Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
COMPOSITE COATING WITH IMPROVED CHIP RESISTANCE
Document Type and Number:
WIPO Patent Application WO/2001/036114
Kind Code:
A1
Abstract:
The invention provides a method of coating a substrate with first a layer of a chip resistant primer composition that has as a resinous portion a polyurethane polymer having a glass transition temperature of 0 °C or less and, optionally, a second component that has reactive functionality; and next with a layer of a thermosetting primer composition including a polyurethane polymer having a glass transition temperature of 0 °C or less, an acrylic polymer having a glass transition temperature that is at least about 20 °C higher than the glass transition temperature of said polyurethane polymer, and a crosslinking component that is reactive with at least one of the polyurethane polymer and the acrylic polymer; and finally with at least one layer of a topcoat composition. The reactive functionality of the second component is reactive with at least one polymer selected from the group consisting of the polyurethane polymer of the chip resistant primer composition, the polyurethane polymer of the thermosetting primer composition, the acrylic polymer of the thermosetting primer composition, and combinations thereof.

Inventors:
MC NEIL ROCK (US)
GILBERT JOHN (US)
Application Number:
PCT/US2000/022919
Publication Date:
May 25, 2001
Filing Date:
August 21, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF CORP (US)
MC NEIL ROCK (US)
GILBERT JOHN (US)
International Classes:
B05D7/00; B05D7/24; C09D5/02; C09D5/44; B05D5/00; C09D133/00; C09D175/04; (IPC1-7): B05D7/00; B05D1/36; B05D1/38
Foreign References:
US4719132A1988-01-12
US5589228A1996-12-31
EP0394737A11990-10-31
US5968655A1999-10-19
US6077608A2000-06-20
Attorney, Agent or Firm:
Sabourin, Anne Gerry (MI, US)
Download PDF:
Claims:
What is claimed is :
1. A method of coating a substrate, comprising steps of : (a) applying a layer of a chip resistant primer composition, wherein said chip resistant primer composition comprises as a resinous pompon a polyurethane polymer having a glass transition temperature of û°C or less and, optionally, a second component that has reactive functionality ; (b ; applying over the layer of the chip resistant primer composition a layer o a thermosetting primer composition, wherein the thermosetting primer composition comprises a polyurethane polymer having a glass transition temperature of 0°C or less, an acrylic polymer having a glass transition temperature that is at least about 20°C higher than the glass transition temperature of said polyurethane polymer, and a crosslinking component that is reactive with at least one of the polyurethane polymer and the acrylic polymer ; and (c ; applying over the layer of the thermosetting primer composition at least one layer of a topcoat composition, wherein the reactive functionality of the second component is eactive with at least one polymer selected from the group consisting of the polyurethane polymer of the chip resistant primer composition, the polyurethane polymer of the thermosetting primer composition, the acrylic polymer of the thermosetting primer composition, and combinations thereof.
2. A method according to claim 1, wherein the chip resistant primer composition is not baked before the thermosetting primer composition is applied.
3. A method according to claim 1, wherein the chip resistant primer composition is baked before the thermosetting primer composition is applied.
4. A method according to claim 1, wherein the thermosetting primer composition is not cured before the topcoat composition is applied, and the thermosetting primer composition and topcoat composition are cured together.
5. A method according to claim 1, comprising a step or applying said chip resistant primer coating composition over a layer of an electrocoat primer.
6. A method according to claim 1, wherein the topcoat 6. ting composition comprises a basecoat coating composition coating d a clearcoat coating composition.
7. A method according to claim 1, wherein the substrate is metal or plastic.
8. A method according to claim 1, wherein said substrate is an automotive vehicle body.
9. A method according to claim 8, wherein said chip resistant primer composition is applied to an area of said automotive vehicle body selected from the group consisting of the A pillars, the front edge of the roof, the leading edge of the hood, the frent bumper, the rocker panels, and combinations thereof.
10. A method according to claim 1, wherein the polyurethane of the chip resistant primer coating composition and the polyurethane of the thermosetting primer coating composition are the same.
11. A method according to claim 1, wherein the chip resistant primer coating composition and the thermosetting primer coating composition are both aqueous.
12. A method according to claim 1, wherein the chip resistant primer coating composition includes the second component.
13. A method according to claim 12, wherein the second component is an aminoplast resin. 1L.
14. A method according to claim 13, wherein the aminoplast resin is a melamine formaldehyde resin.
15. A method according to claim 14, wherein the melamine formaldehyde resin is reactive with the acrylic resin of the thermosetting primer coating composition.
16. A method according to claim 10, wherein the polyurethane polymer has a glass transition temperature of about20°C or less.
17. A method according to claim 10, wherein the polyurethane polymer has a glass transition temperature of about 30°C or less.
18. A method according to claim 10, wherein the polyurethane polymer has a glass transition temperature of about it from about 80°C to about.
19. A method according to claim 1C, wherein the polyurethane polymer is the reaction product of a polyester polyol and a polyisocyanate selected from the group consisting or methylenebis4, 4'isocyanatocyclohexane, 1, 6hexamethylene diisocyanate, 1, 12dodecamethylene diisocyanate, and combinations thereof.
20. claim 10, wherein the polyurehane polymer has a weight average molecular weight or from about 15, 000 to about 60, 000.
21. A method according to claim 10, wherein the polyurethane polymer is present in the aqueous coating composition as an anionic dispersion.
22. A method according to claim 1, wherein the acrylic polymer has a glass transition temperature of from about 20°C to about 40°C.
23. A method according to claim 15, wherein the acrylic polymer has a hydroxyl equivalent weight of 1000 or less.
24. A method according to claim 12, wherein the second component is included in the resinous portion of the chip resistant primer in an amount of from about 2 by weight to about 30% by weight.
25. A method according to claim 1, wherein the polyurethane polymer of the thermosetting primer coating composition is from about 40% by weight to about 80% by weight of the combined nonvolatile weights of the polyurethane polymer and the acrylic polymer of the thermosetting primer coating composition.
26. A method according to claim 1, wherein each of the primer compositions has a volatile organic content of less than acout 0. 7 pounds per gallon.
27. A composite coating produced according to the method of claim 1.
Description:
COMPOSITE COATING WITH IMPROVED CHIP RESISTANCE Field of the Invention The presens invention relates to composite primer coatings that provide chip resistance and to aqueous primer compositions that provide such composite coatings.

Background of the Invention Coating finishes, particularly exterior coating finishes in the automotive industry, are generally applied in two or more distinct layers. One or more layers of primer coating composition may be applied to the unpainted substrate first, followed by one or more topcoat layers. Each of the layers supplies important properties toward the durability and appearance of the composite coating finish. The primer coating layers may serve a number of purposes. First, the primer coating may be applied in order to promote adhesion between the substrate and the coating. Secondly, the primer coating may be applied in order to improve physical properties of the coating system, such as corrosion resistance ance or impact strength, especially for improving resistance to gravel chipping. Third, the primer coating may be applied in order to improve the appearance of the coating by providing a ooth layer upon which the topcoat layers may be applied. The topcoat layer or layers contribute other

properties, such as color, appearance, and light stabilization.

In the process of finishing the exterior of automotive vehicles today, metal substrates are usually first coated with an elecirocoat primer. While the electrocoat primer provides excellent surface adhesion and corrosion protection, it s often desirable to apply a second primer layer. The second primer layer provides additional properties not available from the electrocoat primer. Resistance to gravel chipping is one of the critica-y properties provided by the second primer layer. The second primer layer may also enhance the corrosion protection of the finish and provide a smoother surface than the electrocoat primer. The second primer also serves to provide a barrier layer between the electrocoat primer layer, which usually contains aromatic moieties and other materials that can cause yellowing on exposure to sunlight, and the topcoat.

Mitsuji ei al, U. S. Patents 5, 281, 655, 5, 227, 4/2, and 4, 948, 829, all of which are incorporated herein by reference, disclose automotive basecoat coating compositions containing polyurethane resin emulsion, a second resin emulsion than can be an acrylic resin, and a crosslinking agent. In Mitsuji 829, the polyurethane resin is prepared by dispersing an isocyanate-functional prepolymer and having the water react with the isocyanate groups to chain-extend the prepolymer.

The prepolymer is prepared using an aliphatic diisocyanate, a polyether or polyescer diol, a low molecular weight polvol, and a dimethylolalkanoic acid. In Mitsuji 655 and 422, the polyurethane resin is prepared by reacting an aliphatic polyisocyanate, a high molecular weight polyol, a dimethvlolalkanoic acid, and, optiona-_ly, a chain extender or terminator. Because the Mitsuji patents are directed o basecoat coatings, these patents provide no direction for preparing compositions that have the chip resistance and other properties required for primer coating layers.

Hatch et al., U.S. Patent 5, 817, 735, incorporated herein by reference, discloses an aqueous primer composition for golf balls that includes a polyurethane dispersion and an acrylic dispersion. The primer has a very low content of volatile organic solvent, which is important for minimizing regulated emissions from the coating process. The Hatch Patent, however, does not disclose a curable (thermosetting) composition. More importantly, the golf ball primers of the Hatch patent do not provide the properties, such as resistance to stone chipping and corrosion protection, that are required of an automotive primer.

While the primer composition may be formulated to provide good resistance to gravel chipping for a vehicle body, some areas cf the vehicle are particularly prone to gravel chipping. These areas include the A pillars (polars

on either side of the windshield), the front edge of the roof, the leading edge of the hood, and rocker panels. In these areas, it is advantageous to provide an additional layer of a chip-resistant primer before the primer that is applied to the rest of the vehicle body to obtain increased protection against stone chipping. In general, primer compositions applied for this purpose are solventborne, thermosetting compositions. While these chip-resistant layers have worked well with solventborne primer compositions, there remains a need for a chip-resistant primer composition compatible with aqueous primer compositions. Further improvements in chip resistance of the primer are also necessary.

It would be desirable, therefore, to have a composite primer coating that includes an upper layer of an aqueous body primer composition that provides improved resistance to stone chipping and other properties that are important for an automotive primer and an under layer of a chip-resistant primer layer, compatible with the upper primer layer, particularly for wet-on-wet applications of the upper primer layer over the chip resistant primer layer, that provides additional chip resistance in particular areas of the vehicle body. In addition, for environmental and regulatory considerations, it would be desirable to produce both the upper primer layer and the lower layer of chip resistant

primer from compositions having a very low content or volatile organic solvent.

Summary of the Invention The present invention provides a method of applying a composite coat-ng ~o an automotive vehicle. In the method, a layer of a chip resistant primer composition is applied to at least one area of the vehicle and the applied primer composition forms a chip resistant primer layer. The chip resistant primer composition includes as the resinous portion a polyurethane polymer having a glass transition temperature of 0°C or less and, optionally, a second component that has reactive functionality. Then, a thermosetting primer composition is applied to the vehicle.

The reactive functionality is reactive with either the polyurethane polymer of the chip resistant primer composition or with one of the components of the thermosetting primer composition. The thermosetting primer composition includes a polyurethane polymer, an acrylic polymer, and a crosslinking component that in reactive with at least one the polyurethane polymer and the acrylic polymer. The polyurethane polymer has a glass transition temperature of 0°C or less. The acrylic polymer has a glass transition <BR> <BR> <BR> <BR> <BR> temperature that is at least abou-20°C higher Ihan tne glass transition temperature of polyurethane resin. The polyurethane polymer of both primers and acrylic polymer are

preferably dispersed or emulsified in an aqueous medium. As used herein,"emulsion"or"dispersion"will each be used to refer both to dispersions and emulsions.

The invention further provides a composite coating having a first layer of a chip resistant primer, a second primer layer over the first layer of chip resistant primer, and a topcoat layer over the second primer layer. The first layer of chip resistant primer is formed from a composition including as the resinous portion a polyurethane polymer having a glass transition temperature of 0°C or less and, optionally, a second component that has reactive functionality. The reactive functionality is reactive with either the polyurethane polymer of the chip resistant primer composition or with one of the components of the primer composition forming the second primer layer. The second primer layer is the product of a primer composition including a polyurethane polymer has a glass transition temperature of 0°C or less, an acrylic polymer has a glass transition temperature that is at least about 20°C higher than the glass transition temperature of polyurethane resin, and a crosslinking component.

Detailed Description of the Invention A layer of the chip resistant primer composition is applied to at least one area of the vehicle. In a preferred embodiment, the chip resistant primer composition is applied

to one cr more of the following vehicle areas : the A pillars (pillars on either side of the windshield), the front edge of the roof, the leading edge of the hood, the front bumper, the rocker panels, and combinations of these.

The chip resistant primer composition includes as the resinous polyurethane polymer having a glass transition temperature or 0°C or less and, a second component that has reactive functionality. The polyurethane polymer used has a glass transition temperature of about 0°C or less, preferably about 20°C or less, and more preferably about-30°C or less. The glass transition temperature of the polyurethane of the invention is in the range o from about-80°C to about 0°C, more preferably from about-65°C to about-10°C, still more preferably from about- 65°C to about-30°C, and even still more preferably from about -60°C to about-35°C.

The weight average molecular weight of the polyurethane is preferably from about 15, 000 to about more preferaoly from about 15, 000 to about 60, 000, and even more preferably from about 20, 000 to about 35, 000.

Polyurethanes are prepared bv reaction of the least one polyisocyanate and at least one polycl. The reaciants used to prepare the polyurethane are selected and apportioned to provide the desired glass transition temperature. Suitable

polyisocyanates include, without limitation, aliphatic linear and cyclic polvisocyanates, preferably having up to 18 carbon atoms, and substituted and unsubstituted aromatic polyisocyanaies. Illustrative examples include, without limitation, ethylene diisocyanate, ,2-diisocyanatopropane, -cane, 3-diisocyanatopropane, 1,4-butylene diisocyanate, lysine diisocyanate,-, 4-methylene bis (cyclohexyl isocyanate), isophorone diisocyanate, toluene diisocyanates (e. g., 2, 4- toluene diisocyanate and 2, 6-toluene diisocyanate) diphenylmethane 4, 4'-diisocyanate, metnylenebis-4, 4'- isocyanaiocyclohexane, 1, 6-hexamethylene diisocyanate, p- phenylene diisocyanate, tetramethyl xylene diisocyanate, meta-xylene diisocyanate, 2, 2, 4-trimethyl-1, 6-hexamethylene diisocyanate, 1, 12-dodecamethylene diisocyanate, cyclohexane- 1, 3-and-1, 4-diisocyanate, 1-isocyanato-2-isocyanatomethyl cyclopentane, and combinations or two or more of these.

Biurets, allophonates, isocyanurates, carbodiimides, and other such modifications s of these isocyanates can also be used as the polyisocyanates. In a preferred embodiment, the polyisocyanates include methylenebis-4, 4'- isocyanatocyclohexane, 1,6-hexamethylene diisocyanate, 1 dodecamethylene diisocyanate, and combinations thereof.

-s particularly preferred to use at least one α,#-alkylene diisocyanate having four or more carbons, preferably 6 or more carbons, in the alkylene group. Combinations of two or

more polyisocyanaies in which one or the polyisocyanates is 1, 6-hexamethylene diisocyanate are especially preferred.

The polyol or polyols used to prepare the polyurethane polymer can be selected from any or the polyols known to be useful in preparing polyurethanes, including, without limitation, 1,4-butanediol, 1,3-butanediol, 2, 3-butanediol, 1, 6-hexanediol, neopentyl glycol, 1,3-propanediol, 1,5 pentanediol, 1, 6-hexanediol, 1, 9-nonanediol, ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol, propylene glycol, dipropylene glycol, glycerol, cyclohexanedimethanols, 2-methyl-2-ethyl-1,3-propanediol, 2- ethyl-1, 3-hexanediol, thiodiglycol, 2, 2, 4-trimethyl-1, 3- pentanediol, cyclohexanediols, trimethylolpropane, trimethylolethane, and glycerin ; polyester polyols such as the reaction products of any of the foregoing alcohols and combinations thereof with one or more polycarboxylic acids selected from malonic acid, maleic acid, succinic acid, glutaric acid adipic acid, azelaic acid, anhydrides thereof, and combinations thereof ; polyether polyols, such as polyethylene glycols and polypropylene glycols ; and combinations or such polyols. Polyols having two hydroxyl groups are preferred. The polyurethane is preferably prepared using one or more polyester polyols. In a preferred embodiment, the polyester polyol is the reaction product of a mixture that comprises neopentyl glycol and adipic acid.

While it is possible to prepare a nonionic dispersion of the polyurethane, the polyurethane dispersion is preferably anionic. Acid-functional polyurethanes that can be salted to form anionic dispersions or emulsions may be synthesized by including a monomer having acid functionality, such as, without limitation, dialkylpropionic acids including dimethylolpropionic acid, and alkali metal salts of amino acids such as taurine, methyl taurine, 6-amino caproic acid, glycine, sulfanilic acid, diamino benzoic acid, ornithine, lysine and 1 : 1 adducts of sultones, such as propane sultone or butane sultone, with diamines, such as ethylene diamine, hydrazine, or 1, 6-hexamethylene diamine. The hydroxyl groups react to form the urethane linkages while the acid group remains unreacted in the polyurethane polymerization.

Suitable polyurethane polymers can be prepared by any of the known methods. In one method for preparing polyurethane polymers, the polyisocyanate component is reacted with an excess of equivalents of the polyol component to form a hydroxyl-functional polyurethane polymer. Alternatively, an excess of equivalents of the polyisocyanate component can be reacted with the polyol component to form an isocyanate- functional prepolymer. The prepolymer can then be reacted further in different ways. First, the prepolymer can be reacted with a mono-functional alcohol or amine to provide a non-functional polyurethane polymer. Examples of mono-

functional alcohols and amines that may be used include polyethvlene oxide compounds having one terminal hydroxyl group, lower mono-functional alcohols having up to 12 carbon atoms, amino alcohols such as dimethylethanolamine, and secondary amines such as diethylamine and dimethylamine. secondly, the prepolymer can be reacted with a polyfunctional polyol, polyamine, or amino alcohol compound to provide reactive hydrogen functionality. Examples or such polyfunctional compounds include, without limitation, the polyols already mentioned above, including triols such as tnmethylolpropane ; polyamines such as ethylenediamine, butylamine, and propylamine ; and amino alcohols, such as diethanolamine. Finally, the prepolymer can be chain extended by the water during emulsification or dispersion of the prepolymer in the aqueous medi m. The prepolymer is mixed with the water after or during neutralization.

The polyurethane mav be polymerized without solvent.

Soldent mav be included, however, if necessary, when the polyurethane or prepolymer product is of a high viscosi-y.

If solvent is used, the solvent may be removed, partially or completely, by distillation, preferably after the polyurethane is dispersed in the water. The polyurethane may have nonionic hydrophilic groups, such as polyethlen e oxide groups, that serve Stabilize the dispersed polyurethane polymer. In a preferred embodiment, however, the

polyurethane polymer is prepared with pendant acid groups as described above, and the acid groups are partially or fully salted with an alkali, such as sodium or potassium, or with a base, such as an amine, before or during dispersion of the polyurethane polymer or prepolymer in water.

The chip resistant primer composition may also include a second component that has reactive functionality. The reactive functionality is reactive with either the polyurethane polymer of the chip resistant primer composition or with one of the components of the thermosetting primer composition. When the chip resistant primer layer includes the second component, the composite coating has higher hardness, better cure and solvent resistance, and better intercoat adhesion.

In a preferred embodiment, the second component is a crosslinker reactive with active hydrogen functionality on at least one of the polyurethane polymer of the chip resistant primer, the polyurethane polymer of thermosetting primer composition, and the acrylic polymer of the thermosetting primer composition. Examples of crosslinkers reactive with active hydrogen functionality include, without limitation, materials having active methylol or methylalkoxy groups, including aminoplast resins or phenol/tormaldehyde adducts ; blocked polyisocyanate curing agents ; tris (alkoxy

carbonylamino) trlazines (available from Cytec Industries under the tradename TACT) ; and combinations thereof.

Suitable aminoplast resins are amine/aldehyde condensates, preferably at least partially etherified, and most preferably fully etherified. Melamine and urea are preferred amines, but other triazines, triazoles, diazines, guanidines, or guanamines may also be used to prepare the alkylated amine/aldehyde aminoplast resins crosslinking g agents. The aminoplast resins are preferably amine/formaldehyde condensates, although other aldehydes, such as acetaldehyde, crotonaldehyde, and benzaldehyde, may be used. Non-limiting examples o preferred aminoplast resins include monomeric or polymeric melamine formaidehyde resins, including melamine resins that are partially or ful'y alkylated using alcohols that preferably have one to six, more preferably one to four, carbon atoms, such as hexamethoxy methylated melamine ; urea-formaldehyde resins including methylol ureas and siloxy ureas such as butylated urea formaldehyde resin, alkylated benzoguanimines guanyl ureas, guanidines, biguanidines, polyguanidines, and the like. Monomeric melamine formaldehyde resins are particularly preferred. The preferred alkylated melamine formaldehyde resins are water miscible or water soluble.

Examples of blocked polyisocyanates include isocyanuraies of toluene diisocyanate, isophorone e diisocyanate, and

hexamethylene diisocyanate blocked with a blocking agent such as an alcohol, an oxime, or a secondary amine such as pyrazole or substituted pyrazole.

The crosslinker is preferably included in the resinous portion of the chip resistant primer at from about 2% by weight to about 30% by weight, and more preferably from about 5% by weight to about 20% by weight, a particularly preferably about 5% to about 15% by weight.

The thermosetting primer composition includes a polyurethane polymer, an acrylic polymer, and a crosslinking component that is reactive with at least one of the polyurethane polymer and the acrylic polymer. The polyurethane polymer has a glass transition temperature of 0°C or less. The polyurethane polymer may be any of those already described above for the chip resistant primer. In a preferred embodiment, the same polyurethane polymer is included in both the chip resistant primer and in the thermosetting primer.

The acrylic polymer of the thermosetting primer composition has a glass transition temperature that is at least about 20°C higher than the glass transition temperature of polyurethane resin. The acrylic polymer is prepared according to usual methods, such as by bulk or solution polymerization followed by dispersion in an aqueous medium or, preferably, by emulsion polymerization in an aqueous

medium. The acrylic polymer is polymerized rrom a monomer mixture that preferably includes an active hydrogen- functional monomer and preferably includes an acid-functional monomer. Examples of active hydrogen-functional monomers include, without limitation, hydroxyl-functional monomers <BR> <BR> <BR> <BR> <BR> such as hydroxyethyl acrylate, hydroxyethyl methacrylate,<BR> <BR> <BR> <BR> <BR> <BR> hydroxypropyi acrylate, hydroxypropyi methacrylate, hydroxvbuty'acrylates, and hydroxybutyl methacrylates ; and carbamate-and urea-functional monomers or monomers with functional groups that are converted to carbamate or urea groups after polymerization such as, without limitation, those disclosed in U. S. Patent 5, 866, 259,"Primer Coating Compositions Containing Carbamate-Functional Acrylic Polymers,"the entire disclosure of which is incorporated herein by reference. Preferably, a sufficient amount of active hydrogen-functional monomer is included to produce an equivalent weight of 1000 or less grams per equivalent, more preferably 800 or less grams per equivalent, and even more preferably 600 or less grams per equivalent.

It is preferred that the acrylic polymer is dispersed as an anionia dispersion. Examples of suitable acid-functional monomers include, without limitation, α,ß-ethylenically unsaturated monocarboxylic acids containing 3 to 5 carbon atoms, a, ß-ethylenically unsaturated dicarboxylic acids containing 4 to 6 carbon atoms and the anhydrides and

monoesters or these. Examples include, without limitation, acrylic acid, methacrylic acid, crotonic acid, maleic acid or maleic anhydride, itaconic acid or itaconic anhydride, and so on. A sufficient amount of acid-functional monomer is included to produce an acrylic polymer with an acid number of at least about 1, and preferably the acrylic polymer has an acid number of from about 1 to about 10.

In addition to the ethylenically unsaturated monomer having acid functionality or used to generate acid functionalitv-n the finished polymer, one cr more other ethylenically unsaturated monomers are employed as comonomers in forming the acrylic resins of the invention. Examples of such copolymerizable monomers include, without limitation, derivatives of a,-ethylenically unsaturated monocarboxylic acids containing 3 to 5 carbon atoms, including esters, nitriles, or amides of those acids ; diesters of a, P- <BR> <BR> <BR> <BR> <BR> <BR> ethylenically unsaturated dicarboxylic acids containing 4 to 6 carbon atoms ; vinyl esters, vinyl ethers, vinyl ketones, vinyl amides, and aromatic or heterocyclic aliphatic vinyl compounds. Representative examples of acrylic and methacrylic acids, amides and aminoalkyl amides include, without limitation, such compounds as acrylamide, N- (1, 1- dimethyl-3-oxobutyl) -acrylamide, N-alkoxy amides such as methylolamides ; N-alkoxy acrylamides such as n-butoxy acrylamide ; N-aminoalkyl acrylamides or methacrylamides such

as aminomethylacrylamide, _-aminoethyl-2-acrylamide, 1- aminopropyl-2-acrylamide, 1-aminopropyl-2-methacrylamide, N- 1-(N-butylamino) propyl-(3)-acrylamide and 1-aminohexyl- (6)- acrylamide and 1-(N, N-dimethylamino)-ethyl-(2)- methacrylamide, 1-(N,N,-dimethylamino) -propyl-(3)-acrylamide and 1 - (N, N-dimethylamino) - hexyl - (6) - methacrylamide.

Representative examples of esters of acrylic, methacrylic, and crotonic acids include, without limitation, those esters from reaction with saturated aliphatic and cycloaliphatic alcohols containing 1 to 20 carbon atoms, such as methyl, ethyl, propyl, isopropyi, n-butyl, isobutyl, tert- butyl, 2-ethylhexyl, lauryl, stearyl, cyclohexyl, trimethylcyclohexyl, tetrahydrofurfuryl, stearyl, sulfoethyl, and isobornyl acrylates, methacrylates, and crotonates ; and polyalkylene glycol acrylates and methacrylates.

Representative examples of other ethylenically unsaturated polymerizable monomers include, without limitation, such compounds as fumaric, maleic, and itaconic anhydrides, monoesters, and diesters. Polyfunctional monomers may also be included to provide a partially crosslinked acrylic dispersion. Examples of polyfunctional compounds include, without limitation, ethylene glycol diacryiate, ethvlene glycol dimethacrylate, triethylene glycol diacrylate, tetraethylene glycol dimethacrylate,-_, 6-

hexanediol diacrylate, divinylbenzene, trimethylolpropane triacrylate, and so on.

Representative examples of vinyl monomers that can be copolymerized include, without limitation, such compounds as vinyl acetate, vinyl propionate, vinyl ethers such as vinyl ethyl ether, vinyl and vinylidene halides, and vinyl ethyl ketone. Representative examples of aromatic or heterocyclic aliphatic vinyl compounds include, without limitation, such compounds as styrene, a-methyl styrene, vinyl toluene, tert- butyl styrene, and 2-vinyl pyrrolidone.

After polymerization, the acid functionality is salted, preferably with an alkali or base, preferably an amine.

Example of suitable salting materials include, without limitation, ammonia, monoethanolamine, ethylamine, dimethylamine, diethylamine, triethylamine, propylamine, dipropylamine, isopropylamine, diisopropylamine, triethanolamine, butylamine, dibutylamine, 2-ethylhexylamine, ethylenediamine propylenediamine, ethylethanolamine, dimethylethanolamine, diethylethanolamine, 2-amino-2- methylpropanol, and morpholine. Preferred salting materials include 2-amino-2-methylpropanol and dimethylethanolamine.

The acrylic polymers may be prepared as solutions in an organic solvent medium, preferably selected from water- soluble or water-miscible organic solvents, and then dispersed into water. After dispersion into water, the

organic solvent can be distille from the aqueous dispersion or emulsion.

In a preferred method, the acrylic polymer is provided by emulsion polymerization. Preferably, a nonionic or an anionic surfactant is used for the emulsion polymerization.

Suitable surfactants include, without limitation, polyoxyerhylenenonylphenyl ethers, polyoxyethylenealkylallyl ether sulfuric acid esters, amino ana alkali salts of dodecylbenzenesulfonic acid such as the dimethylethanolamine salt of dodecylbenzenesulfonic acid and sodium dodecylbenzenesulfonic acid, and sodium dioctylsulfosuccinate.

The polymerization typically proceeds by free radical polymerization. The free radical source is typically supplied by a redox initiator or by an organic peroxide or azo compound. Useful initiators include, without limitation, ammonium peroxydisulfate, potassium peroxydisulfate, sodium metabisulfite, hydrogen peroxide, t-butyl hydroperoxide, dilauryl peroxide, t-butyl peroxybenzoate, 2, 2'- azobis (isobutyronitrile), and redox initiators such as ammonium peroxydisul and sodium metabisulfite with ferrous ammonium sulfate. Optionally, a chain transfer agent may be used. Typica chain transfer agents include mercaptans such as octyl mercaptan, n-or tert-dodecyl mercaptan, thiosalicylic acid, mercaptoacetic acid, and

mercaptoethanol ; halogenated compounds ; and dimeric alpha- methyl styrene.

Acrylic polymers prepared by emulsion polymerization can have weight average molecular weights of one million or more.

The weight average molecular weight of the acrylic dispersion is preferably from about 5, 000 to about 5, 000, 000, more preferably from about 7500 to about 500, 000, and even more preferably from about i0, 000 to about 50, 000. If prepared by solution polymerization and then dispersed in water, the acrylic polymer will generally have a number average molecular weight of from about 5000 to about 60, 000. The molecular weight can be determined by gel permeation chromatography using a polystyrene standard or other known methods.

The theoretical glass transition temperature of the acrylic polymer can be adjusted according to methods well- known in the art through selection and apportionment of the comonomers. The acrylic polymer has a glass transition temperature that is at least about 20°C higher than the glass transition temperature of polyurethane resin. Preferably, the acrylic polymer has a glass transition temperature that is at least about 40°C higher, more preferably about 50°C higher, than the glass transition temperature of polyurethane resin. In a preferred embodiment, the theoretical Tg of the

acrylic polymer is between about-30°C and 80°C, more preferably between about-20°C and 40°C.

The polyurethane polymer may be included in the thermosetting primer in an amount of at least about 40% by weight, preferably at least about 50% by weight, based on the combined nonvolatile weights of the polyurethane polymer and the acrylic polymer. The polyurethane polymer may be included in the primer in an amount of up to about 98% by weight, preferably up to about 80% by weight, based on the combined nonvolatile weights of the polyurethane polymer and the acrylic polymer. It is preferred to include from about 50% by weight to about 75% by weight, and even more preferred to include from about 65% by weight to about 75% by weight, of the polyurethane polymer, based on the combined nonvolatile weights of the polyurethane polymer and the acrylic polymer.

The thermosetting primer composition also includes a crosslinker component. The crosslinker component includes one or more crosslinkers reactive with active hydrogen functionality, including any of those already described above as useful in the chip resistant primer composition.

The crosslinker component preferably is from about 2% by weight to about 30% by weight, ana more preferably from about 5% by weight to about 20% by weight, and particularly preferably about 5% to about 15% by weight of the combined

nonvolatile weights of the polyurethane, the acrylic polymer, and the crosslinking component of the thermosetting primer composition.

The chip resistant primer compositions and thermosetting primer compositions may include one or more catalyses. The type of catalyst depends upon the particular crosslinker component composition utilized. Useful catalysts include, without limitation, blocked acid catalysts, such as para- toluene sulfonic acid, dodecylbenzene sulfonic acid, and dinonylnaphthylene disulfonic acid blocked with amines ; phenyl acid phosphate, monobutyl maleate, and butyl phosphate, hydroxy phosphate ester ; Lewis acids, zinc salts, and tin salts, including dibutyl tin dilaurate and dibutyl tin oxide.

The chip resistant primer coating compositions and thermosetting primer coating compositions according to the invention may further include pigments such as are commonly used in the art, including color pigments, corrosion inhibiting pigments, conductive pigments, and filler pigments. Illustrative examples of these are metal oxides, chromates, molybdates, phosphates, and silicates, carbon : black, titanium dioxide, sulfates, and silicas.

Other conventional materials, such as dyes, flow control or rheology control agents, and so on may be added to the compositions.

The chip resistant primer composition and the thermosetting primer composition may have a very low content of volatile of organic solvent. The polyurethane dispersion is preferably prepared as a solvent free or substantially soldent free dispersion. By "substantially solvent free" it is menant that the dispersion has a volatile organic content of less than about 5% by weight of the primer composition.

The acrylic dispersion is also preferably solvent free or substantially solvent free dispersion. The primer composition preferably has a volatile organic content of less than about 1. 5, more preferably less than about 1. 3, and even more preferably less than about 0. 7. The volatile organic content of a coating composition is typically measured using ASTM D3960.

The primer coating compositions of the present invention can be applied over many different substrates, including wood, metals, glass, cloth, plastic, foam, metals, and elastomers. They are particularly preferred as primers on automotive articles, such as metal or plastic automotive bodies or elastomeric fascia. When the article is a metallic article, it is preferred to have a layer of electrccoat primer before application of the primer coating composition of the invention.

The composite coating of the invention has, as adjacent layers, a first primer coating layer that is obtained by

applying the chip resistant primer composition of the invention and a second primer coating layer on top of the first primer coating layer that is obtained by applying the thermosetting primer coating composition. The composite coating has a topcoat Layer applied over the primer coating layers. The topcoat layer may include a basecoat coating layer applied over the primer coating layer and an outer, clearcoat layer applied over the basecoat coating layer.

The composite primer coating layers of the invention is applied directly to the substrate or over one or more other layers of primer, such as the electrocoat primer. The applied primer coating compositions are then baked and, at least in the case of the thermosetting primer composition, cured to form a primer coating layer. The electrocoat primer or other first layer of primer may be cured at the same time as the primer coating layers of the invention are baked in a process known as "wet-on-wet" coating. The composite primer coating layers formed from the primer coating compositions of the invention are the outermost primer layers of the composite coating.

A topcoat composition is applied over the primer coating layers and cured to form a topcoat layer. The substrate at that point is then covered with a composite coating that has at least the two layers of primer coating derived from the inventive compositions and at least one layer of topcoat. In

a preferred embodiment, the coating composition of the present invention is overcoated with a topcoat applied as a color-plus-clear (basecoat-clearcoat) topcoat. In a basecoat-clearcoat topcoat, an underlayer of a pigmente coating, the basecoat, is covered with an outer of a transparent coating, the clearcoat. 3asecoat-clearcoa- topcoats provide an attractive smooth ana glossy finish and generally improved performance.

Crosslinking compositions are preferred as che topcoat layer or layers. Coatings of this type are well-known in the art and include waterborne compositions as well as solventborne compositions. For example, the topcoat may be a clearcoat according to U. S. Pat. No. 5, 474, 811, applied wet- on-wet over a layer of a basecoat composition. Polymers known in the art to be useful in basecoat and clearcoat compositions include, without limitation, acrylics, vinyl, polyurethanes, polycarbonates, polyesters, alkyds, and pclysiloxanes. Acrylics and polyurethanes are preferred.

Thermoset basecoat and clearcoac compositions are also preferred, and, to that end, preferred polymers comprise one or more kinds of crosslinK. able functional groups, such as carbamate, hydroxy, isocyanate, amine, epoxy, acrylate, vinyl, silane, acetoacetate, and so on. The polymer my be self-crosslinking, or, preferably, the composition may include a crosslinking agent such as a polyisocyanate or an

aminoplast resin of the kind described above. In one embodiment, waterborne basecoat compositions and/or clearcoat compositions having low volatile organic content are used.

The waterborne basecoat and waterborne clearcoat compositions each preferably has a volatile organic content of less than about 1. 5, more preferably less than about 1. 3, and even more preferably less than about 0. 7.

Each layer of the composite coatings of the invention can be applied to an article to be coated according to any of a number of techniques well-known in the art. These include, for example, spray coating, dip coating, roll coating, curtain coating, and the like. If an initial electrocoat primer layer is applied to a metallic substrate, the electrocoat primer is applied by electrodeposition. For automotive applications, the primer coating compositions of the invention and the topcoat layer or layers are preferably applied by spray coating, particularly electrostatic spray methods. Coating layers of about one mil or more are usually applied in two or more coats, separated by a time sufficient to allow some of the solvent or aqueous medium to evaporate, or"flash,"from the applied layer. The flash may be a- ambienu or elevated temperatures, for example, the flash may use radiant heat. The coats as applied can be from 0. 5 mil up to 3 mils dry, and a sufficient number of coats are applied to yield the desired final coating thickness.

The chip resistant primer layer which is formed from the chip resistant primer composition, may be from about 0. 5 mil to about 3 mils thick, preferably from about 0. 8 mils to about 1. 5 mils thick.

The outermost primer layer, which is formed by reacting the thermosetting primer compositions of the invention, may be cured by reaction of curing component with at least one the polyurethane resin or the acrylic resin, before the <BR> <BR> topcoat is applied. The cured primer layer may be from abouc 0.5 mil to about 2 mils thick, preferably from about 0.8 mils to abouc 1. 2 mils thick.

Color-plus-clear topcoats are usually applied wet-on- wet. The compositions are applied in coats separated by a flash, as described above, with a flash also between the last coat of the color composition and the first coat the clear.

The two coating layers are then cured simultaneously.

Preferably, the cure basecoat layer is 0.5 to 1.5 mils thick, and the cured clear coat layer is 1 to 3 mils, more preferably 1.6 to 2.2 mils, thick.

Alternatively the primer layer (s) of the invention and the topcoat can be applied "wet-on-wt." For example, the chip resistant primer composition of of the invention can be applied, then the applied layer flashed ; the the copcoac can be applied and flashed ; the thermosetting primer composition of the invention can be applied, then the applied layer

flashed ; then the topcoat can be applied and flashed then the thermosetting primer, optionally the chip resistant primer (if it is thermosetting) and the topcoat can be cured at the same time. Again, the topcoat can include a basecoat layer and a olearcoac layer applied wet-on-wet.

The thermosetting coating compositions described are preferably cured with heat. Curing temperatures are preferably from about 70°C to about 180°C, and particularly preferably from about 170°F to about 20C°F for a composition including an unblocked acid catalyst, or from about 240°F to about 275°F for a composition including a blocked acid catalyst. Typical curing times at these temperatures range from 15 to 60 minutes, and preferably the temperature is chosen to allow a cure time of from about 15 to about 30 minutes. In a preferred embodiment, the coated article is an automotive body or part.

The composite primer layers of the invention provide improved chip resistance as compared to previously known primers, while retaining the desirable properties of sandability and corrosion resistance. Further, the primer compositions of the invention can be formulated to have low <BR> <BR> volatile organic content and even no volatile organic<BR> <BR> content.<BR> <BR> <P> The invention is further described in the following examples. The examples are merely illustrative and do not in

any wav the s a claimed. All parts are by weight unless otherwise indicated.

Examples Example Sreuara_ion of a Pigment Paste A pigments paste was prepared by grinding a premix of BAYGVDROL 140 AQ polyurethane dispersion (about 40% nonvolatile, 59% water, and 1% toluene, glass transition temperature of about -45°C, pH of about 6.0 to about 7.5, weight average molecular weight of about 25,000, anionic Desmodur W/1,6-hexamethylene diisocyanate/polyester polyol- based polyurethane, available from Bayer Corporation, Pittsburgh, PA), titanium dioxide, barium sulfate extender, and carbon black on a horizontal mill to a fineness of 6 microns. The pigment paste was 63% by weight nonvolatile in water. The nonvo. allies were 33. 1% by weight of BAYHYDROL 140 AQ, 33.1% by weight of titanium dioxide, 33. 1% by weight of barium sulfate extender, and the balance carbon black.

Example 2. Chip Resistant Area Primer Composfition A chip resistant primer composition was prepared by mixing together 219.6 parts by weight of the Pigment Paste of Example 1, 212.4 parts by weight of BAYHYDROL 140 AQ, 68.02 parts by weight of deionized water, and 3.45 parts by weight of a thickener material. The composition was adjusted to 91 centipoise with the addition of 22 grams of water.

Example 3. Chip Resistant Area Primer Composition A chip resistant primer composition was prepared bv mixing together 219. 6 parts by weight of the Pigment Paste of Example 1, 179. 6 parts by weight of BAYHYDROL 140 AQ, 82. 95 parts DEr weight of deionized water, 14. 4 pans by weighs of RESIMENE 747 (a melamine formaldehyde resin available from S tia, St. Louis, MO), 0.43 parts by weight of ABEX EP 110 (anionic surfactant available from Rhodia), and 3. 45 parts by weight of a thickener material. The composition was adjusted to 32 centipoise with uhe addition of 22 grams of water.

Example 4. Thermosettina Primer Composition A primer composition was prepared by first mixing together 17. 51 parts by weight of BAYHYDROL 140 AQ polyurethane dispersion, 16. 27 parts by weight of an emulsion of an acrylic polymer (glass transition temperature of 20 °C., nonvolatile content of about 41% in water, acid number of about 8 mg KOH/g nnovolatile, hydroxyl equivalent weight of 520, salted with 2-amino-2-methylpropanol to a pH of about 6 to 7, 20. 9 parts deionizea water, and 40. 89 parts by weight of the pigmenu paste of Example 1. To this mixture were added 2. 71 parts by weight of RESIMENE 747 and 0.27 parts by weight of ABEX EP 110. A total of 1.39 parts by weight of an additive package (defoamer, wetting agent, and thickener was then added. Finally, the pH of the primer composition was adjusted to about 8. 0 with 2-amino-2-methylpropanol.

The measured volatile organic content of the primer composition is 0. 24 pounds per gallon. The primer composition had a nonvolatile content of 42% by weight. The primer composition was adjusted before spray application with deionlzed water to a viscosity of 75 to 110 centipoise.

The primer composition of Examples 2 and 3 was applied to elecirocoat primed 4"x12"steel panels. Before curing the first primer layer, the primer composition of Example 4 was applied over the first primer layer on each panel. Both primer layers were cured together according to the bake schedule shown in the table below to form a composite primer.

Each of the primer layers was about 1. 0 mil thick. The cured composite primer was then topcoated with commercial basecoat and clearcoat compositions.

As comparative example, a panel was prepared by applying the primer composition of Example 4 directly to an electrocoat primed 4"x12"steel panel. The primer layer was cured and topcoated with commercial basecoat and clearcoat compositions as before.

As another comparative example, a panel was prepared by applying a layer of a commercial chip resistant primer, U26AW415K and a layer of a commercial thermosetting primer, U28AW032, both available from BASF Corporation, Southfield, MI. Both primer layers were cured together according to the bake schedule shown in the table below to form a composite

primer. Each of the primer layers was about 1.0 mil thick.

The cured composite primer was then topcoated with commercial basecoat and clearcoat compositions.

The panels were then subjected 10 gravelometer testing according to the test procedure of SE J400, except that three pints of gravel were used instead of the one pint specified by the test method. Briefly, in the SAE J400 proceaure, the panels are cooled to-20 centigrade for 1 hour prior to the gravel test. The panel is positioned in a gravelometer machine in an upright position, 90 degrees from path of gravel. One pint of gravel is blown onto the panel with an air pressure of 70 psi. [In testing the examples of the invention, three pints of gravel were used.] The panel is then warmed to room temperature, tape pulled with 3M 898 strapping tape, and rated according to chip rating standards on a scale of 0 to 9, with 0 corresponding to a standard having total delamination of the coating and 9 corresponding to a standard having almost no chips.

The gravelometer ratings for the panels obtained using the compositions or Examples 1 and 2 are shown in the following table.

SAE J400 Gravelometer Ratings, using 3 pints gravel Primer Layer's 15 Minutes at 30 Minutes a 275°F Bake 325°F Bake Example 2/Example 4 7+/8- 7+ Example 3/Example 4 7+/8- 7+/8- Example 1 onl= 7-5 JU26AW415K/U28AW032 6 5-

The invention has been described in detail with reference to preferred embodiments thereof. It should be understood, however, that variations and modifications can be made within the spirit and scone of the invention.