Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS FOR PROCESSING PLASTIC MATERIAL
Document Type and Number:
WIPO Patent Application WO/2013/052984
Kind Code:
A1
Abstract:
The invention relates to an apparatus for preprocessing and subsequently conveying or plasticizing plastics, comprising a container (1) with a mixing and/or comminuting tool (3) that can rotate about a rotational axis (10), wherein an opening (8) is formed in a lateral wall (9) through which the plastic material can be discharged and a conveyor (5) is provided with a screw (6) rotating in a housing (16). The invention is characterized in that the imaginary extension of the longitudinal axis (15) of the conveyor (5) passes by the rotational axis (10) counter the conveying direction (17), wherein the longitudinal axis (15) is on the outlet side offset by a distance (18) in relation to the radial (11) that is parallel to the longitudinal axis (15). At least one web-shaped deflector (50) which is directed into the interior of the container (1) is arranged on the inner wall surface of the container (1), wherein the height profile of said deflector decreases from top to bottom, when seen in the rotational direction (12) of the mixing tool (3), and forms over its length an acute angle (α) with a plane (E) perpendicular to the rotational axis (10) of the mixing tools (3).

Inventors:
FEICHTINGER KLAUS (AT)
HACKL MANFRED (AT)
Application Number:
PCT/AT2012/050156
Publication Date:
April 18, 2013
Filing Date:
October 12, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EREMA (AT)
FEICHTINGER KLAUS (AT)
HACKL MANFRED (AT)
International Classes:
B29B13/10; B29C48/40; B01F27/93; B02C18/08; B29B17/04; B29C48/04; B29C48/395; B29C48/50; B29C48/03
Foreign References:
EP1233855A12002-08-28
EP0045734A11982-02-10
EP1273412A12003-01-08
US4015781A1977-04-05
EP0123771A11984-11-07
EP0303929A21989-02-22
Attorney, Agent or Firm:
WILDHACK & JELLINEK PATENTANWÄLTE (AT)
Download PDF:
Claims:
P a t e n t a n s p r ü c h e : 1. Vorrichtung zum Vorbehandeln und anschließenden Fördern, Plastifizieren oder Agglomerieren von Kunststoffen, insbesondere von thermoplastischem Abfallkunststoff zu Recyclingzwecken, mit einem Behälter (1) für das zu verarbeitende Material, wobei im Behälter (1) zumindest ein um eine Drehachse (10) drehbares umlaufendes Misch- und/oder Zerkleinerungswerkzeug (3) zur Mischung, Erwärmung und gegebenenfalls Zerkleinerung des Kunststoffmaterials angeordnet ist,

wobei in einer Seitenwand (9) des Behälters (1) im Bereich der Höhe des oder des untersten, bodennächsten Misch- und/oder Zerkleinerungswerkzeugs (3) eine Öffnung (8) ausgebildet ist, durch die das vorbehandelte Kunststoffmaterial aus dem Inneren des Behälters (1 ) ausbringbar ist,

wobei zumindest ein Förderer (5), insbesondere ein Extruder (5), zur Aufnahme des vorbehandelten Materials vorgesehen ist, mit zumindest einer in einem Gehäuse (16) rotierenden, insbesondere plastifizierenden oder agglomerierenden, Schnecke (6), wobei das Gehäuse (16) eine an seiner Stirnseite (7) oder in seiner Mantelwand liegende Einzugsöffnung (80) für das von der Schnecke (6) zu erfassende Material aufweist, und die Einzugsöffnung (80) mit der Öffnung (8) in Verbindung steht,

dadurch gekennzeichnet, dass

die gedachte Verlängerung der zentralen Längsachse (15) des Förderers (5) oder der der Einzugsöffnung (80) nächstliegenden Schnecke (6) entgegen der Förderrichtung (17) des Förderers (5) an der Drehachse (10) ohne diese zu schneiden vorbeiführt, wobei die Längsachse (15) des Förderers (5) oder der der Einzugsöffnung (80) nächstliegenden Schnecke (6) ablaufseitig in Drehrichtung (12) zu der zur Längsachse (15) parallelen, von der Drehachse (10) des Misch- und/oder Zerkleinerungswerkzeugs (3) in Förderrichtung (17) des Förderers (5) nach außen gerichteten Radialen (11) des Behälters (1) um einen Abstand (18) versetzt ist, und

dass an der Innenwandfläche des Behälters (1) zumindest ein stegförmiger, in das Innere des Behälters (1) gerichteter Abweiser (50) angeordnet ist, dessen Höhenverlauf in Drehrichtung (12) des Mischwerkzeuges (3) gesehen von oben nach unten zu abnimmt und über seine Länge mit einer Ebene (E) senkrecht zur Drehachse (10) der Mischwerkzeuge (3) einen spitzen Winkel (o) einschließt.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Winkel (a) über die Länge des Abweisers (50) zumindest abschnittsweise konstant ist oder dass der Abweiser

(50) zumindest über einen Abschnitt seiner Länge (I) gekrümmt, insbesondere nach unten durchgebogen, verläuft, in welchem Fall der Winkel (a) den in dem jeweiligen Punkt des Abweisers (50) vorliegenden Tangentialwinkel darstellt.

3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Winkel (a), insbesondere im mittleren Bereich des Abweisers (50), 15° bis 45°, vorzugsweise 20° bis

40°. beträgt.

4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Winkel (a) gegen das untere Ende des Abweisers (50) zu, gegebenenfalls auf einen Winkel α - 0°, abnimmt.

5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das untere Ende (58) des Abweisers (50) in einem Umfang (70) zwischen den beiden Seitenkanten (55, 56) der Einzugsöffnung (80) liegt und dieser Bereich gegebenenfalls in Umdrehungsrichtung der Werkzeuge (3) um maximal 50% bis 80% der Länge einer Längskante (52, 53) vergrößert ist.

6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das untere Ende (58) des Abweisers (50) auf einem Höhenniveau an der Behälterwand liegt, das in dem Bereich (70) zwischen der oberen und unteren Längskante (52. 53) der Einzugsöffnung (80) liegt und gegebenenfalls maximal 50% bis 80% der Höhe (HE) der Einzugsöffnung (80) oberhalb der oberen Längskante (52) oder maximal 20% bis 30% der Höhe (HE) der Einzugsöffnung (80) unterhalb der unteren Kante (53) der Einzugsöffnung (80) liegt.

7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Abweiser (50) radial von der Behälterinnenwand absteht.

8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der stegförmige Abweiser (50) einen rechteckförmigen, an den in den Behälter (1) ragenden

Kanten allenfalls gerundeten, Querschnitt aufweist und mit seiner Schmalseite an der Innenwand des Behälters (1) befestigt ist.

9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich die Breite des Abweisers (50) in Richtung auf das Ende gegebenenfalls stufenförmig verjüngt oder, dass der Abweiser (50) im Endbereich verbreitet ist. 10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das obere Ende des Abweisers (50), in Drehrichtung (12) der Mischwerkzeuge (3) betrachtet, zumindest 10° bis 15°, vorzugsweise 30° bis 55°, vor der drehrichtungsaufwärts gelegenen Kante (56) der Einzugsöffnung (80) oder nach der drehrichtungsabwärts gelegenen Kante (55) der Einzugsöffnung (80) liegt. 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Breite (b) des Abweisers (50) in einem Bereich von 1 % bis 10 % des Behälterdurchmessers liegt und/oder dass die Bereite des Abweisers (50) größer als 15mm ist, vorzugsweise 20 bis 250mm, betragt. 12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass an das untere, den tiefsten Abschnitt (58) des Abweisers (50) darstellende Ende ein Verlängerungsteil (57), insbesondere einstückig, anschließt, der in Drehrichtung (12) nach oben gerichtet ist. 13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Abweiser (50) außerhalb des lichten Querschnittes der Einzugsöffnung (80) endet. 14. Vorrichtung nach einem der Anspräche 1 bis 13, dadurch gekennzeichnet, dass für einen mit dem Behälter (1) in Verbindung stehenden Förderer (5) das Skalarprodukt gebildet aus dem tangential zum Flugkreis des radial äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs (3) bzw. tangential zu dem an der Öffnung (8) vorbeibewegten Kunststoffmaterial und normal zu einer Radialen (11) des Behälters (1) ausgerichteten, in Dreh- bzw. Bewegungsrichtung (12) des Misch- und/oder Zerkleinerungswerkzeugs (3) weisenden Richtungsvektor der Drehrichtung (19) und dem Richtungsvektor (17) der Förderrichtung des Förderers (5) in jedem einzelnen Punkt bzw. im gesamten Bereich der Öffnung (8) bzw. unmittelbar radial vor der Öffnung (8) null oder negativ ist. 15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Richtungsvektor der Drehrichtung (19) des radial äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs (3) und der Richtungsvektor (17) der Förderrichtung des Förderers (5) einen Winkel (a) von größer oder gleich 90° und kleiner oder gleich 180° einschließen, gemessen im Schnittpunkt der beiden Richtungsvektoren (17,19) am bezüglich der Dreh- bzw. Bewegungsrichtung (12) des Misch- und/oder Zerkleinerungswerkzeugs (3) stromaufwärts gelegenen, zulaufseitjgen Rand der Öffnung (8), insbesondere im am weitesten stromaufwärts gelegenen Punkt (20) auf diesem Rand bzw. der Öffnung (8). 16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Richtungsvektor (19) der Dreh- bzw. Bewegungsrichtung (12) und der Richtungsvektor

(17) der Förderrichtung des Förderers (5) einen Winkel (ß) zwischen 170° und 180° einschließen, gemessen im Schnittpunkt der beiden Richtungsvektoren (17,19) in der Mitte der Öffnung (8). 17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der Abstand (18) größer als oder gleich groß wie der halbe Innendurchmesser des Gehäuses (16) des Förderers (5) bzw. der Schnecke (6) ist, und/oder größer gleich 7 %, vorzugsweise größer gleich 20 %, des Radius des Behälters (1 ) ist oder dass der Abstand

(18) größer als oder gleich groß wie der Radius des Behälters (1 ) ist 18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die gedachte Verlängerung der Längsachse (15) des Förderers (5) entgegen der Förderrichtung nach Art einer Sekante zum Querschnitt des Behälters (1) angeordnet ist und den Innenraum des Behälters (1) zumindest abschnittsweise durchsetzt 19. Vorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass der Förderer (5) tangential an den Behälter (1) angeschlossen ist bzw. tangential zum Querschnitt des Behälters (1 ) verläuft bzw. dass die Längsachse (15) des Förderers (5) bzw. der Schnecke (6) bzw. die Längsachse der der Einzugsöffnung (80) nächstliegenden Schnecke (6) oder die Innenwandung des Gehäuses (16) oder die Umhüllende der Schecke (6) tangential zur Innenseite der Seitenwand (9) des Behälters (1) verläuft, wobei vorzugsweise die Schnecke (6) an ihrer Stirnseite (7) mit einem Antrieb verbunden ist und an ihrem gegenüberliegenden StJmende zu einer am Stirnende des Gehäuses (16) angeordneten Austrittsöffnung, insbesondere einem Extruderkopf, fördert.

