Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COATINGS OF Mn+1AXn MATERIAL FOR ELECTRICAL CONTACT ELEMENTS
Document Type and Number:
WIPO Patent Application WO/2005/038985
Kind Code:
A2
Abstract:
An element for making an electric contact to a contact member (5, 15, 19, 41) for enabling an electric current to flow between said element and said contact member, said element (3,14, 42) comprising a body (6) having at least a contact surface (2, 4, 16, 43, 44) thereof coated with a contact layer applied against said contact member. The contact layer comprises a film comprising a multielement material with equal or similar composition as any of a layered carbide or nitride that can be described as Mn+1AXn,, where M is a transition metal or a combina­ tion of a transition metals, n is 1, 2, 3 or higher, A is an group A element or a combination of a group A element, element and X is Carbon, Nitrogen or both.

Inventors:
ISBERG PETER (SE)
EKLUND PER (SE)
EMMERLICH JENS (SE)
HULTMAN LARS (SE)
HOEGBERG HANS (SE)
LJUNGCRANTZ HENRIK (SE)
Application Number:
PCT/IB2004/003390
Publication Date:
April 28, 2005
Filing Date:
October 18, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB RESEARCH LTD (CH)
ISBERG PETER (SE)
EKLUND PER (SE)
EMMERLICH JENS (SE)
HULTMAN LARS (SE)
HOEGBERG HANS (SE)
LJUNGCRANTZ HENRIK (SE)
International Classes:
C23C30/00; H01R13/03; H01R39/20; H01R41/00; H01R; (IPC1-7): H01R/
Domestic Patent References:
WO2003046247A12003-06-05
Foreign References:
US20020000598A12002-01-03
Other References:
PALMQUIST, J.-P. ET AL.: "Magnetron sputtered epitaxial single-phase T13SiC2 thin films", APPLIED PHYSICS LETTERS, vol. 81, 2002, pages 835
SEPPÄNEN, T. ET AL.: "Proc. 53rd Annual Meeting of the Scandinavian Society for Electron Microscopy", 12 June 2002, article "Structural characterization of epitaxial Ti3SiC2 FILM", pages: 142 - 143
Attorney, Agent or Firm:
ABB, AB (Forskargränd 8, Västerås, SE)
Download PDF:
Claims:
AMENDED CLAIMS [received by the International Bureau on 10 June 2005 (10.06. 05); original claim 1 amended, remaining claims unchanged (1 page)]
1. A contact element for making an electric contact to a contact member (5, 15,19, 41) for enabling an electric current to flow between said contact eie ment and said contact member, said contact element (3, 14, 20, 32, 42) com prising a body (6) having at least a contact surface (2,4, 16, 21, 22, 24, 30, 34, 43, 44) thereof coated with a contact layer arranged to be applied against said contact member, which contact layer comprises a film comprising a multiele ment material, characterised ! n that said multielement material com prises material with equal composition as at least one of a carbide or nitride that is described as M *iAX ., where M is a transition metal or a combination of a transition metals, n Is 1,2, 3 or higher, A is a group A element or a combina tion of a group A element, and X is Carbon, Nitrogen or both, said muitielement material also comprise at least one nanocomposite comprising single elements, binary phases, ternary phases, quaternary phases or higher order phases based on the atomic elements in the corresponding MelAXn compound.
2. A contact element according to claim 1, characterised tin that said nanocomposite comprise at least two of the following phases: MA, AX, MAX, X, MX, or a combination of said materials.
3. A contact element according to any of claim 1 or 2, characterised ! n that said nanocomposite comprise at least one of the following of MX and MAX nanocrystals (C, D, E) and at least one of the following amorphous regions (J, K, L) with M, A, X elements in one or several phases, such as MA, AX, MAX, or X.
4. A contact element according to any of the preceding claims, characterised ! n that said transition metal is Titan; Ti, n is 1,2, 3 or higher, X Is C ; Carbon and A is at least one of Silicon ; Si, Germanium ; Ge or Tin; Sn or a combination of said atomic elements.
Description:
Coatings TECHNICAL FIELD An element for making an electric contact to a contact member for enabling an electric current to flow between said element and said contact member. The element comprising a body having at least a contact surface thereof coated with a contact layer to be applied against said contact member. The contact layer comprises a continuous or discontinuous film comprising a multielement material.

BACKGROUND ART Recent studies has shown that compounds having the general formula MnRAX, i exhibit unusual and exceptional mechanical properties as well as ad- vantageous electrical thermal and chemical properties. Despite having high stiffness these compounds are readily machinable, resistant to thermal shock, unusually damage tolerant, have low density and are thermodynamically stable at high temperatures (up to 2300°C in vacuum). M is a transition metal or a combination of transition metals, n is 1,2, 3 or higher, A is a group A element or a combination of a group A element, and X is Carbon, Nitrogen or both.

