Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GAS REFRIGERATION MACHINE, METHOD FOR OPERATING A GAS REFRIGERATION MACHINE, AND METHOD FOR PRODUCING A GAS REFRIGERATION MACHINE WITH A RECUPERATOR ABOUT THE SUCTION REGION
Document Type and Number:
WIPO Patent Application WO/2022/090246
Kind Code:
A1
Abstract:
The invention relates to a gas refrigeration machine with the following features: an inlet (2) for gas to be cooled; a recuperator (10); a compressor (40) with a compressor inlet (41), said compressor inlet (41) being coupled to a first recuperator outlet (12); a heat exchanger (60); a turbine (70); and a gas outlet (5), wherein the compressor inlet (41) is connected to a suction region (30) which is delimited by a suction wall (31) and extends away from the compressor (40); the recuperator (10) extends at least partly about the suction region (30) and is delimited by the suction wall (31); and the suction wall (31) is designed such that gas can be suctioned from the recuperator (10) into the compressor inlet (41) through the suction wall (31) via the suction region (30).

Inventors:
SEDLAK HOLGER (DE)
Application Number:
PCT/EP2021/079709
Publication Date:
May 05, 2022
Filing Date:
October 26, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JUSTAIRTECH GMBH (DE)
International Classes:
F25B9/00; F25B9/14; F25B11/04; F25B29/00; F25B40/00
Foreign References:
EP2492472A12012-08-29
CN108885055A2018-11-23
US20130294890A12013-11-07
Other References:
SPENCE S W T ET AL: "Design, construction and testing of an air-cycle refrigeration system for road transport", INTERNATIONAL JOURNAL OF REFRIGERATION, ELSEVIER, AMSTERDAM, NL, vol. 27, no. 5, 1 August 2004 (2004-08-01), pages 503 - 510, XP004520383, ISSN: 0140-7007, DOI: 10.1016/J.IJREFRIG.2004.02.003
ZAGAROLA M V ET AL: "High-capacity turbo-Brayton cryocoolers for space applications", CRYOGENICS, ELSEVIER, KIDLINGTON, GB, vol. 46, no. 2-3, 1 February 2006 (2006-02-01), pages 169 - 175, XP028026032, ISSN: 0011-2275, [retrieved on 20060201], DOI: 10.1016/J.CRYOGENICS.2005.11.018
M. ZAGAROLA: "High-capacity turbo-Brayton cryocoolers for space applications", CRYOGENICS, vol. 46, 2006, pages 169 - 175, XP028026032, DOI: 10.1016/j.cryogenics.2005.11.018
Attorney, Agent or Firm:
ZINKLER, Franz et al. (DE)
Download PDF:
Claims:

1 . Gaskältemaschine mit folgenden Merkmalen: einem Eingang (2) für zu kühlendes Gas; einem Rekuperator (10); einem Kompressor (40) mit einem Kompressoreingang (41 ), wobei der Kompressoreingang (41 ) mit einem ersten Rekuperatorausgang (12) gekoppelt ist; einem Wärmetauscher (60); einer Turbine (70); und einem Gasausgang (5), wobei der Kompressoreingang (41 ) mit einem Ansaugbereich (30) verbunden ist, der durch eine Ansaugwand (31 ) begrenzt ist und sich von dem Kompressor (40) weg erstreckt, wobei der Rekuperator (10) sich zumindest teilweise um den Ansaugbereich (30) herum erstreckt und von der Ansaugwand (31 ) begrenzt wird, und wobei die Ansaugwand (31 ) derart ausgebildet ist, dass durch die Ansaugwand (31 ) Gas aus dem Rekuperator (10) durch den Ansaugbereich (30) in den Kompressoreingang (41 ) ansaugbar ist.

2. Gaskältemaschine nach Anspruch 1 , bei der der Rekuperator (10) einen ersten Rekuperatoreingang (11 ), den ersten Rekuperatorausgang (12), einen zweiten Rekuperatoreingang (13) und einen zweiten Rekuperatorausgang (14) aufweist, oder wobei der Kompressor den Kompressoreingang (41 ) und einen Kompressorausgang (42) aufweist, oder wobei der Wärmetauscher (60) einen ersten Wärmetauschereingang (61 ) und einen ersten Wärmetauscherausgang (62) auf einer Primärseite, einen zweiten Wärmetauschereingang (63) und einen zweiten Wärmetauscherausgang (64) auf einer Se- kundärseite aufweist, wobei der erste Wärmetauschereingang (61 ) mit dem Kompressorausgang (42) gekoppelt ist, und wobei der erste Wärmetauscherausgang (62) mit dem zweiten Rekuperatoreingang (13) gekoppelt ist, oder wobei die T urbine (70) einen T urbineneingang (71 ) und einen T urbinenausgang (72) aufweist, wobei der Turbineneingang (71 ) mit dem zweiten Rekuperatorausgang (14) verbunden ist, und wobei der Gasausgang (5) mit dem Turbinenausgang (72) gekoppelt ist.