20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet dass die Öffnung (8) unmittelbar und direkt und ohne wesentliche Beabstandung, insbesondere ohne Übergabestrecke oder Förderschnecke, mit der Einzugsöffnung (80) verbunden ist. 21. Vorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet dass das Misch- und/oder Zerkleinerungswerkzeug (3) Werkzeuge und/oder Messer (14) umfasst, die in Dreh- bzw. Bewegungsrichtung (12) auf das Kunststoffmaterial zerkleinernd, schneidend und erwärmend einwirken, wobei die Werkzeuge und/oder Messer (14) vorzugsweise auf oder an einem, insbesondere parallel zur Bodenfläche (2), angeordneten, drehbaren Werkzeugträger (13), insbesondere einer Trägerscheibe (13), ausgebildet oder angeordnet sind.

22. Vorrichtung nach einem der Ansprüche 1 bis 21 , dadurch gekennzeichnet, dass die auf das Kunststoffmaterial einwirkenden in Dreh- bzw. Bewegungsrichtung (12) weisenden vorderen Bereiche bzw. Vorderkanten (22) der Misch- und/oder Zerkleinerungswerkzeuge (3) oder der Messer (14) unterschiedlich ausgebildet, angestellt, gekrümmt und/oder angeordnet sind im Vergleich zu den in Dreh- bzw. Bewegungsrichtung (12) hinteren bzw. nachlaufenden Bereichen.

23. Vorrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass der Behälter (1 ) im wesentlichen kreiszylindrisch mit einer ebenen Bodenfläche (2) und einer dazu vertikal ausgerichteten zylindermantelförmigen Seitenwand (9) ausgebildet ist und/oder die Drehachse (10) der Misch- und/oder Zerkleinerungswerkzeuge (3) mit der zentralen Mittelachse des Behälters (1) zusammenfällt und/oder die Drehachse (10) oder die zentrale Mittelachse vertikal und/oder normal zur Bodenfläche (2) ausgerichtet sind. 24. Vorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass der unterste Werkzeugträger (13) bzw. das unterste der Misch- und/oder Zerkleinerungswerkzeuge (3) und/oder die Öffnung (8) bodennah in geringem Abstand zur Bodenfläche (2), insbesondere im Bereich des untersten Viertels der Höhe des Behälters (1), vorzugsweise in einem Abstand zur Bodenfläche (2) von 10 mm bis 400 mm angeordnet sind.

25. Vorrichtung nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass der Förderer (5) ein Einzelschneckenextruder (6) mit einer einzigen komprimierenden Schnecke (6) ist oder ein Doppel- oder Mehrfachschneckenextruder ist, wobei die Durchmesser d der einzelnen Schnecken (6) untereinander gleich groß sind.

Wien, am 14. Oktober 2011

Description:
Vorrichtung zum Aufbereiten von Kunststoffmateria!

Die Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1. Aus dem Stand der Technik sind zahlreiche ähnliche Vorrichtungen unterschiedlicher (Bauart bekannt, umfassend einen Aufnahmebehälter bzw. Schneidverdichter zum Zerkleinern, Erwärmen, Erweichen und Aufbereiten eines zu recycelnden Kunststoffmaterials sowie einen daran angeschlossenen Förderer bzw. Extruder zum Aufschmelzen des derart vorbereiteten Materials. Ziel ist es dabei, ein qualitativ möglichst hochwertiges Endprodukt, zumeist in Form eines Granulates, zu erhalten.

So sind beispielsweise in der EP 123 771 oder der EP 303 929 Vorrichtungen mit einem Aufnahmebehälter und einem daran angeschlossenen Extruder beschrieben, wobei das dem Aufnahmebehälter zugeführte Kunststoffmaterial durch Rotieren der Zerkte inerungs- und Mischwerkzeuge zerkleinert und in Thrombenumlauf gebracht und durch die eingebrachte Energie gleichzeitig erwärmt wird. Dadurch bildet sich eine Mischung mit ausreichend guter thermischer Homogenität aus. Diese Mischung wird nach entsprechender Verweilzeit aus dem Aufnahmebehälter in den Schneckenextruder ausgetragen, gefördert und dabei plastifiziert bzw. aufgeschmolzen. Der Schneckenextruder ist dabei etwa auf der Höhe der Zerkleinerungswerkzeuge angeordnet. Auf diese Weise werden die erweichten Kunststoffteilchen durch die Mischwerkzeuge aktiv in den Extruder gedrückt bzw. gestopft.

Die meisten dieser seit langem bekannten Konstruktionen befriedigen nicht im Hinblick auf die am Ausgang der Schnecke erhaltene Qualität des bearbeiteten Kunststoffmateriales und/oder im Hinblick auf den Ausstoß der Schnecke. Untersuchungen haben gezeigt, dass die Anforderungen an die dem Behälter nachfolgende Schnecke, zumeist eine Plastifizierschnecke, im Laufe des Betriebes ungleich sind und dass dies darauf zurückzuführen ist, dass einzelne Partien des zu verarbeitenden Gutes im Behälter länger verweilen als andere Partien. Die mittlere Verweilzeit des Materiales im Behälter errechnet sich aus dem Füllgewicht im Behälter geteilt durch den Austrag der Schnecke pro Zeiteinheit. Diese mittlere Verweilzeit ist aber - wie erwähnt - für große Teile des zu verarbeitenden Materiales in der Regel nicht gegeben, sondern es stellen sich unregelmäßige wesentliche Abweichungen von diesem Mittelwert nach oben und nach unten ein. Diese Abweichungen können zurückzuführen sein auf unterschiedliche Beschaffenheit der in den Behälter nach und nach eingebrachten Gutpartien, z.B. unterschiedliche Beschaffenheit oder unterschiedliche Stärke des Kunststoffmateriales, z.B. Folienreste usw., aber auch durch unkontrollierbare Zufälligkeiten.

Für thermisch und mechanisch homogenes Material stellt sich üblicherweise eine Qualitätsverbesserung des am Ausgang der Schnecke erhaltenen Gutes ein, wenn die Gangtiefe der Meteringszone der Schnecke sehr groß und die Schneckendrehzahl sehr gering gehalten wird. Wird jedoch Wert gelegt auf eine Ausstoßerhöhung der Schnecke oder eine Leistungsverbesserung etwa einer Zerreißer-Extruderkombination, dann muss die Schneckendrehzahl angehoben werden, was bedeutet, dass auch die Scherung angehoben wird. Dadurch wird aber das verarbeitete Material von der Schnecke mechanisch und thermisch höher beansprucht, d.h., dass die Gefahr besteht, dass die Molekülketten des Kunststoffmateriales geschädigt werden. Als weiterer Nachteil kann ein höherer Verschleiß der Schnecke und ihres Gehäuses auftreten, insbesondere bei der Verarbeitung von Recyclingmaterial durch die in diesem Material enthaltenen Verunreinigungen, z.B. abrasive Teilchen, Metallteile usw., welche stark abnützend auf die aneinandergleitenden Metallteile der Schnecke bzw. ihrer Lagerung einwirken.

Sowohl bei langsam laufender und tief geschnittener Schnecke (große Gangtiefe) als auch bei rasch laufender Schnecke wirkt sich aber die bereits erwähnte, unterschiedliche Qualität einzelner der Schnecke zugeführter Materialpartien, z.B. unterschiedliche Flockengröße und/oder unterschiedliche Temperatur des Kunststoffmateriales. nachteilig in Hinblick auf Inhomogenitäten des am Schneckenausgang erhaltenen Kunststoffmateriales aus. Um diese Inhomogenitäten auszugleichen, wird in der Praxis das Temperaturprofil des Extruders angehoben, was bedeutet, dass dem Kunststoff zusätzliche Energie zugeführt werden muss, was die erwähnten thermischen Schädigungen des Kunststoffmateriales und einen erhöhten Energiebedarf zur Folge hat. Außerdem wird dadurch das am Extruderausgang erhaltene Kunststoffmaterial in seiner Viskosität reduziert, also dünnflüssiger, was Schwierigkeiten bei der Weiterverarbeitung dieses Materiales mit sich bringt

Daraus ist ersichtlich, dass die für den Erhalt einer guten Materialqualität am Schneckenausgang günstigen Verfahrensparameter einander widersprechen.