Group A element is any of a list : Aluminium Al, Silicon Si, Phosphor P, Sulfur S, Gallium Ga, Germanium Ge, Arsenic As, Cadmium Cd, Indium I, Tin Sn, Thallium Ti, Lead Pb. Transition metal M is any of a list : Scandium Sc, Titanium Ti, Vanadium V, Chromium Cr, Zirconium Zr, Niobium Nb, Molybdenum Mo, Hafnium Hf, Tantalum Ta.

Mn+1AXn compounds have layered and hexagonal structures with Mn+1Xn lay- ers interleaved with layers of pure A and this is an anisotropic structure which has exceptionally strong M-X bonds together with weaker M-A bonds, which gives rise to their unusual combination of properties.

M, m4AXn compounds are characterized according to the number of transition metal layers separating the A-group element layers : in 211 compounds there are two such transition metal layers, on 312 compounds there are three and on 413 compounds there ore four. 211 compounds are the most predominant, these comprise Ti2AlC, Ti2AlN, Hf2PbC, Nb2AlC, (NB,Ti)2AlC, Ti2AlN0,5 C o 5, <BR> <BR> <BR> Ti 2 GeC, Zr2 SnC, Ta 2 GaC, Hf 2 SnC, Ti 2 SnC, Nb 2 SnC, Zr 2 PbC and Ti 2 PbC.

The only known 312 compounds are Ti3AIC2, Ti3GeC2and Ti3SiC2. Ti4AIN3 and Ti 4 SiC 3 are the only 413 compounds known to exist at present. A large number of solid solution permutations and combinations are also conceivable as it is possible to form solid solutions on the M-sites, the A-sites and the X- sites of these different phases.

The M nqAX n compounds can be in ternary, quaternary or higher phases. Ter- nary phases has three elements, i. e. Ti 3 SiC 2, quaternary phases has four elements i. e. Ti2AlN0,5C0,5, and so on. Thermally, elastically, chemically and electrically the ternary phases, quaternary phases or higher phases share many of the attributes of the binary phases.

Michel Barsoum has synthesized, characterized and published data on the M, sAXn phases named above in bulk form ["The M nA AX n Phases: A New class of Solids", Progressive Solid State Chemistry, Vol. 28 pp201-281, 2000].

His measurements on Ti 3 SiC Z show that it has a significantly higher thermal conductivity and a much lower electrical resistivity than titanium and, like other M aqAX, l phases, it has ability to contain and confine damage to small areas

thus preventing/limiting crack propagation through the material. Its layered structure and the fact that bonding between the layers is weaker than along the layers (as in graphite) give rise to a very low friction coefficient, even after six months exposure to atmosphere.

The research groups of Prof. Lars Hultman at Linkoping University and Prof. Ulf Jansson at Uppsala University have demonstrated that magnetron sputtering process (a sort of Physical Vapor Deposition, PVD) can be used to deposit coatings of Ti3SiC2 and other M IqAX n phases onto various substrates at relatively low temperatures (approximately 750-1000 °C) [Palmquist, J. -P. , et al.,"Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films". Applied Physics Letters, 2002.81 : p. 835; Seppänen, T. , et al."Structural characteriza- tion of epitaxial Ti3SiC2 FILM", in Proc. 53rd Annual Meeting of the Scandina- vian Society for Electron Microscopy, Tampere, Finland 12-15 June, 2002 (Ed.

J. Keranen and K. Sillanpaa, University of Tampere, Finland, ISSN 1455-4518, 2002), p. 142-143.] A contact element in an electrical contact arrangement may have many differ- ent applications. The contact element is used for making an electric contact to a contact member for enabling an electric current to flow between said element and said contact member. The contact element comprises a body having at least a contact surface thereof coated with a contact layer to be applied against said contact member. A sliding electric contact arrangement comprising two contact surfaces adapted to be applied to each other for establishing an electric contact may slide with respect to each other when establishing and/or interrupt- ing and/or maintaining the contact action. Such electric contact elements, which may establish sliding contacts or stationary contacts has preferably a body made of for instance copper or aluminum.

The contact layer is arranged for establishing a contact to the contact member with desired properties, such as a low contact resistance and low friction coeffi-

cient with respect to the material of the contact member to be contacted etc.

Such applications are for instance for making contacts to semiconductor de- vices for establishing and interrupting electric contact, in mechanical discon- nections and breakers and for establishing and interrupting electric contacts in contact arrangements of plug-in type. Such electric contact elements, which may establish sliding contacts or stationary contacts has preferably a body made of for instance copper or aluminium.