3. Gaskältemaschine nach einem der vorhergehenden Ansprüche, die ein Gehäuse (100) aufweist, in dessen Wand der Eingang (2) für zu kühlendes Gas angeordnet ist, und in dessen Wand der Gasausgang (5) angeordnet ist, wobei der Rekuperator (10), der Kompressor (40), die Turbine (70) oder der Wärmetauscher (60) in dem Gehäuse (100) angeordnet sind.

4. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der in Betriebsrichtung der Kompressor (40) oberhalb der Turbine (70) angeordnet ist, oder die ausgebildet ist, so dass eine Ansaugung von warmem Gas an einem ersten Abschnitt des Gehäuses (100) der Gaskältemaschine stattfindet und eine Abgabe von einem im Vergleich zum warmen Gas kühleren Gas an einem zweiten Abschnitt des Gehäuses (100) der Gaskältemaschine stattfindet, wobei der erste Abschnitt in Betriebsrichtung oberhalb des zweiten Abschnitts angeordnet ist.

5. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Kompressor (40) ein Kompressorrad (40a) aufweist und die Turbine (70) einen Turbinenrad (70a) aufweist, wobei das Kompressorrad und das Turbinenrad (70a) auf einer gemeinsamen Achse angeordnet sind, wobei an der Achse ein Rotor (44) eines Antriebsmotors angeordnet ist, der mit einem Stator des Antriebsmotors wechselwirkt, oder bei der ein Kompressorrad (40a) einen größeren Durchmesser als ein Rotor (44) eines Antriebsmotors oder einen größeren Durchmesser als ein Turbinenrad (70a) der Turbine (70) aufweist. Gaskältemaschine nach Anspruch 5, bei der der Rotor (44) zwischen dem Kompressorrad (40a) und dem Turbinenrad (70a) angeordnet ist, oder bei der das Kompressorrad (40a), ein erster Achsenabschnit (43a), ein Rotor (44), ein zweiter Achsenabschnit (43b) und das Turbinenrad (70a) einstückig ausgebildet sind, oder bei der an dem Kompressorrad (40a) ein erster Lagerabschnitt (40b) und an dem Turbinenrad (70a) ein zweiter Lagerabschnitt (70b) ausgebildet sind, oder bei der der Rotor (44) aus einem nicht ferromagnetischen Material, wie z. B. Aluminium, ausgebildet ist und ein ferromagnetisches Rückschlusselement (44a) um den Rotor (44) herum angebracht ist und Magnete (44b) auf dem Rückschlusselement (44a) angeordnet sind. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) in einem äußeren Bereich eines Volumens der Gaskältemaschine angeordnet ist und der Kompressoreingang (41) in einem inneren Bereich des Volumens der Gaskältemaschine angeordnet ist. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) eine Volumenform hat, die eine in einem mittleren Bereich gelegene zentrale Öffnung aufweist, die den Ansaugbereich (30) bildet, wobei sich die Ansaugwand (31) von einem ersten Ende der zentralen Öffnung, die den Kompressoreingang (41) bildet, zu einem zweiten Ende erstreckt, das durch eine Abdeckung (32) verschlossen ist. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Ansaugbereich (30) von einem ersten Ende zu einem zweiten Ende eine kontinuierlich zunehmende Öffnungsfläche aufweist und die Ansaugwand (31) kontinuierlich oder stufenlos ausgebildet ist. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) rotationssymmetrisch ist, wobei eine Symmetrieachse des Rekuperators (10) mit einer Achse des Kompressors (40) oder einer Achse der Turbine (70) oder einer Achse des Gasausgangs (5) oder des Gaseingangs (2) oder mit einer Achse des Ansaugbereichs (30) im Wesentlichen übereinstimmt.

11 . Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) einen Gegenstrom-Wärmetauscher aufweist.

12. Gaskältemaschine nach Anspruch 11 , bei der sich durch den Eingang (2) für zu kühlendes Gas das Gas von außen nach innen bewegt und von dem Gegenstrom- Wärmetauscher abgegebenes Gas von innen nach außen bewegt.

13. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der ein Gehäuse (100) eine Seitenwand und eine Bodenwand oder eine Deckelwand aufweist, wobei der Eingang (2) für zu kühlendes Gas in der Seitenwand angeordnet ist und der Gasausgang (5) in der Bodenwand oder der Deckelwand angeordnet ist, oder bei der der Gasausgang (5) in Betriebsrichtung in einem Boden der Gaskältemaschine ausgebildet ist und derart geformt ist, dass der Gasausgang auf einen Kühlgaseinlass in einem Fußboden eines Raums aufsetzbar ist, in dem die Gaskältemaschine aufstellbar ist, oder bei der der Gasausgang (5) in Betriebsrichtung in einem Boden der Gaskältemaschine ausgebildet ist und ferner eine Feuchteauffangvorrichtung vorgesehen ist, um ein in dem Gasausgang (5) anfallendes Kondensat aufzufangen.

14. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der ein Gehäuse (100) rotationssymmetrisch oder zylinderförmig ist oder einen Durchmesser zwischen 0,5 m und 1 ,5 m oder eine Höhe zwischen 1 ,0 m und 2,5 m aufweist.

15. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der T urbinenausgang (72) eine kleinere Öffnungsfläche als der Gasausgang (5) aufweist, wobei sich eine Öffnungsfläche von dem Turbinenausgang (72) zu dem Gasausgang (5) kontinuierlich aufweitet.

16. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der ein Gehäuse (100) eine längliche Form aufweist, wobei der Eingang (2) für zu kühlendes Gas eine Vielzahl von Perforierungen in einem bezüglich einer Betriebsrichtung der Gaskältemaschine oberen Bereich des Gehäuses (100) oder einer Wand des Rekuperators (10) aufweist, und der Gasausgang (5) eine Öffnung in einem unteren Bereich des Gehäuses (100) mit einer Öffnungsfläche aufweist, die wenigstens 50 % einer Querschnitsfläche des Gehäuses (100) in dem oberen Bereich beträgt.

17. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Kompressor (40) angeordnet ist, um Gas über den Ansaugbereich (30) in den Kompressoreingang (41 ) von oben nach unten zu bewegen, und um mit einem ausgangsseitigen Leitraum (45) komprimiertes Gas von unten in den Wärmetauscher (60) einzuspeisen.

18. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Wärmetauscher (60) ein keilförmiges oder scheibenförmiges Volumen aufweist und ein Wärmetauschereingang (61 ) außen an dem keilförmigen oder scheibenförmigen Volumen angeordnet ist und ein Wärmetauscherausgang (62) innen an dem keilförmigen oder scheibenförmigen Volumen angeordnet ist, oder bei der der Wärmetauschereingang (61 ) unten an dem keilförmigen oder scheibenförmigen Volumen angeordnet ist und der Wärmetauscherausgang (62) oben an dem keilförmigen oder scheibenförmigen Volumen angeordnet ist.

19. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) ein Volumen aufweist, das in einem äußeren Bereich eine Gegenstrom- Wärmetauscherstruktur aufweist und in einem inneren Bereich an den Ansaugbereich (30) anschließt, wobei der erste Rekuperatoreingang (11 ) außen an dem äußeren Bereich angeordnet ist, wobei der erste Rekuperatorausgang (12) an dem inneren Bereich angeordnet ist, um Gas in den Ansaugbereich (30) zu leiten, wobei der zweite Rekuperatoreingang (13) ebenfalls an dem inneren Bereich angeordnet ist und der zweite Rekuperatorausgang (14) ebenfalls an dem äußeren Bereich angeordnet ist, wobei der erste Rekuperatoreingang (11 ) und der zweite Rekuperatorausgang (14) im Rekuperator (10) fluidisch getrennt sind und der erste Rekuperatorausgang (12) und der zweite Rekuperatoreingang (13) in dem Rekuperator (10) fluidisch getrennt sind. 20. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) miteinander verbundene erste Gaskanäle (15) von dem ersten Rekuperatoreingang (11) zu dem ersten Rekuperatorausgang (12) aufweist und zweite miteinander verbundene Gaskanäle (16) zwischen dem zweiten Rekuperatoreingang (13) und dem zweiten Rekuperatorausgang (14) aufweist, wobei die ersten Gaskanäle (15) und die zweiten Gaskanäle (16) in thermischer Wechselwirkung angeordnet sind, wobei der Rekuperator (10) an dem zweiten Rekuperatoreingang (13) einen ersten Sammlungsbereich (18), der die zweiten Gaskanäle (16) auf einer Seite verbindet und der sich entlang des inneren Bereichs erstreckt und den zweiten Rekuperatoreingang (13) bildet, und einen zweiten Sammlungsbereich (17) aufweist, der die zweiten Gaskanäle auf einer anderen Seite verbindet und sich entlang eines Randbereichs des äußeren Bereichs erstreckt und den zweiten Rekuperatorausgang (14) bildet, wobei die Ansaugwand (31 ) den ersten Sammlungsbereich begrenzt und den ersten Sammlungsbereich (18) von dem Ansaugbereich (30) trennt.

21. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Wärmetauscher (60) zwischen dem Rekuperator (10) und dem Kompressor (40) angeordnet ist.

22. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der ein Turbineneingang (71 ) über einen Verbindungsbereich mit einem zweiten Rekuperatorausgang (14) verbunden ist, wobei sich der Verbindungsbereich um den Wärmetauscher (60) herum erstreckt.

23. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Wärmetauscher (60) ein Gas-Flüssigkeits-Wärmetauscher ist und in einem von Gas durchflossenen Volumen eine Leitungsstruktur aufweist, die von Flüssigkeit durchfließbar ist, wobei die Flüssigkeitsstruktur mit einem Sekundäreingang (63) und einem Sekundärausgang (64) des Wärmetauschers (60) gekoppelt ist.

24. Gaskältemaschine nach Anspruch 23, bei derdas Gehäuse (100) einen Flüssigkeitsablauf (64) von dem Wärmetauscher (60) und einen Flüssigkeitszulauf (63) zu dem Wärmetauscher (60) aufweist. 25. Gaskältemaschine nach Anspruch 24, bei der der Flüssigkeitszulauf und der Flüssigkeitsablauf mit einer Wärmesenke (80) verbunden sind, wobei in einem Kreislauf mit der Wärmesenke (80) eine Pumpe (90) angeordnet ist.

26. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der der Rekuperator (10) ein Volumen aufweist, das den Ansaugbereich (30) vollständig umschließt, wobei der Ansaugbereich (30) und das Volumen des Rekuperators (10) sich um eine Distanz größer als 10 cm von dem Kompressoreingang (41 ) weg erstrecken, wobei der Eingang (2) für zu kühlendes Gas durch erste Enden von den ersten Gaskanälen (15) gebildet ist, wobei zweite Enden der ersten Gaskanäle in den Ansaugbereich (30) münden, und wobei die ersten Gaskanäle (15) über das Volumen verteilt sind, um Gas von mehreren Seiten in den Ansaugbereich (30) zu leiten.

27. Gaskältemaschine nach einem der vorhergehenden Ansprüche, die als offenes System ausgebildet ist, wobei der Eingang (2) für zu kühlendes Gas in einem zu kühlenden Bereich angeordnet ist und der Gasausgang (5) in dem zu kühlenden Bereich angeordnet ist, um warmes Gas aus dem zu kühlenden Bereich einzusaugen und kaltes Gas in den zu kühlenden Bereich auszugeben.

28. Gaskältemaschine nach einem der vorhergehenden Ansprüche, bei der eine Elektronikbaugruppe (102) zur Versorgung eines Antriebsmotors für den Kompressor (40) mit Energie oder zur Lieferung von Steuerdaten an ein Element der Gaskältemaschine oder zur Erfassung von Sensordaten von einem Element der Gaskältemaschine in einem Bereich der Gaskältemaschine angeordnet ist, der ausgebildet ist, um die Elektronikbaugruppe zu kühlen, oder bei der eine Elektronikbaugruppe (102) zur elektrischen Versorgung der Gaskältemaschine mit Energie und/oder Steuersignalen in einem Bereich zwischen dem Turbinenausgang (72) und dem Gasausgang (5) und einer Gehäusewand außerhalb des Gasausgangs (5) angeordnet ist, oder bei der eine Elektronikbaugruppe (102) zur elektrischen Versorgung der Gaskältemaschine mit Energie und/oder Steuersignalen in einem Bereich zwischen einer Basis eines Kompressorrads (40a) des Kompressors (40) und einer Basis eines Turbi- nenrads (70a) der Turbine angeordnet ist, oder bei der eine Elektronikbaugruppe (102) zur elektrischen Versorgung der Gaskältemaschine mit Energie und/oder Steuersignalen an einem Begrenzungselement (71a) eines Turbineneingangs (71 ) der Turbine (70) angeordnet ist, wobei die Elektronikbaugruppe ferner außerhalb des Turbineneingangs (71 ) der Turbine (70) angeordnet ist, oder bei der eine Elektronikbaugruppe (102) zur elektrischen Versorgung der Gaskältemaschine mit Energie und/oder Steuersignalen eine Öffnung in der Mitte aufweist und scheibenförmig ist und sich um einen Stator eines Antriebsmotors für den Kompressor (40) herum erstreckt oder mit dem Stator integriert ausgebildet ist, und beispielsweise in einem Bereich zwischen einer Basis eines Kompressorrads (40a) des Kompressors (40) und einer Basis eines Turbinenrads (70a) der Turbine (70) angeordnet ist.