Es wurde zunächst versucht, dieses Problem dadurch zu lösen, indem der Durchmesser des Schneidverdichters im Verhältnis zum Durchmesser der Schnecke vergrößert wurde. Durch diese Vergrößerung des Behälters im Vergleich zu herkömmlichen Größen wurde erreicht, dass die mechanische und thermische Homogenität des im Behälter vorbehandelten Kunststoffmateriales vergleichmäßigt wurde. Der Grund dafür lag darin, dass das Masseverhältnis der laufend zugegebenen unbearbeiteten "kalten" Materialportionen zu der im Behälter vorhandenen, bereits teilweise bearbeiteten Materialmenge im Vergleich zu den üblicherweise vorliegenden Bedingungen geringer war und dass die mittlere Verweilzeit des Kunststoffmateriales im Behälter wesentlich erhöht wurde. Diese Verringerung des Masseverhältnisses wirkte sich günstig auf die thermische und mechanische Homogenität des aus dem Behälter in das Schneckengehäuse eintretenden Materiales aus und somit direkt auf die Qualität des Plastifikates bzw. Agglomerates am Ende der Extruder- bzw. der Agglomerierschnecke, da der Schnecke bereits Gut zumindest annähernd gleicher mechanischer und thermischer Homogenität zugeleitet wurde und daher eine solche Homogenität nicht erst durch die Schnecke erzielt werden musste. Die theoretische Verweilzeit des bearbeiteten Kunststoffmateriales im Behälter war annähernd konstant. Außerdem war die Bedienbarkeit einer solchen Anlage mit vergrößertem Behälter bezüglich der Genauigkeit der Aufgabeportionen unempfindlicher als die bekannten Anlagen.

Derartige Anlagen waren also grundsätzlich gut einsetzbar und vorteilhaft. Dennoch sind Anlagen mit Behältern bzw. Schneidverdichtern mit großen Durchmessern, z.B. von 1500 mm oder mehr, und längeren Verweilzeiten, trotz ihrer guten Funktionalität und der hohen Qualität des Rezyklats nicht optimal platzsparend und effizient bzw. haben eine hohe Wärmeabstrahlung.

Diesen bekannten Vorrichtungen ist weiters gemeinsam, dass die Förder- bzw. Drehrichtung der Misch- und Zerkleinerungswerkzeuge und damit die Richtung, in der die Materialteilchen im Aufnahmebehälter umlaufen, und die Förderrichtung des Förderers, insbesondere eines Extruders, im Wesentlichen gleich bzw. gleichsinnig sind. Diese bewusst so gewählte Anordnung war durch den Wunsch geleitet das Material möglichst in die Schnecke zu stopfen bzw. diese zwangszufüttern. Dieser Gedanke, die Teilchen in Schneckenfördenichtung in die Förder- bzw. Extruderschnecke zu stopfen, war auch durchaus naheliegend und entsprach den gängigen Vorstellungen des Fachmannes, da die Teilchen dadurch nicht ihre Bewegungsrichtung umkehren müssen und somit keine zusätzliche Kraft für die Richtungsumkehr aufzuwenden ist. Es wurde dabei und bei davon ausgehenden Weiterentwicklungen immer danach getrachtet, eine möglichst hohe Schneckenauffüllung und eine Verstärkung dieses Stopfeffektes zu schaffen. Beispielsweise wurde auch versucht, den Einzugsbereich des Extruders konusartig zu erweitern oder die Zerkleinerungswerkzeuge sichelförmig zu krümmen, damit diese das erweichte Material spachtelartig in die Schnecke füttern können. Durch die zulaufseitige Versetzung des Extruders von einer radialen in eine tangentiale Position zum Behälter, wurde der Stopfeffekt noch weiter verstärkt und das Kunststoffmaterial vom umlaufenden Werkzeug noch stärker in den Extruder hineingefördert bzw. -gedrückt. Derartige Vorrichtungen sind grundsätzlich funktionsfähig und arbeiten zufriedenstellend, wenngleich auch mit wiederkehrenden Problemen:

So wurde, beispielsweise bei Materialien mit einem geringen Energieinhalt, wie z.B. PET-Fasern oder -folien, oder bei Materialien mit einem frühen Klebrigkeits- oder Erweichungspunkt, wie z.B. Polymitchsäure (PIA), immer wieder der Effekt beobachtet, dass das bewusste gleichsinnige Stopfen des Kunststoffmaterials in den Einzugsbereich des Extruders oder Förderers unter Druck zu einem frühzeitigen Aufschmelzen des Materials unmittelbar nach oder auch im Einzugsbereich des Extruders bzw. der Schnecke führt. Dadurch verringert sich einerseits die Förderwirkung der Schnecke, zudem kann es auch zu einem teilweisen Rückfluss dieser Schmelze in den Bereich des Schneidverdichters bzw. Aufnahmebehälters kommen, was dazu führt, dass sich noch ungeschmolzene Flakes an die Schmelze anhaften, dadurch die Schmelze wieder abkühlt und teilweise erstarrt und sich auf diese Weise ein geschwulstartiges Gebilde bzw. Konglomerat aus teilweise erstarrter Schmelze und festen Kunststoffteilchen bildet. Dadurch verstopft der Einzug und verkleben die Misch- und Zerkleinerungswerkzeuge. In weiterer Folge verringert sich der Durchsatz bzw. Ausstoß des Förderers bzw. Extruders, da keine ausreichende Befüllung der Schnecke mehr vorliegt. Zudem können sich dabei die Misch- und Zerkle nerungswerkzeuge festfahren. In der Regel muss in solchen Fällen die Anlage abgestellt werden und vollständig gesäubert werden.

Außerdem treten Probleme bei solchen Polymermaterialien auf. die im

Schneidverdichter bereits bis nahe an ihren Schmelzbereich erwärmt wurden. Wird hierbei der Einzugsbereich überfüllt, schmilzt das Material auf und der Einzug lässt nach.

Auch bei, meist verstreckten, streifigen, faserigen Materialien mit einer gewissen Längenausdehnung und einer geringen Dicke bzw. Steifigkeit, also beispielsweise bei in Streifen geschnittenen Kunststofffolien, ergeben sich Probleme. Dies in erster Linie dadurch, dass sich das längliche Material am ablaufseitigen Ende der Einzugsöffnung der Schnecke festhängt, wobei ein Ende des Streifens in den Aufnahmebehälter ragt und das andere Ende in den Einzugsbereich. Da sowohl die Mischwerkzeuge als auch die Schnecke gleichsinnig laufen bzw. die gleiche Förderrichtungs- und Druckkomponente auf das Material ausüben, werden beide Enden des Streifens in die gleiche Richtung zug- und druckbeaufschlagt und kann sich der Streifen nicht mehr lösen. Dies führt wiederum zu einem Anhäufen des Materials in diesem Bereich, zu einer Verengung des Querschnitts der Einzugsöffnung und zu einem schlechteren Einzugsverhalten und in weiterer Folge zu Durchsatzeinbußen. Außerdem kann es durch den erhöhten Beschickungsdruck in diesem Bereich zu einem Aufschmelzen kommen, wodurch wiederum die eingangs erwähnten Probleme auftreten. Femer stellt sich das Problem, das Material effizient und schonend in die Schnecke einzubringen, dabei Verstopfungen zu vermeiden und die Behandlung des Materials im Behälter intensiver zu gestalten.

Die vorliegende Erfindung setzt sich damit zur Aufgabe, die erwähnten Nachteile zu überwinden und eine Vorrichtung der eingangs geschilderten Art so zu verbessern, dass auch empfindliche oder streifenförmige Materialien problemlos von der Schnecke eingezogen und bei hoher Materialqualität, möglichst platzsparend, zeiteffizient und energiesparend und mit hohem Durchsatz verarbeitet bzw. behandelt werden können. Diese Aufgabe wird bei einer Vorrichtung der eingangs erwähnten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.

Dabei ist zunächst vorgesehen, dass die gedachte Verlängerung der zentralen Längsachse des Förderers, insbesondere Extruders, wenn dieser nur eine einzige Schnecke aufweist, oder die Längsachse der der Einzugsöffnung nächstliegenden Schnecke, wenn dieser mehr als eine Schnecke aufweist, entgegen der Förderrichtung des Förderers an der Drehachse ohne diese zu schneiden vorbeiführt, wobei die Längsachse des Förderers, wenn dieser eine einzige Schnecke aufweist, oder die Längsachse der der Einzugsöffnung nächstliegenden Schnecke ablaufseitig zu der zur Längsachse parallelen, von der Drehachse des Misch- und/oder Zerkleinerungswerkzeugs in Förderrichtung des Förderers nach außen gerichteten Radialen des Behälters um einen Abstand versetzt ist.

Damit ist die Förderrichtung der Mischwerkzeuge und die Förderrichtung des Förderers nicht mehr, wie aus dem Stand der Technik bekannt, gleichsinnig, sondern zumindest geringfügig gegensinnig, wodurch der eingangs erwähnte Stopfeffekt verringert wird. Durch die bewusste Umkehrung der Drehrichtung der Misch- und Zerkleinerungswerkzeuge im Vergleich zu bislang bekannten Vorrichtungen, nimmt der Beschickungsdruck auf den Einzugsbereich ab und es verringert sich das Risiko einer Überfüllung. Überschüssiges Material wird auf diese Weise nicht mit übermäßigem Druck in den Einzugsbereich des Förderers gestopft bzw. gespachtelt, sondern im Gegenteil wird überschüssiges Material sogar tendenziell wieder von dort entfernt, sodass zwar immer ausreichend Material im Einzugsbereich vorliegt, jedoch nahezu drucklos bzw. nur mit geringem Druck beaufschlagt wird. Auf diese Weise kann die Schnecke ausreichend befüllt werden und immer ausreichend Material einziehen, ohne dass es zu einer Überfüllung der Schnecke und in weiterer Folge zu lokalen Druckspitzen kommt, bei denen das Material aufschmelzen könnte. Auf diese Weise wird ein Aufschmelzen des Materials im Bereich des Einzugs verhindert, wodurch sich die betriebliche Effizienz erhöht, die Wartungsintervalle verlängern und die Stehzeiten durch allfällige Reparaturen und Säuberungsmaßnahmen verkürzt werden.

