Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CHROMIUM-FREE WATER- AND ACID-STABLE CATALYST FOR HYDROGENATION REACTIONS
Document Type and Number:
WIPO Patent Application WO/2021/099225
Kind Code:
A1
Abstract:
The present invention relates to an improved chromium-free Cu-Al catalyst for the hydrogenation of carbonyl groups in organic compounds, characterized in that the catalyst contains zirconium in a proportion of 0.5 to 30.0 wt.%. The invention also relates to the production of the catalyst and to the use of same in the hydrogenation of carbonyl groups in organic compounds.

Inventors:
DOERFELT CHRISTOPH (DE)
PFANZELT MANUEL (DE)
BURGFELS GOETZ (DE)
GROSSMANN FRANK (DE)
PILZ MAURICE (DE)
Application Number:
PCT/EP2020/082131
Publication Date:
May 27, 2021
Filing Date:
November 13, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLARIANT INT LTD (CH)
International Classes:
B01J21/04; B01J21/06; B01J23/72; B01J35/00; B01J37/00; B01J37/03; B01J37/06; B01J37/08; B01J37/16; C07C213/02
Domestic Patent References:
WO2018108451A12018-06-21
WO2004085356A12004-10-07
WO2011115695A12011-09-22
Foreign References:
US20120083631A12012-04-05
EP0963975A11999-12-15
DE4021230A11991-01-17
EP0434062A11991-06-26
EP0552463A11993-07-28
Other References:
LI JIFAN ET AL: "Construction of mesoporous Cu/ZrO2-Al2O3 as a ternary catalyst for efficient synthesis of [gamma]-valerolactone from levulinic acid at low temperature", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 381, 19 November 2019 (2019-11-19), pages 163 - 174, XP086033163, ISSN: 0021-9517, [retrieved on 20191119], DOI: 10.1016/J.JCAT.2019.10.031
Attorney, Agent or Firm:
KLINGELHOEFER, Stefan (DE)
Download PDF:
Claims:
Patentansprüche

1. Cu-Al-Katalysator, dadurch gekennzeichnet, dass der Katalysator Zirkonium in einem Gewichtsanteil von 0,5 bis 30,0 %, bezogen auf das Gesamtgewicht des Katalysators nach Glühverlust, enthält.

2. Katalysator nach Anspruch 1 , wobei das Zirkonium in einem Gewichtsanteil von 5,0 bis 20,0 %, bevorzugt im Bereich von 10 bis 20 Gewichts-%, bezogen auf das Gesamtgewicht des Katalysators nach Glühverlust, vorliegt.

3. Katalysator nach einem der Ansprüche 1 oder 2, wobei der Katalysator Cu in einer Menge im Bereich von 20 bis 50 Gewichts %, bevorzugt im Bereich von 25 bis 40 Gewichts-%, und AI in einer Menge im Bereich von 8 bis 29 Gewichts-%, bevorzugt im Bereich von 15 bis 25 Gewichts %, bezogen auf das Gesamtgewicht des Katalysators nach Glühverlust, enthält.

4. Katalysator nach einem der Ansprüche 1 bis 3, wobei der Katalysator als Formkörper vorliegt.

5. Katalysator nach Anspruch 4, wobei der Katalysatorformkörper in Tablettenform vorliegt.

6. Katalysator nach einem der Ansprüche 4 oder 5, wobei er einen Anteil an Bindemittel im Bereich von 2 bis 30 Gewichts-%, bevorzugt im Bereich von 2 bis 10 Gewichts-% und besonders bevorzugt im Bereich von 2 bis 5 Gewichts-%, bezogen auf das Gesamtgewicht des Formkörpers nach Glühverlust, aufweist.

7. Katalysator nach Anspruch 6, wobei das Bindemittel Calciumaluminat ist.

8. Katalysator nach Anspruch 7, wobei der Anteil an Calcium im Formkörper im Bereich von 0,14 bis 17,02 Gewichts-%, bevorzugt im Bereich von 0,14 bis 5,67 Gewichts-% und besonders bevorzugt im Bereich von 0,14 bis 2,84 Gewichts-%, bezogen auf das Gesamtgewicht des Formkörpers nach Glühverlust, beträgt.

9. Katalysator nach einem der Ansprüche 4 bis 8, wobei die Seitendruckfestigkeit 80 bis 500 N, bevorzugt 150 bis 250 N, besonders bevorzugt 170 bis 230 N beträgt.

10. Katalysator nach einem der Ansprüche 1 bis 9, wobei er eine kubische Zirkoniumdioxid-Phase und optional zusätzlich eine weitere ZrC Phase ausgewählt aus orthorhombischem und monoklinem Zirkoniumdioxid aufweist.

11. Katalysator nach einem der Ansprüche 1 bis 10, wobei der Katalysator kein Mangan in oxidierter oder metallischer Form enthält.

12. Verfahren zur Herstellung eines Katalysators nach einem der Ansprüche 1 bis 11 enthaltend Zirkonium in einem Gewichtsanteil von 0,5 bis 30,0 %, bezogen auf das Gesamtgewicht des Katalysators nach Glühverlust, umfassend die folgenden Schritte: a) Vereinigen von (i) mindestens einer wässrigen Lösung A von Kupfer-, Zirkonium- und gegebenenfalls weiteren Übergangsmetallverbindungen und (ii) mindestens einer wässrigen alkalischen Lösung B zur Bildung eines Niederschlags, wobei die Lösung A und/oder Lösung B zusätzlich eine gelöste Aluminiumverbindung umfasst, b) Abtrennen des Niederschlags, gegebenenfalls Waschen des Niederschlags c) Trocknen des Niederschlags zum Erhalt eines getrockneten Niederschlags, d) Kalzinierung des getrockneten Niederschlags nach Schritt c) bei einer Temperatur zwischen 200 und 800 °C für eine Dauer zwischen 30 min und 4 h.

13. Verfahren nach Anspruch 12, umfassend den folgenden Schritt: e) Verformen des kalzinierten Niederschlags nach Schritt d) zum Erhalt eines Formkörpers.

14. Verfahren nach Anspruch 13, umfassend den folgenden Schritt: f) Thermische Behandlung des Formkörpers bei einer Temperatur zwischen 200 und 800 °C für eine Dauer zwischen 30 min und 4 h.

15. Verfahren nach einem der Ansprüche 12 bis 14, wobei die thermische Behandlung in Schritt f) zwischen 400 und 700 °C für eine Dauer zwischen 1 h und 3 h stattfindet.

16. Verfahren nach einem der Ansprüche 12 bis 15, wobei nach Schritt f) eine Reduzierung des Katalysators erfolgt.

17. Verfahren zur Hydrierung von Carbonylgruppen in organischen Verbindungen mit dem Katalysator nach einem der Ansprüche 1 bis 11 oder hergestellt nach einem Verfahren nach einem der Ansprüche 12 bis 16.

18. Verfahren nach Anspruch 17, wobei der Wassergehalt des Reaktionsstroms 0,1 bis 5,0 Gewichts-%, bevorzugt 0,2 bis 5,0 Gewichts-%, bevorzugter 0,5 bis 5,0 Gewichts- %, besonders bevorzugt 0,5 bis 3,0 Gewichts-% ist.