29, Verfahren zum Betreiben einer Gaskältemaschine mit: einem Eingang (2) für zu kühlendes Gas; einem Rekuperator (10); einem Kompressor (40) mit einem Kompressoreingang (41 ), wobei der Kompressoreingang (41 ) mit einem ersten Rekuperatorausgang (12) gekoppelt ist; einem Wärmetauscher (60), der mit einem Kompressorausgang (42) gekoppelt ist; und einer Turbine (70), mit folgendem Schritt:

Ansaugen von Gas über einen Ansaugbereich (30), der mit dem Kompressoreingang (41 ) verbunden ist, wobei der Ansaugbereich (30) durch eine Ansaugwand (31 ) begrenzt ist und sich von dem Kompressor (40) weg erstreckt, wobei der Rekuperator (10) sich zumindest teilweise um den Ansaugbereich (30) herum erstreckt und von der Ansaugwand (31 ) begrenzt wird, und wobei die Ansaugwand (31 ) derart ausgebildet ist, dass durch die Ansaugwand (31 ) Gas aus dem Rekuperator (10) durch den Ansaugbereich (30) in den Kompressoreingang (41 ) ansaugbar ist.

30. Verfahren zum Herstellen einer Gaskältemaschine mit: einem Eingang (2) für zu kühlendes Gas; einem Rekuperator (10); einem Kompressor (40) mit einem Kom- pressoreingang (41 ), wobei der Kompressoreingang (41 ) mit einem ersten Rekuperatorausgang (12) gekoppelt ist; einem Wärmetauscher (60), der mit einem Kompressorausgang (42) gekoppelt ist; und einer Turbine (70), mit folgendem Schrit: Verbinden eines Ansaugbereichs (30 mit dem Kompressoreingang (41 ), wobei der

Ansaugbereich (30) durch eine Ansaugwand (31 ) begrenzt ist und sich von dem Kompressor (40) weg erstreckt, wobei der Rekuperator (10) sich zumindest teilweise um den Ansaugbereich (30) herum erstreckt und von der Ansaugwand (31 ) begrenzt wird, und wobei die Ansaugwand (31 ) derart ausgebildet ist, dass durch die Ansaug- wand (31 ) Gas aus dem Rekuperator (10) durch den Ansaugbereich (30) in den

Kompressoreingang (41 ) ansaugbar ist.

Description:
Gaskältemaschine, Verfahren zum Betreiben einer Gaskältemaschine und Verfahren zum Herstellen einer Gaskältemaschine mit einem Rekuperator um den Ansaugbereich

Beschreibung

Die vorliegende Erfindung bezieht sich auf Maschinen zum Heizen und Kühlen und insbesondere auf Kaltluftkältemaschinen beziehungsweise Gaskältemaschinen.

Kaltluftkältemaschinen sind bekannt und werden beispielsweise in der Raumfahrt eingesetzt. In der Fachveröffentlichung „High-capacity turbo-Brayton cryocoolers for space applications”, M. Zagarola u. a., Cryogenics 46 (2006), Seiten 169 bis 175 ist ein Kryokühler offenbart, der schematisch in Fig. 5 dargestellt ist. Ein Kompressor C komprimiert Gas, das in dem geschlossenen System zirkuliert. Das komprimierte Gas wird durch einen Wärmetauscher gekühlt, was schematisch mit „Wärmesenke“ beziehungsweise mit „Wärmeabgabe“ bezeichnet ist. Das gekühlte Gas wird in einen Rekuperator R eingespeist, der das dadurch abgekühlte Gas einer Turbine E zuführt. Aus der Turbine E wird kaltes Gas abgegeben, das über einen Wärmetauscher Wärme aufnimmt beziehungsweise eine Kältewirkung erreicht. Das Gas, das aus dem Wärmetauscher, der die Kältewirkung bereitstellt, austritt und wieder wärmer als das Gas am Eingang desselben ist, wird ebenfalls in den Rekuperator R eingespeist, um wieder angewärmt zu werden.

