Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AXIAL FLUX MACHINE FOR AN ELECTRICAL PROCESSING DEVICE AND ELECTRICAL PROCESSING DEVICE WITH AN AXIAL FLUX MACHINE
Document Type and Number:
WIPO Patent Application WO/2021/083761
Kind Code:
A1
Abstract:
The invention relates to an axial flux machine (10), in particular a single-sided axial flux motor, for an electrical machining device (34), having a machine shaft (12), in particular a motor shaft, a disc-shaped stator (20), a disc-shaped rotor (14) which is arranged adjacent to the stator (20) in the axial direction (A) of the machine shaft (12), wherein the stator (20) is formed as a winding carrier (22) for at least one stator winding (24) and the rotor (14), which is connected to the machine shaft (12) in a rotationally fixed manner, can be set in a rotational movement relative to the stator (20), and with a housing (82) for receiving the stator (20) and the rotor (14). According to the invention, a first bearing (28), in particular a fixed bearing (30), is integrated directly into the winding support (22) and/or into a first stator yoke (26) for mounting the machine shaft (12). The invention also relates to an electrical processing device (34) with an axial flux machine (10).

Inventors:
LABER SEBASTIAN (DE)
BONASEWICZ ROBERT (DE)
VOELKLE ANDREAS (DE)
Application Number:
PCT/EP2020/079617
Publication Date:
May 06, 2021
Filing Date:
October 21, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
H02K5/173; H02K7/08
Foreign References:
US20150322957A12015-11-12
JPS63106418A1988-05-11
DE102015223766A12017-06-01
Download PDF:
Claims:
Ansprüche

1. Axialflussmaschine (10), insbesondere einseitiger Axialflussmotor, für ein elektrisches Bearbeitungsgerät (34), mit einer Maschinenwelle (12), insbe sondere Motorwelle, einem scheibenförmigen Stator (20), einem in axialer Richtung (A) der Maschinenwelle (12) benachbart zum Stator (20) angeord neten scheibenförmigen Rotor (14), wobei der Stator (20) als Wicklungsträ ger (22) für zumindest eine Statorwicklung (24) ausgebildet ist und der drehfest mit der Maschinenwelle (12) verbundene Rotor (14) relativ zum Stator (20) in eine Drehbewegung versetzbar ist, und mit einem Gehäuse (82) zur Aufnahme des Stators (20) und des Rotors (14), dadurch gekenn zeichnet, dass direkt in den Wicklungsträger (22) und/oder in ein erstes Statorjoch (26) ein erstes Lager (28), insbesondere ein Festlager (30), zur Lagerung der Maschinenwelle (12) integriert ist.

2. Axialflussmaschine (10) nach Anspruch 1, dadurch gekennzeichnet, dass das erste Lager (28) in den Wicklungsgräger (22) und/oder das erste Statorjoch (26) eingepresst ist.

3. Axialflussmaschine (10) nach Anspruch 1, dadurch gekennzeichnet, dass das erste Lager (28) in den Wicklungsgräger (22) und/oder das erste Statorjoch (26) eingespritzt ist.

4. Elektrisches Bearbeitungsgerät (34), insbesondere Elektrowerkzeugma schine (112), mit einer Axialflussmaschine (10) nach einem der vorherge henden Ansprüche.

5. Elektrisches Bearbeitungsgerät (34) nach Anspruch 4, dadurch gekenn zeichnet, dass der Stator (20) direkt in einem Gehäuse (32) des elektri schen Bearbeitungsgeräts (34) aufgenommen ist.

6. Elektrisches Bearbeitungsgerät (34) nach Anspruch 5, dadurch gekenn zeichnet, dass der Stator (20) der Axialflussmaschine (10) und das Ge- häuse (32) des elektrischen Bearbeitungsgeräts (34) durch einen Fügepro zess miteinander dauerhaft verbunden, inbesondere verklebt, sind.

7. Elektrisches Bearbeitungsgerät (10) nach Anspruch 5, dadurch gekenn zeichnet, dass der Stator (20) der Axialflussmaschine (10) und das Ge häuse (32) des elektrischen Bearbeitungsgeräts (34) durch einen Form schluss miteinander dauerhaft verbunden, inbesondere verpresst, sind.

8. Elektrisches Bearbeitungsgerät (10) nach einem der vorhergehenden An sprüche 4 bis 7, dadurch gekennzeichnet, dass das Gehäuse (32) oder ein Getriebegehäuse (122) des elektrischen Bearbeitungsgeräts (34) ein mit der Maschinenwelle (12) der Axialflussmaschine (10) verbundenes zweites Lager (36), insbesondere ein Loslager (38), aufnimmt.

