Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS AND METHOD FOR INTEGRATED SEMI-SOLID MATERIAL PRODUCTION AND CASTING
Document Type and Number:
WIPO Patent Application WO/1998/016334
Kind Code:
A2
Abstract:
An apparatus and process are provided for producing semi-solid material and directly casting the semi-solid material into a component wherein the semi-solid material is formed from a molten material and the molten material is introduced into a container. Semi-solid is produced therefrom by agitating, shearing, and thermally controlling the molten material. The semi-solid material is maintained in a substantially isothermal state within the container by appropriate thermal control and thorough three-dimensional mixing. Extending from the container is a means for removing the semi-solid material from the container, including a temperature control mechanism to control the temperature of the semi-solid material within the removing means.

Inventors:
BROWN STUART B
MENDEZ PATRICIO F
RICE CHRISTOPHER S
Application Number:
PCT/US1997/018017
Publication Date:
April 23, 1998
Filing Date:
October 03, 1997
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SEMI SOLID TECHNOLOGIES INC (US)
International Classes:
B22D45/00; B22D1/00; B22D17/00; B22D17/30; B22D35/00; B22D41/015; B22D47/00; (IPC1-7): B22D/
Domestic Patent References:
WO1997012709A11997-04-10
WO1995034393A11995-12-21
WO1987006624A11987-11-05
Foreign References:
US3951651A1976-04-20
US4229210A1980-10-21
US4771818A1988-09-20
US3902544A1975-09-02
EP0761344A21997-03-12
EP0657235A11995-06-14
JPS63199016A1988-08-17
JPH01313164A1989-12-18
US2745153A1956-05-15
US4635706A1987-01-13
US3157923A1964-11-24
Attorney, Agent or Firm:
Stamos, Christopher W. (Hurwitz & Thibeault LLP, High Street Tower, 125 High Stree, Boston MA, US)
Download PDF:
Claims:
1. An apparatus for directly producing a component from a semi solid material comprising: a source of molten material; a container for receiving said molten material; a thermal control means for controlling the temperature of said container; an agitation means for stirring material within said container acting in conjunction with said thermal control means to produce a substantially isotropic semisolid material; a means for removing a portion of said semisolid material from said container, said removing means being thermally controlled; and a casting means directly connected to said removing means for receiving said portion of semisolid material from said removing means and casting said semisolid material into a component.
2. The apparatus of claim 1 wherein said agitating means is an electromagnetic stirring device.
3. The apparatus of claim 1 wherein said agitation means comprises a mechanical agitating device immersed in said semisolid material.
4. The apparatus of claim 3 wherein said mechanical agitating device comprises a primary stirring component and a secondary stirring component.
5. The apparatus of claim 4 wherein said primary stirring component includes an arm having a first portion being substantially parallel to a side wall of said container.
6. The apparatus of claim 5 wherein said arm of said primary stirring component includes a second portion being substantially parallel to a bottom wall of said container.
7. The apparatus of claim 5 wherein said secondary stirring component is augurshaped and promotes mixing of said semisolid material along an axis of said secondary stirring component.
8. The apparatus of claim 7 wherein said casting means comprises a die casting device.
9. The apparatus of claim 8 wherein said mechanical agitating device is a stainless steel coated with a ceramic.
10. The apparatus of claim 1 wherein said semisolid material comprises aluminum or an alloy thereof.
11. The apparatus of claim 1 wherein said semisolid material comprises steel or an alloy thereof.
12. The apparatus of claim 1 wherein said semisolid material comprises magnesium or an alloy thereof.
13. The apparatus of claim 1 wherein said removal means comprises a transfer tube.
