Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COBALT-BASED METAL POWDER AND METHOD FOR PRODUCING COMPONENTS THEREOF
Document Type and Number:
WIPO Patent Application WO/2004/085099
Kind Code:
A1
Abstract:
The present invention concerns a powder metal composition for producing powder metal components comprising a Co-based pre-alloyed powder, with irregularly shaped particles comprising at least 15% by weight Cr and less than 0.3% by weight C, admixed with graphite. The invention also concerns a method for producing PM components by pressing of articles to shape from the powder metal composition according to the invention and sintering them.

Inventors:
MAARS OWE (SE)
SZABO CHRISTOPHE (DE)
Application Number:
PCT/SE2004/000379
Publication Date:
October 07, 2004
Filing Date:
March 17, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HOEGANAES AB (SE)
MAARS OWE (SE)
SZABO CHRISTOPHE (DE)
International Classes:
C22C1/04; C22C32/00; (IPC1-7): B22F1/00; C22C1/04; C22C19/07
Foreign References:
US5462575A1995-10-31
US5002731A1991-03-26
US4668290A1987-05-26
US4129444A1978-12-12
US3846126A1974-11-05
Attorney, Agent or Firm:
AWAPATENT AB (Malmö, SE)
Download PDF:
Claims:
CLAIMS
1. A powder metal composition for producing powder metal components comprising a Cobased prealloyed powder, with irregularly shaped particles comprising at least 15% by weight Cr and less than 0. 3% by weight C, admixed with graphite.
2. A powder metal composition according to claim 1 further comprising at least one element selected from the group consisting of W and Mo.
3. A powder metal composition according to claim 1 or 2, further comprising at least one alloying element selected from Ni, Fe, Si, Mn, V and B.
4. A powder metal composition according to any one of the claims 13, wherein the content of C in the pre alloyed powder preferably is less than 0. 1% by weight, and most preferably less than 0. 05% by weight.
5. A powder metal composition according to any one of the above claims comprising: 1535% by weight Cr, 0 20% by weight W, 025% by weight Ni, 05% by weight Si, 05% by weight Fe, 010% by weight Mo, the balance being Co.
6. A powder metal composition according to any one of the above claims, wherein the content of admixed graphite is preferably at least 0. 5% by weight, more preferably at least 0. 7% by weight.
7. A composition according to any one of the above claims further comprising one or more additives selected from the group consisting of lubricants, processing aids alloying elements and binders.
8. A method for producing a component of a Cobased alloy with high green strength and high green density comprising the steps: a) providing a powder metal composition comprising a Cobased prealloyed powder, with irregularly shaped particles comprising at least 15% by weight Cr and less than 0. 3% by weight C, admixed with graphite; b) compacting the composition in a die at a pressure of at least 400 MPa to a component of desired shape.
9. Method according to claim 8, wherein the pre alloyed powder contains less than 0. 1% by weight C, preferably less than 0.05% by weight C.
10. Method according to claims 8 or 9, wherein the content of admixed graphite is at least 0. 5% by weight, preferably at least 0. 7% by weight.
11. Method for producing a sintered component of a Cobased powder metal composition comprising, in addition to step a) and b) according to claim 8 the step: c) sintering the component.
12. Method according to claim 11, wherein the sintering is performed at a temperature of at least 1080°C in a protective atmosphere or vacuum.
13. A Cobased prealloyed powder with irregularly shaped particles comprising at least 15% by weight Cr and less than 0.3% by weight C.
Description:
COBALT-BASED METAL POWDER AND METHOD FOR PRODUCING COMPONENTS THEREOF.

Field of the invention The present invention concerns powder metallurgy.

More specifically the present invention concerns a cobalt-based powder metal composition and a method for producing components thereof, especially for heavy duty applications.

Background of the invention Cobalt-based alloys, such as Stellite@ (Trade Mark for Co-Cr-W alloys) are hard alloys that are extremely resistant to many forms of wear. Products of these alloys show high hardness over a wide temperature range and are resistant towards corrosion. These products are used for inter alia casting of various kinds of components such as machine parts (bearing shells, valve seat inserts etc) or other components where high density, high strength and wear resistance are required.