Durch die Verringerung des Beschickungsdruckes reagieren Schieber, mit denen der Befüllungsgrad der Schnecke in bekannter Weise reguliert werden kann, deutlich sensibler und der Füllgrad der Schnecke lässt sich noch genauer einstellen. Insbesondere bei schwereren Materialien, wie etwa Mahlgütern aus High-Density Polyethylen (HOPE) oder PET, lässt sich so leichter der optimale Betriebspunkt der Anlage finden.

Außerdem hat es sich als überraschend vorteilhaft erwiesen, dass Materialien, die schon bis nahe an die Schmelze erweicht wurden, besser bei dem erfindungsgemäßen gegenläufigen Betrieb eingezogen werden. Insbesondere dann, wenn das Material schon in teigigem bzw. erweichtem Zustand vorliegt, schneidet die Schnecke das Material aus dem teigigen Ring, der der Behälterwand naheliegt. Bei einer Drehrichtung in Förderrichtung der Schnecke würde dieser Ring eher weitergeschoben werden und es könnte kein Abschaben durch die Schnecke erfolgen, wodurch der Einzug nachlassen würde. Dies wird durch die erfindungsgemäße Umkehr der Drehrichtung vermieden.

Außerdem können bei der Bearbeitung der oben beschriebenen streifigen bzw. faserigen Materialien die gebildeten Verhängungen bzw. Anhäufungen leichter gelöst werden bzw. werden gar nicht erst ausgebildet, da auf der in Drehrichtung der Mischwerkzeuge ablaufseitigen bzw. stromabwärts gelegenen Kante der Öffnung der Richtungsvektor der Mischwerkzeuge und der Richtungsvektor des Förderers in fast entgegengesetzte oder zumindest geringfügig gegensinnige Richtungen zeigen, wodurch sich ein länglicher Streifen nicht um diese Kante biegen und verhängen kann, sondern von der Mischtrombe im Aufnahmebehälter wieder mitgerissen wird.

Unterstützt wird dieses Verhalten der Vorrichtung dadurch, dass an der Innenwandfläche des Behälters zumindest ein stegförmiger, in das Innere des Behälters gerichteter Abweiser angeordnet ist, dessen Höhenverlauf in Drehrichtung des Mischwerkzeuges gesehen von oben nach unten zu abnimmt und über seine Länge mit einer Ebene senkrecht zur Drehachse der Mischwerkzeuge einen spitzen Winkel einschließt.

Insgesamt verbessert sich durch die erfindungsgemäße Ausgestaltung das Einzugsverhalten und vergrößert sich der Durchsatz deutlich. Das Gesamtsystem aus Schneidverdichter und Förderers wird dadurch stabiler und leistungsfähiger. Diese spezifische Ausgestaltung eines Schneidverdichter-Förderer-Syetems bewirkt, dass - entgegen bisheriger Erwartungen - auch Behälter bzw. Schneidverdichter mit kleineren Durchmessern gut einsetzbar sind und dass hohe Durchsatzleistungen und ein hoher Ausstoß auch bei geringerer Verweilzeit erreichbar sind.

Bedingt durch das aufgrund der gegenläufigen Drehrichtung der Mischwerkzeuge bewirkte schonende Einzugsverhalten der Schnecke, können im Schneidverdichter aggressivere Werkzeuge verwendet werden, die mehr Energie ins Material einbringen. Dadurch verringert sich auch die mittlere Verweilzeit des Materials im Schneidverdichter. Der Schneidverdichter kann demnach bei höherer Temperatur betrieben werden, was wiederum eine bessere Homogenität zur Folge hat. Das Material kann somit auch in Behältern mit geringeren Durchmessern und Verweilzeiten gut vorbereitet werden.

Zudem hat eine derartige Kombination aus Schneidverdichter und Extruder unerwartet eine verbesserte Einbringung und Aufschmelzleistung des Materials in einem angeschlossenen Extruder zur Folge. Dadurch werden allfällige Inhomogenitäten ausgeglichen und das vom Behälter in das Schneckengehäuse eintretende und anschließend komprimierte und aufgeschmolzene Material weist eine hohe thermische und mechanische Homogenität auf. Entsprechend ist auch die Endqualität des Plastifikates bzw. Agglomerates am Ende der Extruder- bzw. der Agglomerierschnecke sehr hoch und es können Schnecken eingesetzt werden, die - bedingt durch die Vorbehandlung und den Einzug - das Polymer schonend behandeln und besonders wenig Scherleistung ins Material einbringen, um dieses aufzuschmelzen. Anfällige Verstopfungen der Einzugsöffnung werden verringert. Unabhängig von der Drehrichtung der Schnecke wird das Einbringen von Material in die Schnecke unterstützt und das Stopf- und Einbringverhalten der Werkzeuge verbessert.

Um die Anpassung an verschiedene Materialien und Füllungsvolumina vornehmen zu können, kann erfindungsgemäß vorgesehen sein, dass der Winkel über die Länge des Abweisers zumindest abschnittsweise konstant ist oder dass der Abweiser zumindest über einen Abschnitt seiner Länge gekrümmt, insbesondere nach unten durchgebogen, verläuft, in welchem Fall der Winkel den in dem jeweiligen Punkt des Abweisers vorliegenden Tangentialwinkel darstellt und/oder dass der Winkel, insbesondere im mittleren Bereich des Abweisers, 15° bis 45°, vorzugsweise 20° bis 40°, beträgt und/oder dass der Winkel gegen das untere Ende des Abweisers zu, gegebenenfalls auf einen Winkel α = 0°, abnimmt.

Für die Unterstützung des Einzugsverhaltens der Schnecke und des Einbringens von Material in die Einzugsöffnung hat es sich als vorteilhaft erwiesen, wenn das untere Ende des Abweisers in einem Umfangsbereich des Behälters liegt, der zwischen den beiden Seitenkanten der Einzugsöffnung liegt und dieser Bereich gegebenenfalls in Umdrehungsrichtung der Werkzeuge um maximal 50% bis 80% der Länge einer Längskante vergrößert ist und/oder wenn das untere Ende des Abweisers auf einem Höhenniveau an der Behälterwand liegt das in dem Bereich zwischen der oberen und unteren Längskante der Einzugsöffnung liegt und gegebenenfalls maximal 50% bis 80% der Höhe der Einzugsöffnung oberhalb der oberen Längskante oder maximal 20% bis 30% der Höhe der Einzugsöffnung unterhalb der unteren Kante der Einzugsöffnung liegt und/oder wenn das obere Ende des Abweisers, in Drehrichtung der Mischwerkzeuge betrachtet, zumindest 10° bis 15°, vorzugsweise 30* bis 55°, vor der drehrichtungsaufwärts gelegenen Kante der Einzugsöffnung oder nach der drehrichtungsabwärts gelegenen Kante der Einzugsöffnung liegt.

Es kann vorgesehen sein, dass der stegförmige Abweiser einen rechteckförmigen, an den in den Behälter ragenden Kanten allenfalls gerundeten, Querschnitt aufweist und mit seiner Schmalseite an der Innenwand des Behälters befestigt ist. Vor allem werde rechteckförmigen Querschnitt aufweisende Abweiser derart an der Behälterinnenwand angebracht, dass sie radial von der Behälterinnenwand abstehen.

Die Breite und Länge der Abstreifer kann an die Art der Materialien und deren

Behandlung und das gewünschte Einbringverhalten angepasst werden. Es kann auch vorgesehen sein, dass die Breite des Abweisers in Richtung auf das Ende zunimmt oder sich, gegebenenfalls stufenförmig, verjüngt.

Von Vorteil ist, wenn die Breite des Abweisers im Bereich von 1% bis 10% des Behälterdurchmessers liegt.

Bei einer speziellen Ausführungsform eines Abweisers kann vorgesehen sein, dass an das untere, den tiefsten Abschnitt des Abweisers darstellende Ende ein Verlängerungsteil, insbesondere einstückig, anschließt, der in Drehrichtung nach oben gerichtet ist. Damit kann insbesondere der Materialstrom drehrichtungabwärts der Einzugöffnung verbessert werden.

Es zeigte sich, dass es für das Einzugsverhalten zuträglich ist, wenn der Abweiser außerhalb des lichten Querschnittes der Einzugsöffnung endet.