14. The apparatus of claim 13 wherein said transfer tube includes an inner insulating layer.
15. The apparatus of claim 14 wherein said transfer tube includes a support tube surrounding said insulating layer and an outer layer surrounding said support tube.
16. The apparatus of claim 15 wherein said transfer tube includes a heating mechanism for maintaining the temperature of said semisolid material passing through said transfer tube.
17. The apparatus of claim 16 wherein said transfer tube includes a flow control means for regulating a flow of semisolid material through said transfer tube.
18. The apparatus of claim 17 wherein said transfer flow control means regulates said flow of semisolid material through said transfer tube such that no more than one tenth of said semisold material is removed per a removal cycle.
19. The apparatus of claim 17 wherein said transfer tube extends though a cover in said chamber.
20. The apparatus of claim 17 wherein said transfer tube extends through a side wall in said chamber.
21. The apparatus of claim 1 wherein said casting means includes a die, a ram, and a shot sleeve disposed therebetween, said shot sleeve for receiving said portion of said semisolid and said ram for forcing said portion into said die to form said component.
22. An apparatus for directly producing a component from a semi solid material comprising: a source of semisolid material; a container for receiving said semisolid material; a thermal control means for controlling the temperature of said semisolid material; an agitating means acting with said container for stirring said semisolid material in said container; said thermal controller and said agitating means maintaining said semi solid material in a substantially isothermal state; and a die casting device connected to said container for directly casting said semisolid material into a component prior to solidification of said semisolid material.
23. The apparatus of claim 22 wherein said agitating means is an electromagnetic stirring device.
24. The apparatus of claim 22 wherein said agitation means comprises a mechanical agitating device immersed in said semisolid material.
25. The apparatus of claim 24 wherein said mechanical agitating device comprises a primary stirring component and a secondary stirring component.
26. The apparatus of claim 25 wherein said primary stirring component includes a portion being substantially parallel to a side wall of said container.
27. The apparatus of claim 26 wherein said secondary stirring component is augurshaped.
28. The apparatus of claim 27 wherein said casting means comprises a die casting device.
29. The apparatus of claim 28 wherein said mechanical agitating device is a stainless steel coated with a ceramic.
30. A method of directly producing a component from partially solidified material semisolid material comprising: receiving a molten material in a container; forming said molten material into a semisolid material with an agitating means and a thermal controlling means; maintaining said semisolid material in a substantially isothermal state with said agitating means and said thermal controlling means; transferring a portion of said semisolid material directly to a casting apparatus; and casting said portion of said semisolid material into a component prior to complete solidification of said portion.
Description:
Apparatus and Method for Integrated Semi-Solid Material Production and Casting This application claims the benefit of copending provisional application "Apparatus and Method for Integrated Semi-Solid Material Production and Casting" filed October 4, 1996 (attorney docket number 0097701-0006, Express Mail Number EH408038515US, serial number not yet known). A related application titled "Apparatus and Method for Semi-Solid Material Production" was filed October 4, 1996 (attorney docket number 0097701-0005, Express Mail Number EH408038921, serial number not yet known) and is incorporated herein by reference.