Description:
Titel

Axialflussmaschine für ein elektrisches Bearbeitungsgerät sowie elektrisches Be arbeitungsgerät mit einer Axialflussmaschine

Beschreibung

Die Erfindung betrifft eine Axialflussmaschine, insbesondere einen einseitigen Axialflussmotor, für ein elektrisches Bearbeitungsgerät sowie ein elektrisches Be arbeitungsgerät mit einer Axialflussmaschine nach der Gattung der unabhängi gen Ansprüche.

Stand der Technik

Axialflussmaschinen haben gegenüber konventionellen Elektromaschinen mit ra dialer Flussrichtung den Vorteil, dass sie sehr effizient sind und eine deutlich ver kürzte Baulänge aufweisen. Zudem kann bei gleichem Außendurchmesser eine höhere Drehmoment- bzw. Leistungsdichte erreicht werden. Diese Verbesserun gen sind unter anderem auf eine größere Luftspaltfläche bei vergleichbarem Bau volumen zurückzuführen. Dank eines geringeren Eisenvolumens der rotierenden Komponenten ergibt sich zudem ein höherer Wirkungsgrad über einen größeren Drehzahlbereich.

Der Aufbau eines Stators einer Axialflussmaschine ist aufgrund der erforderlichen magnetischen 3D- Flussführung relativ aufwändig. Die Nutung des Blechpakets muss in der Regel vor dem Wickelprozess der Statorwicklung ausgestanzt wer den. Zudem ergeben sich durch die einzelnen Bleche Nachteile derart, dass die Polschuhe lediglich einen tangentialen Überstand erreichen und dass sich die Statorzähne mit den ausgeprägten Polschuhen nicht extern bewickeln lassen, was einen geringen Füllfaktor der Statorwicklung und einen entsprechend redu zierten Wirkungsgrad zur Folge hat.

Aus der DE 10 2015 223 766 Al ist eine Axialflussmaschine mit gebogenen und gewickelten Blechpaketen als Wicklungsträger bekannt. Der Stator der Axialfluss maschine weist eine gesinterte Trägerstruktur aus weichmagnetischem Material und einen als Blechpaket ausgebildeten Einsatz auf. Der Einsatz ist über einen Form- und/oder Kraftschluss an der Trägerstruktur angebunden und bildet zumin dest teilweise einen Polschuh der Axialflussmaschine. Das Blechpaket ist mittels einzelner, übereinander gestapelter Lagen an Einzelblechen gebildet, die aus ei nem Weicheisen bestehen. Die einzelnen Bleche sind elektrisch zu dem jeweils benachbarten Blech isoliert aneinander angebunden.

Bei Axialflussmaschinen nach dem Stand der Technik werden in der Regel zwei Lager für die Maschinenwelle der Axialflussmaschine in einem seperaten Ge häuse der Axialflussmaschine aufgenommen. Dieses Gehäuse positioniert au ßerdem den Stator zu den Lagern. Die beiden Lager sind in der Regel in den bei den Stirnseiten des Gehäuses fixiert, wobei zumindest eine Stirnseite einen ab nehmbaren Deckel mit einem Lager aufweist. Alternativ ist es aber auch möglich, dass zumindest eines der Lager direkt in dem Gehäuse eines elektrischen Bear beitungsgerät fixiert ist.

Es ist Aufgabe der Erfindung, gegenüber dem Stand der Technik eine Axialfluss maschine mit einer reduzierten axialen Baulänge bereitzustellen, um ihre Ver wendung in sehr kompakten elektrischen Bearbeitungsgeräten mit einem redu zierten Bauraum zu ermöglichen.

Vorteile der Erfindung

Die Erfindung betrifft eine Axialflussmaschine, insbesondere einen einseitigen Axialflussmotor, für ein elektrisches Bearbeitungsgerät, mit einer Maschinen welle, insbesondere Motorwelle, einem scheibenförmigen Stator, einem in axialer Richtung der Maschinenwelle benachbart zum Stator angeordneten scheibenför migen Rotor, wobei der Stator als Wicklungsträger für zumindest eine Statorwick lung ausgebildet ist und der drehfest mit der Maschinenwelle verbundene Rotor relativ zum Stator in eine Drehbewegung versetzbar ist, und mit einem Gehäuse zur Aufnahme des Stators und des Rotors.

Zur Lösung der gestellten Aufgabe ist vorgesehen, dass direkt in den Wicklungs träger und/oder in ein erstes Statorjoch ein erstes Lager, insbesondere ein Fest lager, zur Lagerung der Maschinenwelle integriert ist. Durch die Integration der Lagerstelle in den Wicklungsträger und/oder das erste Statorjoch des Stators wird die zusätzliche axiale Baulänge eines Lagerschildes eingespart. Außerdem können die Kosten durch den Wegfall zusätzlich erforderlicher Bauteile für die Lagerung der Maschinenwelle reduziert werden. Weiterhin ermöglicht die Erfin dung die Verwendung einer effizienten Axialflussmaschine in sehr kompakten elektrischen Bearbeitungsgeräten mit geringer Baulänge.