Weitere vorteilhafte Ausgestaltungen der Erfindung werden durch die folgenden Merkmale beschrieben:

Besonders vorteilhaft arbeitet die Vorrichtung dann, wenn die Konstante K im Bereich von 90 bis 170 liegt. Bei diesen K-Werten bzw. den damit einhergehenden Behältergrößen und Verweilzeiten Überträgt das Werkzeug das Material besonders effektiv an den Förderer und die einander teilweise gegengerichteten Merkmale der Behältergröße, der Verweilzeit, des Einzugsverhaltens bzw. des Durchsatzes und der Qualität des Endproduktes sind gut ausgeglichen. Gemäß einer vorteilhaften Weiterentwicklung der Erfindung ist vorgesehen, dass der Förderer so am Aufnahmebehälter angeordnet ist, dass das Skalarprodukt aus dem tangential zum Flugkreis des radial äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs bzw. zum an der Öffnung vorbeistreichenden Kunststoffmaterial und normal zu einer Radialen des Aufnahmebehälters ausgerichteten, in Dreh- bzw. Bewegungsrichtung des Misch- und/oder Zerkleinerungswerkzeugs weisenden Richtungsvektor (Richtungsvektor der Drehrichtung) und dem Richtungsvektor der Förderrichtung des Förderers in Jedem einzelnen Punkt bzw. im gesamten (Bereich der Öffnung bzw. in jedem einzelnen Punkt bzw. im gesamten Bereich unmittelbar radial vor der Öffnung, null oder negativ ist. Der Bereich unmittelbar radial vor der Öffnung ist als derjenige Bereich vor der Öffnung definiert, bei dem das Material knapp vor dem Durchtritt durch die Öffnung steht, aber noch nicht die Öffnung passiert hat. Auf diese Weise werden die eingangs erwähnten Vorteile erzielt und werden effektiv jegliche durch Stopfeffekte bewirkte Agglomeratbildungen im Bereich der Einzugsöffnung vermieden. Insbesondere kommt es dabei auch nicht auf die räumliche Anordnung der Mischwerkzeuge und der Schnecke zueinander an, beispielsweise muss die Drehachse nicht normal zur Bodenfläche oder zur Längsachse des Förderers bzw. der Schnecke ausgerichtet sein. Der Richtungsvektor der Drehrichtung und der Richtungsvektor der Förderrichtung liegen in einer, vorzugsweise horizontalen. Ebene, bzw. in einer normal zur Drehachse ausgerichteten Ebene.

Eine weitere vorteilhafte Ausgestaltung ergibt sich dadurch, dass der Richtungsvektor der Drehrichtung des Misch- und/oder Zerkleinerungswerkzeugs mit dem Richtungsvektor der Förderrichtung des Förderers einen Winkel von größer oder gleich 90° und kleiner oder gleich 180° einschließt, wobei der Winkel im Schnittpunkt der beiden Richtungsvektoren am stromaufwärts zur Dreh- bzw. Bewegungsrichtung gelegenen Rand der Öffnung gemessen wird, insbesondere im am weitesten stromaufwärts gelegenen Punkt auf diesem Rand bzw. der Öffnung. Dadurch wird derjenige Winkelbereich beschrieben, in dem der Förderer am Aufnahmebehälter angeordnet werden muss, um die vorteilhaften Effekte zu erzielen. Dabei kommt es im gesamten Bereich der Öffnung bzw. in jedem einzelnen Punkt der Öffnung zu einer zumindest geringfügigen gegensinnigen Ausrichtung der auf das Material einwirkenden Kräfte bzw. im Extremfall zu einer druckneutralen Querausrichtung. In keinem Punkt der Öffnung ist das Skalarprodukt der Richtungsvektoren der Mischwerkzeuge und der Schnecke positiv, nicht einmal in einem Teilbereich der Öffnung tritt somit eine zu große Stopfwirkung auf.

Eine weitere vorteilhafte Ausgestaltung der Erfindung steht vor, dass der Richtungsvektor der Dreh- bzw. Bewegungsrichtung mit dem Richtungsvektor der Förderrichtung einen Winkel zwischen 170° und 180° einschließt, gemessen im Schnittpunkt der beiden Richtungsvektoren in der Mitte der Öffnung. Eine solche Anordnung trifft beispielsweise zu, wenn der Förderer tangential am Schneidverdichter angeordnet ist.

Um sicherzustellen, dass keine zu große Stopfwirkung auftritt, kann vorteilhafterweise vorgesehen sein, dass der Abstand bzw. die Versetzung der Längsachse zur Radialen größer als oder gleich groß wie der halbe Innendurchmesser des Gehäuses des Förderers bzw. der Schecke ist.

Weiters kann es in diesem Sinne vorteilhaft sein, den Abstand bzw. die Versetzung der Längsachse zur Radialen größer gleich 5 oder 7 %, noch vorteilhafter größer gleich 20 %, des Radius des Aufnahmebehälters zu bemessen. Bei Förderern mit einem verlängerten Einzugsbereich bzw. einer Nutenbuchse oder erweiterten Tasche kann es vorteilhaft sein, wenn dieser Abstand bzw. diese Versetzung größer als oder gleich groß wie der Radius des Aufnahmebehälters ist. Insbesondere trifft dies für Fälle zu, bei denen der Förderer tangential an den Aufnahmebehälter angeschlossen ist bzw. tangential zum Querschnitt des Behälters verläuft.

Die äußersten Gänge der Schnecke ragen vorteilhafterweise nicht in den Behälter hinein.

Dabei ist insbesondere vorteilhaft, wenn die Längsachse des Förderers bzw. der Schnecke bzw. die Längsachse der der Einzugsöffnung nächstliegenden Schnecke oder die Innenwandung des Gehäuses oder die Umhüllende der Schecke tangential zur Innenseite der Seitenwand des Behälters verläuft, wobei vorzugsweise die Schnecke an ihrer Stirnseite mit einem Antrieb verbunden ist und an ihrem gegenüberliegenden Stirnende zu einer am Stirnende des Gehäuses angeordneten Austrittsöffnung, insbesondere einem Extruderkopf, fördert.

Bei radial versetzt, jedoch nicht tangential angeordneten, Förderern ist vorteilhafterweise vorgesehen, dass die gedachte Verlängerung der Längsachse des Förderers entgegen der Förderrichtung den Innenraum des Aufnahmebehälters zumindest abschnittsweise als Sekante durchsetzt

Es ist vorteilhaft, wenn vorgesehen ist, dass die Öffnung unmittelbar und direkt und ohne längere Beabstandung oder Obergabestrecke, z.B. einer Förderschnecke, mit der Einzugsöffnung verbunden ist. Damit ist eine effektive und schonende Materialübergabe möglich.

Die Umkehr der Drehrichtung der im Behälter umlaufenden Misch- und Zerkleinerungswerkzeuge kann keinesfalls nur willkürlich oder aus Versehen erfolgen, und man kann - weder bei den bekannten Vorrichtungen noch bei der erfindungsgemäßen Vorrichtung - die Mischwerkzeuge nicht ohne Weiteres in Gegenrichtung rotieren lassen, insbesondere deshalb nicht, da die Misch- und Zerkleinerungswerkzeuge in gewisser Weise asymmetrisch bzw. richtungsorientiert so angeordnet sind, dass sie nur auf eine einzige Seite bzw. in eine Richtung wirken. Würde man eine solche Apparatur bewusst in die falsche Richtung drehen, so würde sich weder eine gute Mischtrombe ausbilden, noch würde das Material ausreichend zerkleinert oder erwärmt werden. Jeder Schneidverdichter hat somit seine fix vorgegebene Drehrichtung der Misch- und Zerkleinerungswerkzeuge.

In diesem Zusammenhang ist es besonders vorteilhaft, wenn vorgesehen ist, dass die auf das Kunststoffmaterial einwirkenden in Dreh- bzw. Bewegungsrichtung weisenden vorderen Bereiche bzw. Vorderkanten der Misch- und/oder Zerkleinerungswerkzeuge unterschiedlich ausgebildet, gekrümmt, angestellt bzw. angeordnet sind im Vergleich zu den in Dreh- bzw. Bewegungsrichtung hinteren bzw. nachlaufenden Bereichen.

Eine vorteilhafte Anordnung sieht dabei vor, dass auf dem Misch- und/oder Zerkleinerungswerkzeug Werkzeuge und/oder Messer angeordnet sind, die in Dreh- bzw. Bewegungsrichtung auf das Kunststoffmaterial erwärmend, zerkleinernd und/oder schneidend einwirken. Die Werkzeuge und/oder Messer können entweder direkt an der Welle befestigt sein oder sind vorzugsweise auf einem, insbesondere parallel zur Bodenfläche, angeordneten drehbaren Werkzeugträger bzw. einer Trägerscheibe angeordnet bzw. darin ausgebildet oder daran, gegebenenfalls einstückig, angeformt Grundsätzlich sind die erwähnten Effekte nicht nur bei komprimierenden Extrudern bzw. Agglomeratoren relevant, sondern auch bei nicht oder weniger komprimierenden Förderschnecken. Auch hier werden lokale Überfütterungen vermieden.

Bei einer weiteren besonders vorteilhaften Ausgestaltung ist vorgesehen, dass der Aufnahmebehälter im wesentlichen zylindrisch mit einer ebenen Bodenfläche und einer dazu vertikal ausgerichteten zylindermantelförmigen Seitenwand ist. Konstruktiv einfach ist es weiters, wenn die Drehachse mit der zentralen Mittelachse des Aufnahmebehälters zusammenfällt. Bei einer weiteren vorteilhaften Ausgestaltung ist vorgesehen, dass die Drehachse oder die zentrale Mittelachse des Behälters vertikal und/oder normal zur Bodenfläche ausgerichtet sind. Durch diese besonderen Geometrien wird das Einzugsverhalten bei einer konstruktiv stabilen und einfach aufgebauten Vorrichtung optimiert.

In diesem Zusammenhang ist es auch vorteilhaft, vorzusehen, dass das Misch- und/oder Zerkleinerungswerkzeug, oder, falls mehrere übereinander angeordnete Misch- und/oder Zerkleinerungswerkzeuge vorgesehen sind, das unterste, bodennächste Mlsch- und/oder Zerkleinerungswerkzeug, sowie die Öffnung in geringem Abstand zur Bodenfläche, insbesondere im Bereich des untersten Viertels der Höhe des Aufnahmebehälters angeordnet sind. Der Abstand wird dabei definiert und gemessen von der untersten Kante der Öffnung bzw. der Einzugsöffnung bis zum Behälterboden im Randbereich des Behälters. Da die Eckkante meist gerundet ausgebildet ist, wird der Abstand von der untersten Kante der Öffnung entlang der gedachten Verlängerungen der Seitenwand nach unten bis zur gedachten Verlängerung des Behälterbodens nach außen gemessen. Gut geeignete Abstände sind 10 bis 400 mm.