Technical Field The present invention relates generally to producing and delivering a semi-solid material slurry for use in material forming processes. In particular, the invention relates to an apparatus for producing a substantially non-dendritic semi-solid material slurry and providing the semi-solid directly to a die casting apparatus.

Background Information Slurry casting or rheocasting is a procedure in which molten material is subjected to vigorous agitation as it undergoes solidification. During normal (i.e.

non-rheocasting) solidification processes, dendritic structures form within the material that is solidifying. In geometric terms, a dendritic structure is a solidified particle shaped like an elongated stem having transverse branches.

Vigorous agitation of materials, especially metals, during solidification eliminates at least some dendritic structures. Such agitation shears the tips of the solidifying dendritic structures, thereby reducing dendrite formation. The resulting material slurry is a solid-liquid composition, composed of solid, relatively fine, non- dendritic particles in a liquid matrix (hereinafter referred to as a semi-solid material).

At the molding stage, it is well known that components made from semi- solid material possess great advantages over conventional molten metal formation processes. These benefits derive, in large part, from the lowered thermal

requirements for semi-solid material manipulation. A material in a semi-solid state is at a lower temperature than the same material in a liquid state.

Additionally, the heat content of material in the semi-solid form is much lower.

Thus, less energy is required, less heat needs to be removed, and casting equipment or molds used to form components from semi-solids have a longer life. Furthermore and perhaps most importantly, the casting equipment can process more material in a given amount of time because the cooling cycle is reduced. Other benefits from the use of semi-solid materials include more uniform cooling, a more homogeneous composition, and fewer voids and porosities in the resultant component.

The prior art contains many methods and apparatuses used in the formation of semi-solid materials. For example, there are two basic methods of effectuating vigorous agitation. One method is mechanical stirring. This method is exemplified by U.S. Patent 3,951,651 to Mehrabian et al. which discloses rotating blades within a rotating crucible. The second method of agitation is accomplished with electromagnetic stirring. An example of this method is disclosed in U.S. Patent No. 4,229,210 to Winter et al., which is incorporated herein by reference. Winter et al. disclose using either AC induction or pulsed DC magnetic fields to produce indirect stirring of the semi-solid.

Once the semi-solid material is formed, however, virtually all prior art methods then include a solidifying and reheating step. This so-called double processing entails solidifying the semi-solid material into a billet. One of many examples of double processing is disclosed in U.S. Patent No. 4,771,818 to Kenney. The resulting solid billet from double processing is easily stored or transported for further processing. After solidification, the billet must be reheated for the material to regain the semi-solid properties and advantages discussed above. The reheated billet is then subjected to manipulation such as die casting or molding to form a component. In addition to modifying the material properties of the semi-solid, double processing requires additional cooling and reheating steps. For reasons of efficiency and material handling costs, it would be quite desirable to eliminate the solidifying and reheating step that double processing demands.

U.S. Patent No. 3,902,544 to Flemings et al., incorporated herein by reference, discloses a semi-solid forming process integrated with a casting process.

This process does not include a double processing, solidification step. There are, however, numerous difficulties with the disclosed process in Flemings et al. First and most significantly, Flemings et al. require multiple zones including a molten zone and an agitation zone which are integrally connected and require extremely precise temperature control. Additionally, in order to produce the semi-solid material, there is material flow through the integrally connected zones. Semi- solid material is produced through a combination of material flow and temperature gradient in the agitation zone. Thus, calibrating the required temperature gradient with the (possibly variably) flowing material is exceedingly difficult. Second, the Flemings et al. process discloses a single agitation means.

Thorough and complete agitation is necessary to maximize the semi-solid characteristics described above. Third, the Flemings et al. process is lacking an effective transfer means and flow regulation from the agitation zone to a casting apparatus. Additional difficulties with the Flemings process, and improvements thereupon, will be apparent from the detailed description below.

A primary object of the present invention is to provide an apparatus and a process for integrating the formation of semi-solid material with the casting of the semi-solid material while avoiding a solidification and reheating step.

An additional object of the present invention is to provide a more efficient and cost-effective die casting process for use with semi-solid material formation.

Another object of the present invention is to provide semi-solid material formation suitable for casting directly into a component.

Still another object of the present invention is to provide a semi-solid material formation with improved agitation.

Yet another object of the present invention is to provide a semi-solid material formation apparatus integrated with a casting device for casting semi- solid material directly into a component.

Summarv of the Invention The present invention provides a method and apparatus for producing a component directly from a semi-solid material comprising a source of molten material, a container for receiving the molten material, thermal control means mounted to the container for controlling the temperature of container, an agitation means for agitating the material, and a casting device directly connected to the container. The agitation means and the thermal controlling means act in conjunction to produce a substantially isotropic semi-solid material in the container. A thermally insulated means for removing the semi-solid material from the container directly provides semi-solid material to the casting device which casts the semi-solid material into a component.

Brief Description of the Drawings Fig. 1 is a schematic, front sectional view of a semi-solid production apparatus according to the present invention.

Fig. 2 is a schematic, side sectional view of the apparatus of Fig. 1.