19. Verfahren nach einem der Ansprüche 17 oder 18, wobei die Säurezahl des Reaktionsstroms im Bereich von 0,1 bis 3,4 mgKoH/g Lösung, bevorzugt im Bereich von 0,2 bis 1 ,0 mgKoH/gLösung liegt.

20. Verfahren nach Anspruch 17 zur Hydrierung von Aldehyden zu Alkoholen.

21. Verfahren nach Anspruch 17 zur Hydrierung eines Fettsäuremethylesters.

22. Verfahren nach Anspruch 17 zur Hydrierung von Ketonen zu Alkoholen.

Description:
Chromfreier wasser- und säurestabiler Katalysator für Hydrierungen

Die vorliegende Erfindung betrifft einen verbesserten chromfreien Cu-Al-Katalysator zur Hydrierung von Carbonylgruppen in organischen Verbindungen, dadurch gekennzeichnet, dass der Katalysator einen Anteil von Zirkonium in einer Menge von 0,5 bis 30,0 Gewichts-% umfasst. Die vorliegende Erfindung betrifft außerdem auch die Herstellung des Katalysators sowie dessen Verwendung in der Hydrierung von Carbonylgruppen in organischen Verbindungen.

Katalytische Verfahren zur Hydrierung von Carbonylgruppen in organischen Verbindungen wie Estern, Diestern, Aldehyden oder Ketonen haben in der Industrie große Relevanz. Sie dienen unter anderem dazu, Carbonsäuren oder deren Ester, speziell Ester der Fettsäuren in die entsprechenden Alkohole umzuwandeln.

Als Katalysatoren eignen sich dabei Systeme auf Basis von Kupfer in Kombination mit weiteren Elementen der Übergangsmetalle. Die Katalysatoren liegen üblicherweise in Form von Pulvern oder als Formkörper, insbesondere Tabletten, Extrudaten oder Granulaten vor.

Die WO 2004/085356 beschreibt die Herstellung eines Katalysators für die Hydrierung von Carbonylverbindungen, der neben Kupfer und Aluminium mindestens ein Oxid des Lanthan, Wolfram, Molybdän, Titan oder Zirkonium enthält, und dem weiterhin Kupferpulver oder - blättchen, Zementpulver oder Graphit beigemengt ist.

DE 40 21 230 A1 beschreibt ein Verfahren zur Herstellung von Alkoholen, indem eine organische Carbonsäureesterverbindung in der Gegenwart eines Kupfer-Zirkonium- Katalysators, welcher sich aus Kupfer, Zirkonium und Sauerstoff zusammensetzt, hydriert wird, um einen entsprechenden Alkohol wie einen höheren Alkohol oder zweiwertigen Alkohol zu erhalten.

Gegenstand der EP 0 434 062 A1 ist ein Verfahren zur Hydrierung eines Stoffgemischs in die entsprechenden Alkohole, in dem ein Katalysator verwendet wird, der durch Co-Fällung von Metallen ausgewählt aus Mg, Zn, Ti, Zr, Sn, Ni, C und Mischungen davon hergestellt wurde.

Der in EP 0 552 463 A1 offenbarte Katalysator für die Hydrierung von Carbonylgruppen in organischen Verbindungen weist in seiner oxidischen Form die Zusammensetzung Cu a Al b Zr c Mn d O d mit a > O; b > O; c > O; d > O; a > b/2; b > a 4; a > c; a > d; und x als die zur Wahrung der Elektroneutralität pro Formeleinheit erforderliche Anzahl von Sauerstoffionen auf.

Die Ausgangsmischungen einiger Hydrierungsprozesse weisen in der Regel Spuren von sauren Verbindungen auf. Bei diesen handelt es sich beispielsweise um Carbonsäuren, die als Nebenprodukte in Veresterungsreaktionen vorliegen. Diese Verbindungen greifen unter den Reaktionsbedingungen der Hydrierungsreaktion den Katalysator an und führen zu einer Erniedrigung der mechanischen Stabilität und dem teilweise zu beobachtenden Auswaschen der katalytisch aktiven Metalle, die mit dem Produktstrom aus dem Reaktionsreaktor herausgetragen werden und von ihm abgetrennt werden müssen. Zudem reduziert sich mit fortschreitendem Austrag der katalytisch aktiven Metalle auch die katalytische Aktivität des Katalysators.

Für solche Reaktionen werden Katalysatoren verwendet, die kupfer- und chromhaltig sind. Diese weisen üblicherweise eine erhöhte Stabilität gegenüber Säureeinwirkung auf.

Aufgrund von strengeren Umweltauflagen ist der Einsatz von chromhaltigen Katalysatoren mit immer höheren Anforderungen verbunden, so dass der Bedarf besteht, die bestehenden CuCr-Systeme durch umweltverträgliche Alternativen zu ersetzen, die dennoch vergleichbare katalytische und physikalische Eigenschaften aufweisen.

So werden in der WO2011115695A1 CuCr-haltige Katalysatoren für die Hydrierung von Aldehyden zu den entsprechenden Alkoholen eingesetzt.

Die Aufgabe der vorliegenden Erfindung bestand deshalb darin, einen Katalysator für Hydrierungen von Carbonylgruppen in organischen Verbindungen bereitzustellen, der weniger anfällig gegenüber der Einwirkung von sauren Verbindungen oder Wasser ist, und wenn er in Form eines Katalysatorformkörpers vorliegt, sich zusätzlich durch eine verbesserte mechanische Stabilität auszeichnet. Außerdem soll dieser Katalysator insbesondere in Hydrierungen verwendet werden können, die in einem sauren und/oder wasserhaltigen Medium stattfinden.

Diese Aufgabe wird durch den erfindungsgemäßen Katalysator gelöst. Die Erfindung betrifft einen chromfreien Cu-Al-Katalysator, dadurch gekennzeichnet, dass er einen Anteil an Zirkonium im Bereich von 0,5 bis 30 Gewichts-% aufweist.

Der Katalysator kann in verschiedenen Formen vorliegen, beispielsweise in Form eines Pulvers, oder in Form von Formkörpern wie Extrudaten, Kugeln, Granulaten oder Tabletten. In einer bevorzugten Ausführungsform liegt der Katalysatorform körper als Tablette vor.

Wenn der Katalysatorform körper in Form von Tabletten vorliegt, liegt der Durchmesser der Tabletten dabei üblicherweise zwischen 2 und 6 mm und bevorzugt zwischen 3 und 5 mm liegen. Besonders bevorzugt beträgt der Durchmesser zwischen 4,4 und 4,6 mm. Die Flöhe der Tabletten kann zwischen 2 und 6 mm und bevorzugt zwischen 2 und 4 mm liegen. Besonders bevorzugt beträgt die Flöhe zwischen 2,5 und 3,5 mm.

Der erfindungsgemäße Katalysatorformkörper weist eine Seitendruckfestigkeit von 80 bis 500 N, bevorzugt 150 bis 250 N, besonders bevorzugt 170 bis 230 N auf. Vorzugsweise weist der erfindungsgemäße Katalysatorform körper einen Durchmesser im Bereich von 3 bis 5 mm, eine Flöhe im Bereich von 2 bis 4 mm und eine Seitendruckfestigkeit im Bereich von 170 bis 230 N auf.