Die Erfindung betrifft daher auch ein elektrisches Bearbeitungsgerät, insbeson dere eine Elektrowerkzeugmaschine, mit einer erfindungsgemäßen Axialflussma schine, insbesondere einem erfindungsgemäßen Axialflussmotor.

Als elektrisches Bearbeitungsgerät sollen im Kontext der Erfindung unter ande rem akku- oder netzbetriebene Elektrowerkzeugmaschinen zur Bearbeitung von Werkstücken mittels eines elektrisch angetriebenen Einsatzwerkzeugs verstan den werden. Dabei kann das elektrische Bearbeitungsgerät sowohl als Elektro- handwerkzeug als auch als stationäre Elektrowerkzeugmaschine ausgebildet sein. Typische Elektrowerkzeugmaschinen sind in diesem Zusammenhang Hand oder Standbohrmaschinen, Schrauber, Schlagbohrmaschinen, Bohrhämmer, Ab risshämmer, Hobel, Winkelschleifer, Schwingschleifer, Poliermaschinen oder der gleichen. Als elektrische Bearbeitungsgeräte kommen aber auch Motor getrie bene Gartengeräte wie Rasenmäher, Rasentrimmer, Astsägen oder dergleichen in Frage. Weiterhin ist die Erfindung auf Axialflussmaschinen in Haushalts- und Küchengeräten, wie Waschmaschinen, Trockner, Staubsauger, Mixer, etc. an wendbar.

Der Begriff Axialflussmaschine kann dabei sowohl einen Axialflussmotor als auch einen Axialflussgenerator zur Umwandlung von mechanischer in elektrische Energie umfassen. Ebenso soll unter einer Axialflussmaschine auch ein Axial flussmotor verstanden werden, der zumindest zeitweise zur Rekuperation von mechanischer in elektrische Energie genutzt wird, wie dies z.B. beim elektrody namischen Bremsen eines Axialflussmotors der Fall sein kann.

Weiterhin ist vorgesehen, dass das erste Lager in den Wicklungsgräger und/oder das erste Statorjoch der Axialflussmaschine eingepresst ist. Alternativ kann das erste Lager aber auch in den Wicklungsgräger und/oder das erste Statorjoch ein gespritzt sein. Dies ermöglicht eine einfache und kosteneffiziente Herstellung. Der Stator der Axialflussmaschine ist mit besonderem Vorteil direkt in einem Ge häuse des elektrischen Bearbeitungsgeräts aufgenommen. Dabei sind der Stator und das Gehäuse des elektrischen Bearbeitungsgeräts durch einen Fügeprozess miteinander dauerhaft verbunden, inbesondere verklebt. Ergänzend oder alterna tiv kann vorgesehen sein, dass der Stator und das Gehäuse des elektrischen Be arbeitungsgeräts durch einen Formschluss miteinander dauerhaft verbunden, in besondere verpresst, sind. Durch die direkte Verbindung zwischen Stator und elektrischem Bearbeitungsgerät kann der Bauraum des elektrischen Bearbei tungsgerät besonders kompakt gehalten werden. Zudem ergibt sich so ein sehr stabiler und verwindungsteifer Aufbau des elektrischen Bearbeitungsgeräts.

In einer ergänzenden Ausgestaltung der Erfindung nimmt das Gehäuse oder ein Getriebegehäuse des elektrischen Bearbeitungsgeräts ein mit der Maschinen welle der Axialflussmaschine verbundenes zweites Lager, insbesondere ein Los lager, auf. Somit lassen sich einzelne Komponenten der Axialflussmaschine, ins besondere der mit der Maschinenwelle drehfest verbundene Rotor, leichter für Wartungsarbeiten entfernen. Auch der Zusammenbau des elektrischen Bearbei tungsgeräts und der Axialflussmaschine gestaltet sich dadurch in Verbindung mit der erzielten Kompaktheit einfacher.

Ausführungsbeispiele

Zeichnung

Die Erfindung wird im Folgenden anhand der Figuren 1 bis 10 beispielhaft erläu tert, wobei gleiche Bezugszeichen in den Figuren auf gleiche Bestandteile mit ei ner gleichen Funktionsweise hindeuten.

Es zeigen

Fig. 1: ein Schnitt durch eine erfindungsgemäße Axialflussmaschine in

Form eines einseitigen Axialflussmotors in einem ersten Ausfüh rungsbeispiel, Fig. 2: eine schematische Ansicht eines weiteren Ausführungsbeispiels eines Stators der erfindungsgemäßen Axialflussmaschine,

Fig. 3: eine Explosionszeichnung des Stators aus Figur 2 in einer sche matischen Ansicht ohne Statorwicklung,

Fig. 4: eine schematische Ansicht eines Ausschnitts des erfindungsge mäßen Stators in einem weiteren Ausführungsbeispiel,

Fig. 5: eine schematische Schnitt-Ansicht eines Rotors der erfindungs gemäßen Axialflussmaschine,