Fig. 3 is a side sectional view of a removal means according to the present invention.

Fig. 4 is a schematic, sectional view of the apparatus of Fig. 1 integrated with a semi-solid casting apparatus according to the present invention.

Fig. 5 is a schematic, side sectional view of the apparatus of Fig. 1 showing an alternate embodiment of the present invention.

Fig. 6 is a schematic, side sectional view of the apparatus of Fig. 1 showing an alternate embodiment of the present invention.

Description of the Preferred Embodiment In Fig. 1, a semi-solid production apparatus is shown generally as reference numeral 10. Separated from the apparatus 10 is a source of molten material 11. Generally any material which may be processed into a semi-solid material 50 is suitable for use with this apparatus 10. The molten material 11 may be a pure metal such as aluminum or magnesium, a metal alloy such as steel

or aluminum alloy A356, or a metal-ceramic particle mixture such as aluminum and silicon carbide.

The apparatus 10 includes a cylindrical chamber 12, a primary rotor 14, a secondary rotor 16, and a chamber cover 18. The chamber 12 has a inner bottom wall 20 and a cylindrical inner side wall 22 which are both preferably made of a refractory material. The chamber 12 has an outer support layer 24 preferably made of steel. The top of the chamber 12 is covered by a chamber cover 18. The chamber cover 18 similarly has an insulated refractory layer.

Thermal control system 30 comprises heating segments 32 and cooling segments 34. The heating and cooling segments 32, 34 are mounted to, or embedded within, the outer layer 24 of the chamber 12. The heating and cooling segments 32, 34 may be oriented in many different ways, but as shown, the heating and cooling segments 32, 34 are interspersed around the circumference of the chamber 12. Heating and cooling segments 32, 34 are also mounted to the chamber cover 18. Individual heating and cooling segments 32, 34 may independently add and/or remove heat, thus enhancing the controllability of the temperature of the contents of the chamber 12.

The primary rotor 14 has a rotor end 42 and a shaft 44 which extends upwards from the rotor end 42. The primary rotor shaft 44 extends through the chamber lid 18. The rotor end 42 is immersed in and entirely surrounded by the chamber 12. As shown in Fig. 1, the rotor end 42 has L-shaped blades 43, preferably two such blades spaced 180 degrees apart, extending from the bottom of the rotor end 42. The L-shaped blades 43 have two portions, one of which is parallel to the inner side wall 22 and the other being parallel to the inner bottom wall 20. The L-shaped blades 43, when rotated, shear dendrites which tend to form on the inner side wall 22 and bottom wall 20 of the chamber 12.

Additionally, the rotation of the blades 43 promotes material mixing within horizontal planes. Other blade 43 geometries (e.g. T-shaped) should be effective so long as the gap between the chamber inner side wall 22 and the blades 43 is small. It is desirable that this gap be less than two inches. Furthermore, to promote additional shearing, the gap between the chamber bottom 20 and the

blades 43 also should be less than two inches. A typical rotation speed of the shear rotor 14 is approximately 30 rpm.

The secondary rotor 16 has a rotor end 48 and a shaft 46 extending from the rotor end 48. The shape of the rotor end 48 should be designed to encourage vertical mixing of the semi-solid material 50 and enhance the shearing of the semi-solid material 50. The rotor end 48 is preferably auger-shaped or screw- shaped, but many other shapes, such as blades tilted relative to horizontal plane, will perform similarly. The shaft 46 extends upwardly from the auger shaped rotor end 48. Depending on the rotational direction of the secondary rotor 16, material in chamber 12 is forced to move in either an upwards or downwards direction. A typical rotation speed of the secondary rotor 16 is 300 rpm.

The primary rotor 14 and the secondary rotor 16 are oriented relative to the chamber 12 and to each other so as to enhance both the shearing and three dimensional agitation of a semi-solid material 50. In Fig. 1 it is seen that the primary rotor 14 revolves around the secondary rotor 16. The secondary rotor 16 rotates within the predominantly horizontal mixing action of the primary rotor 14. This configuration promotes thorough, three-dimensional mixing of the semi-solid material 50.