Das Porenvolumen, gemessen mittels Quecksilberporosimetrie, des erfindungsgemäßen Katalysatorformkörpers beträgt zwischen 100 und 500 mm 3 /g, vorzugsweise zwischen 150 und 400 mm 3 /g, besonders bevorzugt zwischen 200 und 400 mm 3 /g.

Die nachstehend angegebenen Mengen von Kupfer, Aluminium und Zirkonium im erfindungsgemäßen Katalysator beziehen sich auf eine oxidische, nicht reduzierte Form des Katalysators, in der die Elemente typischerweise in oxidierter Form als Cu(ll), Al(lll) und Zr(IV) vorliegen.

In einer bevorzugten Ausführungsform umfasst der Katalysator in seiner oxidischer Form Cu in einer Menge im Bereich von 20 bis 50 Gewichts-%, bevorzugt im Bereich von 25 bis 40 Gewichts-%, AI in einer Menge im Bereich von 8 bis 29 Gewichts-%, bevorzugt im Bereich von 15 bis 25 Gewichts-%, und Zr in einer Menge im Bereich von 0,5 bis 30 Gewichts-%, bevorzugt im Bereich von 5 bis 20 Gewichts-%, besonders bevorzugt im Bereich von 10 bis 20 Gewichts-%, bezogen auf das Gesamtgewicht des Katalysators nach Glühverlust.

In einer Ausführungsform enthält der Katalysator kein Mangan in oxidierter oder metallischer Form. Der erfindungsgemäße Katalysator zeichnet sich bevorzugt dadurch aus, dass er eine kubische Zirkoniumdioxid-Phase aufweist. In einer Ausführungsform liegt neben der kubischen Zirkoniumdioxid-Phase noch mindestens eine weitere ZrC Modifikation ausgewählt aus orthorhombischem und monoklinem Zirkoniumdioxid vor.

Der erfindungsgemäße Katalysator wird hergestellt durch folgende erfindungsgemäße Schritte: a) Vereinigen von (i) mindestens einer wässrigen Lösung A von Kupfer-, Zirkonium- und gegebenenfalls weiteren Übergangsmetallverbindungen und (ii) mindestens einer wässrigen alkalischen Lösung B zur Bildung eines Niederschlags, wobei die Lösung A und/oder Lösung B zusätzlich eine gelöste Aluminiumverbindung umfasst, b) Abtrennen des Niederschlags, gegebenenfalls Waschen des Niederschlags c) Trocknen des Niederschlags zum Erhalt eines getrockneten Niederschlags, d) Kalzinierung des getrockneten Niederschlags nach Schritt c) bei einer Temperatur zwischen 200 und 800 °C für eine Dauer zwischen 30 min und 4 h.

Als Ausgangsverbindungen der in Schritt a) eingesetzten Verbindungen des Kupfers, des Aluminiums, des Zirkoniums und gegebenenfalls des Übergangsmetalls eignen sich dabei prinzipiell alle Verbindungen, die in Wasser, basischen oder sauren wässrigen Lösungen löslich sind. Bevorzugt werden Carbonate, Nitrate, Halogenide, Oxide, Sulfate, Acetate oder Formiate eingesetzt.

Die Aluminiumverbindung kann hierbei entweder bereits in der kupfer- und zirkoniumhaltigen Lösung A vorliegen oder zusammen mit dem Fällungsmittel in Form der wässrigen alkalischen Lösung B zugegeben werden.

Der Anteil der Zirkoniumverbindung in der Lösung A in Schritt a) wird dabei so gewählt, dass der Anteil an Zirkonium in finalen Katalysator im Bereich von 0,5 bis 30 Gewichts-% liegt, bezogen auf das Gesamtgewicht des Katalysators nach Glühverlust.

Die mindestens eine wässrige Lösung A von Kupfer-, Zirkonium- und gegebenenfalls weiteren Übergangsmetallverbindungen kann in Form von mehreren separaten wässrigen Lösungen von Kupfer-, Zirkonium- und gegebenenfalls weiteren Übergangsmetallverbindungen bereitgestellt werden, wobei jede dieser Lösungen eine Aluminiumverbindung umfassen kann. Beispielsweise können eine oder mehrere wässrige Lösungen von Kupferverbindungen, eine oder mehrere wässrige Lösungen von Zirkoniumverbindungen, eine oder mehrere wässrige Lösungen von Aluminiumverbindungen und gegebenenfalls eine oder mehrere wässrige Lösungen von weiteren Übergangsmetallverbindungen bereitgestellt werden. Alternativ dazu können auch eine oder mehrere gemeinsame wässrigen Lösungen bereitgestellt werden. Diese können hergestellt werden, indem Kupfer- und/oder Aluminium- und/oder Zirkonium- und/oder gegebenenfalls weitere Übergangsmetallverbindungen in einem gemeinsamen Behälter gelöst werden. Das Vereinigen von oben genannten separaten Lösungen zu einer gemeinsamen Lösung ist ebenfalls möglich.

In einer Ausführungsform wird die mindestens eine wässrige Lösung A von Kupfer-, Zirkonium- und gegebenenfalls weiteren Übergangsmetallverbindungen vor dem Vereinigen mit der wässrigen alkalischen Lösung B auf eine Temperatur von über 20°C, wie zum Beispiel auf eine Temperatur im Bereich von 50°C bis 90°C, insbesondere auf etwa 80°C, erwärmt und dabei vorzugsweise gerührt.

In einer weiteren Ausführungsform wird die wässrige alkalische Lösung B vor dem Vereinigen auf eine Temperatur von über 20°C, wie zum Beispiel auf eine Temperatur im Bereich von 50°C bis 90°C, insbesondere auf etwa 80°C, erwärmt und dabei vorzugsweise gerührt.

In einer weiteren Ausführungsform werden sowohl die mindestens eine wässrige Lösung A von Kupfer-, Zirkonium- und gegebenenfalls weiteren Übergangsmetallverbindungen als auch die wässrige alkalische Lösung B auf eine Temperatur im Bereich von 50°C bis 90°C, insbesondere auf etwa 85°C erwärmt und dabei vorzugsweise gerührt.

In einer Ausführungsform erfolgt die Bildung des Niederschlags in Schritt a) , indem die wässrige alkalische Lösung B enthaltend das Fällungsmittel in die Lösung A enthaltend die gelösten Verbindungen des Kupfers, des Aluminiums, des Zirkoniums und gegebenenfalls des Übergangsmetalls geleitet wird, bevorzugt unter konstantem Rühren der metallhaltigen Lösung.