Weiters ist es für die Bearbeitung vorteilhaft, wenn die radial äußersten Kanten der Misch- und/oder Zerkleinerungswerkzeuge bis dicht an die Seitenwand heranreichen.

In diesem Zusammenhang ist es besonders vorteilhaft, wenn der Abstand A des radial äußersten Punktes des untersten Misch- und/oder Zerkleinerungswerkzeugs bzw. der Abstand A des Flugkreises dieses Punktes von der Innenfläche der Seitenwand des Behälters größer oder gleich 20 mm ist, insbesondere zwischen ; 20 mm und 60 mm, liegt. Hierdurch ergibt sich ein besonderes effektives und schonendes Einzugsverhalten.

Der Behälter muss nicht unbedingt eine kreiszylindrische Form aufweisen, wenngleich diese Form aus praktischen und fertigungstechnischen Gründen vorteilhaft ist. Von der Kreiszylinderform abweichende Behälterformen, etwa kegelstumpfförmige Behälter oder zylindrische Behälter mit elliptischem oder ovalem Grundriss, müssen auf einen kreiszylindrischen Behälter gleichen Fassungsvolumens umgerechnet werden, unter der Annahme, dass die Höhe dieses fiktiven Behälters gleich dessen Durchmesser ist. Behälterhöhen, die hierbei die sich einstellende Mischtrombe (unter Berücksichtigung des Sicherheitsabstandes) wesentlich übersteigen, bleiben unberücksichtigt, da diese übermäßige Behälterhöhe nicht genutzt wird und daher auf die Materialverarbeitung keinen Einfluss mehr hat.

Unter dem Begriff Förderer werden vorliegend sowohl Anlagen mit nicht komprimierenden oder dekomprimierenden Schnecken, also reine Förderschnecken, als auch Anlagen mit komprimierenden Schnecken, also Extruderschnecken mit agglomerierender oder plastifizierender Wirkung, verstanden.

Unter den Begriffen Extruder bzw. Extruderschnecke werden in vorliegendem Text sowohl Extruder bzw. Schnecken verstanden, mit denen das Material vollständig oder teilweise aufgeschmolzen wird, als auch Extruder, mit denen das erweichte Material nur agglomeriert, jedoch nicht aufgeschmolzen wird. Bei Agglomerierschnecken wird das Material nur kurzzeitig stark komprimiert und geschert, nicht aber plastifiziert. Die Agglomerierschnecke liefert daher an ihrem Ausgang Material, weiches nicht vollkommen geschmolzen ist, sondern von nur an ihrer Oberfläche angeschmolzenen Teilchen besteht, die gleichsam einer Sinterung zusammengebackt sind. In beiden Fällen wird jedoch über die Schnecke Druck auf das Material ausgeübt und dieses verdichtet. Bei den in den nachfolgenden Figuren beschriebenen Beispielen sind durchwegs Förderer mit einer einzigen Schnecke, beispielsweise Einwellen- bzw. Einschneckenextruder, dargestellt. Alternativ ist jedoch auch die Vorsehung von Förderern mit mehr als einer Schnecke, beispielsweise Doppel- oder Mehrwellenförderer oder -extruder, insbesondere mit mehreren identischen Schnecken, die zumindest gleiche Durchmesser d aufweisen, möglich.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der Beschreibung der folgenden nicht einschränkend zu verstehenden Ausführungsbeispiele des Erfindungsgegenstandes, welche in den Zeichnungen schematisch und nicht maßstabsgetreu dargestellt sind:

Fig. 1 zeigt einen Vertikalschnitt durch eine erfindungsgemäße Vorrichtung mit etwa tangential angeschlossenem Extruder.

Fig. 2 zeigt einen Horizontalschnitt durch die Ausführungsform von Fig. 1.

Fig. 3 zeigt eine weitere Ausführungsform mit minimaler Versetzung.

Fig. 4 zeigt eine weitere Ausführungsform mit größerer Versetzung.

Fig. 5 und 6 zeigen einen Behälter mit Abweisern.

Fig. 7 zeigt ein Detail.

Fig. 8 bis 10 zeigen schematisch die Anordnung und Ausbildung von Abweisern.

Aus Übersichtlichkeitsgründen wurden in Fig. 1, 3 und 4 die Abweiser lediglich angedeutet. Weder die Behälter, noch die Schnecken oder die Mischwerkzeuge sind in den

Zeichnungen maßstäblich, weder als solche, noch im Verhältnis zueinander. So sind z.B. in Wirklichkeit die Behälter meist größer oder die Schnecken länger, als hier dargestellt.

Die in Fig. 1 und Fig. 2 dargestellte vorteilhafte Schneidverdichter-Extruder- Kombination zum Aufbereiten bzw. Recyclieren von Kunststoffmaterial weist einen kreiszylindrischen Behälter bzw. Schneidverdichter bzw. Zerreißer 1 mit einer ebenen, horizontalen Bodenfläche 2 und einer normal dazu ausgerichteten, vertikalen, zylindermantelförmigen Seitenwand 9 auf.

In geringem Abstand zur Bodenfläche 2, maximal in etwa 10 bis 20 %, gegebenenfalls weniger, der Höhe der Seitenwand 9 - gemessen von der Bodenfläche 2 zum obersten Rand der Seitenwand 9 - ist eine parallel zur Bodenfläche 2 ausgerichtete, ebene Trägerscheibe bzw. ein Werkzeugträger 13 angeordnet, die/der um eine zentrale Drehachse 10, die gleichzeitig die zentrale Mittelachse des Behälters 1 ist, in die mit einem Pfeil 12 markierte Dreh- bzw. Bewegungsrichtung 12 drehbar ist. Die Trägerscheibe 13 ist über einen Motor 21 angetrieben, der sich unterhalb des Behälters 1 befindet. Auf der Oberseite der Trägerscheibe 13 sind Messer bzw. Werkzeuge, z.B. Schneidmesser, 14 angeordnet, die gemeinsam mit der Trägerscheibe 13 das Misch- und/oder Zerkleinerungswerkzeug 3 bilden.

Wie schematisch angedeutet, sind die Messer 14 auf der Trägerscheibe 13 nicht symmetrisch angeordnet, sondern sind auf ihren in die Dreh- bzw. Bewegungsrichtung 12 weisenden vorderen Kanten 22 besonders ausgebildet, angestellt bzw. angeordnet, um auf das Kunststoffmaterial mechanisch spezifisch einwirken zu können. Die radial äußersten Kanten der Misch- und Zerkleinerungswerkzeuge 3 reichen bis relativ nahe, etwa 5 % des Radius 11 des Behälters 1, an die Innenfläche der Seitenwand 9 heran.

Der Behälter 1 besitzt oben eine Einfüllöffnung, durch die das zu verarbeitende Gut, z.B. Portionen aus Kunststofffolien, z.B. mittels einer Fördereinrichtung in Richtung des Pfeils eingeworfen wird. Alternativ kann vorgesehen sein, dass der Behälter 1 geschlossen und zumindest auf ein technisches Vakuum evakuierbar ist, wobei das Material über ein Schleusensystemen eingebracht wird. Dieses Gut wird von den umlaufenden Misch- und/oder Zerkleinerungswerkzeugen 3 erfasst und in Form einer Mischtrombe 30 hochgewirbelt, wobei das Gut entlang der vertikalen Seitenwand 9 hochsteigt und annähernd im Bereich der wirksamen Behälterhöhe H durch Schwerkrafteinwirkung wieder nach innen und unten in den Bereich der Behältermitte zurückfällt. Die wirksame Höhe H des Behälters 1 ist annähernd gleich seinem Innendurchmesser D. Im Behälter 1 bildet sich also eine Mischtrombe 30 aus, bei der das Material sowohl von oben nach unten als auch in Drehrichtung 12 herumgewirbelt wird. Eine solche Vorrichtung kann somit aufgrund der besonderen Anordnung der Misch- und Zerkleinerungswerkzeuge 3 bzw. der Messer 14 nur mit der vorgegebenen Dreh- bzw. Bewegungsrichtung 12 betrieben werden und die Drehrichtung 12 kann nicht ohne Weiteres oder ohne zusätzliche Änderungen vorzunehmen, umgedreht werden.

Das eingebrachte Kunststoffmaterial wird von den umlaufenden Misch- und Zerkleinerungswerkzeugen 3 zerkleinert, gemischt und dabei über die eingebrachte mechanische Reibungsenergie erwärmt und erweicht, jedoch nicht aufgeschmolzen. Nach einer gewissen Verweilzeit im Behälter 1 wird das homogenisierte, erweichte, teigige aber nicht geschmolzene Material, wie im Folgenden im Detail erörtert wird, durch eine Öffnung 8 aus dem Behälter 1 ausgebracht, in den Einzugsbereich eines Extruders 5 gebracht und dort von einer Schnecke 6 erfasst und in weiterer Folge aufgeschmolzen.

Auf der Höhe des im vorliegenden Fall einzigen Zerkleinerungs- und Mischwerkzeugs 3 ist in der Seitenwand 9 des Behälters 1 die besagte Öffnung 8 ausgebildet, durch die das vorbehandelte Kunststoffmaterial aus dem inneren des Behälters 1 ausbringbar ist. Das Material wird an einen tangential am Behälter 1 angeordneten Einschnecken-Extruder 5 übergeben, wobei das Gehäuse 16 des Extruders 5 eine in seiner Mantelwand liegende Einzugsöffnung 80 für das von der Schnecke 6 zu erfassende Material aufweist Eine solche Ausführungsform hat den Vorteil, dass die Schnecke 6 vom in der Zeichnung unteren Stimende her durch einen nur schematisch dargestellten Antrieb angetrieben werden kann, sodass das in der Zeichnung obere Stimende der Schnecke 6 vom Antrieb freigehalten werden kann. Dies ermöglicht es, die Austrittsöffnung für das von der Schnecke 6 geforderte, plastifizierte oder agglomerierte Kunststoffmaterial an diesem oberen Stirnende anzuordnen, z.B. in Form eines nicht dargestellten Extruderkopfes. Das Kunststoffmaterial kann daher ohne Umlenkung von der Schnecke 6 durch die Austrittsöffnung gefördert werden, was bei den Ausführungsformen nach den Figuren 3 und 4 nicht ohne weiteres möglich ist.