Das Temperatur-Entropie-Diagramm des Zyklus in Fig. 5 ist in Fig. 6 dargestellt. Durch den Kompressor C findet eine isentrope Kompression stat, wie es durch den Übergang vom Übergangspunkt 1 zum Übergangspunkt 2 gezeigt ist. Durch den Wärmetauscher zur Wärmeabgabe findet eine isobare Wärmeabfuhr statt, wie es durch den Übergang von Punkt 2 zu Punkt 3 in Fig. 6 dargestellt ist. Durch den Rekuperator R findet ebenfalls eine Isobare Wärmeabfuhr statt, wie es durch den Übergang zwischen Punkt 3 und Punkt 4 dargestellt ist. Dann findet in der Turbine E eine isentrope Expansion statt, wie es durch den Übergang zwischen Punkt 4 und Punkt 5 dargestellt ist. Die Kältewirkung des Wärmetauschers wiederum stellt eine isobare Wärmezufuhr dar, wie es durch den Übergang von Punkt 5 zu Punkt 6 dargestellt wird. Die im Wärmetauscher abgegebene Wärme ist im Temperatur- Entropie-Diagramm als der Temperaturunterschied zwischen Punkt 2 und Punkt 3 dargestellt. Entsprechend ist die durch die Turbinenexpansion erreichte Temperaturreduktion durch den Temperaturunterschied zwischen dem Punkt 4 und dem Punkt 5 dargestellt. Schließlich ist der Temperaturunterschied, der zu der Kühlung eingesetzt werden kann, der also als „verfügbare Kühlung“ dargestellt ist, zwischen Punkt 5 und Punkt 6 dargestellt.

Weitere Kaltluftkältemaschinen in verschiedenen anderen Ausführungen werden in dem Vortrag „Luft als Kältemittel - Geschichte der Kaltluftkältemaschine“ von I. Ebinger, gehalten auf der Historikertagung 2013 in Friedrichshafen am 21.06.2013, dargestellt.

Im Vergleich zu Wärmepumpen, die zum Kühlen und zum Heizen eingesetzt werden, haben Gaskältemaschinen den Vorteil, dass eine energieaufwändige Umwälzung von flüssigem Kältemittel vermieden werden kann. Darüber hinaus kommen Gaskältemaschinen ohne das dauernde Verdampfen einerseits und das dauernde Kondensieren andererseits aus. Im in Fig. 5 gezeigten Zyklus zirkuliert lediglich Gas, ohne dass es Übergänge zwischen den verschiedenen Aggregatzuständen gibt. Ferner sind bei Wärmepumpen insbesondere dann, wenn auf klimaproblematische Kältemittel verzichtet werden soll, sehr kleine Drücke nahe beim Vakuum nötig, die in der Erzeugung, Handhabung und Beibehaltung während des Betriebs zu erheblichem Aufwand insbesondere in apparativer Hinsicht führen können. Dennoch ist der Einsatz von Kaltluftkältemaschinen begrenzt.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine verbesserte Gaskältemaschine zu schaffen.

Diese Aufgabe wird durch eine Gaskäitemaschine nach Patentanspruch 1 , ein Verfahren zum Betreiben einer Gaskältemaschine nach Patentanspruch 29, oder ein Verfahren zum Herstellen einer Gaskältemaschine nach Patentanspruch 30 gelöst.