In einer weiteren Ausführungsform erfolgt die Bildung des Niederschlags in Schritt a), indem die wässrige alkalische Lösung B enthaltend das Fällungsmittel und die Aluminiumverbindung in die Lösung A enthaltend die gelösten Verbindungen des Kupfers, des Zirkoniums und gegebenenfalls des Übergangsmetalls geleitet wird, bevorzugt unter konstantem Rühren der metallhaltigen Lösung. In einer weiteren Ausführungsform wird die wässrige alkalische Lösung B enthaltend das Fällungsmittel gemeinsam mit der metallhaltigen Lösung A in einen gemeinsamen Fällungsbehälter geleitet, wobei die Lösung A und/oder Lösung B zusätzlich eine gelöste Aluminiumverbindung umfasst.

Die Temperatur der vereinigten Lösungen in Schritt a) liegt üblicherweise im Bereich von 10 bis 90 °C, bevorzugt zwischen 30 und 90 °C, bevorzugter im Bereich von 50 und 85 °C.

Der pFI-Wert während der Fällung der metallhaltigen Verbindungen in Schritt a) liegt im Bereich von 6,0 bis 8,0, bevorzugt im Bereich von 6,5 bis 7,5, noch bevorzugter im Bereich von 6,5 bis 7,0.

Nach der Fällung wird der entstandene Niederschlag abgetrennt. Dies erfolgt typischerweise mittels Filtration. Alternativ dazu kann der Niederschlag auch durch Abdekantieren oder Zentrifugieren abgetrennt werden.

Der abgetrennte Niederschlag kann danach gegebenenfalls einem oder mehreren Waschschritten unterzogen werden, um eventuell anhaftende Verunreinigungen wie überschüssige Flydroxid-Ionen oder Alkaliionen zu entfernen. Dabei kann der Niederschlag entweder direkt in der Filterkammer als Filterkuchen verbleiben und mit einem Waschmedium, bevorzugt deionisiertem Wasser, durchströmt werden, oder alternativ in dem Waschmedium aufgeschlämmt und einer erneuten Abtrennung mittels Filterpresse, Abdekantieren oder Zentrifugieren unterzogen werden. Dieser Vorgang wird üblicherweise so oft wiederholt, bis die Leitfähigkeit des Waschmediums unter einen bestimmten Wert fällt. Dieser liegt typischerweise bei 0,5 mS/cm, insbesondere 0,2 mS/cm. Die Leitfähigkeit wird nach DIN 38404, Teil 8, bestimmt.

Die Trocknung des abgetrennten und gegebenenfalls gewaschenen Niederschlags erfolgt bei einer Temperatur im Bereich von 50 bis 150 °C, bevorzugt im Bereich von 70 bis 130 °C, besonders bevorzugt im Bereich von 80 bis 120 °C. Die Trocknung kann dabei in einem Sprühtrockner erfolgen. Alternativ kann die Trocknung auch in einem stationären Ofen erfolgen, hierbei liegt die Trocknungsdauer üblicherweise im Bereich von 30 Minuten bis 6 h.

Anschließend wird das getrocknete Pulver einer Kalzinierung unterzogen. Diese findet bei einer Temperatur zwischen 200 und 800 °C, bevorzugt zwischen 400 und 800 °C statt, besonders bevorzugt zwischen 600 und 800 °C, weiter bevorzugt zwischen 700 und 800 °C. Die Dauer der Kalzinierung beträgt zwischen 30 min und 4 h, bevorzugt zwischen 1 und 3 h und besonders bevorzugt 2 h.

In einer Ausführungsform wird der getrocknete und kalzinierte Niederschlag anschließend einem Formgebungsverfahren unterzogen. Hierbei wird der nach Schritt d) erhaltene Niederschlag folgendem Schritt unterzogen: e) Verformen des kalzinierten Niederschlags nach Schritt d) zum Erhalt eines Formkörpers.

Übliche Formgebungsverfahren sind Tablettierung, Extrusion, Granulierung. In einer bevorzugten Ausführungsform wird der kalzinierte Niederschlag tablettiert.

Die Tablettierung wird üblicherweise mit einer Tablettenpresse, wie beispielsweise einer Presse vom Typ Kilian Pressima, durchgeführt. Die Tablettierung erfolgt vorzugsweise unter Zugabe von Schmiermitteln wie Graphit, Ölen oder Stearaten, vorzugsweise Graphit. Hierzu wird der in Schritt d) erhaltene kalzinierte Niederschlag mit mindestens einem Schmiermittel vermischt, gegebenenfalls kompaktiert und/oder granuliert und dann tablettiert. Der Anteil an Schmiermittel in der Mischung beträgt üblicherweise zwischen 0,5 bis 5,0 Gewichts-%, bevorzugt zwischen 1 ,0 und 4,0 Gewichts-%, bezogen auf das Gesamtgewicht der zu tablettierenden Masse.

In einer Ausführungsform wird ein Bindemittel zu dem zu verformenden Niederschlag gegeben. Als Bindemittel eignen sich prinzipiell alle Verbindungen, die die mechanische Stabilität des Formkörpers erhöhen. Geeignete Bindemittel sind Aluminiumoxid, wie beispielsweise Pseudoboehmit, Boehmit oder Korund, Siliciumdioxid, Calciumaluminat, Calciumsilikat oder Tonmineralien wie Bentonit.

In einer Ausführungsform wird Calciumaluminat als Bindemittel verwendet. Dabei handelt es sich um eine Verbindung, die Ca und AI in Form von Oxiden und/oder Hydroxiden enthält. Beispielsweise handelt es sich um gebrannte Calciumaluminate der allgemeinen Formel x CaO y AI2O3 oder um chemisch gefällte Calciumaluminate der allgemeinen Formel Ca x Al y (OH) z . Abhängig von der Behandlung der Calciumaluminate können aber auch Zwischenstufen dieser beiden Summenformeln vorliegen, die ebenfalls als Bindermaterial geeignet sind. Neben diesen Elementen können im Calciumaluminat noch weitere Elemente vorliegen. In einer bevorzugten Ausführungsform enthält das Calciumaluminat weitere Elemente in einem Gewichtsanteil von kleiner 5,0 Gewichts-%, bevorzugt kleiner 1 ,0 Gewichts-% und besonders bevorzugt kleiner 0,1 Gewichts-%, bezogen auf das Gewicht des Calciumaluminats.

Das atomare Ca/Al-Verhältnis des Calciumaluminats, das in der vorliegenden Erfindung eingesetzt wird, kann variieren und beträgt bevorzugt zwischen 0,1 und 3,5, noch mehr bevorzugt zwischen 0,3 und 2,0.

Als Calciumaluminate eignen sich synthetisch hergestellte Materialien. Es können aber auch natürlich vorkommende Calciumaluminate verwendet werden, wie z.B. Katoit.

Das Calciumaluminat kann vor der Verwendung als Bindermaterial einer thermischen Behandlung (Kalzinierung) unterzogen werden. Diese findet bei einer Temperatur zwischen 300 und 800 °C, bevorzugt zwischen 450 und 750 °C und besonders bevorzugt zwischen 450 und 650 °C statt.

Das Bindemittel wird üblicherweise in einer solchen Menge zu der Mischung gegeben, dass der Gehalt an Bindemittel in dem Formkörper im Bereich von 2 bis 30 Gewichts-%, bevorzugt im Bereich von 2 bis 10 Gewichts-% und besonders bevorzugt im Bereich von 2 bis 5 Gewichts-% liegt, bezogen auf das Gesamtgewicht des Formkörpers nach Glühverlust.