An example of a contact element including a contact layer, such as a continu- ous film of a multielement material having strong bonds, such as covalent or metallic bonds, within each atomic layer and weaker bonds, through longer bonding distance or for example as van der Waals bonds or hydrogen bonds, between at least some adjacent atomic layers thereof is given in W001/41167.

The multielement material is MoS 2, WS 2 or of any layered ternary carbides and layered nitrides that can be described as M 3 AX 2. A problem with the de- scribed multielement material is that methods to produce the material are car- ried out at high temperatures (700-1400° C). This means that an electrical elec- tric contact element, which has a body made of a material that is not shape re- sistant at high temperatures, for instance copper or aluminum cannot be made use of.

SUMMARY OF THE INVENTION The object of the present invention is to provide an electric contact element having a contact layer with a low friction without the disadvantages mentioned above of such layers already known in connection with use and/or manufacture thereof.

This object is obtained by providing an element for making an electric contact to a contact member for enabling an electric current to flow between said ele- ment and said contact member, said element comprising a body having at least

a contact surface thereof coated with a contact layer applied against said con- tact member, and that said contact layer comprises a film comprising a mul- element material comprising a nanocomposite of M-X, M-A-X nanocrystals and amorphous regions with M, A, X elements in one or several phases, such as M-A, A-X, M-A-X, or X. The multielement material comprises material with equal or similar composition as at least one of a carbide and nitride that can be described as M n+AXn, where M is a transition metal or a combination of a transition metals, n is 1,2, 3 or higher, A is an group A element or a combina- tion of a group A element, and X is Carbon, Nitrogen or both. The multielement material also comprise at least one nanocomposite comprising single elements, binary phases, ternary phases, quaternary phases or higher order phases based on the atomic elements in the corresponding Ms<AXn compound.

A nanocomposite is a composite comprising crystals, regions or structures with a characteristic length scale above 0.1 nm and below 1000 nm.

According to a preferred embodiment of the invention the M rm4AX n compound is a layered carbide or layered nitride.

A preferred Mn+1AXn phase is Ti3SiC2, where the resulting film deposited at low temperature is a nanocomposite of TiC nanocrystals and an amorphous phase with Si-C, Ti-Si-C, Ti-Si and C. This film posses good mechanical, chemical, temperature and contact properties.

It has been found that low temperature deposition of the multielement lami- nated structure results in nanocomposite compounds, with single elements, bi- nary phases and ternary phases or a higher order phase depending of the number of atomic elements, with good chemical and contact properties. The composition of the compounds on an average should be equal or similar to the composition of the M nq AX n phases, such as A-X, M-A-X and X phases. The

nanocomposite compounds shows also the desired ductile behaviour, posses non welding properties, shock resistance, chemical inertness, low contact resis- tance and good high temperatures properties which are all desired properties in electrical contact arrangement. Single phase crystalline microstructure forms large grains structure forms grains from 700° C.

In an embodiment of the invention the multielement material is equal or similar to any of a layered carbide and nitride that can be described as Mn+1AXn. The multielement material is in an amorphous state or nanocrystalline (0.5-500 nm grain size) state. The MntAXn compound has a composition MxAyXX where {0<x, y, z<1 ; x+y+z=1} or both.

TiX Si y C z with x=0,5 and 0. 1 <y<0. 3 made by magnetron sputtering onto sub- strates kept at low temperature, Ts <700°C, exhibit contact resistance against Ag of 6 uohm at a force of 800 N, which is comparable with Ag-Ag contacts. At the same time many useful mechanical properties are comparable in terms of friction, wear, and hardness to the previously known binary metal containing any metal Me and diamond-like carbon compound C, Me-C.

Unlike the diamond-like carbon compound that is designed for high hardness and thus typically exhibit brittle fracture, the material comprising compounds with equal or similar composition as any of carbide and nitride that can be de- scribed as M+iAXn and nanocomposites are ductile as seen by wear, scrap- ing, scratching and indenting tests.

The A group element to M-X compounds improves the afore mentioned proper- ties. The nanocomposite comprising compounds with equal or similar composi- tion as at least one of a layered carbide and nitride that can be described as M yAX, t, such as M-X, M-A-X nanocrystals and amorphous regions with M, A, X elements in one or several phases, such as M-A, A-X, M-A-X, X. The nano-

composites have metallic or ceramic or mixed character type depending on the composition and processing of the film.

The deposited coatings comprising nanocomposites may form a transfer layer of nanolaminated crystalline M} AXn phases or carbon graphite during me- chanical wear of an electrical contact. The phase transformation is driven by the thermo-mechanical energy generated in the contact zone. This layer may exhibit ultralow friction due to easy basal plane slip if the M, zllAXn phase or graphite phase becomes textured parallel to the coating surface. Thus, the coating would not only be functional, but also self-adapting for the application.

