [4 [ (2S)3hydroxy2 [ [ (2S)2hydroxy3 phenoxypropyl] amino] propyl] phenyl]N' (3 methoxyphenyl) urea, or a salt thereof.
5. A process for preparing a compound of claim 1, or a salt thereof, which comprises, (i) reacting a compound [II] of the formula: wherein X1 and A are each as defined in claim 1, or a salt thereof, with a compound [III] of the formula: wherein X2, R1 and B are each as defined in claim 1, or a salt thereof, to give a compound [I] of the formula: wherein X1, X2, R1, A and B are each as defined in claim 1, or a salt thereof, or (ii) subjecting a compound [Ia] of the formula: wherein Xl, X2, A and B are each as defined in claim 1, and Ra is an amino protective group, or a salt thereof, to elimination reaction of the amino protective group, to give a compound [Ib] of the formula: wherein X1, X2, A and B are each as defined in claim 1, or a salt thereof, or (iii) reacting a compound [IV] of the formula: wherein X1, Ri and A are each as defined in claim 1, or a salt thereof, with a compound [V] of the formula: wherein B is as defined in claim 1, and W1 is a leaving group, or a salt thereof, to give a compound [Ic] of the formula: wherein X1, Ri, A and B are each as defined in claim 1, or a salt thereof, or (iv) reacting a compound [Id] of the formula: wherein Xi, R1, A and B are each as defined in claim 1, and m is an integer of 1 or 2, or a salt thereof, with a compound [VI] of the formula: W2Ra2 [VI] wherein Ra is lower alkyl, and W2 is an acid residue, to give a compound [Ie] of the formula: wherein XA, R1, A and B are each as defined in claim 1, Ra is lower alkyl, and m is an integer of 1 or 2, or a salt thereof, and (v) reacting a compound [IV] of the formula: wherein Xi, Ri and A are each as defined in claim 1, or a salt thereof, with a compound [VII] of the formula: wherein B is as defined in claim 1, and k is 0 or an integer of 1, or a salt thereof, to give a compound [If] of the formula: wherein X1, R1, A and B are each as defined in claim 1, and k is 0 or an integer of 1, or a salt thereof.
6. A pharmaceutical composition which comprises, as an active ingredient, a compound of claim 1 or a pharmaceutically acceptable salt thereof in admixture with pharmaceutically acceptable carriers or excipients.
7. Use of a compound of claim 1 or a pharmaceutically acceptable salt thereof for the manufacture of a medicament.
8. A compound of claim 1 or a pharmaceutically acceptable salt thereof for use as a medicament.
9. A method for the prophylactic and/or therapeutic treatment of pollakiuria, urinary incontinence, obesity or diabetes, which comprises administering a compound of claim 1 or a pharmaceutically acceptable salt thereof to a human being or an animal.
Description:
DESCRIPTION AMINOALCOHOL DERIVATIVES TECHNICAL FIELD This invention relates to new aminoalcohol derivatives and salts thereof which are beta-3 (ß3) adrenergic receptor agonists and useful as a medicament.

DISCLOSURE OF INVENTION This invention relates to new aminoalcohol derivatives which are 3 adrenergic receptor agonists and salts thereof.

More particularly, it relates to new aminoalcohol derivatives and salts thereof which have gut sympathomimetic, anti-ulcerous, anti-pancreatitis, lipolytic, anti-urinary incontinence, anti-pollakiuria activities, anti-diabetes and anti-obesity, to processes for the preparation thereof, to a pharmaceutical composition comprising the same and to a method of using the same therapeutically in the treatment and/or prevention of gastro-intestinal disorders caused by smooth muscle contractions in human beings or animal.

One object of this invention is to provide new and useful aminoalcohol derivatives and salts thereof which have gut sympathomimetic, anti-ulcerous, lipolytic, anti-urinary incontinence, anti-pollakiuria activities, anti-diabetes and anti-obesity.

Another object of this invention is to provide processes for the preparation of said aminoalcohol derivatives and salts thereof.

A further object of this invention is to provide a pharmaceutical composition comprising, as an active ingredient, said aminoalcohol derivatives and salts thereof.

Still further object of this invention is to provide a therapeutical method for the treatment and/or prevention of

aforesaid diseases in human beings or animals, using said aminoalcohol derivatives and salts thereof.

The object aminoalcohol derivatives of this invention are new and can be represented by the following formula [I]: wherein X1 is bond or-0-CH2-, (in which R2 is hydrogen or lower alkyl and n is an integer of 1 or 2) or [in which Y1 is (in which R3 is .../). nyarogen or lower alkyl), -CH- (in which R@ is R4 hydrogen or lower alkyl),-CH2CH2-,-CH=CH-or (in which Y2 is lower alkylene)], R1 is hydrogen or an amino protective group, A is phenyl, indolyl or carbazolyl, each of which may be substituted with one or two substituent (s) selected from the group consisting of halogen, hydroxy, hydroxy (lower) alkyl and benzyloxy, and B is hydrogen; halogen; lower alkyl ; lower alkoxycarbonyl; cyclo (lower) alkyl ; or a heterocyclic group, naphthyl, 1,2,3,4-tetrahydronaphthyl, benzyl or phenyl, each of which may be substituted with one or two substituent (s)

or a salt thereof or a salt thereof or a salt thereof Process 2

OH Ra i A A-X14 HO vI'X-I 2 or a salt thereof elimination reaction of the amino protective OH H group A-xi p,-X 1 // HO X2-B 2 [Ib] or a salt thereof Process 3 OH Rl oli Rl 0 p,-X1'v/+ W1-C-B HO/< N-H [IV] [V] or a salt thereof or a salt thereof OH Rl A_X1/ 0 F-IO v IT-C-B HO N-t!-B A [I c] or a salt thereof Process 4

OH RI p,- ? C 1/v/ 0 \hum N"B + W2 Ra m [Id] [VI or a salt thereof OH R1 A-Xl H Or 0 Ho il N-C-B Ra m Ra m [Ie] or a salt thereof Process 5 OH Rl 0 0 + C : =N-C C :) -B 1 Ho-N-H H [IV] [VII] or a salt thereof or a salt thereof OH Rl N 0. 0 ZZ--, HO v N-C-N C-B H H [If] or a salt thereof Process 6

N N//I NON I 0 G B N 0 X B N ° N N_NX [IX] H H or a salt thereof [VIII] N Do N N N ///I vN \ N N I o I o N 0 T B 10, OH Rl R1 A-X1bzw HO v N-H [IV] OH R1 or a salt thereof 0 1 HO v N-CI-B H [Ic] or a salt thereof

wherein X1, X2, R1, A and B are each as defined above, Ra is an amino protective group, Ra is lower alkyl, Wi is a leaving group, W2 is an acid residue, m is an integer of 1 or 2, k is 0 or an integer of 1, and C is polymer.

In the above and subsequent description of the present specification, suitable examples of the various definition to be included within the scope of the invention are explained in detail in the following.

The term"lower"is intended to mean a group having 1 to 6, preferably 1 to 4, carbon atom (s), unless otherewise provided.

Suitable example of"lower alkyl"and"lower alkyl" moiety in the terms of"hydroxy (lower) alkyl","mono (or di or tri) halo (lower) alkyl", etc. may include straight or branched one having 1 to 6 carbon atom (s), such as methyl, ethyl propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, 1-methylpentyl, tert-pentyl, neo-pentyl, hexyl, isohexyl, and the like.

Suitable"lower alkoxy"and"lower alkoxy"moiety in the terms of"lower alkoxycarbonyl","carboxy (lower) alkoxy", etc. may be a straight or branched one such as methoxy, ethoxy, propoxy, isopropoxy, 1-ethylpropoxy, butoxy, sec- butoxy, tert-butoxy, pentyloxy, neopentyloxy, tert-pentyloxy, hexyloxy, and the like, in which the preferred one may be C1-C4 alkoxy, and the most preferred one may be methoxy or ethoxy.

Suitable"lower alkylene"may include straight or branched one such as methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, methylmethylene, ethylethylene, propylene, and the like, in which more preferable example may be Cl-C4 alkylene and the most preferable one may be trimethylene.

Suitable example of"halogen"may be fluoro, chloro, bromo and iodo.

Suitable"cyclo (lower) alkyl" may include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl, in which the preferred one may be cyclohexyl.

Suitable"lower alkanoyl"may be formyl, acetyl, propanoyl, butanoyl, 2-methylpropanoyl, pentanoyl, 2,2- dimethylpropanoyl, hexanoyl and the like, in which the preferred one may be acetyl.

Suitable"mono (or di or tri) halo (lower) alkyl" may be fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, dibromomethyl, tribromomethyl, 1 or 2-fluoroethyl, 1 or 2-bromoethyl, 1 or 2-chloroethyl, 1,1-difluoroethyl, 2, 2-difluoroethyl, and the like, in which the preferred one may be trifluoromethyl.

Suitable example of"heterocyclic group"may include unsaturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing 1 to 4 nitrogen atom (s), for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, dihydropyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e. g., 4H-1, 2,4-triazolyl, 1H-1, 2,3- triazolyl, 2H-1, 2,3-triazolyl, etc.), tetrazolyl (e. g., 1H- tetrazolyl, 2H-tetrazolyl, etc.), etc.; saturated 3 to 8-membered (more preferably 5 or 6-

membered) heteromonocyclic group containing 1 to 4 nitrogen atom (s), for example, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, etc.; unsaturated condensed heterocyclic group containing 1 to 4 nitrogen atom (s), for example, indolyl, isoindolyl, indolinyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, indazolyl, benzotriazolyl, etc.; unsaturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing 1 or 2 oxygen atom (s) and 1 to 3 nitrogen atom (s), for example, oxazolyl, isoxazolyl, oxadiazolyl (e. g., 1,2,4-oxadiazolyl, 1,3,4- oxadiazolyl, 1,2,5-oxadiazolyl, etc.), etc.; saturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing 1 or 2 oxygen atom (s) and 1 to 3 nitrogen atom (s), for example, morpholinyl, sydnonyl, etc.; unsaturated condensed heterocyclic group containing 1 or 2 oxygen atom (s) and 1 to 3 nitrogen atom (s), for example, benzoxazolyl, benzoxadiazolyl, etc.; unsaturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing 1 or 2 sulfur atom (s) and 1 to 3 nitrogen atom (s), for example, thiazolyl, isothiazolyl, thiadiazolyl (e. g., 1, 2, 3-thiadiazolyl, 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.), dihydrothiazinyl, etc.; saturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing 1 or 2 sulfur atom (s) and 1 to 3 nitrogen atom (s), for example, thiazolidinyl, etc.; unsaturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing 1 or 2 sulfur atom (s), for example, thienyl, dihydrodithiinyl, dihydrodithionyl, etc.; unsaturated condensed heterocyclic group containing 1

or 2 sulfur atom (s) and 1 to 3 nitrogen atom (s), for example, benzothiazolyl, benzothiadiazolyl, imidazothiadiazolyl, etc.; unsaturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing an oxygen atom, for example, furyl, etc.; saturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing an oxygen atom, for example, tetrahydrofuran, tetrahydropyran, etc.; unsaturated condensed heterocyclic group containing 1 or 2 oxygen atom (s), for example, benzofuranyl, etc.; unsaturated 3 to 8-membered (more preferably 5 or 6- membered) heteromonocyclic group containing an oxygen atom and 1 or 2 sulfur atom (s), for example, dihydrooxathiinyl, etc.; unsaturated condensed heterocyclic group containing 1 or 2 sulfur atom (s), for example, benzothienyl, benzodithiinyl, etc.; unsaturated condensed heterocyclic group containing an oxygen atom and 1 or 2 sulfur atom (s), for example, benzoxathiinyl, etc.; 2-oxo-2,3-dihydro-lH-benzimidazolyl; and the like.

Suitable example of"polymer"may be polystyrene which may be used for a solid phase support linkage method mentioned below.

Suitable"leaving group"may include hydroxy, reactive group derived from hydroxy and the like.

Suitable"reactive group derived from hydroxy"may include an acid residue and the like.

Suitable"acid residue"may include halogen (e. g. fluoro, chloro, bromo, iodo), acyloxy (e. g. acetoxy, tosyloxy, mesyloxy, etc.) and the like.

Suitable example of"amino protective group"moiety may be common amino protective group such as acyl, for example, substituted or unsubstituted lower alkanoyl [e. g. formyl, acetyl, propionyl, trifluoroacetyl, etc.], phthaloyl, lower alkoxycarbonyl [e. g. tert-butoxycarbonyl, tert-amyloxy- carbonyl, etc.], substituted or unsubstituted aralkyloxy- carbonyl [e. g. benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, etc.], substituted or unsubstituted arenesulfonyl [e. g. benzenesulfonyl, tosyl, etc.], nitrophenylsulfenyl, ar (lower) alkyl [e. g. trityl, benzyl, etc.], and the like, in which preferable one is phenyl (lower) alkyl such as benzyl.

Suitable salts of the object aminoalcohol derivative [I] are pharmaceutically acceptable salts and include conventional non-toxic salts such as an inorganic acid addition salt [e. g. hydrochloride, hydrobromide, sulfate, phosphate, etc.], an organic acid addition salt [e. g. formate, acetate, trifluoroacetate, oxalate, maleate, fumarate, tartarate, citrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.] or the like.

The Processes 1 to 5 for preparing the object compound [I] of the present invention are explained in detail in the following.

Process 1 The object compound [I] or a salt thereof can be prepared by reacting a compound [II] or a salt thereof with a compound [III] or a salt thereof.

Suitable salt of the compounds [II] and [III] may be the same as those exemplified for the compound [I].

The reaction is preferably carried out in the presence of a base such as an alkali metal carbonate [e. g. sodium carbonate, potassium carbonate, etc.], an alkaline earth metal carbonate [e. g. magnesium carbonate, calcium carbonate,

etc.], an alkali metal bicarbonate [e. g. sodium bicarbonate, potassium bicarbonate, etc.], tri (lower) alkylamine [e. g. trimethylamine, triethylamine, etc.], picoline or the like.

The reaction is usually carried out in a conventional solvent, such as an alcohol [e. g. methanol, ethanol, propanol, isopropanol, etc.], diethyl ether, tetrahydrofuran, dioxane, or any other organic solvent which does not adversely influence the reaction.

The reaction temperature is not critical, and the reaction can be carried out under cooling to heating.

Process 2 The object compound [Ib] or a salt thereof can be prepared by subjecting a compound [Ia] or a salt thereof to elimination reaction of the amino protective group.

Suitable salts of the compounds [Ia] and [Ib] may be the same as those exemplified for the compound [I].

This reaction can be carried out in the manner disclosed in Examples 2 or 11.

Process 3 The object compound [Ic] or a salt thereof can be prepared by reacting the compound [IV] or a salt thereof with the compound [V] or a salt thereof.

Suitable salt of the compounds [Ic], [V] and [IV] may be the same as those exemplified for the compound [I].

This reaction is usually carried out in a solvent such as alcohol [e. g. methanol, ethanol, etc.], dichloromethane, benzene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether or any other solvent which does not adversely affect the reaction.

The reaction may be carried out in the presence of an inorganic or an organic base such as an alkali metal hydroxide [e. g. sodium hydroxide, potassium hydroxide, etc.], an alkali metal carbonate [e. g. sodium carbonate, potassium

carbonate, etc.], an alkali metal bicarbonate [e. g. sodium bicarbonate, potassium bicarbonate, etc.], alkali metal hydride [e. g. sodium hydride, potassium hydride, etc.], tri (lower) alkylamine [e. g. trimethylamine, triethylamine, diisopropylethylamine, etc.], pyridine or its derivative [e. g. picoline, lutidine, 4-dimethylaminopyridine, etc.], or the like. In case that the base to be used in liquid, it can also be used as a solvent.

This reaction can be also carried out in the manner disclosed in Example 60,61 or 62 or similar manners thereto.

The reaction temperature is not critical, and the reaction can be carried out under cooling, at room temperature or under warming or heating.

Process 4 The object compound [Ie] or a salt thereof can be prepared by reacting the compound [Id] or a salt thereof with the compound [VI].

Suitable salt of the compound [Id] and [Ie] may be the same as those exemplified for the compound [I].

This reaction is usually carried out in a conventional solvent such as water, alcohol [e. g. methanol, ethanol, etc.], acetone, dioxane, acetonitrile, chloroform, dichloromethane, ethylene chloride, tetrahydrofuran, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, pyridine or any other organic solvent which does not adversely influence the reaction.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

The reaction may also be carried out in the presence of an inorganic or organic base such as an alkali metal bicarbonate, tri (lower) alkylamine (e. g. triethylamine, etc.), pyridine, N- (lower) alkylmorphorine, N, N- di (lower) alkylbenzylamine, or the like.

Process 5 The object compound [If] or a salt thereof can be prepared by subjecting the compound [IV] or a salt thereof with the compound [VII] or a salt thereof.