Wenn Calciumaluminat als Bindemittel eingesetzt wird, wird die Mischung vorzugsweise zusätzlich mit Wasser vermengt, um die bindende Wirkung des Calciumaluminats zu verstärken. Bevorzugt wird ein thermisch behandeltes Calciumaluminat zu der Mischung gegeben.

Der Calciumgehalt des mit Calciumaluminat gebundenen Formkörpers liegt bevorzugt im Bereich von 0,14 bis 17,02 Gewichts-%, bevorzugt im Bereich von 0,14 bis 5,67 Gewichts-% und besonders bevorzugt im Bereich von 0,14 bis 2,84 Gewichts-%, bezogen auf das Gesamtgewicht des Formkörpers nach Glühverlust.

Wenn Calciumaluminat als Bindemittel eingesetzt wird, lässt sich der Gewichtsanteil an Calciumaluminat im Formkörper mittels Röntgendiffraktometrie bestimmen. Dabei wird die Probe in einem D4 Endeavor der Firma BRUKER über einen Bereich von 5 bis 90 °20 (Schrittfolge 0,020 °20, 1 ,5 Sekunden Messzeit pro Schritt) gemessen. Als Strahlung wird CuKal -Strahlung (Wellenlänge 1 ,54060 Ä, 40 kV, 35 mA) verwendet. Der Probenteller wird während der Messung mit einer Geschwindigkeit von 30 Umdrehungen/min um seine Achse gedreht. Das erhaltene Spektrum der Reflexintensitäten wird mittels Rietveld-Verfeinerung quantitativ analysiert und der Anteil von Calciumaluminat in der Probe bestimmt. Zur Bestimmung des Anteils der jeweiligen Kristallphasen wird die Software TOPAS der Firma BRUKER verwendet.

Der in Schritt e) erhaltene Formkörper kann anschließend einer thermischen Behandlung unterzogen werden. Hierbei wird der nach Schritt e) erhaltene Formkörper folgendem Schritt unterzogen: f) Thermische Behandlung des Formkörpers bei einer Temperatur zwischen 200 und 800 °C für eine Dauer zwischen 30 min und 4 h.

In einer Ausführungsform erfolgt die thermische Behandlung bei einer Temperatur zwischen 400 und 700 °C. In einerweiteren Ausführungsform beträgt die Dauer dieser thermischen Behandlung zwischen 1 und 3 h und besonders bevorzugt zwischen 1 ,5 und 2,5 h.

Der durch das erfindungsgemäße Verfahren erhältliche Katalysator kann in einem weiteren Schritt reduziert werden, ehe er in der katalytischen Reaktion verwendet wird.

Die Reduzierung erfolgt dabei bevorzugt durch Erhitzen des Katalysators in einer reduzierenden Atmosphäre. Bei der reduzierenden Atmosphäre handelt es sich insbesondere um Wasserstoff. Die Reduzierung erfolgt beispielsweise bei einer Temperatur im Bereich von 150°C bis 450°C, bevorzugt im Bereich von 160°C bis 250°C, besonders bevorzugt im Bereich von 170°C bis 200°C. Die Reduzierung erfolgt beispielsweise über einen Zeitraum von 1 Stunde bis 20 Tage, bevorzugt über einen Zeitraum von 2 Stunden bis 120 Stunden, besonders bevorzugt über einen Zeitraum von 24 bis 48 Stunden. In einer bevorzugten Ausführungsform erfolgt das Reduzieren bei einer Temperatur im Bereich von 190°C bis 210°C über einen Zeitraum von 24 bis 48 Stunden.

In einer bevorzugten Ausführungsform werden die Katalysatoren nach der Reduktion nass oder trocken stabilisiert. Bei der Nassstabilisierung werden die Katalysatoren mit einer Flüssigkeit überschichtet, um den Kontakt mit Sauerstoff möglichst zu vermeiden. Geeignete Flüssigkeiten umfassen organische Flüssigkeiten und Wasser, bevorzugt organische Flüssigkeiten. Bevorzugte organische Flüssigkeiten sind solche, die bei 20°C einen Dampfdruck von 0,5 hPa oder weniger aufweisen. Beispiele solcher geeigneter organischer Flüssigkeiten sind Iso-Decanol, Nafol, Fettalkohole, Hexadecan, 2-Ethyl-hexanol, Propylenglycol und Mischungen davon, besonders Iso-Decanol. Bei der Trockenstabilisierung wird in den Reduktionsraum ein Gemisch aus Sauerstoff oder einem sauerstoffhaltigen Gas, bevorzugt Luft, und einem inerten Gas, wie Argon oder Stickstoff zudosiert. Die Konzentration an Sauerstoff in dem Gemisch wird vorzugsweise von etwa 0,04 Vol.-% auf etwa 21 Vol.-% erhöht. Beispielsweise kann ein Gemisch aus Luft und Inertgas zudosiert werden, wobei das Verhältnis von Luft zu Inertgas anfangs etwa 0,2 Vol.- % Luft zu 99,8 Vol.-% Inertgas beträgt. Das Verhältnis von Luft zu Inertgas wird dann allmählich erhöht (z.B. kontinuierlich oder schrittweise), bis schließlich beispielsweise 100 Vol.-% Luft zudosiert wird (entsprechend einer Sauerstoffkonzentration von etwa 21 Vol.-%). Ohne an eine Theorie gebunden zu sein, wird vermutet, dass durch die Zudosierung von Luft oder Sauerstoff eine dünne Oxidschicht mit einer Dicke von beispielsweise 0,5 bis 50 nm, bevorzugt 1 bis 20 nm, besonders bevorzugt 1 bis 10 nm an der Oberfläche des Katalysators entsteht, welche den Katalysatorformkörper vor weiterer Oxidation schützt. Bei der Trockenstabilisierung beträgt die Reaktortemperatur bevorzugt 100°C oder weniger, besonders bevorzugt 20°C bis 70°C und am meisten bevorzugt 30°C bis 50°C. Die Reduzierung kann ex situ oder in situ in der Reaktionsanlage erfolgen, in die der Katalysator eingefüllt wird.

Die Seitendruckfestigkeit der Katalysatorform körper in Tablettenform weist nach der Reduzierung Werte von 50 bis 250 N, bevorzugt von 60 bis 200 N, besonders bevorzugt von 70 bis 150 N auf.

Die erfindungsgemäßen Katalysatoren weisen eine verbesserte Stabilität gegenüber säurehaltigen Medien oder wasserhaltigen Medien, wie organischen Lösungen oder organischen gasförmigen Mischungen mit Säuren und/oder Wasser als Verunreinigungen auf. Dies wird neben einer verbesserten Seitendruckfestigkeit der Katalysatorformkörper durch einen verminderten Verlust an Kupferionen, die maßgeblich für die katalytische Aktivität sind, aus dem Material ausgedrückt. Außerdem weist der erfindungsgemäße Katalysatorformkörper auch einen geringeren Gesamtverlust an Metallionen auf, was ein Zeichen für eine erhöhte Stabilität der Festkörperstruktur gegenüber dem Herauslösen einzelner Metallionen darstellt.