Die Einzugsöffnung 80 steht mit der Öffnung 8 in MaterialfÖrder- bzw. Übergabeverbindung und ist im vorliegenden Fall direkt, unmittelbar und ohne längeres Zwischenstück oder Beabstandung mit der Öffnung 8 verbunden. Lediglich ein sehr kurzer Übergabebereich ist vorgesehen.

im Gehäuse 16 ist eine komprimierende Schnecke 6 um ihre Längsachse 15 drehbar gelagert. Die Längsachse 15 der Schnecke 6 und des Extruders 5 fallen zusammen. Der Extruder 5 fördert das Material in Richtung des Pfeils 17. Der Extruder 5 ist ein an sich bekannter, herkömmlicher Extruder, bei dem das erweichte Kunststoffmaterial komprimiert und dadurch aufgeschmolzen wird, und die Schmelze dann auf der gegenüberliegenden Seite am Extruderkopf austritt

Die Misch- und/oder Zerkleinerungswerkzeuge 3 bzw. die Messer 14 liegen auf nahezu derselben Höhe bzw. Ebene wie die zentrale Längsachse 15 des Extruders 5. Die äußersten Enden der Messer 14 sind ausreichend von den Stegen der Schnecke 6 beabstandet.

Bei der Ausführungsform gemäß Fig. 1 und 2 ist der Extruder 5, wie erwähnt, tangential an den Behälter 1 angeschlossen bzw. verläuft tangential zu dessen Querschnitt. Die gedachte Verlängerung der zentralen Längsachse 15 des Extruders 5 bzw. der Schnecke 6 entgegen der Förderrichtung 17 des Extruders 5 nach hinten, fuhrt in der Zeichnung neben der Drehachse 10 vorbei, ohne diese zu schneiden. Die Längsachse 15 des Extruders 5 bzw. der Schnecke 6 ist ablaufseitig zu der zur Längsachse 15 parallelen, von der Drehachse 10 des Misch- und/oder Zerkleinerungswerkzeugs 3 in Förderrichtung 17 des Extruders 5 nach außen gerichteten Radialen 11 des Behälters 1 um einen Abstand 18 versetzt. Im vorliegenden Fall durchsetzt die nach hinten gedachte Verlängerung der Längsachse 15 des (Extruders 5 den Innenraum des Behälters 1 nicht, sondern läuft knapp daneben vorbei.

Der Abstand 18 ist etwas größer als der Radius des Behälters 1. Der (Extruder 5 ist damit geringfügig nach außen versetzt bzw. der Einzugsbereich ist etwas tiefer.

Unter den Begriffen .entgegengerichtet", "gegenläufig" oder .gegensinnig" wird hier jegliche Ausrichtung der Vektoren zueinander verstanden, die nicht spitzwinkelig ist, wie im folgenden im Detail erläutert wird.

Anders ausgedrückt, ist das Skalarprodukt aus einem Richtungsvektor 19 der

Drehrichtung 12, der tangential zum Flugkreis des äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs 3 bzw. tangential zum an der Öffnung 8 vorbeistreichenden Kunststoffmaterial ausgerichtet ist und der in Dreh- bzw.

Bewegungsrichtung 12 der Misch- und/oder Zerkleinerungswerkzeuge 3 weist, und einem

Richtungsvektor 17 der Förderrichtung des Extruders 5, der in Förderichtung parallel zur zentralen Längsachse 15 verläuft, in jedem einzelnen Punkt der Öffnung 8 bzw. im Bereich radial unmittelbar vor der Öffnung 8, überall null oder negativ, nirgendwo jedoch positiv.

Bei der Einzugsöffnung in Fig. 1 und 2 ist das Skalarprodukt aus dem Richtungsvektor 19 der Drehrichtung 12 und dem Richtungsvektor 17 der Förderrichtung in jedem Punkt der Öffnung 8 negativ.

Der Winkel α zwischen dem Richtungsvektor 17 der Förderrichtung und dem

Richtungsvektor der Drehrichtung 19, gemessen im am weitesten stromaufwärts zur Drehrichtung 12 gelegenen Punkt 20 der Öffnung 8 bzw. am am weitesten stromaufwärts gelegenen Rand der Öffnung 8, beträgt, nahezu maximal, etwa 170°.

Schreitet man entlang der Öffnung 8 in Fig. 2 nach unten, also in Drehrichtung 12, weiter, so wird der stumpfe Winkel zwischen den beiden Richtungsvektoren immer größer. In der Mitte der Öffnung 8 ist der Winkel zwischen den Richtungsvektoren etwa 180° und das Skalarprodukt maximal negativ, weiter unterhalb davon wird der Winkel sogar > 180° und das Skalarprodukt nimmt wieder etwas ab, bleibt aber immer negativ. Diese Winkel sind allerdings nicht mehr als Winkel α bezeichnet, da sie nicht in Punkt 20 gemessen sind.

Ein in Fig. 2 nicht eingezeichneter, in der Mitte bzw. im Zentrum der Öffnung 8 gemessener Winkel ß zwischen dem Richtungsvektor der Drehrichtung 1 und dem Richtungsvektor der Förderrichtung 17 beträgt etwa 178° bis 180°.

Die Vorrichtung gemäß Fig. 2 stellt den ersten Grenzfall bzw. Extremwert dar. Bei einer solchen Anordnung ist eine sehr schonende Stopfwirkung bzw. eine besonders vorteilhafte Fütterung möglich und ist eine solche Vorrichtung insbesondere für sensible Materialien, die nahe dem Schmelzbereich bearbeitet werden oder für langstreifiges Gut vorteilhaft.

In Fig. 3 ist eine alternative Ausführungsform gezeigt, bei der der Extruder 5 nicht tangential, sondern mit seiner Stirnseite 7 an den Behälter 1 angeschlossen ist. Die Schnecke 6 und das Gehäuse 16 des Extruders 5 sind im Bereich der Öffnung 8 an die Kontur der Innenwand des Behälters 1 angepasst und bündig zurückversetzt Kein Teil des Extruders 5 ragt durch die Öffnung 8 hindurch in den Innenraum des Behälters 1 hinein.

Der Abstand 18 entspricht hier etwa 5 bis 10 % des Radius 11 des Behälters 1 und etwa dem halben Innendurchmesser d des Gehäuses 16. Diese Ausführungsfrom stellt somit den zweiten Grenzfall bzw. Extremwert mit kleinstmöglichem Versatz bzw. Abstand 18 dar, bei dem die Dreh- bzw. Bewegungsrichtung 12 der Misch- und/oder Zerkleinerungswerkzeuge 3 der Förderrichtung 17 des Extruders 5 zumindest geringfügig entgegengerichtet ist und zwar über die gesamte Räche der Öffnung 8.

Das Skalarprodukt ist in Fig. 3 in demjenigen grenzwertigen, am weitesten stromaufwärts gelegenen, Punkt 20 genau null, der am, am weitesten stromaufwärts gelegenen, Rand 20' der Öffnung 8 liegt. Der Winkel α zwischen dem Richtungsvektor 17 der Förderrichtung und dem Richtungsvektor der Drehrichtung 19 ist, gemessen in Punkt 20 von Fig. 3, genau 90°. Schreitet man entlang der Öffnung 8 nach unten, also in Drehrichtung 12, weiter, so wird der Winkel zwischen den Richtungsvektoren immer größer und zu einem stumpfen Winkel > 90° und das Skalarprodukt wird gleichzeitig negativ. An keinem Punkt oder in keinem Bereich der Öffnung 8 ist das Skalaprodukt jedoch positiv oder der Winkel kleiner als 90°. Dadurch kann nicht einmal in einem Teilbereich der Öffnung 8 eine lokale Überfütterung erfolgen bzw. kann es in keinem Bereich der Öffnung 8 zu einer schädlichen überhöhten Stopfwirkung kommen.

Darin besteht auch ein entscheidender Unterschied zu einer rein radialen Anordnung, da in Punkt 20 bzw. an der Kante 20 * bei einer voll radialen Anordnung des Extruders 5 ein Winkel α < 90° vorliegen würde und diejenigen Bereiche der Öffnung 8, die in der Zeichnung oberhalb der Radialen 11 bzw. stromaufwärts bzw. zulaufseitig davon gelegen sind, hätten ein positives Skalarprodukt. Damit könnte sich in diesen Bereichen lokal aufgeschmolzenes Kunststoffgut ansammeln.

In Fig. 4 ist eine weitere alternative Ausführungsform dargestellt, bei der der Extruder 5 ablaufseitig etwas weiter versetzt ist als bei Fig. 3, jedoch noch nicht tangential wie in Fig. 1 und 2. Im vorliegenden Fall, wie auch bei Fig. 3, durchsetzt die nach hinten gedachte Verlängerung der Längsachse 15 des Extruders 5 den Innenraum des Behälters 1 sekantenartig. Dies hat zur Folge, dass - gemessen in Umfangsrichtung des Behälters 1 - die Öffnung 8 breiter ist als bei der Ausführungsform nach Fig. 3. Auch der Abstand 18 ist entsprechend größer als bei Fig. 3, jedoch etwas kleiner als der Radius 11. Der Winkel α gemessen in Punkt 20 betragt etwa 150°, wodurch gegenüber der Vorrichtung von Fig. 3 die Stopfwirkung verringert wird, was für gewisse sensible Polymere vorteilhafter ist. Der vom Behälter 1 aus gesehene rechte innere Rand bzw. die Innenwandung des Gehäuses 16 schließt tangential an den Behälter 1 an, wodurch im Unterschied zu Fig. 3 keine stumpfe Übergangskante ausgebildet ist. In diesem stromabwärtigsten Punkt der Öffnung 8, in Fig. 4 ganz links, ist der Winkel etwa 180°.