PVD, CVD and other deposition processes involving co-deposition of elemen- tal, precursor or compound sources which can be used to make thin films con- sisting of multielement material equal or similar to M tkqAX n compound, said multielement material comprising a nanocomposite of M-X or M-A-X nanocrys- tals and amorphous regions with M, A, X elements in one or several phases, such as M-A, A-X, M-A-X, X. Preferably the depositions are made at low sub- strate temperatures such as in the demonstrated example. Finally, we note the possibility to design a coating with the widest possible range of properties com- pared to other materials as function of composition x, y, z and to make gradient material in one deposition run by varying the compositions from different sources.

It has turned out that a nanocomposite comprising said multielement material, and/or a metallic layer is excellent as a contact layer on a contact element in question for many reasons. A contact layer comprising such a multielement material, and/or a metallic layer according to the invention used as a contact has low contact resistance. The friction coefficient thereof is typically 0.1-0. 6.

The metallic layer provides the low contact resistance. Furthermore, in regions where the contact has a high friction said metallic layer can be worn and the said underlying multielement material comprising a nanocomposite of M-X, M-

A-X nanocrystals and amorphous regions with M, A, X elements in one or sev- eral phases, such as M-A, A-X, M-A-X, X appears on the surface and reduces the friction.

According to another preferred embodiment of the invention the thickness of the metallic layer is in the range 1 nm to 1000 urn.

According to another preferred embodiment of the thickness of the metallic layer is in the range of a fraction of an atomic layer to 5 urn. This reduce the use of metal without effect the wear properties and friction properties.

According to another preferred embodiment of the invention said metallic layer is any of Au, Ag, Pd, Pt, and Rh. This is an advantage because the noble met- als do not form oxides or thermal instable oxides. This is an advantage when used as coatings in high-efficient electrical contacts.

According to another preferred embodiment of the invention said metallic layer is an alloy with at least one of of any of the afore mentioned metals.

According to another preferred embodiment of the invention the said metallic layer is any metal or a metal alloy.

According to another preferred embodiment of the invention the said metallic layer is any metal or metal composite where the composite can be an oxide, carbide, nitride or boride. It is an advantage to dope the metal to improve the properties of the layer, for instance the structure of the material.

According to another preferred embodiment of the invention said metallic layer is any metal or metal composite, said composite comprising a polymer, an or- ganic material or a ceramic material such as an oxide, carbide, nitride or boride.

It is an advantage to incorporate a polymer, an organic material or a ceramic material to improve the properties of the layer for instance, According to another preferred embodiment of the invention said the multiele- ment material is coated with a metallic layer sufficiently thick to be able to wire- bond or solder a surface in a bonding to establish a non-separable electrical bond at the surface. The metal film act as a bonding layer by wire-bonding.

Furthermore, said underlying multielement material provides a low friction and wear resistance. Furthermore, said underlying multielement material also is a mechanical load carrying structure with ductile properties under the thin metal- lic film. The multielement material as low temperature films are showing equal properties compared to films that possesses a layered crystalline structure. The chemical inertness and the smoothness of the multielement compound also contribute to a low friction. The low friction is also due to grain rotation of the nanocomposite phases, and grain boundary phases or carbon. The multiele- ment material are relatively chemical inert and stable at temperatures exceed- ing 400 °C. Furthermore, said materials have low tendency to form oxides, which prevent degradation of electric contact to said contact member. Further- more said multielement material coated or combined with a metallic layer show a ductile performance.

Said multielement material with equal or similar composition as a M sAXn compound, will have a morphology varying from amorphous or nanocrystalline to pure crystalline, and the morphology may be selected in accordance with the particular use of the contact element and the costs for producing the multiele- ment material.

According to a preferred embodiment of the invention the multielement material of said film coated or combined with a metallic layer is in the range 0. 001 um to 1000 urn, and in a very preferred embodiments is less then 5 um. Said film of metallic layer is in the range of a fraction of an atomic layer to 1 mm. Such

coatings may have a lifetime being nearly indefinite thanks to the very low fric- tion and wear resistance of this material, so that in closed systems the result aimed at will be achieved through a thin film having low costs of material and manufacturing process as a consequence thereof.

According to another a preferred embodiment of the invention the multielement material coated or combined with a metallic layer is above 5 um. Such a thick- ness is preferred in the case of using such a film on a contact element in a con- tact arrangement where the contact element and the contact member are going to be moved with respect to each other, such as in a sliding contact, and ac- cordingly not only moved by different coefficients of thermal expansion upon thermal cycling, such as when used on a slip ring in an electric rotating ma- chine.

According to another preferred embodiment of the invention the nanocomposite multielement film is a blend of different M ntlAXn compounds where the result- ing phases and atomic ratio of the elements are depended on the atomic ele- ments in the M, sAXn phases and the ratio between the materials.