Suitable salts of the compounds [If], [IV] and [VII] may be the same as those exemplified for the compound [I].

This reaction can be carried out in the manner disclosed in Example 1 or 3 or similar manners thereto.

This reaction can be also carried out in the manner disclosed in Example 64 or 66 or similar manners thereto.

Process 6 The object compound [Ic] or a salt thereof can be prepared by means of a solid phase support linkage method, namely by reacting a compound [VIII] with compound [IX] or a salt thereof and then by reacting the resultant compound [X] with a compound [IV] or a salt thereof.

Suitable salt of the compounds [Ic], [IV], [VIII], [IX] and [X] may be the same as those exemplified for the compound [I].

This reaction can be carried out in the manner disclosed in Example 59 or similar manner thereto.

The compounds obtained by the above processes can be isolated and purified by a conventional method such as pulverization, recrystallization, column chromatography, reprecipitation, or the like, and converted to the desired salt in conventional manners, if necessary.

It is to be noted that the compound [I] and the other compounds may include one or more stereoisomers due to asymmetric carbon atoms, and all of such isomers and mixture thereof are included within the scope of this invention.

It is further to be noted that isomerization or rearrangement of the object compound [I] may occur due to the effect of the light, acid, base or the like, and the

compound obtained as the result of said isomerization or rearrangement is also included within the scope of the present invention.

It is also to be noted that the solvating form of the compound [I] (e. g. hydrate, etc.) and any form of the crystal of the compound [I] are included within the scope of the present invention.

The object compound [I] or a salt thereof possesses gut sympathomimetic, anti-ulcerous, anti-pancreatitis, lipolytic, anti-urinary incontinence and anti-pollakiuria activities, and are useful for the treatment and/or prevention of gastro-intestinal disorders caused by smooth muscle contractions in human beings or animals, and more particularly for the treatment and/or prevention of spasm or hyperanakinesia in case of irritable bowel syndrome, gastritis, gastric ulcer, duodenal ulcer, enteritis, cholecystopathy, cholangitis, urinary calculus and the like; for the treatment and/or prevention of ulcer such as gastric ulcer, duodenal ulcer, peptic ulcer, ulcer caused by non steroidal anti-inflammatory drugs, or the like; for the treatment and/or prevention of dysuria such as pollakiuria, urinary incontinence or the like in case of nervous pollakiuria, neurogenic bladder dysfunction, nocturia, unstable bladder, cystospasm, chronic cystitis, chronic prostatitis, prostatic hypertrophy or the like; for the treatment and/or prevention of pancreatitis, obesity, diabetes, glycosuria, hyperlipidemia, hypertension, atherosclerosis, glaucoma, melancholia, depression or the like; for the treatment and/or prevention of diseases as the result of insulin resistance (e. g. hypertension, hyperinsulinemia, etc.); for the treatment and/or prevention of neurogenetic inflammation; and for reducing a wasting condition, and the like.

Additionally, ß3 adrenergic receptor agonists are known

to lower triglyceride and cholesterol levels and to raise high density lipoprotein levels in mammals (US Patent No.

5,451,677). Accordingly, the object compound [I] is useful in the treatment and/or prevention of conditions such as hyper-triglyceridaemia, hypercholesterolaemia and in lowering high density lipoprotein levels as well as in the treatment of atherosclerotic and cardiovascular diseases and related conditions.

Moreover, the object compound [I] is useful for inhibiting uterine contractions, preventing premature labor, and treating and preventing dysmenorrhea.

In order to show the usefulness of the compound [I] for the prophylactic and therapeutic treatment of above- mentioned disease in human beings or animals, the pharmacological test data of a representative compound thereof are shown in the following.

Test Effect on the increase in intravesical pressure induced by carbachol in anesthetized dog TestCompound (1) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-lH-pyrrole-2- carboxamide Test Method Female Beagle dogs weighing 8.0-15.0 kg were fasted for 24 hours and maintained under halothane anesthesia. A 12F Foley catheter was lubricated with water soluble jelly, inserted into the urethral orifice and advanced approximately 10 cm until the balloon tip was placed well inside the bladder. The balloon was then inflated with 5 ml of room air and catheter slowly withdrawn just part the

first resistance that is felt at the bladder neck. Urine was completely drained out through the catheter, and 30 ml of biological saline was infused. The catheter was connected to pressure transducer, and intravesical pressure was continuously recorded. The test compound was injected by intra-duodena route at 30 minutes before the administration of carbachol (1.8 ug/kg).

Test Results Treatment Increase in intravesical pressure (mmHg) Control 7.0 + 1.0 Test Compound (1) (0.32 mg/kg) 2. 6 0. 05 (N=2) Preferred embodiments of the object compound [I] are as follow: X1 is bond or -O-CH2-, (in which R2 is hydrogen or lower alkyl (more preferably Cl-C4 alkyl, most preferably methyl) and n is an integer of 1 or 2) [in which Y1 is (in which R3 is hydrogen or lower alkyl (more preferably C1-C4 alkyl, most preferably methyl)), (in which R4 is

hydrogen or lower alkyl (more preferably C1-C4 alkyl, most preferably methyl)),-CH2CH2-,-CH=CH-or (in which Y2 is lower alkylene (more preferably C2-C4 alkylene, most preferably trimethylene))], R1 is hydrogen, A is phenyl which may be substituted with one or two substituent (s) selected from the group consisting of halogen, hydroxy, hydroxy (lower) alkyl (more preferably hydroxy (C1-C4) alkyl, most preferably hydroxymethyl) or benzyloxy, B is pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, piperidyl, indolyl, benzimidazolyl, quinolyl, isoquinolyl, quinoxalinyl, cinnolinyl, indazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, benzofuranyl, benzothienyl, naphthyl, benzyl or phenyl, each of which may be substituted with one or two substituent (s) selected from the group consisting of halogen (more preferably fluoro or chloro), lower alkoxy (more preferably C1-C4 alkoxy, most preferably methoxy), mono (or di or tri) halo (lower) alkoxy (more preferably mono (or di or tri) (C1-C4) alkoxy, most preferably trifluoromethoxy), carboxy (lower) alkoxy (more preferably carboxy (C1-C4) alkoxy, most preferably carboxymethoxy), lower alkoxycarbonyl (lower) alkoxy (more preferably C1-C4 alkoxycarbonyl (C1-C4) alkoxy, most preferably ethoxycarbonylmethoxy), phenoxy, lower alkyl (more preferably Cl-C4 alkyl, most preferably methyl), mono (or di or tri) halo (lower) alkyl (more preferably mono (or di or tri) halo (C1-C4) alkyl, most preferably trifluoromethyl), cyano, carboxy, lower alkoxycarbonyl (more preferably C1-C4 alkoxycarbonyl, most preferably ethoxycarbonyl), lower alkanoyl (more preferably C1-C4 alkanoyl, most preferably acetyl),

benzoyl, mono (or di) (lower) alkylcarbamoyl (more preferably mono (or di) (C1-C4) alkylcarbamoyl, most preferably dimethylcarbamoyl), (lower alkylsulfonyl) carbamoyl (more preferably (C1-C4 alkylsulfonyl) carbamoyl, most preferably (methanesulfonyl) carbamoyl), (lower alkylsulfonyl) amino (more preferably (C1-C4 alkylsulfonyl) amino, most preferably (methanesulfonyl) amino), (lower alkoxycarbonyl) amino (more preferably (Cl-C4 alkoxycarbonyl) amino, most preferably (methoxycarbonyl) amino), amino, nitro, pyridyl, triazolyl, thiazolyl optionally substituted with phenyl or lower alkyl (more preferably C1-C4 alkyl, most preferably methyl), and phenyl optionally substituted with mono (or di or tri) halo (lower) alkyl (more preferably mono (or di or tri) halo (Cl-C4) alkyl, most preferably trifluoromethyl).

More preferred embodiments of the object compound [I] are as follow: X is-0-CH2-, (in which R2 is hydrogen and n is an integer of 1) or R1 is hydrogen, A is phenyl which may be substituted with one or two substituent (s) selected from the group consisting of halogen, hydroxy, hydroxy (lower) alkyl and benzyloxy, B is pyrrolyl, pyridyl, naphthyl or phenyl, each of which may be substituted with one or two substituent (s)

selected from the group consisting of halogen, lower alkoxy, carboxy (lower) alkoxy, lower alkoxycarbonyl- (lower) alkoxy, lower alkyl, mono (or di or tri) halo- (lower) alkyl, cyano, carboxy, lower alkoxycarbonyl, lower alkanoyl, mono (or di) (lower) alkylcarbamoyl, (lower alkylsulfonyl) carbamoyl, (lower alkylsulfonyl)- amino, (lower alkoxycarbonyl) amino and nitro.

The following Preparations and Examples are given for the purpose of illustrating this invention.

Preparation 1 A mixture of (2S)-2- (phenoxymethyl) oxirane (2.30 g), (2S)-2-amino-3- (4-nitrophenyl)-l-propanol (3.0 g) and ethanol (30 ml) was heated under reflux for 18 hours. The reaction mixture was evaporated in vacuo. The residue was triturated with ethyl acetate to give (2S)-3- (4- nitrophenyl)-2-[((2S)-2-hydroxy-3-phenoxypropyl) amino]-1- propanol (3.97 g) as a pale yellow powder. This powder was used for the next step without further purification.

Preparation 2 A mixture of (2S)-3- (4-nitrophenyl)-2- [ ( (2S)-2-hydroxy- 3-phenoxypropyl) amino]-1-propanol (3.97 g), di-tert-butyl dicarbonate (3.0 g) and tetrahydrofuran (40 ml) was stirred at room temperature for 20 hours. The reaction mixture was evaporated in vacuo. The residue was triturated with ether to give tert-butyl N- [ (lS)-2-hydroxy-l- (4-nitrobenzyl)- ethyl]-N-((2S)-2-hydroxy-3-phenoxypropyl) carbamate (4.39 g) as a white powder.

NMR (CDC13, S) : 1.62 (9H, s), 2.15-4.20 (10H, m), 6.78-7.22 (7H, m), 8.18 (2H, d, J=8Hz) Preparation 3 A mixture of tert-butyl N- [ (lS)-2-hydroxy-l- (4-

nitrobenzyl) ethyl]-N-((2S)-2-hydroxy-3-phenoxypropyl)- carbamate (4.29 g), 10 palladium on carbon (50% wet, 429 mg), methanol (43 ml) and tetrahydrofuran (22 ml) was stirred at room temperature under hydrogen atmosphere (1 atm) for 4 hours. The catalyst was removed by vacuum filtration through celite and rinsed with methanol. The filtrate and washings were combined and evaporated in vacuo to give a colorless oil (4.19 g). The residue was purified by a silica gel column chromatography (silica gel 250 g, eluting with hexane: ethyl acetate = 1 : 1) to give the first crop of tert-butyl N-[(lS)-l-(4-aminobenzyl)-2- hydroxyethyl]-N-((2S)-2-hydroxy-3-phenoxypropyl) carbamate (2.85 g) as a colorless syrup and the second crop (527 mg) as a colorless syrup.

NMR (CDC13, 8) : 1.48 (9H, s), 2.40-4. 40 (1OH, m), 6.62 (2H, d, J=8Hz), 6.8-7.40 (7H, m) Preparation 4 A mixture of (2S)-2-amino-3- (4-nitrophenyl)-l-propanol (15.0 g), di-tert-butyl dicarbonate (20.0 g) and tetrahydrofuran (120 ml) was stirred at room temperature for 1.5 hours. The reaction mixture was evaporated in vacuo.

The residue was triturated with ether to give tert-butyl N- [ (lS)-2-hydroxy-1- (4-nitrobenzyl) ethyl] carbamate (19.82 g) as a white powder.

NMR (CDC13, 8) : 1.40 (9H, s), 2.16 (1H, t, J=4Hz), 2.98 (2H, d, J=6Hz), 3.50-3.78 (2H, m), 3.90 (1H, m), 4.82 (1H, d, J=6Hz), 7.41 (2H, d, J=8Hz), 8.18 (2H, d, J=8Hz) Preparation 5 A mixture of tert-butyl N- [ (lS)-2-hydroxy-l- (4- nitrobenzyl) ethyl] carbamate (22.3 g), 2,2-dimethoxypropane (46.3 ml), p-toluenesulfonic acid monohydrate (1.43 g) and dichloromethane (200 ml) was stirred at room temperature for

15 hours. The reaction mixture was washed with saturated aqueous sodium bicarbonate and brine, dried over magnesium sulfate and evaporated in vacuo. The residue was triturated with isopropyl ether to give tert-butyl (S)-4- (4- nitrobenzyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (16.9 g) as a pale yellow powder.

NMR (CDC13, (5) : 1.42-1.68 (15H, m), 2.84 (1H, dd, J=15, lOHz), 3.26 (1H, br), 3.72 (1H, d, J=lOHz), 3.86 (1H, dd, J=10,7Hz), 4.10 (1H, br), 7.40 (2H, br), 8.20 (2H, br) Preparation 6 A mixture of tert-butyl (S)-4- (4-nitrobenzyl)-2, 2- dimethyl-1, 3-oxazolidine-3-carboxylate (22.25 g), 10% palladium on carbon (50% wet, 2.23 g) methanol (223 ml) and tetrahydrofuran (112 ml) was stirred at room temperature under hydrogen atmosphere (4 atm) for 1.5 hours. The catalyst was removed by vacuum filtration through celite and rinsed with methanol. The filtrate and washings were combined and evaporated in vacuo to give a colorless oil (20.82 g). The residue was purified by a silica gel column chromatography (silica gel 250 g, elution with hexane: ethyl acetate = 3: 1) to give tert-butyl (S)-4- (4-aminobenzyl)-2, 2- dimethyl-1, 3-oxazolidine-3-carboxylate as a pale yellow syrup (19.43 g).

NMR (CDC13, b) : 1.40-1.68 (15H, m), 2.66 (1H, dd, J=12, lOHz), 3.06 (1H, br), 3.50-4.04 (3H, m), 7.62 (2H, br d, J=8Hz), 7.02 (2H, br) Preparation 7 A suspension of (2S)-2-amino-3- (4-nitrophenyl)-l- propanol (5.89 g) and benzaldehyde (3.39 g) in dichloromethane (59 ml) was stirred at room temperature for 2. 5 hours. The mixture was evaporated, and the residual solid was suspended in ethanol (47 ml)-dichloromethane

(11.8 ml). Sodium borohydride (1.25 g) was slowly added to the suspension, and the mixture was stirred at room temperature for 5 hours. The mixture was poured onto water (47 ml) and stirred at room temperature for 15 minutes. The precipitate formed was collected by filtration, washed with water, and dried in vacuo. The crude product was recrystallized from ethanol to give (2S)-2- (benzylamino)-3- (4-nitrophenyl)-1-propanol (5. 18 g) as a pale yellow powder.

The filtrates obtained above were combined, concentrated, and partitioned between chloroform and water. The organic layer was separated, washed successively with water and brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, chloroform/methanol) to give the additional amount of product (2.78 g) as a white powder.

NMR (CDC13, b) : 2.72-3.12 (3H, m), 3.35 (1H, dd, J=11 and 4Hz), 3.64 (1H, dd, J=11 and 4Hz), 3.80 (2H, s), 7.08-7.48 (7H, m), 8.14 (2H, d, J=9Hz) MS m/z: 287 (M++1) Preparation 8 A mixture of (2S)-2- (benzylamino)-3- (4-nitrophenyl)-l- propanol (1.15 g) and (2S)-2- (phenoxymethyl) oxirane (661 mg) in ethanol (9.2 ml) was heated to reflux for 3 hours. After allowed to cool to room temperature, the mixture was concentrated and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate) to give <BR> <BR> <BR> (2S)-2-[N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]-3- (4-nitrophenyl)-1-propanol (1.17 g) as a pale yellow solid.

NMR (CDC13,5): 2.60-3.12 (4H, m), 3.12-3.32 (1H, m), 3.40-3.75 (3H, m), 3.75-4.08 (4H, m), 6.84 (2H, d, J=9Hz), 6.90-7.02 (1H, m), 7.10-7.40 (9H, m), 8.11 (2H, d, J=9Hz) MS m/z: 437 (M++1)

Preparation 9 To a suspension of (2S)-2-[N-benzyl-N-[(2S)-2-hydroxy- 3-phenoxypropyl] amino]-3- (4-nitrophenyl)-l-propanol (1.12 g) in ethanol (11 ml)-water (2.2 ml) were added powdered iron (573 mg) and ammonium chloride (55 mg). The mixture was gently heated to reflux for 1 hour and allowed to cool to room temperature. After the insoluble material was filtered off, the filtrate was concentrated and partitioned between chloroform and water. The organic layer was separated, washed successively with water and brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate) to give (2S)-3- (4-aminophenyl)-2- [N-benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-1-propanol (990 mg) as a pale yellow oil.