Although Fig. 1 depicts a plurality of rotors, a single rotor that provides the appropriate shearing and mixing properties may be utilized. Such a single rotor must afford both shearing and mixing, the mixing being three-dimensional so that the semi-solid material 50 in the container 12 is maintainable at a substantially uniform temperature.

The semi-solid material environment into which the rotors 14, 16 are immersed is quite harsh. The rotors 14, 16 are exposed to very high temperature, often corrosive conditions, and considerable physical force. To combat these conditions, the preferred composition of the rotors 14, 16 is a heat and corrosion resistant alloy like stainless steel with a high-temperature MgZrO3 ceramic coating. Other high-temperature resistant materials, such as a superalloy coated with Awl203, are also suitable.

A frame 56 is mounted to the chamber lid 18. The frame 56 supports a primary drive motor 58 and a secondary drive motor 60. The respective motors

58, 60 are mechanically coupled to the shafts 44, 46 of the respective rotors 14, 16. As shown in Fig. 1, the primary motor 58 is coupled to the primary rotor shaft 44 by a pair of reduction gears 62 and 64. The primary rotor shaft 44 is supported in the frame 56 by bearing sleeves 66. Similarly, the secondary rotor shaft 46 is supported in frame 56 by bearing sleeve 68. Both motors 58, 60 may be connected to the rotors through reduction or step-up gearing to improve power and/or torque transmission.

An alternative to the mechanical stirring described above is electromagnetic stirring. An example of electromagnetic stirring is found in Winter et al., U.S. Patent No. 4,229,210. Electromagnetic agitation can effectuate the desired isotropic, three-dimensional shearing and mixing properties desired in the present invention.

Molten material 11 may be delivered to the chamber 12 in a number of different fashions. In one embodiment, the molten material 11 is delivered through an orifice 70 in the chamber cover 18. Alternatively, the molten metal 11 may be delivered through an orifice in the side wall 22 (not shown) and/or through an orifice in the bottom wall 20.

Semi-solid material 50 is formed from the molten material 11 upon agitation by the primary rotor 14 and the secondary rotor 16, and appropriate cooling from the thermal control system 30. After an initial start-up cycle, the process is semi-continuous whereby as semi-solid material 50 is removed from the chamber 12, molten material 11 is added. However, the rotors 14, 16 and the thermal control system 30 maintain the semi-solid 50 in a substantially isothermal state.

In addition to controlling the temperature of the chamber 12 thereby maintaining the semi-solid material 50 in a substantially isotropic state, the thermal control system 30 is also instrumental in starting up and shutting down the apparatus 10. During start-up, the thermal control system should bring the chamber 12 and its contents up to the appropriate temperature to receive molten material 11. The chamber 12 may have a large amount of solidified semi-solid material or solidified (previously molten) material remaining in it from a previous operation. The thermal control system 30 should be capable of

delivering enough power to re-melt the solidified material. Similarly, when shutting down the apparatus 10, it may be desirable for the thermal control system 30 to heat up the semi-solid material 50 in order to fully drain the chamber 12. Another shut-down procedure may entail carefully cooling the semi-solid 50 into the solid state.

As shown in Fig. 2, removal of semi-solid material 50 formed in the chamber 12 is preferably via a removal tube 72. A detailed view of the removal tube 72 is shown in Fig. 3. The removal tube 72 has a cylindrical inner wall 74 which is in contact with the removed semi-solid material 50. The inner wall 74 is preferably a refractory material. A support wall 76 is sandwiched between the inner wall 74 and an outer layer 78. The support wall 76 is made of a material, such as cast iron, capable of supporting the inner wall 74 and semi-solid material 50 contained therein. The outer layer 78 provides insulation of the removal tube 72 and the semi-solid material 50. The removal tube 72 also protects the semi- solid material 50 from being contaminated by the ambient atmosphere. Without such protection, an oxide would form on the outside of the semi-solid material and intersperse in any components made therefrom. Provided around the removal tube is a heater 80 to maintain the semi-solid material 50 at the desired temperature.