Fig. 6: eine schematische Ansicht eines Gehäuses der erfindungsgemä ßen Axialflussmaschine,

Fig. 7: eine weitere schematische Ansicht des Leergehäuses der erfin dungsgemäßen Axialflussmaschine aus Figur 6,

Fig. 8: eine schematische Ansicht eines weiteren Ausführungsbeispiels der Kühlluftführung innerhalb der erfindungsgemäßen Axialfluss maschine in einem Schnitt,

Fig. 9: zwei Ausführungsbeispiele von Dreieck-Parallelschaltungen der

Einzelzahnwicklungen einer Statorwicklung der erfindungsgemä ßen Axialflussmaschine und

Fig. 10: ein elektrisches Bearbeitungsgerät, insbesondere eine Elekt rowerkzeugmaschine in Gestalt eines Bohrhammers, mit einer erfindungsgemäßen Axialflussmaschine.

Beschreibung der Ausführungsbeispiele

In Figur 1 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Axialfluss maschine 10 in einem Schnitt dargestellt. Die Axialflussmaschine 10 kann gleich ermaßen als Axialflussmotor oder als Axialflussgenerator ausgebildet sein. Auf einer Maschinenwelle 12 der Axialflussmaschine 10 ist drehfest mit der Maschi nenwelle 12 ein scheibenförmiger Rotor 14 angeordnet. Der Rotor 14 ist als ein geblechter Ring 16 aus weichmagnetischem Eisen ausgebildet und trägt einen abwechselnd magnetisierten Magnetring 18, auf den mit Bezug auf Figur 5 noch näher eingegangen werden soll. Da der Rotor 14 jedoch in der Regel keinem Wechselfeld ausgesetzt ist und somit die Gefahr von Wirbelstromverlusten ver hältnismäßig gering ist, kann der Rotor 14 alternativ auch aus nicht weichmagne tischen Materialen wie Eisen oder aus einem weichmagnetischem Stahl mit nied rigem Kohlenstoffanteil bestehen. In axialer Richtung A der Motorwelle 12 befin det sich benachbart zum Rotor 14 bzw. zum Magnetring 18 ein ebenfalls schei benförmiger Stator 20, der als Wicklungsträger 22 für zumindest eine Statorwick lung 24 (vgl. Figur 2) ausgebildet ist und der ein erstes Statorjoch 26 aufweist, das als magnetischer Rückschluss des durch die Statorwicklung 24 und den Magnetring 18 resultierenden Magnetfelds dient. Relativ zum Stator 20 bzw. der Statorwicklung 24 ist der Rotor 14 über die Motorwelle 12 in eine Drehbewegung versetzbar. Dazu ist die Motorwelle 12 einerseits über ein in das Statorjoch 26 integriertes erstes Lager 28, das beispielsweise als ein Festlager 30 ausgebildet ist, und andererseits über ein in einem Gehäuse 32 eines elektrischen Bearbei tungsgeräts 34 (vgl. Figur 10) aufgenommenes zweites Lager 36, das beispiels weise als ein Loslager 38 ausgebildet ist, drehbar gelagert. Das erste und das zweite Lager 28, 36 sind bevorzugt als Kugellager ausgebildet. Das erste Lager 28 ist direkt in den Wicklungsträger 22 und/oder in das erste Statorjoch 26 inte griert. So kann es beispielweise eingepresst oder eingespritzt sein. Da insbeson dere einseitige Axialflussmaschinen eine sehr hohe Zugkraft in axialer Richtung A der Maschinenwelle 12 im Luftspalt zwischen Rotor 14 und Stator 20 aufwei sen, kann diese durch das als Festlager 30 ausgebildete erste Lager 28 im ers ten Statorjoch 26 abgefangen werden. Somit ist es nicht notwendig, die axiale Kraft durch das Gehäuse 32 des elektrischen Bearbeitungsgeräts 34 und/oder durch ein Gehäuse der Axialflussmaschine (vgl. Figur 6 und 7) aufzunehmen.

Zur Kühlung der Axialflussmaschine 10 ist drehfest auf der Maschinenwelle 12 ein Lüfterrad 40 angeordnet, das Kühlluft durch die Axialflussmaschine 10 trans portiert. Dazu saugt das Lüfterrad 40 die Kühlluft bevorzugt radial an, um sie dann axial durch die Axialflussmaschine 10 zu befördern. Figur 2 zeigt eine schematische Ansicht eines weiteren Ausführungsbeispiels des scheibenförmigen Stators 20 der erfindungsgemäßen Axialflussmaschine 10. Der Stator 20 umfasst im Wesentlichen das erste Statorjoch 26, ein in axialer Rich tung A der Maschinenwelle 12 benachbart dazu angeordnetes, zweites Statorjoch 42 und den zum zweiten Statorjoch 42 in axialer Richtung A der Ma schinenwelle 12 benachbart angeordneten Wicklungsträger 22. Der Wicklungs träger 22 besteht im Wesentlichen aus einer Mehrzahl von, insbesondere sechs, die Statorwicklung 24 tragenden Statorzähnen 44, wobei jedem Statorzahn 44 eine Einzelzahnwicklung 46 der Statorwicklung 24 zugeordnet ist. Die Einzel zahnwicklungen 46 sind mit Bezug auf Figur 9a in einer Dreieck-Parallel-Schal- tung 48 miteinander elektrisch verbunden.