According to another preferred embodiment of the invention the body deeper under said contact surface is made of material being non-resistant to corrosion, and the material last mentioned is coated by a corrosion resistant material such as nickel, adapted to receive said film on top thereof. It is preferred to proceed in this way, since the multielement material film may have pores with a risk of corrosion of the underlying body material therethrough.

Another object of the present invention is to provide sliding electric contact ar- rangement of the type defined in the introduction allowing a movement of two contact surfaces applied against each other while reducing the inconveniences discussed above to a large extent.

This object is according to the invention obtained by providing such an ar- rangement with a contact element according to the present invention with said film arranged to form a dry contact with a friction coefficient, below 0.6, pref- erably below 0.2, to a contact member.

In another preferred embodiment of the invention such an arrangement with a contact element according to the present invention is provided with said film arranged to form a dry contact with a friction coefficient below 0.1.

The basic features and advantages of such a contact arrangement are associ- ated with the characteristics of the contact element according to the present invention and appear from the discussion above of such a contact element.

However, it is pointed out that a"sliding electric contact"includes all types of arrangements making an electric contact between two members, which may move with respect to each other when the contact is established and/or inter- rupted and/or when the contact action is maintained. Accordingly, it includes not only contacts sliding along each other by action of an actuating member, but also so called stationary contacts having two contact elements pressed against each other and moving with respect to each other in the contacting state as a consequence of magnetostriction, thermal cycling and materials of the contact elements with different coefficients of thermal expansion or tem- perature differences between different parts of the contact elements varying over the time.

A contact arrangement of the type last mentioned constitutes a preferred em- bodiment of the present invention, and the contact elements may for instance be pressed with a high pressure, preferably exceeding 1 MPa against each other without any mechanical securing means, but the contact elements may also be forced against each other by threaded screws or bolts.

According to another preferred embodiment of the invention said contact ar- rangement is adapted to be arranged in an electric rotating machine, where the film comprising multielement material will result in a number of advantages. It is in particular possible to benefit from the low friction coefficient of the multiele- ment material when arranging the contact element and the contact member of the contact arrangement on parts of the rotating machine moving with respect to each other, such as for instance the slip ring as a contact element and a contact element sliding thereupon. It will in this way be possible to replace the carbon brushes used in the electric rotating machines by a contact element ac- cording to the present invention and a film of said type is then also preferably arranged on the moving part, such as a slip ring. Said carbon brushes have a number of disadvantages, such as a restricted lifetime, since the carbon is consumed. Furthermore, carbon dust is spread out on the windings and other parts of the machine, which may disturb the function thereof. It is preferred to have a thickness of the film of multielement material exceeding 10 urn for such a contact element, since also the film of multielement material will be con- sumed, but comparatively slowly, in this application thereof.

Electrical contacts arrangements according to other preferred embodiments of the invention are different kinds of contacts having contact surfaces moving while bearing against each other in establishing and/or interrupting an electric contact, such as plug-in contacts or different types of spring-loaded contacts, in which it is possible to take advantage of the very low friction coefficient of a multielement material resulting in a self-lubricating dry contact without the prob- lems of lubricants such as oils or fats while making it possible to reduce the operation forces and save power consumed in actuating members.

Electrical contacts arrangements according to other preferred embodiments of the invention are included in tap changers on transformers, where a low friction is a great advantage when the contact elements are sliding with their contact

surfaces against each other, and in mechanical disconnectors and breakers and in relays.

The invention also relates to a use of the contact arrangement according to any of the claims according to the invention relating to a contact arrangement, in which a probe for measuring and testing an integrated circuit is covered with said multielement material film, a contact layer is coated/combined with a me- tallic layer, avoiding chemical degradation and metal cladding on the probe. It is self evident that this use according to the invention is very favourable, since it will make it possible to carry out measurements and testing without any inter- ruptions for replacing or cleaning the probe.

The invention also relates to a use of the contact arrangement according to any of claims according to the invention relating to a contact arrangement in which a contact for enabling contact to an electronic device, such as an integrated circuit (IC) is covered with a said multielement material film enabling electrical contact to the device.