NMR (CDC13, 6) : 2.44 (1H, dd, J=14 and 9Hz), 2.70-3.20 (4H, m), 3.42-4.02 (7H, m), 6.61 (2H, d, J=8Hz), 6.82 (2H, d, J=9Hz), 6.86-7.02 (3H, m), 7.13-7.40 (7H, m) MS m/z: 407 (M++1) Preparation 10 To a mixture of N- [4- [ (2S)-2- [N-benzyl-N- [ (2S)-2- hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]- benzamide (102 mg) and triethylamine (0.1 ml) in dichloromethane (1 ml) was added acetic anhydride (50 ßl), and the mixture was stirred at room temperature for 5 hours.

The mixture was partitioned between ethyl acetate and water.

The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated to give N- [4- [ (2S)-3-acetoxy-2- [N- [ (2S)-2- acetoxy-3-phenoxypropyl]-N-benzylamino] propyl] phenyl]- benzamide (124 mg) as a white amorphous powder.

NMR (CDC13, b) : 1. 91 (3H, s), 2.04 (3H, s), 2.50-3.40 (5H, m), 3.68-4.24 (6H, m), 4.98-5.20 (1H, m), 6. 74-7. 02 (3H, m), 7.13 (2H, d, J=9Hz), 7.16-7.35 (7H, m), 7.42-7.60 (5H, m), 7.77 (1H, br s), 7.80- 7.92 (2H, m) MS m/z: 595 (M++1) Preparation 11 To an ice-cooled solution of tert-butyl (S)-4- (4- aminobenzenyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (500 mg) and pyridine (0.16 ml) in dichloromethane (60 ml) was added dropwise benzoyl chloride (0.21 ml). The mixture was stirred at the same temperature for 1 hour and partitioned between chloroform and saturated sodium bicarbonate solution. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate) to give tert-butyl (S)-4- [4- (benzoylamino) benzyl]- 2,2-dimethyl-1,3-oxazolidine-3-carboxylate (690 mg) as colorless oil.

NMR (CDC13,6): 2.80-3.00 (2H, m), 3.40-3.80 (3H, m), 7.00-7.50 (9H, m) MS m/z: 286 (M++1) Preparation 12 To a solution of tert-butyl (S)-4- [4- (benzoylamino) benzyl-2, 2-dimethyl-1, 3-oxazolidine-3- carboxylate (690 mg) in methanol (20 ml) was added 4N hydrogen chloride in ethyl acetate (5 ml) at room temperature, and the solution was stirred at the same temperature for 4 hours. The mixture was evaporated in vacuo, and the residue was partitioned between chloroform and saturated sodium bicarbonate solution. The organic layer was separated, washed with brine, dried over magnesium

sulfate, and filtered. The filtrate was concentrated to give (S)-N- [4- (2-amino-3-hydroxypropyl) phenyl] benzamide (250 mg) as a colorless solid.

NMR (MeOD-d4, 5) : 2.95 (2H, d, J=7Hz), 3.40-3.80 (3H, m), 7.30 (2H, d, J=8Hz), 7.40-8.00 (7H, m) MS m/z: 271 (M++1) Preparation 13 To an ice-cooled solution of tert-butyl (S)-4- (4- aminobenzyl)-2,2-dimethyl-1,3-oxazolidine-3-carboxylate (1.0 g) in dichloromethane (10 ml) was added dropwise phenyl isocyanate (0. 39 ml). The mixture was stirred at the same temperature for 1 hour and partitioned between chloroform and saturated sodium bicarbonate solution. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate) to give tert-butyl (S)-4- [4- [(anilinocarbonyl) amino] benzyl]-2, 2-dimethyl-1, 3- oxazolidine-3-carboxylate (1.48 g) as colorless oil.

NMR (CDC13, 5) : 1.50-1.70 (15H, m), 2.60 (1H, dd, J=10, 13Hz), 3.00-3.20 (1H, m), 3.70-3.80 (2H, m), 4.05- 4.10 (1H, m), 6.88-7.40 (9H, m) Preparation 14 To a solution of tert-butyl (S)-4- [4- [ (anilinocarbonyl) amino] benzyl]-2, 2-dimethyl-1, 3- oxazolidine-3-carboxylate (1.48 g) in methanol (20 ml) was added 4N hydrogen chloride in ethyl acetate (5 ml) at room temperature, and the solution was stirred at the same temperature for 4 hours. The mixture was evaporated in vacuo, and the residue was triturated with diisopropyl ether to give (S)-N- [4- (2-amino-3-hydroxypropyl) phenyl]-N'- phenylurea hydrochloride (660 mg) as a colorless solide.

NMR (MeOD-d4, b) : 2.80-3. 00 (2H, m), 3.40-3. 80 (3H, m),

7.00-7.50 (9H, m) MS m/z: 286 (M++1) Preparation 15 To a solution of (S)-N- [4- (2-amino-3- hydroxypropyl) phenyl] benzamide (207 mg) and benzaldehyde (106 mg) in 1,4-dioxane (5 ml) was refluxed for 3 hours, and the mixture was evaporated in vacuo. To the residue in methanol (5 ml) was added sodium borohydride (15 mg) on ice- cooling, and stirred at the same temperature for 1 hour.

The resulting mixture was poured into saturated aqueous sodium bicarbonate solution, and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, and evaporated in vacuo. The residue was chromatographed (hexane-ethyl acetate) over silica gel to afford (S)-N- [4- [2- (benzylamino)-3- hydroxypropyl] phenyl] benzamide (250 mg) as colorless oil.

NMR (CDC13, b) : 2.70-2.83 (2H, m), 2.88-2.98 (1H, m), 3.35 (1H, dd, J=5, llHz), 3.68 (1H, dd, J=4, llHz), 3. 79 (2H, s), 7.10-7.90 (14H, m) MS m/z: 361 (M++1) Preparation 16 To an ice-cooled solution of (2S)-1, 2-epoxy-3- (3- formyl-4-benzyloxyphenoxy) propane (2.6 g) in methanol (30 ml) was added sodium borohydride (381 mg). The mixture was stirred at the same temperature for 1 hour and partitioned between chloroform and saturated sodium bicarbonate solution.

The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated to give (2S)-1, 2-epoxy-3- (3-hydroxymethyl-4- benzyloxyphenoxy) propane (2.57 g) as a yellow oil.

NMR (CDC13, b) : 2.74 (1H, q, J=3Hz), 2.89 (1H, t, J=5Hz), 3.33 (1H, m), 3.92 (2H, dd, J=5, llHz), 4.20 (1H, dd, J=3, llHz), 4.70 (2H, d, J=6Hz), 5.1

(2H, s), 6.70-7.00 (3H, m), 7.32-7.45 (5H, m) MS m/z: 309 (M++Na) Preparation 17 To a solution of tert-butyl N- [ (lS)-l- (4-aminobenzyl)- 2-hydroxyethyl]-N- ( (2S)-2-hydroxy-3-phenoxypropyl) carbamate (200 mg) in 1,2-dichloroethane (2.0 ml) was added N, 0- bis (trimethylsilyl) acetamide (119 ul) at room temperature and the solution was stirred for 30 minutes. To the solution was added successively ethyl 2-isocyanatobenzoate (110 mg) and N, N-diisopropylethylamine (8.36 1) and the mixture was stirred for 2 hours. The reaction mixture was diluted with ethyl acetate (20 ml) and washed with water (20 ml x 1) and brine (20 ml x 1) successively, dried over magnesium sulfate, and evaporated to give a pale yellow foam.

The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) and silica gel chromatography (eluent: hexane/ethyl acetate = 2/1) to give ethyl 2- [ [ [ [4- [ (2S)-2- [N- (tert-butoxycarbonyl)- N-((2S)-2-hydroxy-3-phenoxypropyl) amino]-3- [(trimethylsilyl) oxy] propyl] phenyl] amino] carbonyl] amino]- benzoate (217 mg) as a white foam.

MS (ESI) m/z: 702 (M+Na+) Preparation 18 The following compounds were obtained according to a similar manner to that of Preparation 17.

(1) Ethyl 3- [ [ [ [4- [ (2S)-2- [N- (tert-butoxycarbonyl)-N- ( (2S)- 2-hydroxy-3-phenoxypropyl) amino]-3-[(trimethylsilyl)- oxy] propyl] phenyl] amino] carbonyl] amino] benzoate MS (ESI) m/z: 702 (M+Na+) (2) Ethyl 4- [ [ [ [4- [ (2S)-2- [N- (tert-butoxycarbonyl)-N- ( (2S)-

2-hydroxy-3-phenoxypropyl) amino]-3-[(trimethylsilyl)- oxy] propyl] phenyl] amino] carbonyl] amino] benzoate MS (ESI) m/z: 702 (M+Na+) Preparation 19 To a solution of tert-butyl N- [ (lS)-l- (4-aminobenzyl)- 2-hydroxyethyl]-N-((2S)-2-hydroxy-3-phenoxypropyl) carbamate (100 mg) in 1,2-dichloroethane (1.0 ml) was added N, O- bis (trimethylsilyl) acetamide (59.3 41) at room temperature and the solution was stirred for 30 minutes. To the solution was added successively 2-nitrophenyl isocyanate (47.3 mg) and 1.0 M solution of N, N-diisopropylethylamine in 1,2-dichloroethane (24 1) and the mixture was stirred for 90 minutes. To the mixture was added an additional portion of N, 0-bis (trimethylsilyl) acetamide (59.3 1) and the whole was stirred overnight. The reaction mixture was diluted with ethyl acetate (20 ml) and washed with water (20 ml x 1) and brine (20 ml x 1) successively, dried over magnesium sulfate, and evaporated to give a yellow foam.. The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) and silica gel chromatography (eluent: hexane/ethyl acetate = 4/1) to give tert-butyl N-[(1S)-1-[4-[[[(2-nitrophenyl)- amino] carbonyl] amino] benzyl]-2-[(trimethylsilyl) oxy] ethyl]- N-[(2S)-3-phenoxy-2-[(trimethylsilyl) oxy] propyl] carbamate (100 mg) as a yellow foam.

MS m/z: 747 (M+Na+) Preparation 20 The following compounds were obtained according to a similar manner to that of Preparation 19.

(1) tert-Butyl N-[(1S)-1-[4-[[[(3-nitrophenyl)amino]- carbonyl] amino] benzyl]-2-[(trimethylsilyl) oxy] ethyl]-N-

[(2S)-3-phenoxy-2-[(trimethylsilyl) oxy] propyl] carbamate MS m/z: 747 (MH+) (2) tert-Butyl N-[(1S)-1-[4-[[[(4-nitrophenyl)amino]- carbonyl] amino] benzyl]-2-[(trimethylsilyl) oxy] ethyl]-N- [(2S)-3-phenoxy-2-[(trimethylsilyl) oxy] propyl] carbamate MS m/z: 747 (MH+) Preparation 21 To a suspension of (2S)-2- (benzylamino)-3- (4- nitrophenyl)-1-propanol (6.0 g) in ethanol (60 ml) was added (2R)-2- (3-chlorophenyl) oxirane (4.86 g) and the mixture was refluxed for 23 hours. After cooling to room temperature, the solvent was removed by evaporation and the residue was chromatographed on silica gel (eluent: hexane/ethyl acetate = 2/1) to give the (2S)-2- [N-benzyl-N- [ (2R)-2- (3- chlorophenyl)-2-hydroxyethyl] amino]-3- (4-nitrophenyl)-l- propanol (5. 46 g) as a yellow crystalline solid.

MS m/z: 440 (MH+) Preparation 22 To a solution of (2S)-2- [N-benzyl-N- [ (2R)-2- (3- chlorophenyl)-2-hydroxyethyl] amino]-3- (4-nitrophenyl)-l- propanol (5. 33 g) in a mixed solvent of methanol (50 ml) and chlorobenzene (50 ml) was added 10% palladium on activated carbon (SO', wet, 1.00 g) and the mixture was hydrogenated at 1 atm for 2 hours. The catalyst was filtered off and washed with methanol. The filtrate was concentrated in vacuo to give (2S)-3- (4-aminophenyl)-2- [ [ (2R)-2- (3-chlorophenyl)-2- hydroxyethyl] amino]-1-propanol dihydrochloride (4.95 g) as a pale yellow solid.

MS m/z: 321 (MH+) Preparation 23 To a suspension of (2S)-3- (4-aminophenyl)-2- [ [ (2R)-2-

(3-chlorophenyl)-2-hydroxyethyl] amino]-1-propanol dihydrochloride (3.68 g) in a mixed solvent of chloroform and methanol (9: 1,75 ml) was added a saturated aqueous sodium bicarbonate solution (75 ml) and the whole was stirred vigorously. The organic layer was separated and the aqueous layer was extracted with a mixed solvent of chloroform and methanol (9: 1,25 ml x 5). The organic layers were combined, dried over magnesium sulfate, filtered, and evaporated to give (2S)-3- (4-aminophenyl)-2- [ [ (2R)-2- (3- chlorophenyl)-2-hydroxyethyl] amino]-1-propanol (2.78 g) as a pale orange crystalline solid.

Preparation 24 To a solution of (2S)-3- (4-aminophenyl)-2- [ [ (2R)-2- (3- chlorophenyl)-2-hydroxyethyl] amino]-1-propanol (2.78 g) in tetrahydrofuran (28.0 ml) was added di-tert-butyl dicarbonate (1.99 ml) and the solution was stirred at room temperature for 20 hours. The solvent was removed by evaporation and the residue was chromatographed on silica gel (eluent: hexane/ethyl acetate = 1/1) to give tert-butyl N-[(lS)-1-(4-aminobenzyl)-2-hydroxyethyl]-N-[(2R)-2-(3- chlorophenyl)-2-hydroxyethyl] carbamate (1.57 g) as a pale yellow solid.

MS m/z: 443 (M+Na+) Preparation 25 A solution of (2S)-2- [ (4- (benzyloxy) phenoxy) methyl- oxirane (1.19 g) and (2S)-2- (benzylamino)-3- (4-nitrophenyl)- 1-propanol (1.33 g) in ethanol (13 ml) was refluxed for 20 hours. After cooling to room temperature, the solvent was removed by evaporation and the residue was chromatographed on silica gel (eluent: chloroform/methanol = 98/2) to give (2S)-2- [N-benzyl-N- [ (2S)-3- [4- (benzyloxy) phenoxy]-2- hydroxypropyl] amino]-3- (4-nitrophenyl)-l-propanol (2.04 g) as a yellow gum.

MS m/z: 543 (MH+) Preparation 26 A solution of (2S)-2- [N-benzyl-N- [ (2S)-3- [4- (benzyloxy) phenoxy]-2-hydroxypropyl] amino]-3- (4- nitrophenyl)-1-propanol (2.00 g) in a mixed solvent of ethanol (7.5 ml) and 1,4-dioxane (7.5 ml) was added dropwise to a stirred suspension of iron powder (2.00 g) and ammonium chloride (0.24 g) in a mixed solvent of ethanol (5 ml) and water (5 ml) at 85°C over 10 minutes and the resulting mixture was stirred at the same temperature for 30 minutes.

The insoluble solid was filtered off and washed with dioxane, and the filtrate was concentrated in vacuo. The residue was partitioned between saturated aqueous sodium hydrogencarbonate solution and ethyl acetate. The organic layer was separated, washed with brine, dried over magnesium sulfate, and evaporated to give (2S)-3- (4-aminophenyl)-2- [N- benzyl-N- [ (2S)-3- [4- (benzyloxy) phenoxy]-2-hydroxypropyl]- amino]-1-propanol (1.90 g). as a pale yellow oil.

MS m/z: 513 (MH+) Preparation 27 To a 0.024 M solution of tert-butyl N- [ (1S)-1- (4- aminobenzyl)-2-hydroxyethyl]-N-[(2S)-2-hydroxy-3- phenoxypropyl] carbamate in 1,2-dichloromethane (15 ml) was added N, 0-bis (trimethylsilyl) acetamide (270 µl) and stirred overnight at ambient temperature. Evaporation of the solvent gave a residue, which was purified by column chromatography on silica gel (eluent: 0-33% ethyl acetate in hexane) to give tert-butyl N- [ (lS)-l- (4-aminobenzyl)-2- [ (trimethylsilyl) oxy] ethyl]-N- [ (2S)-3-phenoxy-2- [(trimethylsilyl) oxy] propylcarbamate (190 mg) as a yellow oil.