Die Statorzähne 44 und das erste Statorjoch 26 des Stators 20 sind aus Ver bundwerkstoffen (Soft Magnetic Composites - SMC) gebildet und durch einen Fügeprozess miteinander dauerhaft verbunden, insbesondere verklebt. SMC- Werkstoffe bestehen aus hoch reinem Eisenpulver mit einer speziellen Oberflä chenbeschichtung auf jedem einzelnen Partikel. Diese elektrisch isolierende Oberfläche gewährleistet einen hohen elektrischen Widerstand auch nach dem Pressen und der Wärmebehandlung, was wiederum eine Minimierung bzw. ein Vermeiden von Wirbelstromverlusten nach sich zieht. Mit besonderem Vorteil ge genüber Axialflussmaschinen des Standes der Technik kann so eine gegenüber mechanischen Beanspruchungen extrem widerstandsfähige und gleichzeitig sehr leistungsfähige und effiziente Axialflussmaschine bzw. ein drehmomentstarker Axialflussmotor bereitgestellt werden. Die Fügung der Statorzähne 44 mit dem ersten Statorjoch 26 ermöglicht ein externes Bewickeln des Wicklungsträgers 22 durch das Aufbringen der Statorwicklung 24 bzw. der Einzelzahnwicklungen 46 auf die Statorzähne 44 während des Fügeprozesses. Auf diese Weise ist ein ho her Füllfaktor der Statorwicklung 24 erzielbar.

Das zweite Statorjoch 42 des Rotors 20 besteht im Unterschied zum ersten Statorjoch 26 aus weichmagnetischem Eisen und ist als ein Blechpaket 48 (vgl. Figur 3) mit einer Mehrzahl, insbesondere sechs, über seinem Außenumfang ver teilter Nuten 50 zur Aufnahme der Verbundwerkstoffe ausgebildet. Die Anzahl der Nuten 50 entspricht dabei der Anzahl der Statorzähne 44. Das zweite Statorjoch 42 stabilisiert so den Stator 20 bei starker mechanischer Beanspru chung und gewährleistet aufgrund seiner hohen Permeabilität eine verbesserte magnetische Flussführung. Die Nutung des Blechpakets 48 bewirkt nicht nur die bessere Aufnahme der Verbundwerkstoffe und damit die höhere Stabilität des Stators 20, sondern gewährleistet auch eine optimierte Führung der im Wesentli chen durch die Statorwicklung 24 verursachten Wirbelströme.

Gemäß Figur 3 weist das zweite Statorjoch 42 zur Aufnahme der Statorzähne 44 ringförmig angeordnete, kreissegmentförmige Ausnehmungen 52 auf, wobei jede Nut 50 den Außenumfang des zweiten Statorjochs 42 bis zu der jeweils radial in nenliegenden Ausnehmung 52 unterbricht. Jeder Statorzahn 44 ist durch einen kreissegmentförmigen Zahnflansch 54, der die kreissegmentförmige Ausneh mung 52 des zweiten Statorjochs 42 durchgreift, und einen den Zahnflansch 54 umgreifenden, kreissegmentförmigen Trägerrahmen 56 mit einem umlaufenden U-Profil 58 zur Aufnahme der Statorwicklung 24 bzw. der Einzelzahnwicklungen 46 gebildet. Zahnflansch 54 und Trägerrahmen 56 sind über einen Fügeprozess miteinander dauerhaft verbunden, insbesondere verklebt.