Zur Bestimmung der Stabilität der erfindungsgemäßen Katalysatorformkörper gegenüber Säureeinwirkung wird der Formkörper einer Behandlung in einem säure- und wasserhaltigen Medium unterzogen und anschließend die Seitendruckfestigkeit der so behandelten Formkörper sowie der Anteil an Metallionen in dem säure- und wasserhaltigen Medium bestimmt. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren unter Verwendung des erfindungsgemäßen Katalysators zur katalytischen Hydrierung von Carbonylgruppen in organischen Verbindungen, die in einem säure- und/oder wasserhaltigen Medium stattfindet. Mögliche Reaktionen umfassen die Hydrierung von Aldehyden zu Alkoholen, insbesondere Oxoaldehyden zu Oxoalkoholen, die Hydrierung einer Fettsäure, z.B. durch Veresterung, insbesondere zu Fettsäuremethylestern, und anschließender Hydrogenolyse, oder die Hydrierung von Ketonen zu den entsprechenden Alkoholen.

Typische Säurezahlen der hierbei verwendeten Reaktionsmedien liegen im Bereich von 0,1 bis 3,4 mg K oH/g Lösung, bevorzugt im Bereich von 0,2 bis 1 ,0 mg K oH/gLösun g . Die Säurezahl ist ein Maß für die Anwesenheit saurer OH-Gruppen, zum Beispiel in Carbonsäuren, in einer Lösung und lässt sich zum Beispiel bestimmen, indem eine entsprechende Lösung mit einer KOH-Lösung bis zum Neutralisationspunkt titriert wird. Die dabei verbrauchte Menge an KOH bezogen auf das Gesicht der Lösung entspricht der Säurezahl, ausgedrückt in mg K OH/gLösung.

Der Wassergehalt in solchen Reaktionsmedien liegt üblicherweise im Bereich von 0,1 bis 5,0 Gewichts-%, bevorzugt 0,2 bis 5,0 Gewichts-%, bevorzugter 0,5 bis 5,0 Gewichts-%, besonders bevorzugt 0,5 bis 3,0 Gewichts-%.

Bei den zu hydrierenden Fettsäuren im Rahmen der vorliegenden Erfindung handelt es sich um gesättigte oder ungesättigte Fettsäuren, die aufgrund ihrer Kettenlängen in kurzkettige Fettsäuren (bis 6-8 C-Atome), mittelkettige (6-8 bis 12 C-Atome) und langkettige (13 bis 21 C-Atome) einteilt werden. Darüber hinaus können auch Fettsäuren mit mehr als 22 C- Atomen verwendet werden.

Beispiele

Die Bestimmungen des Glühverlusts im Rahmen der vorliegenden Erfindung erfolgten gemäß DIN 51081 , indem von ca. 1-2 g einer Probe des zu analysierenden Materials deren Gewicht bestimmt wurde, diese anschließend unter Raumatmosphäre auf 900 °C aufgeheizt und bei dieser Temperatur für 3 h gelagert wurde. Anschließend wurde die Probe unter Schutzatmosphäre abgekühlt und das verbliebene Gewicht gemessen. Die Differenz aus Gewicht vor und nach der thermischen Behandlung entspricht dem Glühverlust.

Die Bestimmung der Seitendruckfestigkeit (SDF) erfolgte gemäß ASTM 04179-01 ohne Vortrocknung der Tabletten. Hierbei wurde eine statistisch ausreichende Anzahl an Tabletten (mindestens 20 Tabletten) gemessen und der arithmetische Mittelwert der Einzelmessungen berechnet. Dieser Mittelwert entspricht der Seitendruckfestigkeit einer bestimmten Probe.

Die Bestimmung chemischer Elemente erfolgte mittels ICP-Messung (Inductively Coupled Plasma) nach DIN EN ISO 11885.

Die Säurezahl wurde bestimmt, indem ca. 4 g der Probenlösung mit 25 mL Propanol vermischt wurden und Phenolphthalein als Indikator zugesetzt wurde. Die Lösung wurde bei Raumtemperatur mit einer Tetrabutylammoniumhydroxid-Lösung (0,1 mol/L in 2- Propanol/Methanol) bis zum Farbumschlag titriert. Die Säurezahl SZ in mg K o H /g Lösung berechnet sich nach mit SZ = Säurezahl, Verbrauch = Verbrauch an Tetrabutylammoniumhydroxid-Lösung in ml_, c = Konzentration der Tetrabutylammoniumhydroxidlösung, M = Molmasse von KOH und Einwaage = Menge der eingesetzten Probelösung in g.

Das Porenvolumen des Katalysatorformkörpers wurde nach der Quecksilberporosimetrie- Methode gemäß DIN 66133 in einem Druckbereich von1 bis 2000 bar gemessen.

Der Wassergehalt der Lösungen wurde anhand der Karl-Fischer-Methode gemäß ASTM E 203 (2016) bestimmt.

Beispiel 1 : Herstellung des erfindungsgemäßen Katalysators 1

Eine wässrige Lösung 1 wurde hergestellt, indem 3530 g Cu(NC>3)2 3 H 2 0 und 1843 g

(ZrO)2(OH) 2 CC>3 in 5000 mL demineralisiertes Wasser gegeben wurde. Anschließend wurde durch Zugabe von 1550 mL Salpetersäure die komplette Auflösung der Salze erreicht. Die saure Lösung wurde mit demineralisiertem Wasser auf ein Gesamtvolumen von 20000 mL aufgefüllt. Der pH-Wert der Lösung betrug -0,70. Anschließend wurde die Lösung auf 80 °C erwärmt.

Zusätzlich wurden 1500 g Na 2 CC>3 und 2140 g NaAI0 2 in 22000 mL demineralisiertem Wasser gelöst, der pH-Wert der Lösung 2 betrug 12,23.

Für die Fällung wurde ein Fällungsbehälter bereitgestellt, der mit 8000 mL demineralisiertem Wasser befüllt wurde. In diesen wurden gleichzeitig die kupferhaltige Lösung 1 als auch die carbonathaltige Lösung 2 eingeleitet. Die Dosiergeschwindigkeit wurde dabei so eingestellt, dass in der Fällungslösung ein pH-Wert von ca. 6,5 vorlag.

Nach beendeter Zugabe und vollständiger Fällung wurde der Niederschlag abfiltriert und mit demineralisiertem Wasser gewaschen, bis das Waschwasser eine Leitfähigkeit unterhalb 0,25 mS aufwies, um anhaftende Verunreinigungen zu entfernen. Anschließend wurde der Filterkuchen getrocknet.

Das getrocknete Pulver wurde anschließend bei 750 °C für 2 h kalziniert.

Die relativen Gewichtsanteile betrugen Cu = 29,9 Gewichts-%, Zr = 17,5 Gewichts-% und AI = 20,6 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust.