Further advantages as well as advantageous features appear from the follow- ing description and the other dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS With reference to the appended drawings, below follows a specific description of preferred embodiments of the invention. In the drawings; Figure 1A depicts a structure of a multielement material layer comprising nano- composites with nanocrystals mixed with amorphous regions, Figure 1 B depicts another structure of a multielement material layer comprising nanocomposites with nanocrystals mixed with amorphous regions,

Figure 2 depicts a structure of a multielement material layer with regions in a nanocrystalline state, Figure 3 depicts a structure of a multielement material comprising a metallic layer, Figure 4 depicts a structure of a multielement material layer laminated with me- tallic layers in a repeated structure, Figure 5 illustrates an electric contact element of plug-in type according to a preferred embodiment of the invention, Figure 6 is a sectioned view of an electric contact element of helical contact type according to another preferred embodiment of the invention, Figure 7 is a partially sectioned and exploded view of an arrangement for mak- ing an electric contact to a power semiconductor device according to a pre- ferred embodiment of the invention, Figure 8 illustrates schematically a contact arrangement of a contact arrange- ment according to a preferred embodiment of the invention in electrical equip- ment, Figure 9 illustrates very schematically a sliding contact arrangement in an elec- tric rotating machine according to a further embodiment of the invention, Figure 10 illustrates very schematically a contact arrangement according to the present invention in a disconnector,

Figure 11 illustrates very schematically a sliding contact arrangement in a tap changer of a transformer according to a preferred embodiment of the invention, Figure 12 illustrates very schematically a contact arrangement according to the present invention in a relay, Figure 13 depicts a structure of a multielement material layer and a metallic layer and Figure 14 depicts a structure of a multielement material layer laminated with metallic layers in a repeated structure.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Figure 1A depicts a structure of a multielement material layer with equal or similar composition as any of a layered carbide and nitride that can be de- scribed as M qAX,, where M is a transition metal or a combination of a transi- tion metals, n is 1, 2, 3 or higher, A is an group A element or a combination of a group A element, and X is Carbon, Nitrogen or both, comprising a nanocompo- site of M-X, M-A-X nanocrystals and amorphous regions with M, A, X elements in one or several phases, such as M-A, A-X, M-A-X, X. The multielement mate- rial has amorphous regions (denoted G in the figure) mixed with regions in of the multielement material in a nanocrystalline state (denoted C, D, E in the fig- ure). The individual regions (denoted C, D and E in the picture) in the structure is a single element, binary phases, ternary phases and/or higher order phases depending on the number of atomic elements in the film.

Figure 1 B depicts a structure of a multielement material with the elements that is described in the description to figure 1A. The multielement material has amorphous regions with M-A, A-X, M-A-X and X phases (denoted G in the fig- ure) mixed with regions in of the multielement material in a nanocrystalline

state, M-A-X and/or M-X and/or M-X of Mn+lAXn phases of which some is sur- rounded by an amorphous layer (denoted J, K, L in the figure), or crystalline layer (denoted C, D, E in the figure), of a pure M-A, A-X, M-A-X and X phases material (denoted C, D, E in the figure).

Figure 2 depicts a structure of a multielement material with the elements that is described in the description to figure 1 layer with regions in a nanocrystalline state, (denoted C, D, E in the figure). The individual regions (denoted C, D and E in the picture) in the structure are a single element, binary phases, ternary phases and/or higher order phases.

Figure 3 depicts a structure of a multielement material U with the elements that is described in the description to figure 1 comprising a metallic layer Me.

Figure 4 depicts a structure of multielement material layers with the elements that is described in the description to figure 1 layer laminated with metallic lay- ers Me in a repeated structure. The multielement material layers in amorphous regions mixed with regions in a nanocrystalline state (denoted U in the figure).

Figure 13 depicts a structure of a multielement material with regions in a nano- crystalline state, (denoted C, D, E in the figure) comprising a metallic layer Me.

Figure 14 depicts a structure of multielement material layers with the elements that is described in the description to figure 1 layer laminated with metallic lay- ers Me in a repeated structure. The multielement material layers with regions in a nanocrystalline state, (denoted C, D, E in the figure).

In another preferred embodiment of the invention the multielement material may comprise ternary phases and/or higher order phases for example 211, 312,413 compounds. The multielement material has at least one carbide

and/or nitride that can be described as MAX component, in order to im- prove friction, thermal properties, mechanical properties or electrical properties the multielement material may comprise one or a combination of compounds any of a list : a single group A element, a combination of a group A elements, X is Carbon, X is Nitrogen, X is both Carbon and Nitrogen, a nanocomposite of M-X, a nanocomposite of M-A-X, nanocrystals and/or amorphous regions with M, A, X elements in one or several phases, such as M-A, A-X, M-A-X. The pro- portions of the included compounds may vary within a range of 0. 0001-90% of the weight of the film. Different proportions of the compounds will strengthen the mechanical, physical, and chemical properties. In a preferred embodiment of the invention the proportions of the included compounds should not exceed 50 % of the weight of the film, and in another preferred embodiment of the in- vention less then 20%. For instance compounds of Ag exceed the surface conductibility.