Figur 4 zeigt eine schematische Ansicht eines Ausschnitts des erfindungsgemä ßen Stators 20 in einem weiteren Ausführungsbeispiel. Dabei werden die Statorzähne 44 bzw. deren Zahnflansche 54 (vgl. Figur 3) durch die Ausnehmun gen 52 des zweiten Statorjochs 42 hindurchgeführt und mit dem ersten Statorjoch 26 durch eine Laserschweißung dauerhaft verbunden. Jeweils in etwa mittig jeder auf dem ersten Statorjoch 26 aufliegenden Fläche eines Statorzahns 44 ist eine Bohrung 60 im ersten Statorjoch 26 vorgesehen, durch die der Stator zahn 44 mittels der Laserschweißung mit dem ersten Statorjoch 26 verbindbar ist. Zur dauerhaften Verbindung des ersten Statorjochs 26 und des jeweiligen Statorzahns 44 erstreckt sich eine Schweißnaht über den vollständigen Umfang der Bohrung 60. Alternativ kann aber auch vorgesehen sein, dass sich die Schweißnaht nur punktuell über den Umfang der Bohrung 60 erstreckt. Durch die Schweißung in der Mitte eines jeden Statorzahns 44 wird die Führung des mag netischen Flusses nur gering beeinflusst und es ist eine hohe Planparallelität der Statorzähne 44 zum radialen Luftspalt zwischen ihnen erreichbar. Durch das Ver meiden einer Klebung kann wirksam ein Klebespalt zwischen Statorzahn 44 und erstem Statorjoch 26 vermieden werden und es ist keine Fixierung von Stator zahn 44 und erstem Statorjoch 26 während des Aushärtens der Klebung erfor derlich. Mit Bezug auf Figur 1 ist es alternativ auch denkbar, auf das zweite Statorjoch 42 zu verzichten und stattdessen das als geblechten Ring 16 aus weichmagnetischem Eisen ausgebildete erste Statorjoch 26 direkt mit den aus Verbundwerkstoffen bestehenden Statorzähnen 44 zu verbinden, insbesondere mittels der Bohrung 60 im ersten Statorjoch 42 zu verschweißen.

In Figur 5 ist eine schematische Ansicht des Rotors 14 der erfindungsgemäßen Axialflussmaschine 10 im Schnitt dargestellt. Der Rotor 14 ist als ein geblechter Ring 16 aus weichmagnetischem Eisen ausgebildet. Er trägt zudem einen ab wechselnd polarisierten Magnetring 18, der mit der Statorwicklung 24 des Stators 20 zusammenwirkt, um im Motorbetrieb den Rotor 14 in eine Drehbewegung zu versetzen oder im Generatorbetrieb eine Spannung in die Statorwicklung 24 zu induzieren. Die nicht näher gezeigten Magnete des Magnetrings 18 sind derart kreissegmentförmig ausgestaltet, dass sich ihre Flächen weitestgehend mit den kreissegmentförmigen Statorzähnen 44 überdecken, um einen optimalen magne tischen Fluss in Verbindung mit einem hohen Drehmoment zu erzielen. Statt ei nes abwechselnd polarisierten Magnetrings 18 ist alternativ auch ein Ring mit eingelassenen Einzelmagneten denkbar. Wie bereits erwähnt, ist der Rotor 14 in der Regel keinem Wechselfeld ausgesetzt, so dass hier keine oder nur sehr ge ringe Wirbelstromverluste entstehen. Daher kann der Rotorl4 der Axialflussma schine 10 alternativ auch aus einem nicht weichmagnetischen Material bestehen.

In einer bevorzugten Ausgestaltung der Erfindung ist der geblechte Ring 16 des Rotors 14 als ein Rotorjoch 62 ausgebildet, das entweder mit einem bidirektiona len Lüfter 40 durch einen Fügeprozess dauerhaft verbunden, insbesondere ver klebt, ist oder das selbst als bidirektionaler Lüfter 64 dient. Dabei weist der bidi rektionale Lüfter 40, 64 zumindest eine radiale Luftströmungsrichtung 66 und eine axiale Luftströmungsrichtung 68 zur Kühlung der Axialflussmaschine 10, ins besondere zur Kühlung des Stators 20 bzw. der Statorwicklung 24 und des Ro tors 14, auf. Die radiale Luftströmungsrichtung 66 wird dabei im Wesentlichen durch eine Mehrzahl kreisförmig im äußeren Radiusbereich des bidirektionalen Lüfters 40, 64 angeordneter radialer Luftschaufeln 70 und die axiale Luftströ mungsrichtung 68 durch eine Mehrzahl im inneren Radiusbereich des Rotorjochs 62 angeordneter axialer Öffnungen 72 erzielt.

Somit bewirkt der bidirektionale Lüfter 40, 64 mit Bezug auf Figur 6 eine radiale Ansaugung 74 eines Luftstroms 76 mit einer axialen Durchströmung 78 des Sta tors 20 und des Rotors 14 der Axialflussmaschine 10 und einem radialen Austritt 80 des erwärmten Luftstroms 76 aus einem Gehäuse 82 der Axialflussmaschine 10. Die radiale Ansaugung 74 des Luftstroms 76 erfolgt zum einen durch die Luft spalte zwischen den Statorzähnen 44 (vgl. Figur 2) und zum anderen im Bereich des ersten Statorjochs 26 des Stators 20, insbesondere an einer vom Rotor 14 aus gesehenen distalen Stirnseite 84 des ersten Statorjochs 26.