Beispiel 2: Herstellung des erfindungsgemäßen Katalysators 2

1706 g des in Beispiel 1 erhaltenen kalzinierten Pulvers wurden mit 51 g Secar 71 Binder (31 Gewichts-% CaO, 69 Gewichts-% AI 2 O 3 ), 5 g demineralisiertem Wasser und 34 g Graphit vermengt und für 10 Minuten gemischt, so dass eine homogene Mischung entstand. Diese Mischung wurde zunächst kompaktiert und granuliert und danach in einer Tablettenpresse vom Typ Pressima der Firma Kilian zu Tabletten mit einer Breite von 4,5 mm und einer Höhe von 3 mm gepresst. Abschließend wurden die Tabletten einer Kalzinierung bei 600 °C für 2 h unterzogen. Das Schüttgewicht der so erhaltenen Tabletten betrug 1175 g/L. Für Anwendungsbeispiel 3 und 4 wurden Tabletten nach der gleichen Vorschrift hergestellt, mit dem Unterschied, dass die Tabletten eine Höhe von 3,0 mm und eine Breite von ebenfalls 3,0 mm aufwiesen. Die relativen Gewichtsanteile in den Tabletten betrugen Cu = 29,0 Gewichts-%, Zr = 17,0 Gewichts-%, AI = 21 ,1 Gewichts-% und 0,6 Gewichts-% Ca, bezogen auf die Gesamtmasse nach Glühverlust.

Beispiel 3: Herstellung des erfindungsgemäßen Katalysators 3

1706 g des in Beispiel 1 erhaltenen kalzinierten Pulvers wurden mit 5 g demineralisiertem Wasser und 34 g Graphit vermengt und für 10 Minuten gemischt, so dass eine homogene Mischung entstand. Diese Mischung wurde zunächst kompaktiert und granuliert und danach in einer Tablettenpresse vom Typ Pressima der Firma Kilian zu Tabletten mit einer Breite von 4,5 mm und einer Höhe von 3 mm gepresst. Abschließend wurden die Tabletten einer Kalzinierung bei 600 °C für 2 h unterzogen. Die relativen Gewichtsanteile in den Tabletten betrugen Cu = 29,9 Gewichts-%, Zr = 17,5 Gewichts-% und AI = 20,6 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust. Vergleichsbeispiel 1 (Vergleichskatalysator A)

Katalysator A wurde hergestellt, indem ein kupfer- und chromhaltiger Niederschlag gefällt, durch thermische Behandlung in die oxidische Form überführt und zu Tabletten mit einer Breite von 4,5 mm und einer Höhe von 3 mm gepresst wurde. Die relativen Gewichtsanteile betrugen Cu = 37,5 Gewichts-%, und Cr = 23,0 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust. Für Anwendungsbeispiel 3 und 4 wurden Tabletten nach der gleichen Vorschrift hergestellt, mit dem Unterschied, dass die Tabletten eine Höhe von 3,0 mm und eine Breite von ebenfalls 3,0 mm aufwiesen.

Vergleichsbeispiel 2 (Vergleichskatalysator B)

Zur Herstellung von Katalysator B wurde eine wässrige Lösung 1 hergestellt, indem 1250 g CU(N0 3 ) 2 3 H 2 0, 220 g Mn(N0 3 ) 2 4 H 2 0 und 1800 g AI(N0 3 ) 3 9 H 2 0 in 9000 g destilliertem H 2 0 gelöst wurden. Lösung 2 wurde hergestellt, indem 1720 g Na 2 C0 3 in 7500 g destilliertem H 2 0 gelöst wurden. Beide Lösungen wurden separat unter Rühren auf 80 °C aufgeheizt. Anschließend wurden beide Lösungen in einen Fällungsbehälter unter kontinuierlichem Rühren zu dosiert. Das hierbei ausgefällte Präzipitat wurde abfiltriert und mit destilliertem H 2 0 gewaschen, bis das Waschwasser eine Leitfähigkeit unterhalb von 0,25 mS aufwies, um anhaftende Verunreinigungen zu entfernen. Der Filterkuchen wurde anschließend getrocknet. Das getrocknete Pulver wurde anschließend für 3 h bei 750 °C thermisch behandelt, die relativen Gewichtsanteile betrugen Cu = 44,8 Gewichts-%, Mn =

7,0 Gewichts-% und AI = 17,92 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust.

1706 g dieses Pulvers wurden mit 51 g Secar 71 Binder, 5 g demineralisiertem Wasser und 34 g Graphit vermengt und für 10 Minuten gemischt, so dass eine homogene Mischung entstand. Diese Mischung wurde zunächst kompaktiert und granuliert und danach in einer Tablettenpresse vom Typ Pressima der Firma Kilian zu Tabletten mit einer Breite von 4,5 mm und einer Höhe von 3 mm gepresst. Abschließend wurden die Tabletten einer Kalzinierung bei 600 °C für 2 h unterzogen. Die relativen Gewichtsanteile in den Tabletten betrugen Cu = 43,5 Gewichts-%, Mn = 6,8 Gewichts-%, AI = 18,5 Gewichts-% und Ca = 0,6 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust.

Vergleichsbeispiel 3 (Vergleichskatalysator C)

Das Pulver für Katalysator C wurde gemäß der Herstellweise des Pulvers für Katalysator B hergestellt, wobei der Anteil an Mn(NC>3)2 4 H 2 0 so gewählt wurde, dass der relative Gewichtsanteil des Mangans im so erhaltenen Pulver, bezogen auf die Masse nach Glühverlust, 0,1 Gewichts-% betrug. Die relativen Gewichtsanteile betrugen Cu = 49,7 Gewichts-%, Mn = 0,1 Gewichts-% und AI = 20,0 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust. 1706 g des so erhaltenen Pulvers wurden mit 5 g demineralisiertem Wasser und 34 g Graphit vermengt und für 10 Minuten gemischt, so dass eine homogene Mischung entstand. Diese Mischung wurde zunächst kompaktiert und granuliert und danach in einer Tablettenpresse vom Typ Pressima der Firma Kilian zu Tabletten mit einer Breite von 4,5 mm und einer Höhe von 3 mm gepresst. Die relativen Gewichtsanteile in den Tabletten betrugen Cu = 49,7 Gewichts-%, Mn = 0,1 Gewichts-% und AI = 20,0 Gewichts-%, bezogen auf die Gesamtmasse nach Glühverlust. Das Schüttgewicht der so erhaltenen Tabletten betrug 1152 g/L.

Ein Teil des nach der Tablettierung erhaltenen Materials der Vergleichskatalysatoren A, B und C und der erfindungsgemäßen Katalysatoren 2 und 3 wurde einer Reduzierung unterzogen. Dabei wurde die Probe in einem Gasgemisch aus 2 % Volumen-% H2 und 98 Vol.-% N2 bei einer Temperatur von 200 °C thermisch behandelt, um eine Reduzierung des vorliegenden CuO zu Cu zu bewirken. Anschließend wurde die Probe unter Stickstoff auf Raumtemperatur abgekühlt und unter flüssigem iso-Decanol gelagert. Von dieser Probe wurde anschließend deren Seitendruckfestigkeit gemessen und für die Anwendungsbeispiele 1 bis 3 verwendet.

Anwendungsbeispiel 1 (Stabilitätstest)

Die Bestimmung der Säurestabilität erfolgte, indem von jedem der erfindungsgemäßen Katalysatoren 2 und 3 sowie den Vergleichskatalysatoren A, B und C eine Gesamtmenge an tablettierten, reduzierten und stabilisierten Proben von 25 g mit einer flüssigen Mischung aus 75 g einer Oxoaldehyd-Lösung, einem Wasseranteil von 1 Gewichts-% und einer Säurezahl von 0,2 mg KOH /gi_ ösung vermengt wurde. Diese Mischung wurde unter Stickstoffatmosphäre für 4 Tage bei 120 °C erhitzt. Die tablettierte Probe wurde nach beendetem Test von der flüssigen Mischung getrennt. Direkt danach wurde deren Seitendruckfestigkeit gemessen.

Die Oxoaldehydlösung nach dem erfolgten Test wurde auf die Anwesenheit von Cu, AI, Cr, Mn und Zr hin analysiert. Tabelle 1 : Seitendruckfestigkeiten der Katalysatoren

Anhand von Tabelle 1 erkennt man deutlich, dass die erfindungsgemäßen Katalysatoren 2 und 3 zum einen bereits nach Reduzierung eine höhere Seitendruckfestigkeit aufweisen als die aus dem Stand der Technik bekannten Katalysatoren. Die erhöhte Stabilität gegenüber Säure- und Wassereinwirkung zeigt sich noch deutlicher anhand der Werte für die Seitendruckfestigkeit nach Beendigung des Tests. Hier weist weiterhin der erfindungsgemäße Katalysator 2 den höchsten Wert der Seitendruckfestigkeit auf, während im Gegensatz dazu die Tabletten des chromfreien CuAIMn-Katalysators, Vergleichskatalysator C, während des Tests zerbrochen sind und keine Seitendruckfestigkeit sinnvoll gemessen werden konnte.

Tabelle 2: Metallkonzentrationen in der Testlösung nach dem Stabilitätstest

Die Daten aus Tabelle 2 zeigen, dass die erfindungsgemäßen Katalysatoren unter den drastischen Testbedingungen weitestgehend stabil gegenüber einem Verlust an Kupferspezies sind, während dieser für die Vergleichskatalysatoren deutlich höher ausfällt.

Diese Ergebnisse veranschaulichen den vorteilhaften Effekt, der durch die Zugabe von Zirkonium zu einem kupferhaltigen Katalysator erzielt wird, nämlich eine erhöhte Stabilität gegenüber Säuren und Wasser, der sich sowohl in einer höheren mechanischen Stabilität als auch an einem geringeren Verlust an Metallen aus dem Katalysator selber äußert.

Anwendungsbeispiel 2: Hydrierung von Oxoaldehyden zu Oxoalkoholen

Eine Schüttung mit einem Volumen von 100 ml_ des erfindungsgemäßen Katalysators 2 in der reduzierten und nass stabilisierten Form wurden in einen Reaktor eingefüllt und unter einem Stickstoffstrom auf Temperaturen im Bereich von 120 bis 180 °C erhitzt, wobei bei jeder Temperatur eine Reaktionsdauer von 2 Tagen gewählt wurde. Anschließend wurde eine flüssige Phase enthaltend 45 Gewichts-% Aldehyd, 25 Gewichts-% des entsprechenden Alkohols und 30 Gewichts-% Nebenprodukten (Paraffine, Olefine, andere), mit einem Wasseranteil von 0,7 Gewichts-% und einer Säurezahl von 0,2 durch den Reaktor geleitet. Der Produktstrom nach dem Reaktor wurde gaschromatographisch auf seine Bestandteile hin untersucht. Die über die Gesamtlaufzeit bei der jeweiligen Temperatur berechneten Umsätze und Alkoholgehalte im Produktstrom sind in Tabelle 3 dargestellt.

Zum Vergleich wurde jeweils eine Probe des Vergleichskatalysators A und des Vergleichskatalysators B den gleichen Bedingungen unterzogen, die hiermit erzielten Ergebnisse sind ebenfalls in Tabelle 3 dargestellt.

Tabelle 3: Umsätze und Alkoholanteile der Aldehydhydrierung bei verschiedenen Temperaturen

Anhand von Tabelle 3 wird deutlich, dass der erfindungsgemäße Katalysator unter vergleichbaren Testbedingungen Umsatzraten des Aldehyds bewirkt, die ungefähr denen des kommerziellen chromhaltigen Katalysators A entsprechen. Ein ähnliches Verhalten zeigt sich auch für die Bildung des entsprechenden Alkohols. Somit ist der erfindungsgemäße Katalysator eine umweltfreundliche Alternative zu den bisher verwendeten chromhaltigen Katalysatoren.

Die Daten zeigen außerdem, dass der Vergleichskatalysator B zwar vergleichbare Umsatzraten und sogar eine deutlich verbesserte Bildung von Alkohol bewirkt, allerdings ist er aufgrund seiner niedrigen physikalischen Stabilität nicht geeignet, unter den drastischen Bedingungen der Reaktion über einen längeren Zeitraum eingesetzt zu werden.

Vergleichskatalysator C wurde ebenfalls in demselben Test eingesetzt. Allerdings zerfielen die Katalysatorpartikel während des Tests, so dass keine sinnvolle Aussage bezüglich der Aldehydumsätze und -Selektivitäten getroffen werden konnten.

Anwendungsbeispiel 3: Hydrierung einer Fettsäure, z.B. durch Veresterung und anschließender Hydrogenolyse (FAME)

Eine Schüttung mit einem Volumen von 5 mL des erfindungsgemäßen Katalysators 2 wurde in der reduzierten und nass stabilisierten Form in einen Reaktor eingefüllt und anschließend 200 mL Laurinsäure-Methylester mit einem Wasseranteil von 0,062 Gewichts-% und einer Säurezahl von 0,351 mg K o H /g Lösung zu dosiert. Der Reaktor wurde danach druckdicht verschlossen und unter einem Stickstoffstrom auf eine Temperatur von 280 °C erhitzt. Anschließend wurde durch ein Ventil ein Wasserstromstrom mit einem Druck von 175 bar in den Reaktor geleitet, bis der Stickstoff vollständig verdrängt wurde. Danach wurde mit einem Rührer der in dem Reaktor befindliche Wasserstoff mit der Laurinsäure-Methylester-Lösung verwirbelt, um so die Hydrierung unter Einsatz des Katalysators durchzuführen.

Über ein Auslassventil wurden in regelmäßigen Abständen Proben der Lösung entnommen und gaschromatographisch auf deren Bestandteile hin untersucht. Die sich daraus ergebenen Umsatzwerte des Laurinsäure-Methylesters, die Selektivität und Ausbeute in Bezug auf 1-Dodecanol sind in Tabelle 4 dargestellt.

Zum Vergleich wurde eine Schüttung mit einem Volumen von 5 mL des Vergleichskatalysators A den gleichen Bedingungen unterzogen, die hiermit erzielten Ergebnisse sind ebenfalls in Tabelle 4 dargestellt.

Tabelle 4: Reaktionsdaten der Hydrierung von Laurinsäure-Methylester