Cast material often suffers from micro structural defects and carbide segregation. Carbide segregation leads to inhomogenously distributed hard phases. Disad- vantages with such materials are lack of fracture toughness and poor machinability.

Powder metallurgy (PM) products generally possess a more homogenous microstructure than cast products.

Further advantages with the PM production method are that costly machining into final shape may be excluded or minimized in comparison with traditional casting methods and that the method is more suitable for producing large quantities of small articles.

Attempts have been made over the years to produce cobalt-based products using the PM technology. Thus the US patent 4129444 discloses a process wherein atomised Co-based alloy powders are coated with a binder and then consolidated to produce discrete bodies that are dried,

crushed and screened to obtain agglomerates. The agglomerates are pressed into green compacts which are sintered at high temperature. Furthermore the US patent 5,462, 572 discloses a powder metallurgy component prepared of a gas atomised Co-Cr-Mo alloy powder. The alloy powder is filled in a canister and baked in vacuum to degas the powder and the powder filled canister is thereafter consolidated, preferably by hot isostatic pressing (HIP).

Objects of the invention An object of the invention is to provide a new Co- based powder metal composition which can be used in conventional PM processes.

Another object is to provide a Co-based powder metal composition with high compactibility which can be compacted to high green density and high green strength.

Still another object is to provide a green body of a cobalt based alloy which can be machined before sintering.

A further object is to provide a powder metal composition which can be compacted and sintered to high density without high sintering temperatures.

Summary of the invention These object as well as other objects that will be apparent from the description below, have now been obtained according to the present invention by providing a new Co-based powder metal composition. Critical features of this composition are that the composition comprises a Co-based pre-alloyed powder with irregularly shaped particles admixed with graphite. Furthermore the Co-based pre-alloyed powder should include less than 0. 3% by weight of carbon and at least 15% by weight Cr.

The Co-based pre-alloyed powder preferably comprises at least 30% by weight and preferably less than 80% by weight Co.

The invention also concerns a method comprising the steps of providing a powder metal composition according to the invention and compacting the composition in a die at a pressure of at least 400 MPa to a component of desired shape.

Detailed description of the invention The Co-based pre-alloyed powder in the composition according to the invention may be produced by subjecting a melt having the desired composition to atomising by water.

The Co-based pre-alloyed powder according to the invention comprises less than 0. 3% by weight carbon. The carbon content of the powder is however preferably less than 0.1% by weight, and most preferably less than 0. 05% by weight (i. e. essentially free from C except for inevitable impurities).

The Co-based pre-alloyed powder comprises at least 15% by weight and preferably less than 35% by weight Cr.

The addition of Cr improves the strength of the Cobalt matrix by solution hardening and/or carbide formation. These effects are further improved by the addition of W and/or Mo.

Other elements which may be included in the Co-based pre-alloyed powder may be chosen from Ni, Fe, Si, Mn, V and B.

A preferred pre-alloyed powder according to the invention comprise: 5-35% by weight Cr, 0-20% by weight W, 0-25% by weight Ni, 0-5% by weight Si, 0-5% by weight Fe, 0-10% by weight Mo, balance Co and less than 0.3% by weight C.

Another preferred powder according to the invention further comprise 0-3% by weight Mn, 0-4% by weight V and 0-4% by weight B.

A powder metal composition according to the invention comprises a pre-alloyed powder according to the invention admixed with graphite. The amount of graphite

addition depends on the desired content of carbides and on the content of carbide forming elements. The graphite content is preferably at least 0. 5% by weight, more preferably at least 0. 7% by weight and preferably less than 3% by weight.

The powder metal composition may further comprise one ore more additives selected from the group consisting of alloying elements, lubricants, processing aids and binders.

Other elements may be added for improving properties or reducing costs.

The used lubricant plays an important role for the achieved green properties. Good results have been achieved with Kenolube Tll (available from Höganäs AB, Sweden), amide wax, metal stearates and other commonly used lubricants.

The processing aids used in the powder metal composition according to the invention may consist of talc, forsterite, manganese sulphide, sulphur, molybdenum disulphide, boron nitride, tellurium, selenium, barium difluoride and calcium difluoride, which are used either separately or in combination.