In Figur 7 ist die Axialflussmaschine 10 mit ihrem Gehäuse 82 samt eines dieses verschließenden Deckels 86 dargestellt. Figur 8 zeigt das Gehäuse 82 ohne Axi alflussmaschine 10 und Deckel 86. Das Gehäuse 82 ist einseitig offen zur Auf nahme des Deckels 86 und weist gegenüberliegend eine im Wesentlichen ge schlossene Stirnseite 88 (vgl. Figur 8) auf. Der Deckel 86 verschließt das Ge häuse 82 und verbindet so kraftschlüssig den Stator 20 und den Rotor 14 der Axialflussmaschine 10. Unter „im Wesentlichen geschlossen“ soll in diesem Zu sammenhang verstanden werden, dass die Stirnseite 88 eine Mehrzahl von Öff nungen 90 beispielsweise zur Kühlung, als Kabeldurchlässe und/oder als Durch führung für die Maschinenwelle 12 aufweisen kann, aber alternativ auch, dass die Stirnseite 88 vollkommen geschlossen ist. Das Gehäuse 82 ist zylinderförmig ausgebildet und fixiert den Stator 20 derart, dass ein definierter Luftspalt zwi schen dem Rotor 14 bzw. dessen Magnetring 18 und dem Stator 20 bzw. dessen Wicklungsträger 22 entsteht. Zur Reduzierung bzw. Vermeidung von Wir belstromverlusten ist das Gehäuse 82 aus einem magnetisch isolierenden Mate rial mit möglichst geringer Permeabilität wie zum Beispiel Kunststoff (PA66) her gestellt. Entsprechend kann auch der Deckel 86 ausgebildet sein.

Während in einem Lagerflansch 92 des Deckels 86 das als Festlager 30 ausge bildete erste Lager 28 fixiert ist, das die Maschinenwelle 12 unverschieblich la gert, weist die im Wesentlichen geschlossene Stirnseite 86 des Gehäuses 82 in einem weiteren Lagerflansch 94 das als Loslager 38 ausgebildete zweite Lager 36 zur verschieblichen Lagerung der Maschinenwelle 12 auf. Auf diese Weise kann das Gehäuse 82 sehr einfach nach dem Zusammenbau der Axialflussma schine 10 aufgeschoben und für etwaige Servicearbeiten wieder entfernt werden.

An seiner offenen Seite sind über den Umfang des Gehäuses 82 verteilt abwech selnd eine Mehrzahl von Ausnehmungen 96 und Laschen 98 zur Aufnahme und Fixierung des Stators 20 angeordnet. Dabei greifen über den Umfang des ersten und des zweiten Statorjochs 26, 42 des Stators 20 verteilte radiale Vorsprünge (vgl. die Figuren 2 und 3) in die jeweiligen Ausnehmungen 96 des Gehäuses 82. Entsprechend enthält auch der Deckel 86 als Laschen 106 ausgebildete radiale Vorsprünge, die in die Ausnehmungen 96 des Gehäuses 82 eingreifen. Auf diese Weise können die hohen axialen Kräfte der Axialflussmaschine 10 in Richtung des Deckels 86 abgeführt werden. In jeder Lasche 98 des Gehäuses 82 ist min destens eine Bohrung 100 zur Fixierung des Deckels 86 und demzufolge auch des Stators 20 mittels entsprechender Befestigungsmittel 102, insbesondere Schrauben 104, vorgesehen. Die Befestigungsmittel 102 übertragen die Axial kraft der Axialflussmaschine 10 auf das Gehäuse 82 und werden somit auf Sche rung beansprucht.

Die Öffnungen 90 an der im Wesentlichen geschlossenen Stirnseite 88 des Ge häuses 82 sind als radial und/oder axial wirkende Lüftungsöffnungen 104, insbe sondere als Lüftungsauslassöffnungen 106, zur Kühlung der Axialflussmaschine 10 ausgebildet (vgl. auch Figur 6). Zudem weist das Gehäuse 82 etwa mittig zwi schen der im Wesentlichen geschlossenen Stirnseite 88 und der in axialer Rich tung A gegenüberliegenden offenen Seite eine Mehrzahl über den Umfang ver teilte radial wirkende Lüftungsöffnungen 108, insbesondere Lüftungseinlassöff nungen 110, auf. Neben den Öffnungen 90 zur Kühlung der Axialflussmaschine 10 sind insbesondere in den Laschen 98 des Gehäuses 82 noch weitere Öffnun gen 90 vorgesehen, die als Durchführungen 112 für Sensorleitungen oder der gleichen dienen können.