In Fig. 2, the removal port 72 extends from the apparatus 10 through the chamber cover 18. In an alternative preferred embodiment, the removal port 72 extends from the chamber side wall 22 which has an outlet orifice 112 as shown in Fig. 5. Alternatively, Fig. 5 also shows a removal port 73 extending from the bottom wall 20 which has an outlet orifice 113. In either case, as described above, the removal port includes a heater 80 to maintain the isotropic state of the semi-solid material 50 being removed.

Effectuating semi-solid 50 flow through the port 72 may be achieved by any number of methods. A vacuum could be applied to the removal port 72, thus sucking the semi-solid out of the chamber 12. Gravity may be utilized as depicted in Fig. 5 at port 73. Other transfer methods utilizing mechanical means, such as submerged pistons, helical rotors, or other positive displacement

actuators which produce a controlled rate of semi-solid material 50 transfer are also effective.

To further regulate the flow of semi-solid material 50 out of the chamber 12 via any of the removal ports described above, a valve 83 is provided in the port 72. The valve 83 can be a simple gate valve or other liquid flow regulation device. It may be desirable to heat the valve 83 so that the semi-solid 50 is maintained at the desired temperature and clogging is prevented.

Flow regulation may also be crudely effectuated by local solidification.

Instead of a valve 83, a heater/cooler (not shown) can locally solidify the semi- solid 50 in port 72 thus stopping the flow. Later, the heater/cooler can reheat the material to resume the flow. This procedure would normally be part of a start-up and shut-down cycle, and is not necessarily part of the isothermal semi- solid material production process described above.

Another manner for transferring semi-solid material 50, which provides inherent flow control, utilizes a ladle 114 as depicted in Fig. 6. The ladle 114 removes semi-solid material 50 from the chamber 12 while a heater 82 which is mounted to the ladle 114 maintains the temperature of the semi-solid material 50 being removed. A ladle cup 115 of the ladle 114 is attached to a ladle actuator 116. The cup 115 is rotatable to pour out its contents, and the actuator 116 moves the ladle in the horizontal and vertical directions.

To aid in maintaining proper temperature conditions within the chamber 12, semi-solid material 50 transfer may occur in successive cycles. During each cycle the above-described flow regulation allows a discrete amount of semi-solid material 50 to be removed. The amount of semi-solid material removed during each cycle should be small relative to the material remaining in the chamber 12.

In this manner, the change in thermal mass within the chamber 12 during removal cycles is small. In a typical cycle, less than ten percent of the semi-solid 50 within chamber 12 is removed.

Turning now to Fig. 4, a die caster 84 is directly attached to the removal tube 72 extending from the apparatus 10. The die caster 84 includes a ram 86, a shot sleeve 88, and a die 90. The removal tube 72 delivers semi-solid material 50 directly to the shot sleeve 88 through an opening in the shot sleeve 92. The shot

sleeve 88 has two open ends 94, 96. The shot sleeve is positioned between, and the open ends 94, 96 face, the die 90 and the ram 86. The ram 86, is connected to a piston 98 which is pneumatically actuated by a pneumatic drive 100. When actuated, ram 86 forces the semi-solid material 50 into the die 90. The semi-solid material 50 enters a die chamber 102 through a die chamber inlet 104 within the die 90. The die 90 includes two halves 106,108 which separate to expose a die cast component 110 which is removed upon cooling.

The casting device 84 can be any suitable device for forming a component from the semi-solid material 50. Suitable casting devices include a mold, a forging die assembly as described in the specification of U.S. Patent 5,287,719, or other commonly known die casting mechanisms.