NMR (DMSO-d6, ces) : 0. 02 (9H, s), 0.09 (9H, s), 1.42 (9H, s), 2.55-2.70 (2H, m), 3.20-4.35 (8H, m), 4.87 (2H,

s), 6.49 (2H, d, J=8.4Hz), 6.75-7.00 (5H, m), 7.20-7.35 (2H, m) (+)-APCI MS m/z: 461 (M-C02-tert-butyl+H) + Example 1 To an ice-cooled solution of (2S)-3- (4-aminophenyl)-2- [N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]-1- propanol (83 mg) in dichloromethane (0.8 ml) was added dropwise ethyl isocyanate (0.016 ml). The mixture was stirred at the same temperature for 1.5 hours and partitioned between chloroform and saturated sodium bicarbonate solution. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, chloroform/methanol) to give N- [4- [ (2S)-2- [N-benzyl-N- [ (2S.)- <BR> <BR> <BR> 2-hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-N'- ethylurea (84 mg) as a white amorphous powder.

NMR (CDC13, 8) : 1.12 (3H, t, J=7Hz), 2.51 (1H, dd, J=14 and 9Hz), 2.63-3.37 (6H, m), 3.37-4.02 (7H, m), 4.85 (1H, t, J=6Hz), 6.46 (1H, s), 6.81 (2H, d, J=9Hz), 6.86-7.40 (12H, m) MS m/z: 478 (M++1) Example 2 A solution of N- [4- [ (2S)-2- [N-benzyl-N- [ (2S)-2-hydroxy- <BR> <BR> <BR> 3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-N'-ethylurea (73 mg) in methanol (1.5 ml) was hydrogenated (1 atm) over 10% palladium on carbon (11 mg) at room temperature for 12 hours. After the catalyst was filtered off, the filtrate was concentrated and the residue was purified by column chromatography (silica gel, chloroform/methanol) followed by recrystallization from ehtanol/hexane to give N-ethyl-N'- [4- [(2S)-3-hydroxy-2-[[(2S)-2-hydroxy-3-phenoxypropyl] amino]- propyl] phenyl] urea (38 mg) as a white powder.

mp: 129-130°C IR (KBr): 1678,1637,1597,1558 cm-1 NMR (CD30D, b) : 1.14 (3H, t, J=7Hz), 2.62-3.16 (5H, m), 3.21 (2H, q, J=7Hz), 3.45 (1H, dd, J=11 and 6Hz), 3.63 (1H, dd, J=11 and 4Hz), 3.90-4.20 (3H, m), 6.84-7.36 (9H, m) MS m/z: 388 (M++1) Example 3 To an ice-cooled solution of (2S)-3- (4-aminophenyl)-2- [N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]-1- propanol (76 mg) in dichloromethane (0.8 ml) was added dropwise phenyl isocyanate (0.022 ml), and the mixture was stirred at the same temperature for 40 minutes. One drop of 28% ammonia solution was added to the mixture, the mixture was concentrated, and the residue was purified by column chromatography (silica gel, chloroform/methanol) to give N- [4-[(2S)-2-[N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl]- amino]-3-hydroxypropyl] phenyl]-N'-phenylurea (89 mg) as a white amorphous powder.

NMR (CDC13,8): 2.48 (1H, dd, J=13 and 8Hz), 2.63-3.22 (4H, m), 3.38-4.02 (7H, m), 6.66-7.43 (21H, m) MS m/z: 526 (M++1) Example 4 The following compounds were obtained according to a similar manner to that of Example 2.

(1) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'-phenylurea IR (KBr): 3440-2921,1641,1596,1560,1498,1315, 1238 cm-1 NMR (DMSO-d6, b) : 2.50-2.64 (5H, m), 3.10-3.20 (2H, m), 3.80-4.00 (3H, m), 4.50-4.60 (1H, m), 4.93 (1H, d, J=4.2Hz), 6.85-7.00 (4H, m), 7.05-7.15 (2H, m),

7.25-7.50 (8H, m), 8.57 (1H, s), 8.63 (1H, s) MS m/z: 436 (M++1) (2) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] benzamide mp: 124-125°C IR (KBr): 1655, 1599,1529 cm-1 NMR (CD30D, b) : 2.58-3.05 (5H, m), 3.43 (1H, dd, J=11 and 6Hz), 3.60 (1H, dd, J=11 and 4Hz), 3.83-4.15 (3H, m), 6.80-7.00 (3H, m), 7.12-7.35 (4H, m), 7.40-7.70 (5H, m), 7.83-8.01 (2H, m) MS m/z: 421 (M++1) (3) N-[4-[(2S)-3-Hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-4-methoxybenzamide NMR (CDCl3-CD30D (1 : 1), b) : 2.60-3.12 (5H, m), 3.45 (1H, dd, J=11 and 6Hz), 3.64 (1H, dd, J=11 and 4Hz), 3.89 (3H, s), 3.90-4.20 (3H, m), 6.80-7.12 (5H, m), 7.12-7.40 (4H, m), 7.60 (2H, d, J=8Hz), 7.91 (2H, d, J=9Hz) MS m/z: 451 (M++1) (4) 4-Chloro-N- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] benzamide NMR (CDC13-CD30D (1 : 1), b) : 2.66-3.15 (5H, m), 3.47 (1H, dd, J=11 and 6Hz), 3.66 (1H, dd, J=11 and 4Hz), 3.86-4.20 (3H, m), 6.82-7.06 (3H, m), 7.13-7.38 (4H, m), 7.48 (2H, d, J=8Hz), 7.62 (2H, d, J=8Hz), 7.90 (2H, d, J=9Hz) MS m/z: 455 (M++1) (5) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-3-methoxybenzamide NMR (CDCl3-CD30D (1 : 1), b) : 2.60-3.10 (5H, m), 3.44 (1H, dd, J=11 and 6Hz), 3.63 (1H, dd, J=11 and 4Hz),

3.88 (3H, s), 3.88-4.15 (3H, m), 6.80=7.74 (13H, m) MS m/z: 451 (M++1) (6) 3-Chloro-N- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] benzamide NMR (CDC13-CD30D (1 : 1), S) : 2.58-3.11 (5H, m), 3.44 (1H, dd, J=11 and 6Hz), 3.63 (1H, dd, J=11 and 4Hz), 3.85-4.18 (3H, m), 6.80-8.02 (13H, m) MS m/z: 455 (M++1) (7) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-1-naphthamide NMR (CDCl3-CD30D (l : l), S) : 2.60-3.10 (5H, m), 3.45 (1H, dd, J=1 and 6Hz), 3.62 (1H, dd, J=11 and 4Hz), 3.82-4.22 (3H, m), 6.82-8.33 (16H, m) MS m/z: 471 (M++1) (8) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-2-naphthamide NMR (CDC13-CD30D (1 : 1), S) : 2.72-3.23 (5H, m), 3.58 (1H, dd, J=11 and 6Hz), 3.76 (1H, dd, J=11 and 4Hz), 3.95-4.30 (3H, m), 6.90-8.25 (15H, m), 8.59 (1H, s) MS m/z: 471 (M++1) (9) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-lH-pyrrole-2- carboxamide NMR (CDC13-CD30D (1 : 1), 8) : 2.76-3.30 (5H, m), 3.63 (1H, dd, J=11 and 6Hz), 3.82 (1H, dd, J=11 and 4Hz), 4.03-4.37 (3H, m), 6.39-6.49 (1H, m), 6.98-7.29 (5H, m), 7.29-7.57 (4H, m), 7.76 (2H, d, J=8Hz) MS m/z: 410 (M++1)

(10) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] nicotinamide NMR (DMSO-d6, S) : 2.53-3.05 (5H, m), 3.29 (1H, dd, J=11 and 6Hz), 3.44 (1H, dd, J=11 and 4Hz), 3.76-4.10 (3H, m), 6.80-7.04 (3H, m), 7.13-7.38 (4H, m), 7.57 (1H, dd, J=8 and 5Hz), 7.70 (2H, d, J=8Hz), 8.29 (1H, ddd, J=8,2 and 2Hz), 8.76 (1H, dd, J=5 and 2Hz), 9.11 (12H, d, J=2Hz), 10.45 (1H, br s) MS m/z: 422 (M++1) (11) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N-methylbenzamide mp: 115-116°C IR (KBr): 1637, 1601 cm-1 NMR (CDC13, S) : 2.53-3. 00 (5H, m), 3.32 (1H, dd, J=11 and 5Hz), 3.47 (3H, s), 3.58 (1H, dd, J=11 and 4Hz), 3.84-4.10 (3H, m), 6.80-7.38 (14H, m) MS m/z: 435 (M++1) (12) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- [4-hydroxy-3- (hydroxymethyl) phenoxy] propyl] amino] propyl] phenyl]- benzamide IR (KBr): 3500-3000,1641,1600,1446,1029 cm-1 NMR (MeOD-d4, 8) : 2.90-3.10 (3H, m), 3.30-3.60 (4H, m), 3.80-4.00. (2H, m), 4.10-4.30 (1H, m), 4.71 (2H, s), 6.67 (2H, s), 6.93 (1H, s), 7.10-7.90 (9H, m) MS m/z: 467 (M++1) Example 5 To an ice-cooled mixture of (2S)-3- (4-aminophenyl)-2- [N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]-1- propanol (63 mg) and pyridine (25 1) in dichloromethane (0.6 ml) was added dropwise benzoyl chloride (22 µl), and the mixture was stirred at room temperature for more than 2 hours. The mixture was partitioned between chloroform-

methanol and water. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, chloroform/methanol) to give N- [4- ( (2S)-2- [N-benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl] benzamide (80 mg) as a white amorphous powder.

NMR (CDC13, 5) : 2.56 (1H, dd, J=14 and 9Hz), 2.72-3.28 (4H, m), 3.44-4.04 (7H, m), 6.83 (2H, d, J=9Hz), 6.86-7.03 (1H, m), 7.14 (2H, d, J=8Hz), 7.20-7.40 (7H, m), 7.40-7.63 (5H, m), 7.78-7.96 (2H, m), 7.80 (1H, br s) MS m/z: 511 (M++1) Example 6 To a mixture of (2S)-3- (4-aminophenyl)-2- [N-benzyl-N- [(2S)-2-hydroxy-3-phenoxypropyl] amino]-1-propanol (77 mg) and benzoic acid (28 mg) in N, N-dimethylformamide (0.8 ml) was added 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (57 mg), and the mixture was stirred at room temperature for 20 hours. The mixture was partitioned between hexane-ethyl acetate and water. The organic layer was separated, washed successively with water and brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated to give N- [4- [ (2S)-2- [N-benzyl-N- [ (2S)-2- hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]- benzamide (95 mg) as a white amorphous powder.

NMR (CDC13, S) : 2.56 (1H, dd, J=14 and 9Hz), 2.71-3.28 (4H, m), 3.42-4.03 (7H, m), 6.82 (2H, d, J=9Hz), 6.88-7.02 (1H, m), 7.14 (2H, d, J=8Hz), 7.18-7.38 (7H, m), 7.38-7.65 (5H, m), 7.77-7.97 (2H, m), 7.80 (1H, br s) MS m/z: 511 (M++1) Example 7

The following compounds were obtained according to a similar manner to that of Example 6.

(1) N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-4- methoxybenzamide NMR (CDC13, S) : 2.55 (1H, dd, J=13 and 9Hz), 2.71-3.26 (4H, m), 3.45-4.02 (7H, m), 3.86 (3H, s), 6.73- 7.38 (14H, m), 7.53 (2H, d, J=8Hz), 7.77 (1H, br s), 7.84 (2H, d, J=9Hz) MS m/z: 541 (M++1) (2) N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-4- chlorobenzamide NMR (CDC13, S) : 2.56 (1H, dd, J=13 and 9Hz), 2.70-3.28 (4H, m), 3.43-4.05 (7H, m), 6.73-7.03 (3H, m), 7.13 (2H, d, J=9Hz), 7.17-7.36 (7H, m), 7.46 (2H, d, J=9Hz), 7.52 (2H, d, J=8Hz), 7.77 (1H, br s), 7.81 (2H, d, J=9Hz).

MS m/z: 545 (M++1) (3) N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-3- methoxybenzamide NMR (CDC13, S) : 2.56 (1H, dd, J=14 and 9Hz), 2.70-3.30 (4H, m), 3.42-4.03 (7H, m), 3.87 (3H, s), 6.73- 7.62 (18H, m), 7.80 (1H, br s) MS m/z: 541 (M++1) (4) N- [. 4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-3- chlorobenzamide NMR (CDC13, S) : 2.56 (1H, dd, J=14 and 9Hz), 2.72-3.30 (4H, m), 3.42-4.05 (7H, m), 6.74-7.93 (19H, m)

MS m/z: 545 (M++1) (5) N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-1- naphthamide NMR (CDC13, S) : 2.58 (1H, dd, J=14 and 9Hz), 2.72-3.28 (4H, m), 3.28-4.03 (7H, m), 6.72-8.04 (21H, m), 8.26-8.45 (1H, m) MS m/z: 561 (M++1) (6) N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-2- naphthamide NMR (CDC13, S) : 2.57 (1H, dd, J=14 and 9Hz), 2.72-3.30 (4H, m), 3.42-4.04 (7H, m), 6.72-8.07 (21H, m), 8.38 (1H, s) MS m/z: 561 (M++1) Example 8 To a mixture of (2S)-3- (4-aminophenyl)-2- [N-benzyl-N- [(2S)-2-hydroxy-3-phenoxypropyl] amino]-1-propanol (79 mg) and pyrrole-2-carboxylic acid (26 mg) in dichloromethane (0.8 ml) was added 1- [3- (dimethylamino) propyl]-3- ethylcarbodiimide hydrochloride (59 mg), and the mixture was stirred at room temperature for 47 hours. The mixture was partitioned between ethyl acetate and water. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated, and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate) to give N- [4- [ (2S)-2- [N-benzyl-N- [(2S)-2-hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl]- phenyl]-lH-pyrrole-2-carboxamide (48 mg) as a white amorphous powder.

NMR (CDC13, S) : 2.53 (1H, dd, J=14 and 9Hz), 2.68-3.28 (4H, m), 3.42-4.04 (7H, m), 6.23-6.34 (1H, m),

6.65-6.75 (1H, m), 6.75-7.05 (4H, m), 7.10 (2H, d, J=8Hz), 7.17-7.41 (7H, m), 7.49 (2H, d, J=8Hz), 7.58 (1H, br s), 9.56 (1H, br s) MS m/z: 500 (M++1) Example 9 The following compound was obtained according to a similar manner to that of Example 5. <BR> <BR> <P> N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3-<BR> phenoxypropyl] amino]-3-hydroxypropyl] phenyl] nicotinamide NMR (CDC13, (S) : 2.56 (1H, dd, J=14 and 9Hz), 2.70-3.30 (4H, m), 3.42-4.04 (7H, m), 6.72-7.05 (3H, m), 7.14 (2H, d, J=8Hz), 7.18-7.38 (7H, m), 7.44 (1H, dd, J=8 and 5Hz), 7. 54 (2H, d, J=8Hz), 7.98 (1H, br s), 8.21 (1H, ddd, J=8,2 and 2Hz), 8.76 (1H, dd, J=5 and 2Hz), 9.08 (1H, d, J=2Hz) MS m/z: 512 (M++1) Example 10 To an ice-cooled solution of N- [4- [ (2S)-3-acetoxy-2- [N- [(2S)-2-acetoxy-3-phenoxypropyl]-N-benzylamino] propyl]- phenyl] benzamide (107 mg) in tetrahydrofuran (1.1 ml) was added sodium hydride (60-in oil, 17 mg), and the mixture was stirred at the same temperature for 30 minutes. To the mixture was added iodomethane (25 fol), and the mixture was stirred at room temperature for 1. 5 hours before being partitioned between ethyl acetate and water. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was dissolved in methanol (1.1 ml)-1,4-dioxane (1.1 ml), then treated with 1N sodium hydroxide (0.5 ml) at room temperature for 1.5 hours. The mixture was concentrated and partitioned between ethyl acetate and water.

The organic layer was separated, washed with brine, dried

over magnesium sulfate, and filtered. The filtrate was concentrated and the residue was purified by column chromatography (silica gel, hexane/ethyl acetate) to give N- [4-[(2S)-2-[N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl]- amino]-3-hydroxypropyl] phenyl]-N-methylbenzamide (55 mg) as a white amorphous powder.

NMR (CD13, 5) : 2.49 (1H, d, J=14 and 9Hz), 2.65-3.22 (4H, m), 3.34-3.72 (3H, m), 3.47 (3H, s), 3.72- 4.04 (4H, m), 6.74-7.40 (19H, m) MS m/z: 525 (M++1) Example 11 To a 0.5 M solution of tert-butyl N- [ (1S)-1- (4- aminobenzyl)-2-hydroxyethyl]-N-((2S)-2-hydroxy-3- phenoxypropyl) carbamate in dichloroethane (40 1) were added successively 2.0 M solution of N, 0-bis (trimethylsilyl)- acetamide in 1-methyl-2-pyrrolidinone (10 pl), 1.0 M solution of ethyl isocyanate in 1-methyl-2-pyrrolidinone (24 mol), and 0.1 M solution of N-ethyldiisopropylamine in 1- methyl-2-pyrrolidinone (20 Fl) at room temperature. After shaking at room temperature for 30 minutes, the solution was treated with 500 µl of trifluoroacetic acid/water (95/5) at 50°C for 30 minutes. The mixture was evaporated and the residue was purified by reverse phase HPLC (0-100% acetonitrile in water (containing 0. lof, trifluoroacetic acid)) to give N- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'-propylurea trifluoroacetate (5.51 mg) as a pale yellow oil.