In Figur 9a ist ein Schaltbild der Statorwicklung 22 als Dreieck-Parallel-Schaltung 48 der sechs Einzelzahnwicklungen 46 der Statorzähne 44 (vgl. Figur 2) darge stellt. Pro Phase sind jeweils zwei Einzelzahnwicklungen 46 zwischen den An schlusspunkten U und V, V und W bzw. W und U parallelgeschaltet. Die Dreieck- Schaltung als solche bewirkt, dass an jeder Einzelzahnwicklung 46 die gesamte Versorgungsspannung abfällt. Dies bedingt eine Erhöhung der Windungszahl der Einzelzahnwicklungen 46, um im Motorbetrieb eine spezifisch geforderte Dreh zahl bzw. im Generatorbetrieb einen spezifisch geforderten Energieertrag zu rea lisieren. Durch die zusätzliche Parallelschaltung kann in besonders vorteilhafter Weise der Wicklungsdrahtdurchmesser erhöht und damit der resultierende Innen widerstand verringert werden. Die Dreieck-Parallel-Schaltung 48 ermöglicht somit die Reduzierung des Innenwiderstands der Axialflussmaschine 10 gegenüber ei- ner üblichen Stern-Schaltung, was zu einer deutlichen Erhöhung der Leistungsfä higkeit der Axialflussmaschine 10 gegenüber bisherigen Lösungen führt. Figur 9b zeigt eine alternative Ausgestaltungsform der Dreieck-Parallel-Schaltung 48 für insgesamt neun Einzelzahnwicklungen 46 der Statorwicklung 22.

In Figur 10 ist ein Ausführungsbeispiel eines elektrischen Bearbeitungsgeräts 34 mit der erfindungsgemäßen Axialflussmaschine 10 gemäß Figur 1 gezeigt. Das elektrische Bearbeitungsgerät 34 ist als eine Elektrowerkzeugmaschine 112 in Form eines netzbetriebenen Bohrhammers mit einem elektromotorisch angetrie benen Schlagwerk 114, das ein Bohrfutter 116 für ein nicht gezeigtes Einsatz werkzeug in eine Dreh- und/oder Schlagbewegung versetzt, ausgebildet. Auf die genaue Ausgestaltung des Bohrhammers soll hier nicht näher eingegangen wer den, da dies dem Fachmann hinlänglich bekannt ist. Als elektrisches Bearbei tungsgerät kann auch jede andere akku- oder netzbetriebene Elektrowerkzeug maschine 112 zur Bearbeitung von Werkstücken mittels eines elektrisch angetrie benen Einsatzwerkzeugs verstanden werden. Dabei kann das elektrische Bear beitungsgerät sowohl als Elektrohandwerkzeug als auch als stationäre Elekt rowerkzeugmaschine ausgebildet sein. Typische Elektrowerkzeugmaschinen sind in diesem Zusammenhang Hand- oder Standbohrmaschinen, Schrauber, Schlagbohrmaschinen, Bohrhämmer, Abrisshämmer, Hobel, Winkelschleifer, Schwingschleifer, Poliermaschinen oder dergleichen. Als elektrische Bearbei tungsgeräte kommen aber auch Motor getriebene Gartengeräte wie Rasenmä her, Rasentrimmer, Astsägen oder dergleichen in Frage. Weiterhin ist die Erfin dung auf Axialflussmaschinen in Haushalts- und Küchengeräten, wie Waschma schinen, Trockner, Staubsauger, Mixer, etc. anwendbar.

Die als Axialflussmotor arbeitende Axialflussmaschine 10 der Elektrowerkzeug maschine 112 treibt mittels ihrer Maschinenwelle 12 in bekannter Art und Weise das Schlagwerk 114 über ein Getriebe 118 an. Die Ansteuerung der Axialfluss maschine 10 erfolgt dabei über einen in einem D-Handgriff 120 der Elektrowerk zeugmaschine 112 angeordneten Hauptschalter 122, der mit einer nicht gezeig ten Elektronik zur Bestromung der in Dreieck-Parallel-Schaltung 48 verschalteten Statorwicklung 22 zusammenwirkt. Der Stator 20 der Axialflussmaschine 10 ist direkt in dem Gehäuse 32 der Elektrowerkzeugmaschine 112 aufgenommen. Dazu sind der Stator 20 und das Gehäuse 32 durch einen Fügeprozess dauer haft miteinander verbunden, insbesondere verklebt. Alternativ kann der Stator 20 aber auch durch einen Formschluss dauerhaft mit dem Gehäuse 32 verbunden, insbesondere verpresst, sein. Weiterhin kann vorgesehen sein, dass das Ge häuse 32 oder ein Getriebegehäuse 122 der Elektrowerkzeugmaschine 112 das mit der Maschinenwelle 12 der Axialflussmaschine 10 verbundene zweite Lager 36, insbesondere als Loslager 38, aufnimmt. Statt der gezeigten Axialflussma schine 10 gemäß Figur 1 kann die Elektrowerkzeugmaschine 112 bzw. das elekt rische Bearbeitungsgerät 34 ohne Einschränkung der Erfindung auch mit einer Axialflussmaschine 10 gemäß der Figuren 6 bis 8 ausgestattet sein. Es sei abschließend noch darauf hingewiesen, dass die Erfindung weder auf die gezeigten Ausführungsbeispiele gemäß der Figuren 1 bis 10 noch auf die ge nannte Anzahl der Statorzähne, Einzelzahnwicklungen und Magnete des Mag netrings beschränkt ist.