Um bei all diesen Behälter-Extruder-Kombinationen optimale Bedingungen hinsichtlich der Verweilzeiten des Kunststoffes für die Vorzerkleinerung, die Vortrocknung und die Vorwärmung des Kunststoffmateriales im Behälter 1 zu erzielen, steht der Durchmesser D des Behälters 1 zum Außendurchmesser d der Schnecke 6 in der Beziehung , wobei D der Innendurchmesser des Behälters 1 in Millimeter, d der Durchmesser der Schnecke 6 in Millimeter und K eine Konstante sind, welche Konstante im Bereich von 60 bis 180 liegt.

Wie eingangs erwähnt, gewährleistet das spezifische Verhältnis zwischen dem Innendurchmesser D des Behälters 1 und dem mittleren Durchmesser d der Schnecke 6 bei relativ geringer durchschnittlicher Verweilzeit des Materials, dass in die Einzugsöffnung 80 des Gehäuses 16 stets Gut mit einer ausreichend konstanten thermischen und mechanischen Beschaffenheit eintritt, auch wenn das zu verarbeitende Gut in Bezug auf eine solche Verarbeitung schwierig ist, z.B. Folienreste unterschiedlicher Beschaffenheit (Dicke. Größe usw.). Die Misch- bzw. Zerkleinerungswerkzeuge 3 sorgen durch ihre besondere Drehrichtung 12 relativ zur Förderrichtung der Schnecke 6 für den schonenden Einzug des Materials in den Extruder 5 und gewährleisten, dass bei hohem Durchsatz eine homogene Schmelze erzielbar ist Unterstützt werden die Werkzeuge 3 durch die vorgesehenen Abweiser 50. Die gewählte Drehrichtung 12 der Misch- bzw. Zerkleinerungswerkzeuge 3 wirkt synergistisch mit der Anbringung der Abweiser 50 zusammen. Derartige Abweiser 50 werden an der Innenwandung des Behälters 1 angebracht, beispielsweise angeschweißt. Die Abweiser 50 besitzen eine vorgegebene Länge I sowie eine vorgegebene Breite b, die an die jeweiligen Verhältnisse angepasst werden kann. Prinzipiell können die Abweiser 50 auch austauschbar an der Behälterinnenwand angebracht werden. Die Anzahl der längs der Innenwand des Behälters 1 angeordneten Abweiser 50 wird dem Einsatzzweck der Vorrichtung angepasst. Fig. 5 zeigt einen schematischen Schnitt durch einen Behälter 1 , in dem an gegenüberliegenden Innenwandbereichen zwei Abweiser 50 angeordnet sind. Oer eine Abweiser 50 liegt der Einzugsöffnung 80 gegenüber, der andere Abweiser, der eine endseitige Verlängerung 57 besitzt besitzt einen unteren Endbereich bzw. ein unteres Ende 58, der bzw. das oberhalb der Einzugsöffnung 80 liegt. Mit 70 ist ein Umfeld bzw. ein Bereich um die Einzugsöffnung 80 dargestellt, innerhalb dem vorteilhafterweise das Ende bzw. der tiefste Punkt 58 zumindest eines der vorgesehenen Abstreifers 50 angeordnet sein sollte. Fig. 6 zeigt eine Draufsicht auf den in Fig. 5 dargestellten Behälter. Man erkennt die beiden an einander gegenüberliegenden Innenwandflächen angeordneten Abweiser 50.

Fig. 7 zeigt einen Detailschnitt des Anschlusses einer Förder- bzw. Extruderschnecke 6 an den Behälter 1. Oberhalb der Einzugsöffnung 80 liegt ein Abweiser 50. Dieser stegförmige Abweiser 50 ist mit seiner Schmalseite an der Behälterwand befestigt und ragt in das Behälterinnere.

Es ist vorgesehen, dass der Abweiser 50 einen Höhenverlauf besitzt wobei das Höhenniveau in Drehrichtung 12 des Mischwerkzeuges 3 von oben nach unten zu abnimmt, so wie dies in Fig. 8 und 9 ersichtlich ist. Dabei schließt jeder Abweiser 50 zumindest über den größten Teil seiner Länge einen spitzen Winkel α mit einer Ebene E ein, welche Ebene E senkrecht zur Drehachse 10 der umlaufenden Misch- und Zerkleinerungswerkzeuge 3 steht

Der Abweiser 50 kann sich mit konstantem Winkel α in Form eines geraden Stegs längs der Behälterinnenwand erstrecken. Es ist selbstverständlich, dass die Abweiser 50 der Innenwand des Behälters folgen und in Daraufsicht, so wie in Fig. 6 dargestellt, längs des Urnfanges des Behälters eine entsprechende Krümmung besitzen. Der Winkel α wird jedoch gegenüber der Ebene E gemessen und im Falle, dass ein Abweiser 50 eine Krümmung über seinen Höhenverlauf besitzt, so kann der jeweilige Tangentialwinkel in den betrachteten Punkten des Abweisers 50 als Winkel α herangezogen werden.

Von Vorteil ist es, wenn, wie in den Figuren dargestellt ist, zumindest über einen Teilabschnitt des Abweisers 50 der Winkel α 15° bis 45°, vorzugsweise 20° bis 40°, beträgt. Aus Fig. 8 und 9 ist ersichtlich, das der Höhenverlauf des Abweisers 50 zumeist eine konvexe Krümmung zeigt, die gegen die Drehrichtung 12 der Werkzeuge 3 gerichtet ist. Es ist allerdings auch in Fig. 8 ein Abweiser 50A eingezeichnet, der eine konvexe Krümmung besitzt, die in Drehrichtung 12 der Werkzeuge 3 gerichtet ist.

Fig. 8 zeigt eine Vielzahl von unterschiedliche Länge und/oder unterschiedlichen Höhenverlauf besitzenden Abweisem 50. Aus Fig. 8 ist auch ersichtlich, dass die Drehrichtung 12 der Werkzeuge 3 entgegen der Förderrichtung FS der Schnecke 6 gerichtet ist, sowie dies anhand der Fig. 1 bis 4 ausführlich erläutert wurde. In Fig. 8 ist der Bereich 70 erkennbar, der die Einzugsöffnung 80 umgibt. In diesem Bereich 79 liegt vorteilhafterweise der untere Endbereich bzw. das untere Ende 58 eines oder auch mehrerer Abweiser 50.

Es ist vorgesehen, dass das untere Ende des Abweisers 50 in einem Umfangsbereich der Behälterwand zwischen den beiden Seitenkanten 55, 56 der Einzugsöffnung 80 liegt und dieser Bereich gegebenenfalls in Umdrehungsrichtung der Werkzeuge 3 nur maximal 50% bis 80% der Länge einer Längskante 52, 53 vergrößert ist.

Des Weiteren ist vorgesehen, dass das untere Ende des Abweisers 50 auf einem Niveau liegt, das in dem Bereich 70 zwischen der oberen und unteren Längskante 52, 53 der Einzugsöffnung 80 liegt und gegebenenfalls maximal 50% bis 80% der Höhe HE der Einzugsöffnung 80 oberhalb der oberen Längskante 52 oder maximal 20% bis 30% der Höhe HE der Einzugsöffnung 80 unterhalb der unteren Kante 53 der Einzugsöffnung 80 liegt.

Für die oberen Enden der Abweiser kann vorgesehen sein, dass das obere Ende des Abweisers 50, in Drehrichtung 12 der Mischwerkzeuge 3 betrachtet, zumindest 10° bis 15°, vorzugsweise 30° bis 55°, vor der drehrichtungsaufwärts gelegenen Kante 56 der Einzugsöffnung 80 oder nach der drehrichtungsabwärts gelegenen Kante 55 der Einzugsöffnung 80 liegt. Mit dieser Lage der Abweiser 50 wird das Einzugsverhalten beträchtlich verbessert

Die Breite b und die Länge I der Abweiser 50 kann wie aus Fig. 10 ersichtlich den Gegebenheiten angepasst und vorgegeben werden. In Fig. 10 ist ein Abweiser 50 mit rechteckigem Längsquerschnitt dargestellt. Rechts daneben ist der Abweiser 50 dargestellt, der sich in Richtung auf sein unteres Ende 58 in seinem letzten Abschnitt erweitert bzw. verbreitet. Der rechts dargestellte Abweiser besitzt Ober seine Länge I unterschiedliche Breite b bzw. ist in seinem Endbereich abgestumpft.

Es ist möglich, dass im Bereich der Einzugsöffnung 80 auch mehrere Abweiser 50 enden. Bevorzugterweise liegen die Enden 58 der Abweiser 50 in einem bezüglich der Kante 52 drehrichtungsabwärtigen Umfangsbereich 70 und enden auf einem Höhenniveau der Kante 52 oder darunter. Derartige Abweiser sind mit 50B bezeichnet. Die weiteren im Behälter 1 angeordneten Abweiser 50, die der Einzugsöffnung (80) fem liegen, können dieselben Merkmale, insbesondere bezüglich Höhenverlauf und Höhenniveau, aufweisen wie die im Umfangsbereich der Einzugsöffnung 80 liegenden Abweiser 50.