The die caster 84 is not limited to a vertical configuration relative to the apparatus 10 as shown in Fig. 4. The die caster 84 can be positioned relative to the apparatus 10 in any number of orientations. For example, the die caster 84 can be underneath the apparatus 10 such that gravity aids the transfer of semi- solid material 50 through the transfer tube 72 (not shown). Or instead of a vertical orientation, the die caster 84 may lay horizontally relative to the apparatus 10 (also not shown).

In Figs. 2 and 4, the removal tube 72 extends from the apparatus 10 through the chamber cover 18. In an alternative preferred embodiment, the removal tube 72 extends from the chamber side wall 22 which has an outlet port 112 as shown in Fig. 5. Alternatively, Fig. 5 also shows a removal tube 73 extending from the bottom layer 20 which has an outlet port 113. In either case, as described above, the removal tube 72 connects directly to the die casting device 84.

In another preferred embodiment, the chamber side wall 22 is directly adjacent the die casting device 84 (not shown) eliminating the need for the transfer tube 72. The outlet port 112 directly feeds the shot sleeve 88 with semi- solid material 50. The component 110 is formed as described above.

Although not required, it may be desirable to maintain the entire apparatus 10 in a controlled environment (not shown). Oxides readily form on the outer layers of molten materials and semi-solid materials. Contaminants

other than oxides also enter the molten and semi-solid material. In an inert environment, such as one of nitrogen or argon, oxide formation would be reduced or eliminated. The inert environment would also result in fewer contaminants in the semi-solid material. It may be more economical, however, to limit the controlled environment to discrete portions of the apparatus 10 such as the delivery of molten material 11 to the chamber 12. Another discrete and economical portion for environmental control may be the removal port 72 (or the ladle 114). At the removal port 72, the semi-solid material 50 no longer undergoes agitation and the material is soon to be cast into a component. Thus, any oxide skin that forms at this stage will not be dispersed throughout the material by mixing in the container 12. Instead, the oxides will be concentrated on the outer layers of the semi-solid. Therefore, to reduce both oxide formation and to reduce high-concentration oxide pockets, a controlled nitrogen environment (or other suitable and economical environment) would be advantageous at the removal port 72 stage.

The following is an example of the above described process and apparatus after the start-up cycle is complete. Molten aluminum at an approximate temperature of 677 degrees Celsius is poured into the chamber 12 already containing a large quantity of semi-solid material. The primary rotor 14 turns at approximately 30 rpm and stirs and shears the aluminum in a clockwise direction. The secondary rotor 16 rotates at about 300 rpm and forces the aluminum upwards and/or downwards while also shearing the aluminum. The combined effect of the two rotors 14, 16 thoroughly agitates and shears the aluminum in three dimensions. The thermal control system 30 maintains the temperature of the aluminum at approximately 600 degrees Celsius such that dendritic structures are formed. The rotors 14, 16 shear the dendritic structures as they are formed. While the thermal control system maintains the temperature of the semi-solid aluminum at approximately 600 degrees Celsius, the rotors 14, 16 continuously mix the semi-solid aluminum keeping the temperature within the material substantially uniform. The solid particle size produced by this particular process is typically in the range of 50 to 200 microns and the

percentage by volume of solids suspended in the semi-solid aluminum is approximately 20 percent.

The semi-solid aluminum is transferred from the chamber 12 to the shot sleeve 88 of the die caster 84 through the transfer tube 72. The removal port heater 80 also maintains the semi-solid aluminum at about 600 degrees Celsius.

The ram 86 in the caster 84 is actuated by the pneumatic drive 100 and the semi- solid aluminum is forced into the die 90 and component 110 is formed. When the component 110 and die 90 cool to approximately 400 degrees Celsius, the component is removed.

While there have been described herein what are considered to be preferred embodiments of the present invention, other modifications of the invention will be apparent to those skilled in the art from the teaching herein.

It is therefore desired to be secured in the appended claims all such modifications as fall within the true spirit and scope of the invention. Accordingly, what is desired to be secured by Letters Patent of the United States is the invention as defined and differentiated in the following claims.

We claim: