Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CORROSION REDUCTION WITH AMINE SCAVENGERS
Document Type and Number:
WIPO Patent Application WO/2004/106468
Kind Code:
A1
Abstract:
Corrosive amine salts in hydrocarbon streams such as desalted crude oil streams can be prevented or avoided by adding certain amine scavenging chemicals to the streams. Suitable amine scavengers include, but are not necessarily limited to, carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, isocyanates, polyisocyanates, and epoxides. The non-corrosive reaction products of the amines and/or ammonia with these scavengers are preferably oil-soluble, non-basic and thermally stable. The amine scavengers bind up and react with the amines and/or ammonia to keep them from reacting with materials such as acids (e.g. HCI) to form corrosive amine salts.

Inventors:
STARK JOSEPH L (US)
DUGGAN GEORGE G (US)
BOYD WALLY A (US)
WEERS JERRY J (US)
Application Number:
PCT/US2004/015710
Publication Date:
December 09, 2004
Filing Date:
May 19, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAKER HUGHES INC (US)
STARK JOSEPH L (US)
DUGGAN GEORGE G (US)
BOYD WALLY A (US)
WEERS JERRY J (US)
International Classes:
C07C7/148; C10G7/10; C10G75/00; C10G75/02; (IPC1-7): C10G75/02; C10G9/16
Foreign References:
US5556575A1996-09-17
US5266186A1993-11-30
US5885487A1999-03-23
US5556575A1996-09-17
Attorney, Agent or Firm:
Mossman, David L. (Mossman & Sriram PC, Suite 700, 2603 August, Houston TX, US)
Download PDF:
Claims:
What is claimed is:
1. A method of reducing corrosion in hydrocarbon streams comprising : providing a hydrocarbon stream containing at least one nitrogen compound selected from the group consisting of ammonia and volatile amines capable of forming a corrosive reaction product; contacting the nitrogen compound with an amine scavenger in an amount effective to reduce corrosion, where the amine scavenger is selected from the group consisting of: carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, and mixtures of these anhydrides, isocyanates and polyisocyanates, and epoxides; and contacting the nitrogen compound with the amine scavenger under reaction conditions sufficient to form a noncorrosive reaction product.
2. The method of claim 1 where the noncorrosive reaction product is oil soluble, nonbasic and thermally stable.
3. The method of claim 1 or 2 where the effective amount of amine scavenger is at least approximately stoichiometrically functionally equivalent to the nitrogen compound present in the hydrocarbon stream.
4. The method of claim 1 or 2 where the effective amount of amine scavenger is between 1 and 100 ppm based on the hydrocarbon stream.
5. The method of any one of the above claims where the amine scavenger is a copolymer selected from the group consisting of a reaction product of maleic anhydride and polyisobutylene, a reaction product of maleic anhydride and at least one C2024 alpha olefin, and a reaction product of maleic anhydride and at least one C2632 alpha olefin.
6. The method of any one of the above claims where the hydrocarbon stream is a desalted crude oil stream.
7. A treated hydrocarbon stream having reduced corrosion capability comprising: a hydrocarbon stream containing at least one nitrogen compound selected from the group consisting of ammonia and volatile amine capable of forming a corrosive reaction product; an amine scavenger in an amount effective to reduce corrosion, where the amine scavenger is selected from the group consisting of: carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, and mixtures of these anhydrides, isocyanates and polyisocyanates, and epoxides; and at least one noncorrosive reaction product of the amine scavenger with the nitrogen compound; where the corrosion capability of the hydrocarbon stream is reduced as compared to an otherwise identical stream having an absence of amine scavenger.
8. The treated hydrocarbon stream of claim 7 where at least one non corrosive reaction product is oilsoluble, nonbasic and thermally stable.
9. The treated hydrocarbon stream of claim 7 or 8 where the effective amount of amine scavenger is at least approximately stoichiometrically functionally equivalent to the nitrogen compound present in the hydrocarbon stream.
10. The treated hydrocarbon stream of claim 7 or 8 where the effective amount of amine scavenger is between 1 and 100 ppm based on the hydrocarbon.
11. The treated hydrocarbon stream of any one of claims 710 where the amine scavenger is a reaction product of maleic anhydride and polyisobutylene.
12. The treated hydrocarbon stream of any one of claims 711 where the hydrocarbon stream is a desalted crude oil stream.
Description:
CORROSION REDUCTION WITH AMINE SCAVENGERS Field of the Invention [0001] The present invention relates to methods and compositions for scavenging ammonia and/or amines, and more particularly relates, in one embodiment, to methods and compositions for scavenging amines in hydrocarbon streams, where the amine or ammonia may otherwise form a corrosive reaction product.

Background of the Invention [0002] In the refining of petroleum products, such as crude oil, hydrochloric acid is generated which can cause high corrosion rates on the distillation unit metallurgy. Neutralizing amines are added to the overhead system to neutralize the HCI and make it less corrosive. Excess amines can form salts that will lead to corrosion. Consequently, the refining industry has, for many years, suffered from amine-hydrochloride salt deposition in crude oil towers. The problem occurs when ammonia and/or amines are present in the desalted crude. These amines react with hydrochloric acid and other acids while ascending the crude tower and deposit as corrosive salts in the tower and the top pumparound equipment. The amines can be present from several sources, including but not necessarily limited to, crude oil (e. g. H2S scavenger chemicals), slop oil (frequently containing gas scrubbing unit amines) and desalter wash water (often composed of overhead sour water containing amine neutralizer). The problem has worsened in recent years in part due to higher crude salt content, which yields higher HCI and requires more overhead neutralizer, consequently both salt reactants are present in higher quantities. Additionally, many crude towers are operated at colder top temperature, which further encourages salt formation in towers. Longer run cycles between turnarounds have caused the problem to become a priority. Clearly, amine salting in towers has become a bigger problem in recent years, and future trends indicate continuation of the problem.

[0003] Solutions examined thus far fall into two categories. First, for cases where the amine is coming in with the crude oil or slop oil, the primary option is to segregate the offending streams and keep them out of the crude unit. This approach is economically unattractive in many cases. Second, in cases where the problem occurs due to recycle of overhead neutralizer, the approach has been to switch to overhead amines that will not form a salt at tower conditions.

This technique is also economically unattractive in most applications, since these alternative neutralizers cost from three to four times as much as the conventionally used amines.

[0004] Additional changes are foreseen which are likely to make the problem even worse. The nature of"opportunity crudes"and crude quality in general are deteriorating, and further, more plants are attempting to maximize internal water reuse. A recent effort to design new amine neutralizer options for overhead systems does not offer much relief because, as noted, the amine options identified are higher cost raw materials. Even if alternative amines are identified at reasonable costs, such amines will not help in systems where tramp amines enter the system with crude oil or slop oil.

[0005] It would be desirable if methods and/or compositions could be devised that would reduce, alleviate or eliminate corrosion caused by undesired amine salts where amines enter refinery towers.

Summary of the Invention [0006] Accordingly, it is an object of the present invention to provide a method for mitigating and reducing the corrosive effects of amine acid salts in hydrocarbon streams and systems.

[0007] It is another object of the present invention to provide a method for reacting amines present in hydrocarbon streams to keep the amines from forming corrosive salts. Example amines include, but are not necessarily limited to, ammonia, amines of the formula R-NH3, where R is a straight, branched, or cyclic alkyl or aromatic group, where R has from 1 to 10 carbon atoms, such as methylamine ; alkanolamines (including, but not necessarily limited to, mono- ethanolamine (MEA), methyldiethanolamine (MDEA), diethanolamine (DEA) );

ethylenediamine (EDA), methoxypropylamine (MOPA)-essentially any primary, secondary or tertiary amine capable of reaching a tower overhead.

Although ammonia is not strictly speaking an amine, in the context of this invention ammonia is included in the same group of nitrogen compounds as amines.

[0008] In carrying out these and other objects of the invention, there is pro- vided, in one form, a method of corrosion in hydrocarbon streams that involves first providing a hydrocarbon stream containing at least ammonia and/or one amine capable of forming a corrosive reaction product. Next, the ammonia or amine is contacted with an amine scavenger in an amount effective to reduce corrosion. The amine scavenger is reacted with the ammonia and/or amine to form a non-corrosive reaction product. The amine scavenger may be a carbox- ylic anhydride and/or copolymer of carboxylic anhydride, an aromatic anhydride, an isocyanate and/or polyisocyanate and/or an epoxide.

[0009] There is also provided, in another non-restrictive version of the inven- tion, a treated hydrocarbon stream that has reduced corrosion capability. The hydrocarbon stream contains at least ammonia and/or one amine capable of forming a corrosive reaction product. The stream also contains an amine scavenger in an amount effective to reduce corrosion, where a suitable amine scavenger includes one or more of carboxylic anhydrides and copolymers of carboxylic anhydrides, aromatic anhydrides, isocyanates and polyisocyanates, and epoxides. The treated hydrocarbon stream also includes at least one non- corrosive reaction product of the amine scavenger with ammonia and/or amine.

The corrosion capability of the hydrocarbon stream is reduced as compared to an otherwise identical stream having an absence of amine scavenger.

Detailed Description of the Invention [0010] The present invention involves the use of additive chemicals to react with or"scavenge"tramp or residual amines and/or ammonia from desalted crude oil streams or other hydrocarbon streams where ammonia or amines may be present from any source and that may over time and/or under certain conditions contact reactants and form undesirable corrosive products. Organic

amines and ammonia are frequently present in the desaited crude oil as contaminants from upstream treatment, via desalter wash water or from introduction of slop oils. These basic compounds can, under certain conditions, react with HCI and other acids to form corrosive salts. The conditions in crude distillation towers often favor these reactions. The fouling and corrosion that results from the formation of the salts increases the refinery operating and maintenance costs significantly. Efforts to minimize or exclude the tramp bases from the unit feed streams are often ineffective or economically infeasible.

Consequently, there is a need for another means of removing these bases from the desalted crude. The inventive amine scavenger method is one such approach. It will be appreciated that in the context of this invention, the term "amine scavenger"encompasses additives that scavenge ammonia as well as amines.

[0011] Volatile amines within the context of this invention include any amine capable of reaching a tower overhead and capable of forming a deposit under unit conditions, i. e. during a hydrocarbon processing operation. In another non-limiting embodiment of the invention, volatile amines include, but are not necessarily limited to, ammonia, amines of the formula R-NH3, where R is a straight, branched, or cyclic alkyl or aromatic group, where R has from 1 to 10 carbon atoms and where R may be substituted with oxygen. Diamines of the formula H2NR'NH2 where R'is a straight or branched alkylen group of from 2 to 10 carbon atoms also fall within the definition of volatile amines herein, and again, R'may also be substituted with oxygen. Amines and diamines containing oxygen also fall within the definition of volatile amines of this invention. More f specific examples of volatile amines include, but are not necessarily limited to, methylamine ; alkanolamines that may include, but are not necessarily limited to, monoethanolamine (MEA), methyldiethanolamine (MDEA), diethanolamine (DEA); diamines such as ethylenediamine (EDA); other amines containing oxygen, including, but not necessarily limited to methoxypropylamine (MOPA) and the like and mixtures thereof.

[0012] Additive chemistry has been found to prevent amines and/or ammonia from causing problems in a distillation tower. At least two possibilities exist to

prevent amines or ammonia from causing problems in a tower. First, the addi- tive chemicals may produce a reaction product with the amine or ammonia that is neutral, such that it will not react with HCI or other acids, and the reaction product is thermally stable so that it will not decompose and release the amine/ammonia in the distillation tower. Second, the additive chemicals could produce a reaction product with amines or ammonia that generates a high boiling product that remains oil soluble in the tower bottoms where it does not cause further problems. This invention is not limited to either of these two possibilities.

[0013] In one non-limiting embodiment of the invention, the reaction product is oil soluble, non-corrosive, non-basic and thermally stable."Non-basic"in the context of this invention means that the product will not accept or receive a pro- ton from another substance. By"thermally stable"is meant that the reaction product is stable to conditions of a crude unit furnace. Crude unit furnace conditions having the oil containing the product are capable of reaching 700°F (371 °C) for 5 to 15 minutes and thus the reaction product should not decom- pose at this temperature or lower temperatures.