MS m/z: 402 (M++1) Example 12 The following compounds were obtained according to a similar manner to that of Example 11.

(1) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3-

phenoxypropyl] amino] propyl] phenyl]-N'-isopropylurea trifluoroacetate MS m/z: 402 (M++1) (2) N-(2-Chlorophenyl)-N'-[4-[(2S)-3-hydroxy-2-[[(2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 470 (M++1) (3) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- (3- nitrophenyl) urea trifluoroacetate MS m/z: 450 (M++1) (4) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- (3- methoxyphenyl) urea trifluoroacetate MS m/z: 466 (M++1) (5) N-Benzoyl-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl) amino] propyl] phenyl] urea trifluoroacetate MS m/z: 464 (M++1) (6) N-Cyclohexyl-N'-[4-[(2S)-3-hydroxy-2-[[(2S)-2-hydroxy- 3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 442 (M++1) (7) N- (3-Fluorophenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 454 (M++1) (8) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'-4-

methoxyphenyl) urea trifluoroacetate MS m/z: 466 (M++1) (9) N- (2-Chloroethyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 422 (M++1) (10) N- (3-Bromophenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 515 (M++1) (11) N- (4-Bromophenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 515 (M++1) (12) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- (3- methylphenyl) urea trifluoroacetate MS m/z: 450 (M++1) (13) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- (2- methylphenyl) urea trifluoroacetate MS m/z : 450 (M++1) (14) N- (3-Acetylphenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 478 (M++1) (15) N- (3-Cyanophenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea

trifluoroacetate MS m/z: 461 (M++1) (16) Ethyl [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] anilino] carbonyl] amino]- acetate trifluoroacetate MS m/z: 446 (M++1) (17) N- (2, 3-Dichlorophenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)- 2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 505 (M++1) (18) N- [4-Chloro-3- (trifluoromethyl) phenyl]-N'- [4- [ (2S)-3- hydroxy-2-[[(2S)-2-hydroxy-3-phenoxypropyl] amino]- propyl] phenyl] urea trifluoroacetate MS m/z: 538 (M++1) (19) N- (2-Fluorophenyl)-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 454 (M++1) (20) N-(4-Fluorophenyl)-N'-[4-[(2S)-3-hydroxy-2-[[(2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 454 (M++1) (21) N-(3-Chlorophenyl)-N'-[4-[(2S)-3-hydroxy-2-[[(2S)-2- hydroxy-3-phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 470 (M++1) (22) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- (2-

nitrophenyl) urea trifluoroacetate MS m/z: 481 (M++1) (23) N- [4- [ (2S)-3-Hydroxy-2- [ ( (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- (4- nitrophenyl) urea trifluoroacetate MS m/z: 481 (M++1) (24) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'-[2- (trifluoromethyl) phenyl] urea trifluoroacetate MS m/z: 504 (M++1) (25) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'- [3- (trifluoromethyl) phenyl] urea trifluoroacetate MS m/z: 504 (M++1) (26) N-Benzyl-N'- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] urea trifluoroacetate MS m/z: 450 (M++1) Example 13 To an ice-cooled solution of (2S)-1-phenoxy-3-[N-[(2S)- 2- (4-aminophenyl)-1- (hydroxymethyl) ethyl]-N-benzylamino]-2- propanol (95 mg) and pyridine (37 mg) in dichloromethane (1 ml) was added dropwise acetic anhydride (26.2 mg). The mixture was stirred at the same temperature for 1 hour and partitioned between chloroform and saturated sodium bicarbonate solution. The organic layer was separated, washed with brine, dried over magnesium sulfate, and filtered. The filtrate was concentrated. A solution of the residue in methanol (1 ml) was hydrogenated (1 atm) over 10% palladium on carbon (15 mg) at room temperature for 2 hours.

After the catalyst was filtered off, the filtrate was

concentrated and the residue was purified by column chromatography (silica gel, chloroform/methanol) to give (2S)-1-phenoxy-3-[[(2S)-2-(4-acetamidophenyl)-1- (hydroxymethyl) ethyl] amino]-2-propanol (50 mg) as a colorless form.

IR (KBr): 3300-3200,1664,1602,1407,1243 cm-1 NMR (CDC13, 5) : 2.11 (3H, s), 2.70-3.20 (5H, m), 3.40- 3.70 (2H, m), 3.97 (2H, d, J=4.6Hz), 4.10 (1H, m), 6.80-6.90 (3H, m), 7.10-7.30 (4H, m), 7.48 (2H, d, J=8. 5Hz) MS m/z: 359 (M++1) Example 14 The following compound was obtained according to a similar manner to that of Example 13.

(2S)-l-Phenoxy-3- [ [ (2S)-2- (4-ureidophenyl)-l- (hydroxymethyl) ethyl] amino]-2-propanol IR (KBr): 3500-3200,1658,1589,1548,1243 cm-1 NMR (CDC13, b) : 2.65-3.00 (5H, m), 3.30-3.80 (2H, m), 3.90-4.05 (3H, m), 6.90-7.40 (9H, m) MS m/z: 391 (M++1) Example 15 Under nitrogen, a solution of (S)-N- [4- (2-amino-3- hydroxypropyl) phenyl]-N'-phenylurea hydrochloride (150 mg), (R)-3-chlorostyrene oxide (56 mg) and N, N- diisopropylethylamine (0.17 ml) in ethanol (5 ml) was refluxed for 28 hours. The mixture was evaporated in vacuo.

The residue was purified by column chromatography on silica gel (chloroform: methanol = 100 : 1) to give N- [4- [ (2S)-2- [[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]-3- hydroxypropyl] phenyl]-N'-phenylurea (45 mg) as a colorless form.

IR (KBr): 3500-3000,1648,1540,1513,1313,1230 cm-1

NMR (MeOD-d4, 5) : 2.60-2.90 (5H, m), 3.40-3.60 (2H, m), 4.60-4.70 (1H, m), 6.90-7.40 (13H, m) MS m/z : 440 (M++1) Example 16 The following compounds were obtained according to a similar manner to that of Example 15.

(1) N-[4-[(2S)-2-[[(2S)-3-(1H-Indol-4-yloxy)-2- hydroxypropyl] amino]-3-hydroxypropyl] phenyl]-N'- phenylurea IR (KBr): 3400-3000,1644,1540,1438,1228,1060 cm-1 NMR (MeOD-d4, ) : 2.60-3.10 (5H, m), 3.30-3.60 (2H, m), 4.00-4.10 (3H, m), 6.40-6.60 (2H, m), 6.90-7.45 (12H, m) MS m/z: 475 (M++1) (2) N-[4-[(2S)-2-[[(2S)-3-(9H-Carbazol-4-yloxy)-2- hydroxypropyl] amino]-3-hydroxypropyl] phenyl]-N'- phenylurea IR (KBr): 3300-3000,1637,1598,1554,1504,1207 cm-1 NMR (MeOD-d4, b) : 2.60-3.10 (5H, m), 3.40-3.70 (2H, m), 4.05-4.40 (3H, m), 6.90-7.50 (15H, m), 8.3 (1H, d, J=7Hz) MS m/z: 525 (M++1) (3) N-[4-[(2S)-2-[[(2S)-3-(4-Fluorophenoxy)-2- hydroxypropyl] amino]-3-hydroxypropyl] phenyl]-N'- phenylurea IR (KBr): 3300-3000, 1637,1598,1554,1504,1207 cm-1 NMR (MeOD-d4, S) : 2.50-2.95 (5H, m), 3.30-3.65 (2H, m), 3.90-4.10 (3H, m), 6.90-7.50 (9H, m) MS m/z: 454 (M++1) (4) N- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-3- [4- (benzyloxy)-3-

(hydroxymethyl) phenoxy]-2-hydroxypropyl] amino]-3- hydroxypropyl] phenyl] benzamide NMR (CDC13, 5) : 2.30-3.00 (6H, m), 3.05-3.20 (1H, m), 3.40-4.00 (7H, m), 4.60 (2H, d, J=6.4Hz), 5.00 (2H, s), 6.67 (1H, dd, J=3,9Hz), 6.80-6.85 (2H, m), 7.10-7.60 (18H, m), 7.80-7.90 (3H, m) MS m/z: 647 (M++1) Example 17 To a solution of 10% hydrogen chloride in methanol was added N- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'-phenylurea (70 mg) and stirred for 15 minutes. The reaction mixture was concentrated and followed by recrystallization from ethanol to give N- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N'-phenylurea hydrochloride (38 mg) as a white powder.

IR (KBr): 3330-2950,1697,1600,1556,1498,1319, 1238 cm-1 NMR (DMSO-d6, 2.70-3.35 (4H, m), 3.40-3.70 (3H, m), 4.00 (2H, d, J=5. 0Hz), 4.15-4.30 (1H, m), 5.41 (1H, s), 5.87 (1H, d, J=4.8Hz), 6.90-7.00 (4H, m), 7.15-7.50 (10H, m), 9.06 (1H, s), 9.07 (1H, s) MS m/z: 436 (M++1) Example 18 To a solution of ethyl 2-[[[[4-[(2S)-2-[N-(tert- <BR> <BR> <BR> butoxycarbonyl)-N- ( (2S)-2-hydroxy-3-phenoxypropyl) amino]-3- [(trimethylsilyl) oxy] propyl] phenyl] amino] carbonyl] amino]- benzoate (10.0 mg) in 1,2-dichloroethane (100 ßl) was added trifluoroacetic acid (100 Hl) and the solution was stirred at room temperature for 30 minutes. The solvent was removed by evaporation to give ethyl 2- [ [ [ [4- [ (2S)-3-hydroxy-2- [[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl] amino]- carbonyl] amino] benzoate trifluoroacetate (10.3 mg) as a

white foam.

MS m/z: 508 (MH+) Example 19 The following compounds were obtained according to a similar manner to that of Example 18.

(1) Ethyl 3- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] benzoate trifluoroacetate MS m/z: 508 (MH+) (2) Ethyl 4- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] benzoate trifluoroacetate MS m/z: 508 (MH+) Example 20 To a solution of tert-butyl N-[(1S)-1-[4-[[[(2- nitrophenyl) amino] carbonyl] amino] benzyl]-2- (trimethylsilyl) oxy] ethyl]-N-[(2S)-3-phenoxy-2- [(trimethylsilyl) oxy] propyl] carbamate (95.0 mg) in methanol (2.9 ml) was added 109 ; palladium on activated carbon (50% wet, 95 mg) and the mixture was hydrogenated at 1 atm for 1 hour. The catalyst was filtered off and the filtrate was concentrated in vacuo to give tert-butyl N-[(1S)-1-[4-[[[(2- aminophenyl) amino] carbonyl] amino] benzyl]-2-hydroxyethyl]-N- [(2S)-2-hydroxy-3-phenoxypropyl] carbamate (75. 3 mg) as a brown solid.

MS (ESI) m/z : 573 (M+Na+) Example 21 The following compounds were obtained according to a similar manner to that of Example 20.

(1) tert-Butyl N-[(1S)-1-[4-[[[(3-aminophenyl)amino]- carbonyl] amino] benzyl]-2-hydroxyethyl]-N-[(2S)-2- hydroxy-3-phenoxypropyl] carbamate MS (ESI) m/z: 573 (M+Na+) (2) tert-Butyl N-[(1S)-1-[4-[[[(4-aminophenyl)amino]- <BR> <BR> <BR> carbonyl] amino] benzyl]-2-hydroxyethyl]-N-[(2S)-2-<BR> <BR> <BR> <BR> hydroxy-3-phenoxypropyl] carbamate MS (ESI) m/z: 573 (M+Na+) Example 22 To a solution of tert-butyl N-[(1S)-1-[4-[[[(2- aminophenyl) amino] carbonyl] amino] benzyl]-2-hydroxyethyl]-N- [ (2S)-2-hydroxy-3-phenoxypropyl] carbamate (20.0 mg) in 1,2- dichloroethane (200 1) were added successively 1.0 M solution of pyridine in 1,2-dichloroethane (54. 5 1) and 1.0 M solution of methanesulfonyl chloride in 1,2-dichloroethane (43.6 1) at room temperature. After stirring. for 2 hours, the solvent was removed by evaporation and the residue was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) to give a light brown solid.

The solid was dissolved in 1,2-dichloroethane (200 µl). To the solution was added trifluoroacetic acid (200 µl) and the mixture was stirred for 30 minutes. The solvent was removed by evaporation to give N- [2- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)- 2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl] amino]- carbonyl] amino] phenyl] methanesulfonamide trifluoroacetate (20.3 mg) as a light brown solid.

MS m/z: 529 (MH+) Example 23 The following compounds were obtained according to a similar manner to that of Example 22.

(1) Methyl N- [2- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy- 3-phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] phenyl] carbamate trifluoroacetate MS m/z: 509 (MH+) (2) N- [3- [ [ [ [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] phenyl] methanesulfonamide trifluoroacetate MS m/z: 529 (MH+) (3) Methyl N-[3-[[[[4-[(2S)-3-hydroxy-2-[[(2S)-2-hydroxy- 3-phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] phenyl] carbamate trifluroacetate MS m/z: 509 (MH+) (4) N- [4- [ [ [ [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] phenyl] methanesulfonamide trifluoroacetate MS m/z: 529 (MH+) (5) Methyl N- [4- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy- 3-phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino] phenyl] carbamate trifluoroacetate MS m/z: 509 (MH+) Example 24 To a solution of ethyl 3- [ [ [ [4- [ (2S)-2- [N- (tert- butoxycarbonyl)-N- [ (2S)-2-hydroxy-3-phenoxypropyl] amino]-3- [(trimethylsilyl) oxy] propyl] phenyl] amino] carbonyl] amino]- benzoate (204 mg) in 1,2-dichloroethane (2.0 ml) was added trifluroacetic acid (2.0 ml) and the solution was stirred at room temperature for 1 hour. The solvent was removed by evaporation and the residue was dissolved in ethyl acetate (10 ml). The solution was washed with aqueous saturated sodium bicarbonate solution (5 ml x 1) and brine (10 ml x 1)

successively, dried over magnesium sulfate, and evaporated to give ethyl 3- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl] amino]- benzoate (148 mg) as a white solid.

Example25 The following compound was obtained according to a similar manner to that of Example 24.

Ethyl 4- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl] amino]- benzoate Example 26 To a solution of ethyl 3- [ [ [ [4- [ (2S)-3-hydroxy-2- [[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl]- amino] carbonyl] amino] benzoate (148 mg) in ethanol (2.0 ml) was added 1N sodium hydroxide solution (292 1) and the solution was refluxed for 4 hours. An additional portion of 1N sodium hydroxide solution (58.3 pi) was added and the whole was refluxed for 3 hours. After cooling to room temperature, the solvent was removed by evaporation to give sodium 3-[[[[4-[(2S)-3-hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl] amino]- benzoate (158 mg) as a white solid.

MS m/z: 502 (MH+) Example 27 The following compound was obtained according to a similar manner to that of Example 26.

Sodium 4- [ [ [ [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl] amino]- benzoate MS m/z: 502 (MH+)

Example 28 To a solution of sodium 3- [ [ [ [4- [ (2S)-3-hydroxy-2- [[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl]- amino] carbonyl] amino] benzoate (50.0 mg) in a mixed solvent of tetrahydrofuran (1.0 ml) and water (1.0 ml) was added 1N sodium hydroxide solution (99.7 fol). To the solution was added di-tert-butyl dicarbonate (27.5 1) at room temperature and the mixture was stirred for 2 hours. An additional portion of di-tert-butyl dicarbonate (27.5 1) was added and the mixture was stirred for 30 minutes. To the mixture was added pH 4.0 buffer solution (10 ml) and the resulting suspension was extracted with ethyl acetate (30 ml x 1). The organic layer was separated and washed with brine (10 ml x 1), dried over magnesium sulfate, and evaporated to give 3- [ [ [ [4- [ (2S)-2- [N- (tert-butoxycarbonyl)-N- [ (2S)-2- hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]- amino] carbonyl] amino] benzoic acid (47. 3 mg) as a yellow solid.