Another preferred embodiment according to the invention is a multielement ma- terial with excess of the M, A, X element. The multielement material for in- stance comprise the compound Tin+1Si Cn+Cm. The compound TinqSi Cn+Cm is a multielement material with excess carbon. That means that the film contains free carbon elements. The excess carbon X are transported to the surface and may function as a friction lower surface termination that provides electrical contact and protect the electrical surface from oxidation. The com- pound Ti 3Si C 2+C m has a low contact resistance. The material may also have groups of M-A, M-A-X, A-X in various proportions.

In another preferred embodiment according to the invention the multielement material comprises the compound Ti 3SiQsSn QsC 2. If the A group element is tin, Sn, the film may be too hydroscopic. If the A group element is silicon, Si, the film may react with oxygen and form a coating of an isolating oxide on the

surface. These disadvantages are avoided if a combination of A element, in this case Sn and Si are used.

Figure 5 shows a contact arrangement 1 of plug-in type, in which a contact sur- face 2 on a contact element 3 slides along and while bearing against contact surfaces 4 on another contact element 5, here called contact member. The contact element 3 has a female character and is present in the form of a resil- ient jaw adapted to be connected to the male contact member 5 in the form of a contact rail. The contact element 3 is applied on the contact member 5 and bears in the contacting state while being biased by means of at least a contact surface 2 against a contact surface 4 on the contact member 5. At least one of the contact surfaces 2 and 4, preferably both, are provided with a continuous or discontinuous multielement material film according to the invention said film a comprising a multielement material with equal composition as any of a layered carbide and nitride that can be described as MAX, where M is a transition metal or a combination of a transition metals, n is 1,2, 3 or higher, A is an group A element or a combination of a group A element, B is an group B ele- ment or a combination of a group B element and X is Carbon, Nitrogen or both and the multielement material comprising a nanocomposite of M-X, M-A-X nanocrystals and amorphous regions with M, A, X elements in one or several phases, such as M-A, A-X, M-A-X, or X. This film has in a preferred embodi- ment of the invention a thickness in the range of 0. 001 um to 1000 urn, and it will have a very low friction coefficient, typically 0. 01 to 0.1. This means that the friction forces to be overcome when controlling the contact arrangement for es- tablishing or interrupting the electric contact will be very low, resulting in a low necessary power consumption in an actuating member and a nearly neglectible wear of the of the contact surfaces constituted by this film. Furthermore, the film is chemical inert and stable at temperatures exceeding 400° C. It is pointed out that it is well possible that said continuous or discontinuous film is arranged on only the contact member 5, which of course is a contact element just as the contact element 3. Furthermore, in this case the film comprising multielement

material is deposited and adheres to the body 6 of the contact element 3, but in other preferred embodiments of the invention it is well possible that said film coats a body being laid on top thereof as a separate foil. This may in particular be the case for the embodiment shown in Fig. 3 described further below. The continuous or discontinuous film comprising the multielement material may be deposited on the body of the contact element, being preferably of Cu, by differ- ent kinds of Physical Vapour Deposition (PVD), Chemical Vapour Deposition (CVD), electrochemically, electroless deposition or with thermal plasma spray- ing. It is preferred to provide a thin layer of a corrosion resistant material on the body before applying said film would the body be of a material being non- resistant to corrosion, since it is possible that the film will have some pores reaching therethrough.

Figure 6 illustrates a further example of a contact arrangement in which it is ad- vantageous to coat at least one of the contact surfaces with a continuous or discontinuous film comprising a multielement material, according to the inven- tion said film forming a self lubricating dry contact with a very low friction ac- cording to the present invention. This embodiment relates to a helical contact arrangement having a contact element 7 in the form of a spring-loaded annular body such as a ring of a helically wound wire adapted to establish and maintain an electric contact to a fist contact member 8, such as an inner sleeve or a pin, and a second contact member 9, such as an outer sleeve or a tube. The con- tact element 7 is in contact state compressed so that at least a contact surface 10 thereof will bear spring-loaded against a contact surface 11 of the first con- tact member 8, and at least anther contact surface 12 of the fist contact ele- ment 7 will bear spring-loaded against at least a contact surface 13 of the sec- ond contact member 9. According to this preferred embodiment of the invention at least one of a contact surfaces 10-13 is entirely or partially coated with a continuous or discontinuous low friction film comprise the multielement mate- rial. Such a helical contact arrangement is used for example in an electrical breaker in a switchgear device.