[0014] It has been discovered that there are a number of chemical functional- ities that are effective in reacting with amines or ammonia to produce com- pounds that will no longer form salts in the crude tower overhead or at least reduce or inhibit the formation of salts. In one non-limiting example, the scaven- ger is a carboxylic anhydride or copolymer of carboxylic anhydride. Within the context of this invention, the term"polymer"or"copolymer"includes oligomers and co-oligomers. These copolymers may be made by conventional techniques known to those of ordinary skill in the art. Suitable carboxylic anhydrides include aliphatic, cyclic and aromatic anhydrides, and may include, but are not necessarily limited to maleic anhydride, succinic anhydride, glutaric anhydride, tetrapropylene succinic anhydride, phthalic anhydride, trimellitic anhydride (oil soluble, non-basic), and mixtures thereof. Typical copolymers include reaction products between these anhydrides and alpha-olefins to produce oil-soluble products. Suitable alpha olefins include, but are not necessarily limited to ethyl-

ene, propylene, butylenes (such as n-butylen and isobutylene), C2-C70 alpha olefins, polyisobutylene, and mixtures thereof.

[0015] A typical copolymer is a reaction product between maleic anhydride and an alpha-olefin to produce an oil soluble scavenger. Reacting 4 moles of propylene with one mole of succinic anhydride gives tetrapropylene succinic anhydride, and one copolymer acceptable as a suitable scavenger for the inventive method. Another useful copolymer reaction product is formed by a 1: 1 'stoichiometric addition of maleic anhydride and polyisobutylene. The resulting product has a molecular weight range from about 5,000 to 10,000. Activity was also seen with dodecylsuccinic anhydride, a compound with just one anhydride functionality, and with anhydride copolymers with molecular weights ranging from about 30,000 to about 50, 000. In one non-limiting embodiment of the invention, the anhydrides when reacted with amine or ammonia should produce a product that is soluble in the oil phase. The carboxylic anhydrides and copolymers of carboxylic anhydrides with olefins will react with amines or ammonia to form stable amides or subsequent imide compounds. More specific examples include, but are not necessarily limited to, copolymers made by the reaction of maleic anhydride with C6 to C50 alpha-olefins, for instance, 1 octene, 1-dodecene, 1-hexadecene. In more specific non-limiting embodiments, the alpha olefins may range from C20-24, alternatively C26-32.

A copolymer made by reacting maleic anhydride with polyisobutylene is also one copolymer of interest in this invention.

[0016] Isocyanates and/or polyisocyanates can also be used to scavenge amines or ammonia and prevent them from forming salts in refinery towers. Iso- cyanates or polyisocyanates will react with amines to form ureas. These ureas will no longer react with HCI or other acids to form the corrosive salts. Suitable isocyanates and polyisocyanates include, but are not necessarily limited to, iso- phorone diisocyanate, polymeric materials with a molecular weight range of from about 100 to about 5000, isophorone diisocyanate homopolymer, tolyl isocyanate, phenylen diisocyanate, cyclohexylene diisocyanate, and mixtures thereof.

[0017] Epoxides can also be used to scavenge problematic amines within the context of this invention. The epoxides used should produce reaction products that are oil soluble in one non-limiting embodiment of the invention. If the amine or ammonia reaction products formed have secondary or tertiary amine functionalities associated with the compounds then the resulting product must be oil soluble and should not distill into the tower overhead, in one non-limiting embodiment. Epoxides suitable as amine or ammonia scavengers for the method of this invention include, but are not necessarily limited to, alpha-olefin epoxides having carbon chains of C6 or higher (such as epoxydecane, epoxy- dodecane, epoxyethylbenzene), methyl oleate oxide, glycidyl hexadecyl ether, glycidyl 4-methoxyphenyl ether, and mixtures thereof.

[0018] Typical application of the additives may involve the addition of be- tween about 1 and about 100 ppm of additive injected into the desalted crude, in one non-restrictive version. In another non-limiting embodiment, the addition proportion ranges between about 10 and about 30 ppm. Alternatively, the addition of amine scavenger may be at a rate of up to about 10 times the amount of amine (s) or ammonia present in the petroleum fluid or hydrocarbon stream; in another non-limiting embodiment, at a rate of up to about 5 times the amount of amine (s) or ammonia present. Testing indicates that there is typically sufficient time and temperature for the desired reaction to occur. In any event, sufficient time and/or conditions should be permitted so that the amine scaven- ger reacts with substantially all of the amine or ammonia present. By"substan- tially all"is meant that no significant corrosion problems occur due to corrosive amine salts. The resulting reaction products of amine or ammonia with the scavenger are thermally stable at crude distillation conditions.

[0019] It will be understood that the complete elimination of corrosive salt for- mation is not required for successful practice of the invention. All that is neces- sary for the invention to be considered successful is for the treated hydrocarbon stream to have reduced corrosion capability as compared to an otherwise identical hydrocarbon stream having an absence of amine scavenger.

[0020] The invention will now be described with respect to particular Examples that are not intended to limit the invention but simply to illustrate it further in various non-limiting embodiments.

EXAMPLES 1-8 [0021] A stainless steel bomb of 50 ml capacity was used throughout the series of experiments. Twenty (20) ml of heavy white mineral oil spiked with 10 ppm of methanolamine (MEA) and 10 ppm ethylamin (EA, in 20 uL water) were used as the test sample in all cases. A 4% solution of scavenger (2000 ppm) in toluene solution (100 uL) was added to the bomb for each experiment.

[0022] A gas chromatograph oven was used for heating of the test vessels.

Prior experiments had calibrated the GC oven heating parameters and shown that the internal temperature of the sample in the bomb lagged the oven setpoint of 500°F (260°C) by 100° (56°C) after 10 minutes of heating. To raise the sample to 500°F (260°C) in a reasonable time and compensate for the temperature lag, a setting of 600°F (316°C) was used for the oven set point.

Rapid cooling of the oven (90°C/min.) after the heating cycle produced a sample temperature of 240°F (127°C) in 10 minutes. Thus, the oven set point was 600°F (316°C) for a heating time of 8 minutes and then a cooling time of 10 minutes. The time and temperature parameters were set to simulate the typical time and temperature conditions of a typical crude unit preheat system.

[0023] Immediately after each 18-minute experiment, 10 ml of DI water were added and the bomb resealed. This technique rapidly quenched the sample temperature further to about 110°F (43°C) and still allowed the benefit of a warm oil with lowered viscosity for the subsequent extraction. The bomb was shaken for 5 minutes to extract the amines. The water was then separated by centrifugation and analyzed directly by Ion Chromatography. Some of the additives increased the stability of emulsions formed during the extraction. The results are given in Table I. As noted above, all Examples were conducted at 500°F (260°C) except for calibration Example 1, which was performed at 70°F (21 °C).

TABLE I Amine Scavenging by Various Chemicals Ex. Scavenger MEA EA 1 None (calibration) Present Present 2 None (calibration) Present Present 3 Dodecylsuccinic anhydride Some loss Some loss 4 Maleic anhydride alpha olefin Absent Absent copolymer C26-C32 5 Isocyanate polymer Absent Present 6 Maleic anhydride alpha olefin Absent Absent copolymer C20-C24 7 Succinic anhydride/partially Absent Absent esterified with alcohol-alpha olefin copolymer [0024] It is noted that some scavenging was observed for all Examples (the exception being EA in Example 5) and that essentially complete scavenging occurred for nearly all of the Examples. It will be appreciated that there are sub- stantial benefits to the subject invention, including reducing or eliminating corro- sive amine salts in hydrocarbon streams, particularly in crude oil refining and processing. This benefit can be obtained using readily available amine scaven- gers.

[0025] In the foregoing specification, the invention has been described with reference to specific embodiments thereof. The amine scavengers of this invention would be expected to be useful in other hydrocarbon processing operations besides those explicitly mentioned. It will be evident that various modifications and changes can be made to the methods and fluids of the invention without departing from the broader spirit or scope of the invention as set forth in the appended claims. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense. For example, specific amine scavengers and proportions thereof falling within the claimed parameters, but not specifically identified or tried in particular compositions, are anticipated and expected to be within the scope of this invention.