Example 29 The following compound was obtained according to a similar manner to that of Example 28. <BR> <BR> <BR> <BR> <BR> <BR> <P> 4- [ [ [ [4- [ (2S)-2- [N- (tert-Butoxycarbonyl)-N- [ (2S)-2-<BR> <BR> <BR> <BR> <BR> hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]- amino] carbonyl] amino] benzoic acid MS (negative) m/z: 578 (M-H+) Example 30 To a solution of 3- [ [ [ [4- [ (2S)-2- [N- (tert- butoxycarbonyl)-N- [ (2S)-2-hydroxy-3-phenoxypropyl] amino]-3- hydroxypropyl] phenyl] amino] carbonyl] amino] benzoic acid (10.0 mg) in N, N-dimethylformamide (100 tAl) were added successively a 1.0 M solution of 1-hydroxybenzotriazole

hydrate in N, N-dimethylformamide (20.7 1) and a 1.0 M solution of 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide in 1,2-dichloroethane (20.7 Fl) at room temperature. To the solution was added methylamine hydrochloride (1.4 mg) and the mixture was stirred for 4 hours. The reaction mixture was diluted with ethyl acetate (10 ml) and washed with water (10 ml x 1) and brine (10 ml x 1) successively, dried over magnesium sulfate, and evaporated to give a pale yellow paste. The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) to give tert-butyl (1S)-2-hydroxy-1-[4-[[[[3- (methylcarbamoyl) phenyl] amino] carbonyl] amino] benzyl] ethyl]- N-[(2S)-2-hydroxy-3-phenoxypropyl] carbamate (7.2 mg) as a pale yellow solid.

Example 31 The following compounds were obtained according to a similar manner to that of Example 30.

(1) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-1-[4-[[[[3-(propylcarbamoyl)phenyl]amino]- carbonyl] amino] benzyl] ethyl] carbamate (2) tert-Butyl N-[(1S)-1-[4-[[[[3-(dimethylcarbamoyl)- phenyl] amino] carbonyl] amino] benzyl]-2-hydroxyethyl]-N- [(2S)-2-hydroxy-3-phenoxypropyl] carbamate (3) tert-Butyl N-[(1S)-2-hydroxy-1-[4-[[[[4- (methylcarbamoyl) phenyl] amino] carbonyl] amino] benzyl- ethyl]-N-[(2S)-2-hydroxy-3-phenoxypropyl] carbamate (4) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-1-[4-[[[[4-(propylcarbamoyl)phenyl]amino]- carbonyl] amino] benzyl] ethyl] carbamate

(5) tert-Butyl N-[(1S)-1-[4-[[[[4-(dimethylcarbamoyl)- phenyl] amino] carbonyl] amino] benzyl]-2-hydroxyethyl]-N- [(2S)-2-hydroxy-3-phenoxypropyl] carbamate Example 32 To a solution of tert-butyl N- [ (lS)-2-hydroxy-l- [4- [[[[3-(methylcarbamoyl)phenyl]amino] carbonyl] amino] benzyl]- ethyl]-N-[(2S)-2-hydroxy-3-phenoxypopyl] carbamate (7.2 mg) in a mixed solvent of 1,2-dichloroethane (100 1) and methanol (25 V. 1) was added trifluoroacetic acid (100 1) and the mixture was stirred at room temperature for 3 hours.

The solvent was removed by evaporation to give 3- [ [ [ [4- [(2S)-3-hydroxy-2-[[(2S)-2-hydroxy-3-phenoxypropyl] amino]- propyl] phenyl] amino] carbonyl] amino]-N-methylbenzamide trifluroacetate (7.2 mg) as a pale yellow foam.

MS m/z: 493 (MH+) Example 33 The following compounds were obtained according to a similar manner to that of Example 32.

(1) 3- [ [ [ [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino]-N-propylbenzamide trifluroacetate MS m/z: 521 (MH+) (2) 3-[[[[4-[(2S)-3-Hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino]-N, N-dimethylbenzamide trifluoroacetate MS m/z: 507 (MH+) (3) 4- [ [ [ [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- pyhenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino]-N-methylbenzamide trifluoroacetate

NMR (DMSO-d6, S) : 2.76 (3H, d, J=4.5Hz), 2.86-4. 30 (10H, m), 5.41 (1H, br), 5. 83 (1H, br), 6.94-7.00 (3H, m), 7.21 (2H, d, J=8.5Hz), 7.28-7. 36 (2H, m), 7.44 (2H, d, J=8. 5Hz), 7.52 (2H, d, J=8.8Hz), 7.77 (2H, d, J=8.8Hz), 8.32 (2H, br), 8.69 (1H, br), 9.11 (1H, br s), 9.31 (1H, br s) MS m/z: 493 (MH+) (4) 4- [ [ [ [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino]-N-propylbenzamide trifluoroacetate NMR (DMSO-d6, S) : 0.88 (3H, t, J=7.4Hz), 1.43-1.58 (2H, m), 2.80-4.20 (10H, m), 5.44 (1H, br), 5. 86 (1H, br), 6.94-7.00 (3H, m), 7.21 (2H, d, J=8.5Hz), 7.28-7.36 (2H, m), 7.44 (2H, d, J=8.5Hz), 7.51 (2H, d, J=8.7Hz), 7.78 (2H, d, J=8.7Hz), 8.32 (2H, br), 8.92 (1H, br), 9.08 (1H, br s), 9.28 (1H, br s) MS m/z: 521 (MH+) (5) 4- [ [ [ [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl]- amino]-N, N-dimethylbenzamide trifluroacetate NMR (DMSO-d6, b) : 2.61-3.65 (7H, m), 2.96 (6H, s), 3.96-4.00 (2H, m), 4.20 (1H, br) 5.32 (1H, br), 5. 89 (1H, br), 6.94-7.00 (3H, m), 7.20 (2H, d, J=8. 5Hz), 7.31 (2H, t, J=8.1Hz), 7.35 (2H, d, J=8.7Hz), 7.44 (2H, d, J=8.5Hz), 7.51 (2H, d, J=8. 7Hz), 8.32 (1H, br), 8.67 (1H, br), 8.93 (1H, br s), 9.06 (1H, br s) MS m/z: 507 (MH+) Example 34 To a solution of N- [4- [ (2S)-2-amino-3- hydroxypropyl] phenyl]-N'-phenylurea hydrochloride (222 mg) in ethanol (5. 0 ml) were added successively N, N-

diisopropylethylamine (264 Fl) and (2S)-2- [ [4- (benzyloxy) phenoxy] methyl] oxirane (212 mg) and the solution was refluxed for 13.5 hours. After cooling to room temperature, the precipitates were collected by filtration, washed with ethanol, and dried under reduced pressure to give N-[4-[(2s)-2-[[(2S)-3-[4-(benzyloxy)phenoxy]-2- <BR> <BR> <BR> <BR> hydroxypropyl] amino]-3-hydroxypropyl] phenyl]-N'-phenylurea (166 mg) as a white solid.

MS m/z: 542 (MH+) Example 35 N-[4[(2S)0-2-[[(2S)-3-[4-(Benzyloxy)phenoxy]-2- <BR> <BR> <BR> <BR> hydroxypropyl] amino]-3-hydroxypropyl] phenyl]-N'-phenylurea (159 mg) was dissolved in a mixed solvent of methanol (2.5 ml) and 1,4-dioxane (2.5 ml) under heating. After cooling to room temperature, 10% palladium on activated carbon (50% wet, 159 mg) was added and the mixture was hydrogenated at 1 atm for 4 hours. The catalyst was removed by filtration and washed with methanol. The filtrate was concentrated in vacuo to give N- [4- [ (2S)-3-hydroxy-2- [ [ (2S)-2-hydroxy-3- (4- hydroxyphenoxy) propyl] amino] propyl] phenyl]-N'-phenylurea (129 mg) as a white solid.

IR (KBr): 3456,3296,3033,1643,1595,1560,1511, 1442,1230,1101,1041,827 cm-1 NMR (DMSO-d6, S) : 2.55-2.78 (5H, m), 3.23 (2H, br), 3.73-3.82 (3H, m), 4.52 (1H, br), 4.89 (1H, br), 6.65 (2H, d, J=9.2Hz), 6.74 (2H, d, J=9.2Hz), 6.95 (1H, t-like, J=7.3Hz), 7.09 (2H, d, J=8.4Hz), 7.25 (2H, d, J=8.3Hz), 7.34 (2H, d, J=8.4Hz), 7.44 (2H, d, J=7. 6Hz), 8.57 (1H, br), 8.63 (1H, br), 8.87 (1H, br) MS m/z: 452 (MH+) Example 36 To a solution of (2S)-3- (4-aminophenyl)-2- [N-benzyl-N-

[(2S)-2-hydroxy-3-phenoxypropyl] amino]-1-propanol (300 mg) in 1,2-dichloroethane (3.0 ml) was added N, 0- bis (trimethylsilyl) acetamide (182 µl) and the solution was stirred at room temperature for 1 hour. To the solution were added successively 4- (methoxycarbonyl) benzoic acid (160 mg), 1-hydroxybenzotriazole hydrate (120 mg), and 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (170 mg) at room temperature. After stirring at the same temperature for 3 hours, N, 0-bis (trimethylsilyl) acetamide (182 µl) was added and the mixture was stirred overnight.

The mixture was diluted with ethyl acetate (30 ml) and washed with a saturated aqueous sodium bicarbonate solution (30 ml x 1), water (30 ml x 2) and brine (30 ml x 1) successively, dried over magnesium sulfate, and evaporated to give a yellow solid. The solid was dissolved in tetrahydrofuran (3.0 ml). To the solution was added a 1.0 M solution of tetrabutylammonium fluoride in tetrahydrofuran (1.48 ml) at room temperature and the solution was stirred for 10 minutes. The solution was diluted with ethyl acetate (20 ml) and washed with water (20 ml x 2) and brine (20 ml x 1) successively, dried over magnesium sulfate, and evaporated to give a yellow solid. The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) and silica gel chromatography (eluent: hexane/ethyl acetate = 1/1) to give methyl 4- [ [ [4- <BR> <BR> <BR> [(2S)-2-[N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]- 3-hydroxypropyl] phenyl] amino] carbonyl] benzoate (132 mg) as a pale yellow solid.

MS m/z: 569 (MH+) Example 37 To a solution of methyl 4- [ [ [4- [ (2S)-2- [N-benzyl-N- [(2S)-2-hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl]- phenyl] amino] carbonyl] benzoate (30.0 mg) in methanol (1.0

ml) was added 10% palladium on activated carbon (50-wet, 30 mg) and the mixture was hydrogenated at 1 atm for 2 hours.

The catalyst was filtered off and washed with methanol. The filtrate was concentrated in vacuo to give methyl 4- [ [ [4- [(2S)-3-hydroxy-2-[[(2S)-2-hydroxy-3-phenoxypropyl] amino]- propyl] phenyl] amino] carbonyl] benzoate (21.9 mg) as a white solid.

Example 38 To a suspension of methyl 4- [ [ [4- [ (2S)-3-hydroxy-2- [[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl]- amino] carbonyl] benzoate (19.3 mg) in methanol (1.0 ml) was added 1N sodium hydroxide solution (40.3 ßl) and the suspension was refluxed for 10 hours. An additional portion of 1N sodium hydroxide solution (40.3 ßl) was added and the mixture was refluxed for 3 hours. After cooling to room temperature, the solvent was removed by evaporation to give sodium 4-[[[4-[(2S)-3-hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl] amino] carbonyl] benzoate (20.6 mg) as a white solid.

MS m/z: 487 (MH+) Example 39 To a solution of methyl 4- [ [ [4- [ (2S)-2- [N-benzyl-N- [(2S)-2-hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl]- phenyl] amino] carbonyl] benzoate (93.6 mg) in methanol (2.0 ml) was added 1N sodium hydroxide solution (329 1) and the solution was refluxed for 2.5 hours. After cooling to room temperature, the mixture was neutralized by the addition of 1N hydrochloric acid (329 las). The solvent was removed by evaporation and the residual solid was suspended in water (2.0 ml). The solid was collected by filtration, washed with water, and dried under reduced pressure to give 4- [ [ [4- <BR> <BR> <BR> [(2S)-2-[N-benzyl-N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]- 3-hydroxypropyl] phenyl) amino] carbonyl] benzoic acid (80.2 mg)

as a white solid.

MS (negative) m/z: 553 (M-H+) Example 40 To a solution of 4- [ [ [4- [ (2S)-2- [N-benzyl-N- [ (2S)-2- hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]- amino] carbonyl] benzoic acid (14.6 mg) in N, N- dimethylformamide (200 pl) were added 1.0 M solution of 1- hydroxybenzotriazole hydrate in N, N-dimethylformamide (31.6 Fl) and 1.0 M solution of 1- [3- (dimethylamino) propyl]-3- ethylcarbodiimide in 1,2-dichloroethane (31.6 µl) at room temperature. To the mixture was added methylamine hydrochloride (2.2 mg) and the whole was stirred overnight.

The reaction mixture was diluted with ethyl acetate (10 ml) and washed with water (10 ml x 1) and brine (10 ml x 1) successively, dried over magnesium sulfate, and evaporated to give a pale yellow paste. The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) to give Nl- [4- [ (2S)-2- [N-benzyl- <BR> <BR> <BR> <BR> N-[(2S)-2-hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl]- phenyl]-N4-methylterephthalamide (14.0 mg) as a white solid.

Example 41 The following compounds were obtained according to a similar manner to that of Example 40.

(1) Nl- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-N4, N4- dimethylterephthalamide (2) Nl- [4- [ (2S)-2- [N-Benzyl-N- [ (2S)-2-hydroxy-3- phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-N4- propylterephthalamide

Example 42 To a solution of Nl- [4- [ (2S)-2- [N-benzyl-N- [ (2S)-2- hydroxy-3-phenoxypropyl] amino]-3-hydroxypropyl] phenyl]-N4- methylterephthalamide (14.0 mg) in methanol (0.5 ml) was added 10% palladium on activated carbon (50% wet, 14.0 mg) and the mixture was hydrogenated at 1 atm for 3 hours. The catalyst was filtered off and washed with methanol. The filtrate was concentrated in vacuo to give Nl- [4- [ (2S)-3- hydroxy-2-[[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl]- phenyl]-N4-methylterephthalamide (9.7 mg) as a white solid.

MS m/z: 478 (MH+) Example 43 The following compounds were obtained according to a similar manner to that of Example 42.

(1) N1-[4-[(2S)-3-Hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N4, N4- dimethylterephthalamide MS m/z: 492 (MH+) (2) N1-[4-[(2S)-3-Hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-N4- propylterephthalamide MS m/z: 505 (MH+) Example 44 To a solution of tert-butyl N-[(1S)-1-(4-aminobenzyl)- 2-hydroxyethyl]-N-[(2S)-2-hydroxy-3-phenoxypropyl] carbamate (200 mg) in N, N-dimethylformamide (2.0 ml) was added successively 1-methyl-lH-pyrrole-2-caroxylic acid (72.1 mg) and 1-hydroxybenzotriazole hydrate (77.9 mg). To the mixture was added 1-[3-(dimethylamino)propyl]-3- ethylcarbodiimide hydrochloride (110 mg) at room temperature and the mixture was stirred overnight. The mixture was

diluted with ethyl acetate (20 ml) and washed with water (20 ml x 2), a saturated aqueous sodium hydrogencarbonate solution (20 ml x 1) and brine (20 ml x 1) successively.

The organic solution was dried over magnesium sulfate, filtered, and evaporated to give a yellow solid. The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) to give tert-butyl N-[(1S)-2-hydroxy-1-[4-[[(1-methyl-1H- pyrrol-2-yl) carbonyl] amino] benzyl] ethyl]-N- [ (2S)-2-hydroxy- 3-phenoxypropyl] carbamate (163 mg) as a white foam.

MS (ESI) m/z: 546 (M+Na+) Example 45 The following compounds were obtained according to a similar manner to that of Example 44.

(1) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-1-[4-[[(2-phenoxy-3-pyridyl) carbonyl] amino]- benzyl] ethyl] carbamate MS m/z: 636 (M+Na+) (2) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-l- [4- [ (8-quinolinylcarbonyl) amino] benzyl]- ethyl] carbamate MS m/z: 594 (M+Na+) (3) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-1-[4-[[[5-[4-(trifluoromethyl)phenyl]-1, 3- oxazol-4-yl] carbonyl] amino] benzyl] ethyl] carbamate MS m/z: 678 (M+Na+) (4) tert-Butyl N-[(1S)-2hydroxy-1-[4-[[(5-methyl-1-phenyl- lH-pyrazol-4-yl) carbonyl] amino] benzyl] ethyl]-N- [ (2S)-2- hydroxy-3-phenoxypropyl] carbamate

MS m/z: 623 (M+Na+) (5) tert-Butyl N-[(1S)-2-hydroxy-1-[4-[[(2-methyl-1H- benzimidazol-5-yl) carbonyl] amino] benzyl] ethyl]-N-[(2S)- 2-hydroxy-3-phenoxypropyl] carbamate MS m/z: 597 (M+Na+) (6) tert-Butyl N-[(1S)-2-hydroxy-1-[4-[(1H-indol-5- ylcarbonyl) amino] benzyl] ethyl]-N-[(2S)-2-hydroxy-3- phenoxypropyl] carbamate MS m/z: 582 (M+Na+) (7) tert-Butyl N-[(1S)-2-hydroxy-1-[4-[[(1-methyl-1H-indol- 3-yl) carbonyl] amino] benzyl] ethyl]-N-[(2S)-2-hydroxy-3- phenoxypropyl] carbamate MS m/z: 596 (M+Na+) (8) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-l- [4- [ (lH-pyrrol-3-ylcarbonyl) amino]- benzyl] ethyl] carbamate MS m/z: 532 (M+Na+) (9) tert-Butyl N-[(2S)-2-hydroxy-3-phenoxypropyl]-N-[(lS)- 2-hydroxy-1- [4- [ (lH-pyrrol-2-ylcarbonyl) amino] benzyl]- ethyl] carbamate NMR (CDC13, b) : 1.46 (9H, s), 2.35-4.45 (10H, m), 6.21- 6.36 (1H, m), 6.60-7.35 (9H, m), 7.51 (2H, d, J=8Hz), 7.58 (1H, br s), 9.59 (1H, br s) MS m/z: 532 (M++Na) Example 46 tert-Butyl N-[(1S)-2-hydroxy-1-[4-[[(1-methyl-1H- pyrrol-2-yl) carbonyl] amino] benzyl] ethyl]-N-[(2S)-2-hydroxy- 3-phenoxypropyl] carbamate (158 mg) was dissolved in 4N hydrogen chloride in ethanol (2.0 ml) and the solution was

stirred at room temperature for 2 hours. The solvent was removed by evaporation and the residual solid was dried under reduced pressure to give N- [4- [ (2S)-3-hydroxy-2- [[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl] phenyl]-1- methyl-lH-pyrrole-2-carboxamide hydrochloride (125 mg) as a pale orange crystalline solid.

MS m/z: 424 (M+Na+) Example 47 The following compounds were obtained according to a similar manner to that of Example 46.

(1) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-2- phenoxynicotinamide hydrochloride MS m/z: 514 (MH+) (2) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-8- quinolinecarboxamide dihydrochloride MS m/z: 472 (MH+) (3) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-5- [4- (trifluoromethyl) phenyl]-1, 3-oxazole-4-carboxamide hydrochloride MS m/z: 556 (M+Na+) (4) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-5-methyl-1-phenyl- lH-pyrazole-4-carboxamide hydrochloride MS m/z: 501 (M+Na+) (5) N-[4-[(2S)-3-Hydroxy-2-[[(2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-2-methyl-lH-

benzimidazole-5-carboxamide dihydrochloride MS m/z: 475 (MH+) (6) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-lH-indole-5- carboxamide hydrochloride MS m/z: 460 (M+Na+) (7) N- [4- [ (2S)-3-Hydroxy-2- [ [ (2S)-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-l-methyl-lH-indole- 3-carboxamide hydrochloride MS m/z: 474 (MH+) Example 48 To a solution of tert-butyl N-[(lS)-1-(4-aminobenzyl)- 2-hydoxyethyl]-N- [ (2R)-2- (3-chlorophenyl)-2- hydroxyethyl] carbamate (120 mg) in N, N-dimethylformamide (2.0 ml) was added successively 4-phenyl-lH-pyrrole-3- carboxylic acid (64.0 mg) and 1-hydroxybenzotriazole hydrate (46.2 mg). To the mixture was added 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (65.6 mg) at room temperature and the mixture was stirred overnight. The mixture was diluted with ethyl acetate (20 ml) and washed with water (20 ml x 2), a saturated aqueous sodium hydrogencarbonate solution (20 ml x 1) and brine (20 ml x 1) successively. The organic solution was dried over magnesium sulfate, filtered, and evaporated to give a yellow solid. The crude product was purified by a recycling preparative high pressure liquid chromatography equipped with a gel permeation chromatography column (eluent: chloroform) to give tert-butyl N- [ (2R)-2- (3-chlorophenyl)-2- hydroxyethyl]-N-[(1S)-2-hydroxy-1-[4-[[(4-phenyl-1H-pyrrol- 3-yl) carbonyl] amino] benzyl] ethyl] carbamate (16 mg) as a yellow foam.

MS (ESI) m/z: 612 (M+Na+)

Example 49 The following compounds were obtained according to a similar manner to that of Example 48.

(1) tert-Butyl N- [ (2R)-2- (3-chlorophenyl)-2-hydroxyethyl]- N-[(1S)-2-hydroxy-1-[4-[[(1-methyl-1H-indol-5- yl) carbonyl] amino] benzyl] ethyl] carbamate MS (ESI) m/z: 600 (M+Na+) (2) Methyl 4- [ [ [4- [ (2S)-2- [N- (tert-butoxycarbonyl)-N- [ (2R)- 2- (3-chlorophenyl)-2-hydroxyethyl] amino]-3- hydroxypropyl] phenyl] amino] carbonyl] benzoate MS m/z: 483 and 485 (MH+-100) Example 50 tert-Butyl N- [ (2R)-2- (3-chlorophenyl)-2-hydroxyethyl]- N-[(1S)-2-hydroxy-1-[4-[[(4-phenyl-1H-pyrrol-3- yl) carbonyl] amino] benzyl] ethyl] carbamate (13.3 mg) was dissolved in 4N hydrogen chloride in ethanol (0.5 ml) and the solution was stirred at room temperature for 5 hours.

The solvent was removed by evaporation to give N- [4- (2S)-2- [ [ (2R)-2- (3-chlorophenyl)-2-hydroxyethyl] amino]-3- hydroxypropyl] phenyl]-4-phenyl-lH-pyrrole-3-carboxyamide hydrochloride (12.8 mg) as a pale yellow solid.

MS m/z : 490 (MH+) Example 51 The following compounds were obtained according to a similar manner to that of Example 50.

(1) Methyl 4- [ [ [4- [ (2S)-2- [ [ (2R)-2- (3-chlorophenyl)-2- hydroxyethyl] amino]-3-hydroxypropyl] phenyl] amino]- carbonyl] benzoate hydrochloride MS m/z: 483 (MH+)

(2) N-[4-[(2S)-3-Hydroxy-2-[[(2S-2-hydroxy-3- phenoxypropyl] amino] propyl] phenyl]-lH-pyrrole-2- carboxamide hydrochloride NMR (DMSO-d6, b) : 2.70-3.75 (7H, m), 3.84-4.12 (2H, m), 4.12-4.40 (1H, m), 5.41 (1H, m), 5.89 (1H, m), 6.16 (1H, m), 6.80-7.12 (5H, m), 7.12-7.44 (4H, m), 7.72 (2H, d, J=8Hz), 8.42 (1H, br s), 8.93 (1H, br s), 9.81 (1H, br s), 11.70 (1H, br s) MS m/z: 410 (M++1) Example 52 tert-Butyl N-[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]- N-[(1S)-2-hydroxy-1-[4-[[(1-methyl-1H-indol-5- yl) carbonyl] amino] benzyl] ethyl] carbamate (101 mg) was dissolved in 4N hydrogen chloride in ethanol (1.0 ml) and the solution was stirred at room temperature for 5 hours.

The solvent was removed by evaporation and the residual solid was dissolved in methanol. To the solution was added 1N sodium hydroxide solution (175 Al) and the solvent was removed by evaporation. The residue was chromatographed on silica gel (eluent: chloroform/methanol = 9/1) to give N- [4- [(2S)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]amino]-3-, hydroxypropyl] phenyl]-1-methyl-lH-indole-5-carboxamide (34.2 mg) as a pale yellow solid.

MS m/z: 478 (MH+) Example 53 To a suspension of methyl 4- [ [ [4- [ (2S)-2- [ [ (2R)-2- (3- chlorophenyl)-2-hydroxyethyl] amino]-3-hydroxypropyl]- phenyl] amino] carbonyl] benzoate hydrochloride (101 mg) in methanol (4.0 ml) was added 1N sodium hydroxide solution (486 jj. l) and the mixture was refluxed for 90 minutes. After cooling to room temperature, the solvent was removed by evaporation. The residual solid was applied on a solid

phase extraction cartridge (BOND ELUT C18,20 ml, VARIAN) and eluted with water and methanol successively. The eluents containing the target compound were combined and concentrated in vacuo to give sodium 4-[[[4-[(2S)-2-[[(2R)- <BR> <BR> <BR> <BR> 2- (3-chlorophenyl)-2-hydroxyethyl] amino]-3-hydroxypropyl]- phenyl] amino] carbonyl] benzoate (66.7 mg) as an off-white solid.

MS m/z: 491 (MH+) Example 54 To a stirred suspension of (2S)-3- (4-aminophenyl)-2- [N- benzyl-N- [ (2S)-3- [4- (benzyloxy) phenoxy]-2- hydroxypropyl] amino]-1-propanol (51.3 mg), lH-pyrrole-2- carboxylic acid (11.9 mg) and 1-hydroxybenzotriazole hydrate (13.5 mg) in 1,2-dichloromethane (1.0 ml) was added 1- [3- (dimethylamino) propyl]-3-ethylcarbodiimide hydrochloride (21.5 mg) under ice-cooling and the resulting mixture was stirred at room temperature overnight. The mixture was diluted with saturated aqueous sodium hydrogencarbonate solution and extracted twice with ethyl acetate. The extracts were combined, washed twice with brine, dried over magnesium sulfate, and concentrated in vacuo. The residue was purified by preparative thin layer chromatography (eluent: toluen/ethyl acetate = 5/5) to give N- [4- [ (2S)-2- <BR> <BR> <BR> <BR> [N-benzyl-N- [ (2S)-3- [4- (benzyloxy) phenoxyl-2-hydroxypropyll- amino]-3-hydroxypropyl] phenyl]-lH-pyrrole-2-carboxamide (43 mg) as a gum.

MS m/z: 606 (MH+) Example 55 To a solution of N- [4- [ (2S)-2- [N-benzyl-N- [ (2S)-3- [4- (benzyloxy) phenoxy]-2-hydroxypropyl] amino]-3-hydroxypropyl]- phenyl]-lH-pyrrole-2-carboxamide (40 mg) in methanol (2.0 ml) was added 10% palladium on activated carbon (50'-c, wet, 10 mg) and the mixture was hydrogenated at 1 atm for 3 hours.

The catalyst was filtered off and washed with methanol. The filtrate was concentrated in vacuo and the residue was powdered from ether and dried to give N- [4- [ (2S)-3-hydroxy- 2- [ [ (2S)-2-hydroxy-3- (4-hydroxyphenoxy) propyl] amino] propyl]- phenyl]-lH-pyrrole-2-carboxamide (26 mg) as a gray powder.

MS m/z: 426 (MH+) Example 56 Under nitrogen, a solution of (S)-N- [4- (2-amino-3- hydroxypropyl) phenyl] benzamide (60 mg) and (S)-4- (2- oxiranylmethoxy) carbazole (42.5 mg) in ethanol (10 ml) was refluxed for 18 hours. The mixture was evaporated in vacuo.

The residue was purified by column chromatography on silica gel (chloroform: methanol = 100: 1) to give N- [4- [ (2S)-2- [ [ (2S)-3- (9H-carbazol-4-yloxy)-2-hydroxypropyl] amino]-3- hydroxypropyl] phenyl] benzamide (50 mg) as a colorless foam.

IR (KBr): 3300-3000,1725,1650,1602,1511,1446, 1259 cm-1 NMR (MeOD-d4, 5) : 2.50-3.10 (4H, m), 3.20-3.70 (3H, m), 4.10-4.00 (3H, m), 6.60 (1H, d, J=7.8Hz), 7.05- 8.00 (14H, m), 8.3 (1H, d, J=7.8Hz) MS m/z: 510 (M+1) Example 57 The following compounds were obtained according to a similar manner to that of Example 56.

(1) N- [4- [ (2S)-2- [ [ (2R)-2- (3-Chlorophenyl)-2- hydroxyethyl] amino]-3-hydroxypropyl] phenyl] benzamide IR (KBr): 3500-3000,1650,1598,1515,1411,1321, 1263 cm-1 NMR (MeOD-d4,) : 2.70-3.20 (4H, m), 3.40-3.80 (3H, m), 4.70-4.80 (1H, m), 7.10-7.70 (11H, m), 7.90-8.00 (2H, m) MS m/z: 425 (M+1)

(2) N-[4-[(2S)-2-[[(2S)-3-(1H-Indoly-4-yloxy)-2- hydroxypropyl] amino]-3-hydroxypropyl] phenyl] benzamide IR (KBr): 3400-3000,1658,1646,1598,1513,1444,1241, 1091 cm-1 NMR (MeOD-d4, 8) : 2.70-3.20 (5H, m), 3.30-3.70 (2H, m), 4.00-4.25 (3H, m), 6.40-6.60 (2H, m), 6.90-8.00 (12H, m) MS m/z: 460 (M+1) Example 58 In 4N hydrogen chloride in ethanol (2.0 ml), tert-butyl N- [ (2S)-2-hydoxy-3-phenoxypropyl]-N- [ (lS)-2-hydroxy-1- [4- [(lH-pyrrol-3-ylcarbonyl) amino] benzyl] ethyl] carbamate (113.5 mg) was dissolved and the solution was stirred at room temperature for 30 hours. After concentration under reduced pressure, the residue was extracted with ethyl acetate (20 ml) and washed with saturated sodium hydrogencarbonate aqueous solution (20 ml). The organic layer was separated and the aqueous layer was extracted twice with ethyl acetate (20 ml). The organic layers were combined and washed with brine, and dried over magnesium sulfate to give N- [4- [ (2S)- <BR> <BR> <BR> 3-hydroxy-2-[[(2S)-2-hydroxy-3-phenoxypropyl] amino] propyl]- phenyl]-lH-pyrrole-3-carboxamide (18.2 mg) as a yellow solid.

MS m/z: 410 (MH+), 432 (M+Na+) Example 59 Step 1: Preparation of Polymer-Bound HOBt ester (1)

Polystyrene-bound 1-hydroxybenzotriazole (HOBt), bis- (6-carboxy-HOBt)-N- (2-aminoethyl) aminomethyl polystyrene (200 mg, 1.54 mmole/g, Novabiochem) was added to a 6 ml polypropylene tube (Varian). A solution of a carboxylic acid derivative or hydrochloride thereof corresponding to an objective amide derivative in N, N- dimethylformamide (DMF) (0.4 M, 2.3 ml) was added to the tube and shaken for 5 minutes. To the reaction mixture was added 1,3-diisopropylcarbodiimide (72.4 pi) and shaken for 3 hours at ambient temperature. The resin was filtered and washed well with DMF. An additional 2.3 ml of 0.4 M carboxylic acid derivative solution in DMF and 1,3- diisopropylcarbodiimide (72.4 ul) were added and shaken for 3 hours at ambient temperature. The resultant resin was filtered, washed well subsequently with DMF, dichloromethane (DCM), diethyl ether, and dried under reduced pressure to give polymer-bound HOBt ester (1).

Step 2: General Procedure for the Amide Derivatives (2)

To a 6 ml polypropylene tube (Varian) was added 0.024 M solution of tert-butyl N- [ (lS)-l- (4-aminobenzyl)-2- hydroxyethyl]-N-[(2S)-2-hydroxy-3-phenoxypropyl] carbamate in DCM (1 ml) and N, 0-bis (trimethylsilyl) acetamide (18 ul).

After shaking for 30 minutes, polymer-bound HOBt ester (100 mg) was added to the reaction mixture and shaken overnight at ambient temperature. The polymer was filtered, washed well with DCM and concentrated under reduced pressure. To the resultant residue was added 1 ml of 50% trifluoroacetic acid (TFA) in DCM and shaken for 3 hours at ambient temperature. The solvent was evaporated and purified by HPLC (reverse phase C18, 0-80 0.1% TFA in acetonitrile/0.1% TFA in water. The fractions containing the desired compound were combined, evaporated and dried under reduced pressure to give the objective amide derivative (2).

Following the Steps 1 and 2 outlined above, the compounds listed in Table 1 were obtained.

Table 1 Example B MS [M+H] + Data ci 59- (1) 1 4 5 0 59- (2) 411 437 59- (3) OCH3 59- (4) I 1 481 OC3 59- (5) \=/1 411 s 59- (6) 1 427 s 59- (7) S 427 H 59- (8) 460 s 59-(9) < 1 477 Y1 59- (10) 2 450 Example MS [M+H] + Data N \ - (11) N", N OH 59- l2, t 1 451 zea w S9- (13) I, 1 47S

Example 60 General Procedure for the Amide Derivatives (3) 3 To a solution of tert-butyl N-[(1S)-1-(4-aminobenzyl)- 2-[(trimethylsilyl) oxy] ethyl]-N-[(2S)-3-phenoxy-2- [(trimethylsilyl) oxy] propyl] carbamate in N, N- dimethylformamide (DMF) (0.059 M, 300 ul) was added a carboxylic acid derivative or hydrochloride thereof corresponding to an objective amide derivative (21.4 uM) and a solution of benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate in DMF (0.142 M, 150 ul). After shaking for 5 minutes, to the reaction mixture was added N, N- diisopropylethylamine (DIEA, 7.8 µl) and shaken overnight at

ambient temperature. In the case that 3-pyridylacetic acid was used as a carboxylic acid derivative, additional 15.6 pi of DIEA was added to the reaction mixture. The reaction mixture was loaded onto the solid-phase extraction cartridge (Waters, Oasis) conditioned using acetonitrile (CH3CN, 6 ml) and water (6 ml), washed with water (6 ml) and 10% CH3CN in water (6 ml), and eluted with CH3CN (6 ml). Evaporation of the solvent gave a residue, to which was added 50% trifluoroacetic acid in dichloromethane (DCM) (1 ml) and shaken for 3 hours at ambient temperature. Evaporation of the solvent gave a residue, which was purified by HPLC (reverse phase C18, 0-80% 0.1% TFA in CH3CN/0. 1% TFA in water). The fractions containing the desired compound were combined, evaporated and dried under reduced pressure to give the objective amide derivative (3).

Following the procedure outlined above, the compounds listed in Table 2 were obtained.

Table 2 Example B MS [M+H] + Data -, _C N 60- (1) 1 422 H H N 60- (2) 1 474 --job Example B MS [M+H] + Data 60- (3) 1 427 F 60- (4) 1 457 F F N 60- (5) 2 436 60- (6) 2 422 60-(7) SN 1 472 i 60-(8) n 1 472 L v 60- (9) N 2 411 \NH 60- (10) 1 460 N-NU N-NH 60-(11) N-NH 1 461 t1 Example B p MS [M+H] + Data 60-(12) t 1 486 N H H N 60-(13) aN 1 475 60- (14) \ 1 474 CL3 'CHg CH3 CH3 60- (15) 1 435 i CH3 60- (16) I 1 435 60- (17) 1 435 F ""CHg F 60-(18) t 1 439 i F 60- (19) 1 439 60- (20) 439 F N02 60-(21) t 1 466 i Example B MS [M+H] + Data N02 60- (22) NO 2 1 466 i 60- (23) 1 466 CL3 CF3 60-(24) X l 489 ---6 CAF3 60-(25) < l 489 i 60-(26) eCF3 1 489 CF3

Example 61 General Procedure for the Amide Derivatives (4) 4 Method A To a solution of a carboxylic acid derivative corresponding to an objective amide derivative (0. 024 mmol) in NMP (36 ul) was added 1.0 M solution of N, 0- bis (trimethylsilyl) acetamide (BSA) in N-methyl-2- pyrrolidinone (NMP) (12 ul, 0.012 mmol). After shaking for

30 minutes at room temperature, 1.0 M solution of N, N- diisopropylethylamine (DIEA) in NMP (50 ul, 0. 05 mmol) and 0.5 M solution of benzotriazol-1-yloxytripyrrolidino- phosphonium hexafluorophosphate in NMP (60 pi, 0.03 mmol) were added to the solution and the mixture was shaken for 30 minutes at room temperature. In another vessel, a solution of tert-butyl N-[(lS)-1-(4-aminobenzyl)-2-hydroxyethyl]-N- [ (2R)-2- (3-chlorophenyl)-2-hydroxyethyl] carbamate (0.02 mmol) in NMP (20 ul) and 1.0 M solution of BSA in NMP (20 pi, 0.02 mmol) was shaken for 30 minutes at room temperature, and the solution was added to the above activated ester solution. The mixture was allowed to warm to 50°C and shaken for 2 hours. After cooling to room temperature, 0.5 ml of 95% trifluoroacetic acid (TFA) in water was added to the solution and shaken for 15 hours. The mixture was concentrated under reduced pressure and purified by HPLC (reverse phase C18, 0-80% 0.1% TFA in acetonitrile (CH3CN)/0. 1 ; TFA in water. The fractions containing the desired compound were combined, concentrated and dried under reduced pressure to give the objective amide derivative (4).

Method B To a solution of a carboxylic acid derivative or hydrochloride thereof corresponding to an objective amide derivative (0.024 mmol) in NMP (36 ul) was added 1.0 M solution of BSA in NMP (12 ul, 0.012 mmol).

After shaking for 30 minutes at room temperature, 0.5 M solution of 1-hydroxybenzotriazole (HOBt) in NMP (60 pi, 0.03 mmol) and 0.5 M solution of 1-ethyl 3- (3'- dimethylaminopropyl) carbodiimide (EDC) in NMP (60 ul, 0.03 mmol) were added to the solution and the mixture was shaken for 30 minutes at room temperature. In another vessel, a solution of tert-butyl N- [ (lS)-l- (4-aminobenzyl)-2-

hydroxyethyl]-N- [ (2R)-2- (3-chlorophenyl)-2- hydroxyethyl] carbamate (0.02 mmol) in NMP (20 ul) and 1.0 M solution of BSA in NMP (20 pi, 0.02 mmol) was shaken for 30 minutes at room temperature, and the solution was added to the above activated ester solution. The mixture was allowed to warm to 50°C and shaken for 15 hours. After cooling to room temperature, 0.5 ml of 95% TFA in water was added to the solution and shaken for 15 hours. The mixture was concentrated under reduced pressure and purified by HPLC (reverse phase C18, 0-80% 0.1% TFA in CH3CN/0. 1% TFA in water). The fractions containing the desired compound were combined, concentrated and dried under reduced pressure to give the objective amide derivative (4).

Following Method A or Method B outlined above, the compounds listed in Table 3 were obtained.

Table 3 Example B MS [M+H] + Data Method 61-(1) XN 426,428 A N 429 A 61- (2) 427, 429 A N S 61-(3) 431,433 A Example B MS [M+H] + Data Method 0 61- (4) 415,416 A 61- (S) 475 A i 61-(6) NX 476,477 A N 61- (7) N 476, 477 A N N 61-(8) 476 A i 61-(9) X 476, 477 A i N N 61- (10) 477, 478 A ZON I 61-(11) < 585,586 A CHUG s CH3 I 428 A 61- 428 A Example B MS [M+Hl+ Data Method I ON 61- (13) 518 A 61-(14) H3COX 455 A 3 61- (15) 455 A OCH3 61- (16) 455,456 A N N W 61- (17) 426 A 426 A 61- (18) 426 A s 61- (19) S 431 A i 61-(20) < 415 A X 61- (21) 522, 523 A H3C Example B MS [M+H] + Data Method 61- (22) N 476,478 A N I N 61-(23) < 476 A W 61- (24) 475, 476 A 61- (25) 476, 477 A N N 61- (26) 478 A N : C N 61-(27) < 506 A OH LOCH3 p OCH3 61- (28) 495 A 61- (29) 459,461 A fizz 61- (30) 459,461 A ci 61-(31) eCl 459 A C1 Example B MS [M+H] + Data Method NH 61- (32) J--D 478,479 A H N 61- (33) 414 B 61- (34) 464 B HN han 61-(35) X 464,465 B NU 61- (36) 478 B N-CH3 N-CH3 61-(37) mN-CH3 478 B (S 61- (38) 481,482 B N 61- (39) NH 466 B W H 61- (40) 482,484 B F Example B MS [M+H] + Data Method CH3 61- (41) N 506,507 A N zon 61- (42) N 477 A 61-(43) tNH 414 B nu oh 490, 491 B

Example 62 General Procedure for the Amide Derivatives (5) 5 A mixture of a carboxylic acid derivative corresponding to an objective amide derivative (0.024 mmol) and 1.0 M pyridine in 1,2-dichloroethane (DCE) (24 ul) was treated with 1.0 M solution of oxallyl chloride in DCE (26 pl) at room temperature. After stirring for 1

hour, the mixture was diluted with N-methyl-2-pyrrolidinone (NMP) (20 pl). To a solution of tert-butyl N-[(1S)-1-(4- aminobenzyl)-2-hydroxyethyl]-N- [ (2R)-2-hydroxy-3- phenoxypropyl] carbamate (0.02 mmol) in NMP (20 ul) was added 1.0 M solution of N, 0-bis (trimethylsilyl) acetamide (BSA) in NMP (20 pi, 0.02 mmol), and the solution was stirred at room temperature. After stirring for 30 minutes, the solution was added to the acid chloride solution. After further stirring at 50°C for 30 minutes, the reaction mixture was treated with 95% trifluoroacetic acid (TFA) in water (500 ul) at 50°C for 30 minutes. The mixture was concentrated under reduced pressure and the residue was purified by HPLC (reverse phase C18, 0-80e 0.15 TFA in acetonitrile/0.1% TFA in water). The fractions containing the desired compound were combined, concentrated and dried under reduced pressure to give the objective amide derivative (5).

Following the procedure outlined above, the compounds listed in Table 4 were obtained.

Table 4 Example B MS [M+H] + Data CF3 1 I 62-(1) 4 565 1- Example MS [M+H] + Data 62- (2) 460 CH3 chug 62- (3) 0 ZON HIC Nit "52 6 62- (S) 497 Cl-, CH3 62- (6) 456 N Cl3 CHUG CH3 N 62- í 1 ? 512 o 0 CH3 HN 62- (8) CH3 488 N N 62- \X3 498 / Example B MS [M+H] + Data , N N 62- (10) \ 487 62- (11) 514 Nô N ZON 62- (12) \13/N 488 N 62- (13)13 486 62- (14) 487 t 497 i 62- (15) 497 62- (16) 497 62- (16) Example 63 General Procedure for the Amide Derivatives (6)

The amide derivatives above were obtained according to a similar manner to that of Example 62 using tert-butyl N- [(lS)-1-(4-aminobenzyl)-2-hydroxyethyl]-N-[(2R)-2-(3- chlorophenyl)-2-hydroxyethyl] carbamate instead of tert-butyl N-[(lS)-1-(4-aminobenzyl)-2-hydroxyethyl]-N-[(2R)-2-hydroxy- 3-phenoxypropyl] carbamate.

Following the procedure outlined above, the compounds listed in Table 5 were obtained.

Table 5 Example B MS [M+H] + Data CF3 1 i 63-(1) 4 570 1 63- (2). 464 or Example B MS [M+H] + Data N 506 b z_ Chez CH3 63- (4) 444 0 H3C N hic N N 63- (5) 531 J 63-(6) < 502 CH3 63- (7) 460 CH3 516 63- (8) 516 0 HN HN- 63- (9) X CH3 493 N N / I 63-(10) 503 i Example B MS [M+H] + Data L 491 63- (11) 63- (12) 518 '"D N O 490 63- (13) 490 63- (14) 492 63- (15) 502 i 63- (16) 502 CF3 i CF3 63- (17) 560 0 NEZ Example 64 General Procedure for the Urea Derivatives (7)

To a solution of tert-butyl N-[(lS)-1-(4-aminobenzyl)- 2-hydroxyethyl]-N-[(2R)-2-hydroxy-3-phenoxypropyl] carbamate (0.02 mmol) in N-methyl-2-pyrrolidinone (NMP) (40 pi) was added 2.0 M solution of N, 0-bis (trimethylsilyl) acetamide (BSA) in NMP (10 ul, 0.02 mmol) at room temperature. After stirring for 30 minutes, 1.0 M solution of an isocyanate derivative (O=C=N-B) corresponding to an objective urea derivative in NMP (24 ul, 0.024 mmol) and 0.1 M solution of N, N-diisopropylethylamine (DIEA) in NMP (20 ul, 0.002 mmol) were added to the solution. After further stirring at 50°C for 30 minutes, the reaction mixture was treated with 95% trifluoroacetic acid (TFA) in water (500 ul) at 50°C for 30 minutes. The mixture was concentrated under reduced pressure and the residue was purified by HPLC (reverse phase C18, 0-80% 0. 1% TFA in acetonitrile/0. 1% TFA in water). The fractions containing the desired compound were combined, concentrated and dried under reduced pressure to give the objective urea derivative (7).

Following the procedure outlined above, the compounds listed in Table 6 were obtained.

Table 6 Example B MS [M+H] + Data CH3 450 64- (l) 450 c1 64- (2) 470 515 64- (3) sis Br 64- (4) oc3 466 OCH3 CFg 64- (5) vC F 3 504 64- (6) 512 64- (7) 512 i 64- (8) 4 528 o Example B MS [M+H] + Data i 64- (9) w I 528 o i 528 64- (10) 528 64- (11) \ 520 CF3 OCF3 64- (12) 520 64-(13) 4 486 w 64- (14) 486 cri 505 64- X 505 ci ci cl 64- (16) 505 ci cl 64-(17) X 505 ci Example 65 General Procedure for the Amide Derivatives (8)

The amide derivatives above were obtained according to a similar manner to that of Example 64 using an acyl chloride derivative instead of an isocyanate derivative (O=C=N-B).

Following the procedure above, the compounds listed in Table 7 were obtained.

Table 7 Example X3-B MS [M+H] + Data i 65- (1) 450 CHUG N N 65- (2) 428 Example 66 General Procedure for the Urea Derivatives (9)

9 To a solution of tert-butyl N-[(lS)-1-(4-aminobenzyl)- 2-hydroxyethyl]-N-[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]- carbamate (0. 02 mmol) in NMP (40 pi) was added 2.0 M solution of N, O-bis (trimethylsilyl) acetamide (BSA) in N- methyl-2-pyrrolidinone (NMP) (10 ul, 0.02 mmol) and the mixture was shaken for 30 minutes at room temperature. To the solution, 1.0 M solution of an isocyanate derivative (O=C=N-B) corresponding to an objective urea derivative in NMP (24 pi, 0.024 mmol) and 0.1 M solution of N, N- diisopropylethylamine (DIEA) in NMP (20 µl, 0.002 mmol) were added and the mixture was shaken for 30 minutes at 50°C.

After cooling to room temperature, 0.5 ml of 95% trifluoroacetic acid (TFA) in water was added to the solution and shaken for 15 hours. The mixture was concentrated under reduced pressure and purified by HPLC (reverse phase C18, 0-8090 0.1% TFA in acetonitrile/0.1% TFA in water). The fractions containing the desired compound were combined, concentrated and dried under reduced pressure to give the objective urea derivative (9).

Following the procedure outlined above, the compounds listed in Table 8 were obtained.

Table 8

Example B MS [M+H] + Data i 66- (l) 474 1 474 66- (2) cul c1 474 66- (3)"laci 474 i 66- (4) 470 OCH3 66- (5)"laOCH3 470 OCH3 OCH 66- (6) 470 w 66- (7)"S_/CH3 406, 408 CH 406 66- (8) i 406 Example MS [M+H] + Data 9 454, 456 Example 67 General Procedure for the Amide Derivatives (10)

The amide derivatives above were obtained according to a similar manner to that of Example 66 using an acyl chloride derivative corresponding to an objective amide derivative instead of an isocyanate derivative (O=C=N-B).

Following the procedure above, the compounds listed in Table 9 were obtained.

Table 9 OH H C1 N HO H X3-B CF3C02H HO I ''X-B 3 Example X3 B MS [M+H] + Data i 67- (1) XNv 4 54 CH3 CHg Example X3 B MS [M+H] + Data ZON 67- (2) 432 Example 68 General Procedure for the Urea Derivatives (11)

11 To a 0.5 M solution of an amine derivative (HHN-B) corresponding to an objective urea derivative in N- methyl-2-pyrrolidinone (NMP) (50 µ, 0.025 mmol) was added 1.0 M solution of 1, 1'-carbonyldiimidazole (CDI) (26.3 ul, 0.0263 mmol) and the mixture was shaken for 30 minutes at room temperature. In another vessel, a solution of tert- butyl N-[(lS)-1-(4-aminobenzyl)-2-hydroxyethyl]-N-[(2R)-2- (3-chlorophenyl)-2-hydroxyethyl] carbamate (0.02 mmol) in NMP (20 ul) and 1.0 M solution of N, 0-bis (trimethylsilyl)- acetamide (BSA) in NMP (20 ul, 0.02 mmol) was shaken for 30 minutes at room temperature, and the solution was added to the above solution. After shaking for 2 hours, 0.5 ml of 95 ? : trifluoroacetic acid (TFA) in water was added to the solution and shaken for 15 hours. The mixture was concentrated under reduced pressure and purified by HPLC (reverse phase C18, 0-80% 0.1% TFA in acetonitrile/0.1% TFA in water). The fractions containing the desired compound were combined, concentrated and dried under reduced pressure to give the objective urea derivative (11).

Following the procedure outlined above, the compounds listed in Table 10 were obtained.

Table 10

Example B MS [M+H] + Data 446 68- (1) 446 N N 68-(2) < 441, 442 nez N 68-(3) < 491,492 NU 491 68- (4) 491 68- (S) 491,493 w N 68- (6) 491, 493 N Nez 68- :) 4 491,492