The powder metal composition according to. the invention is filled in a die and compacted at a pressure of at least 400 MPa to a component of desired shape. This compaction yields a component with high green strength and green density and the component may even be green machined at this stage. This is an advantage as the material in the final sintered component are hard and difficult to machine.

The component is sintered at a temperature of at least 1080°C, preferably in protective atmosphere or vacuum.

The components produced of the powder according to the invention and according to the method of the invention are especially suited for heavy-duty applications, such as valve seat inserts for engines

where the valve seats need to last the life time of the engine, without replacement or service.

The following example, which is not intended to be limiting, present certain embodiments of the present invention.

Example The test mixtures (mix 1-5) listed in table 2 and 3 were prepared from the water atomised pre-alloyed powders in table 1 (% by weight).

Table 1 Co Cr Ni W Si Fe C 285 36.4 25. 8 23. 0 12.5 1.12 1.19 0.01 286 34.5 26.1 23.0 12.5 1.16 1.16 1.60 The pre-alloyed powders were further admixed with lubricants, alloying elements and processing aids according to table 2 and 3. In test mix 1,3 and 4,1. 7% by weight graphite was further included. TRS-samples, according to ISO 3995, were moulded. The compacting operation was performed with the three different types of samples at 600 and 800 MPa respectively.

The resulting components were tested for green density (GD) and green strength (GS). After sintering at 1120°C for 30 minutes in a 90% N2/10% H2 atmosphere the components were tested for sintered density (SD) and hardness (HvlO). Table 4 and 5 discloses the results of the tests.

Table 2 Mix 1 2 (% by weight) (% by weight) Powder Balance Balance Powder 285 Powder 286 Lubricant 40 PEO : 60 ORG* 40 PEO : 60 ORG* 0. 8 0. 8 Graphite 1. 7 0 (KS 44)

*40% Polyethyleneoxide: 60% Orgasol TABLE 3 Mix 3 4 5 (% by weight) (% by weight) (% by weight) powder Balance Balance Balance Powder 285 Powder 285 Powder 286 Fe 10 10 10 (MH 80,23) Cu 5 5 5 (325) MoS2 1 1 1 Lubricant 40 PEO : 60 ORG* KenolubeTM 40 PEO : 60 ORG* 0. 8 0. 8 0. 8 Graphite 1.7 1.7 0 (KS 44)

*40% Polyethyleneoxide: 60% Orgasol TABLE 4 Mix 1 2 Compaction 600 800 600 800 Pressure (MPa) GD (g/cm3) 6. 70 7. 00 5. 73 BF* GS (MPa) 13.1 19.7 1. 3 BF*

*Bars Fractured on ejection TABLE 5 Mix 3 4 5 Compaction 600 800 600 800 600 800 Pressure (MPa) GD (g/cm) 6.76 7.04 6.88 7.13 6.07 6.39 GS (MPa) 15.57 21.09 10.2 13.5 2.64 4.39 SD (g/cm) 6. 62 6.91 nm nm 6.11 6. 40 HvlO 137 175 nm nm 103 129 nm=not measured Compaction of mix 2 and to some extent mix 5 did not work, the components exhibited bad surfaces and frequent edge cracks and were too fragile to handle.

Compaction of mix 1,3 and 4, without C in the pre- alloyed powder, showed a great improvement of the com- pressibility, as can be seen in table 4 and 5, and high green strengths and green densities were achieved for the resulting components. Components with thin walls normally require a green strength of at least 7 MPa to enable handling. Green strengths above 20 MPa normally enable green machining.

The sintered mix 3 components exhibit a higher density and hardness (HvlO) than mix 5 components.

Metallographic studies of the sintered components showed that components made from mix 3 and 5 have similar

structures. It is thus possible to create the desired carbide structures in mix 3 components during sintering.

A comparison between mix 3 and mix 4 in table 5 demonstrates the influence of lubricants on the green strength and green density of the compacted components.

KenolubeTM gives a higher density than the mix of Polyethyleneoxide and Orgasol which enables better performance in the sintered state.