An arrangement for making a good electric contact to a semiconductor compo- nent 14 is illustrated in Figure 7, but the different members arranged in a stack and pressed together with a high pressure, preferably exceeding 1 MPa and typically 6-8 MPa, are shown spaced apart for clarity. Each half of the stack comprises a pool piece 15 in the form of a Cu plate for making a connection to the semiconductor component. Each pool piece is provided with a thin continu- ous or discontinuous film 16 comprising multielement material, and a metallic layer. The coefficient of thermal expansion of the semiconductor material, for instance Si, SiC or diamond, of the semiconductor component and of Cu differs a lot (2, 2*106/K for Si and 16*10-6/K for Cu), which means that the Cu plates 15 and the semiconductor component 14 will move laterally with respect to each other when the temperature thereof changes. Contact arrangements of this type according to the stand of the art require for that sake one or several further members in said stack between the pool piece and the semiconductor component for taking care of this tendency to mutual movements upon thermal cycling for avoiding cracks in the semiconductor component and/or wear of the contact surface of said component. However the very low friction of a film ac- cording to the present invention makes it possible to omit all these additional members and making the contact arrangement less costly, not at the least by allowing the issue of a cheap material without any need of thermal matching close to there semiconductor component. A contact arrangement of this type is a part of power electronic encapsulation 17 forming a closed system, and prac- tically no material will be consumed when the film moves along the semicon- ductor component upon thermal cycling so that the lifetime thereof will be prac- tically indefinite. The multielement contact layer 16 can also be deposited di- rectly on the semiconducting device14 or both on the Cu pole piece 15 and the device 14.

Figure 8 illustrates schematically an electric contact arrangement of plug-in type, for example used in electrical equipment. The members are arranged to

be pressed together but are shown spaced apart for clarity. The contact ar- rangement has a first contact member 41, which has male character, and sec- ond contact member 42, which has female character. The first contact member 41 is adapted to be connected to the second contact member 42, by means of at least a contact surface 43 on the first contact member against a contact sur- face 44 on the second contact member. At least one of the contact surfaces 43 and 44, preferably both, are provided with a continuous or discontinuous film comprising the multielement material.

A sliding contact arrangement according to another preferred embodiment of the invention is schematically illustrated in Figure 9 as used in an electric rotat- ing machine 18 of any type for establishing an electric contact between a slip ring 19 and ac contact element 20, which here replaces a carbon brush and is made of a body for instance copper or aluminium coated with a continuous or discontinuous film indicated at 22. This results in a very low friction electric con- tact having a low contact resistance. It would also be possible to use a contact arrangement having a continuous or discontinuous film of multielement material between two members moving with respect to each other in an electric rotating machine for avoiding a static electricity to be built up.

Figure 10 illustrates very schematically how an electric contact arrangement according to the invention may be arranged in a disconnector 23 with a low fric- tion film 24, comprising a multielement material, and a metallic layer, on at least one of the contact surfaces of two contact elements 25,26 movable with respect to each other for establishing an electric contact there between and ob- taining a visible disconnection of the contact elements.

Figure 11 illustrates schematically a sliding electric contact arrangement ac- cording to another preferred embodiment of the invention, in which the contact element 27 is a movable part of a top changer 28 of a transformer adapted to slide in electric contact along contacts 29 to the secondary contact member, for

tapping voltage of a level desired from said transformer. A low friction film 30, comprising a multielement material, and a metallic layer, is arranged on the contact surface of the contact element 27 and/or on the contact member 29.

The contact element 27 may in this way be easily moved along the winding 29 while maintaining a low resistance contact thereto.

Figure 12 illustrates very schematically a contact arrangement according to an- other preferred embodiment of the invention used in a relay 31, and one or both of the contact surfaces of opposite contact elements 32,33 may be pro- vided with a low friction film 34 comprising a multielement material, which will result in less wear of the contact surfaces due to lower tendency of welding and make them corrosion resistant as a consequence of the character of multiele- ment material.

A contact element and a sliding electric contact arrangement according to the present invention may find many other preferred applications, and such appli- cations would be apparent to a man with ordinary skill in the art without depart- ing from the basic idea of the invention as defined in the appended claims.

It would for example be possible to dope the thin friction film for improving fric- tion, thermal, mechanical or electrical properties by one or several compounds or elements. However, the amount of doping should not exceed 20 % of the weight of the film. It is then also possible to have different films on different contact surfaces of the contact elements and the contact member, for instance some doped and others not or some formed by at least two sub-layers and others having only one layer.

Another example of a contact arrangement according to the invention is to cover a probe for measuring and testing an integrated circuit (IC) with said film, comprising a multielement material and a metal layer, avoiding chemical deg- radation and metal cladding on the probe.

Furthermore, the contact elements and arrangements of the invention are not restricted to any particular system voltages, but may be used on low, inter- mediate and high voltage applications.

The multielement material of the contact layer according to the invention may form a solid film together with 50-90% of metal, for instance of Ti or Au, for im- proving the conductivity. This may take place by forming a homogeneous dis- persion of the metal in the material, inhomogeneous dispersion with metallic regions and multielement regions, such as a composite or by arranging a layer of the multielement chemical compound and a layer of the metal alternating.