Ein Aspekt der vorliegenden Erfindung basiert auf der Erkenntnis, dass die Gaskältemaschine besonders kompakt aufgebaut werden muss, um Verluste durch Leitungen, insbesondere im Rekuperator beziehungsweise in der Verbindung zwischen Rekuperator und Kompressor zu verhindern. Zu diesem Zweck ist der Rekuperator so angeordnet, dass er sich um einen Ansaugbereich des Kompressors herum erstreckt, wobei der Ansaugbereich von dem Rekuperator durch eine Ansaugwand begrenzt ist. Diese integrierte Anordnung zwischen Kompressor mit Ansaugbereich einerseits und Rekuperator andererseits führt dazu, dass ein kompakter Aufbau mit optimalen Strömungsverhältnissen erreicht werden kann, um in der Primärseite des Rekuperators vorhandenes Gas durch den Rekuperator hindurch anzusaugen. Darüber hinaus ist die Wirkung des Rekuperators wichtig für die Effizienz der gesamten Gaskältemaschine, weshalb der Rekuperator so angeordnet ist, dass er sich zumindest teilweise und vorzugsweise ganz um den Ansaugbereich herum erstreckt. Damit wird sichergestellt, dass über den gesamten Ansaugbereich, der sich vom Kompressoreingang weg erstreckt, und von dem Rekuperator durch die Ansaugwand begrenzt ist, von allen Seiten eine beträchtliche Menge Gas aus dem Rekuperator angesaugt werden. Damit wird, obgleich der Rekuperator ein beträchtliches Volumen einnehmen kann, dennoch ein kompakter Aufbau erreicht, weil der Kompressor direkt mit dem Rekuperator integriert ist. Diese Implementierung stellt andererseits auch sicher, dass für die Sekundärseite im Rekuperator, die in dem Rekuperator mit der Primärseite in thermischer Wechselwirkung stehen muss, genügend Platz verbleibt, um die Ströme des auf der Primärseite fließenden warmen Gases und die Ströme des auf der Sekundärseite fließenden wärmeren Gases gut in thermische Wechselwirkung zu bringen.

Bei bevorzugten Ausführungsbeispielen wird im Rekuperator ein Gleichstrom- oder Gegenstromprinzip eingesetzt, um eine besonders gute Effizienz an diesem Bauteil zu erreichen. Bei weiteren bevorzugten Ausführungsbeispielen der vorliegenden Erfindung stellt der erste Eingang des Rekuperators in die Primärseite desselben einen Gas oder Lufteingang dar, so dass die Gaskältemaschine in einem offenen System betreibbar ist. Dann ist der Turbinenausgang bzw. der Gasauslass ebenfalls in einen Raum beispielsweise hinein gerichtet, in den die gekühlte Luft beziehungsweise allgemein gesagt, das gekühlte Gas gebracht wird. Alternativ kann der Gaseingang einerseits und der Gasausgang andererseits über ein Leitungssystem und einen Wärmetauscher mit einem System verbunden sein, das zu kühlen ist. Dann handelt es sich bei der Gaskältemaschine gemäß der vorliegenden Erfindung um ein geschlossenes System.

Vorzugsweise ist die gesamte Gaskältemaschine in einem Gehäuse eingebaut, das typischerweise zumindest in seinem „Inneren“ rotationssymmetrisch mit aufrecht stehender Form und einer größeren Höhe als Durchmesser, also als schlanke aufrecht stehende Form ausgebildet ist. In diesem Gehäuse befinden sich sowohl der Gaseingang als auch der Gasausgang und der Rekuperator, der Kompressor und die Turbine und vorzugsweise auch der Wärmetauscher.

Vorzugsweise ist im Betrieb der Kompressor oberhalb der Turbine angeordnet. Wiederum vorzugsweise umfasst der Kompressor ein Radialrad und umfasst die Turbine ebenfalls ein Turbinenrad, wobei das Kompressorrad und das Turbinenrad auf einer gemeinsamen Achse angeordnet sind, und diese Achse ferner einen Rotor eines Antriebsmotors umfasst, der mit einem Stator des Antriebsmotors wechselwirkt. Vorzugsweise ist der Rotor zwischen dem Kompressorrad und dem Turbinenrad angeordnet.

Bei wieder anderen Ausführungsbeispielen ist der Rekuperator in einem äußeren Bereich des Volumens der Gaskraftmaschine angeordnet und ist der Kompressoreingang in einem inneren Bereich des Volumens der Gaskraftmaschine angeordnet, wobei sich auch der Ansaugbereich in dem inneren Bereich des Volumens befindet. Vorzugsweise hat der Ansaugbereich eine von einem ersten Ende zu dem zweiten Ende kontinuierlich zunehmende Öff- nungsfläche, so dass die Ansaugwand kontinuierlich, also vorzugsweise ohne Kanten ausgebildet ist. Das Ende mit der kleineren Öffnungsfläche ist mit dem Kompressoreingang verbunden und das Ende mit der größeren Öffnungsfläche ist abgeschlossen, so dass durch den Kompressorbetrieb eine Ansaugwirkung im Ansaugbereich entsteht, die sich über den Primärausgang des Rekuperators, der mit dem Ansaugbereich fluidisch gekoppelt ist, über den Rekuperator hindurch zu dem Primäreingang des Rekuperators erstreckt, der entweder direkt als Gaseinlass ausgebildet ist oder mit einem Gasauslass im Gehäuse verbunden ist.

Wieder vorzugsweise ist ein Leitraum des Kompressors so angeordnet, dass er das komprimierte Gas von der Mite des Volumens der Gaskraftmaschine nach außen führt und dort unmittelbar in einen Primäreingang des Wärmetauschers einspeist. Durch den Wärmetauscher fließt das erhitzte Gas von außen nach innen und tritt von dort in den Sekundäreingang beziehungsweise zweiten Eingang des Rekuperators ein, der vorzugsweise innen im Volumen befindlich ist und sich um den Ansaugbereich und insbesondere um die Ansaugwand herum erstreckt, jedoch von dem Ansaugbereich fluidisch getrennt ist. Das in den Sekundäreingang eingespeiste Gas fließt von innen nach außen in der Sekundärseite des Rekuperators und ermöglicht somit ein Gegenstromprinzip, das thermisch besonders günstig ist und fließt dann von außen bezüglich des Rekuperators vorzugsweise in den Ansaugbereich der Turbine, wobei das Gas von außen nach innen fließt, um sich über das Turbinenrad in den Luftausgang zu relaxieren, welcher als eine große Fläche vorzugsweise im Unteren der Gaskältemaschine ausgebildet ist. Dagegen ist der Gaseingang im seitlichen oberen Bereich der Gaskältemaschine ausgebildet, und zwar durch eine Vielzahl von Perforierungen, die mit entsprechenden Gaskanälen verbunden sind, und die den Gaseinlass beziehungsweise den Primäreingang in den Rekuperator bilden. Vorzugsweise ist eine zur Steuerung und zum Betrieb der Gaskältemaschine benötigte Elektronik in einem Bereich unterhalb des Turbinenansaugbereichs, also neben dem Luftaustritt angeordnet, damit die gekühlte Luft über die Turbinenausgangswand eine Kühlwirkung auf Elektronikelemente liefern kann.

Ferner ist der Aufbau einer Kaltluftkältemaschine technisch weniger aufwändig und damit auch weniger fehleranfällig zum Beispiel im Vergleich zu einer Wärmepumpe. Darüber hinaus ist ein höherer Wirkungsgrad zu erwarten, da keine Arbeit geliefert werden muss, um eine beachtliche Menge an flüssigem Kältemittel im Kreislauf zu bewegen.

Ein Aspekt der vorliegenden Erfindung bezieht sich auf die Anordnung des Rekuperators zumindest teilweise um den Ansaugbereich herum.

Ein weiterer Aspekt der vorliegenden Erfindung bezieht sich auf die Anordnung des Rekuperators, des Kompressors, des Wärmetauschers, und der Turbine in einem einzigen Gehäuse, das z. B. zylinderförmig sein kann und z. B. eine länglich Form hat, die eine Höhe besitzt, die größer als der Durchmesser ist

Ein weiterer Aspekt der vorliegenden Erfindung bezieht sich auf die spezielle Implementierung, bei der der Kompressor oberhalbe der Turbine angeordnet ist, um eine optimale Flusswirkung des Gases in der Gaskältemaschine zu erreichen.

Ein weiterer Aspekt der vorliegenden Erfindung bezieht sich auf die Plazierung des Kom- pressorrads und des Turbinenrads auf einer Achse, an der auch der Rotor des Motors angeordnet ist, um eine optimale und effiziente Übertragung der Kraft von der Turbine auf den Kompressor zu schaffen, um zuzuführende Antriebsenergie so weit als möglich einzusparen.

Ein weiterer Aspekt der vorliegenden Erfindung bezieht sich auf die Implementierung eines rotationssymmetrischen Rekuperators mit dem Kompressor und der Turbine, deren Drehachse mit der Achse des Rekuperators zusammenfällt, ob eine effiziente Strömungsführung in der Gaskältemaschine zu erreichen.

Ein weiterer Aspekt der vorliegenden Erfindung bezieht sich auf die bevorzugte Anordnung und Ausführung des Wärmetauschers in der Gaskältemaschine, um eine platzsparende Gaskältemaschine mit effizienter Umsetzung von thermischer Energie zu erreichen. Ein weiterer Aspekt der vorliegenden Erfindung bezieht sich auf die Plazierung einer Elektronikbaugruppe in einem kühlen Bereich der Gaskältemaschine z. B, zwischen dem Kompressorrad und dem Turbinenrad oder in thermischer Wechselwirkung mit der Begrenzung des Turbineneingangs am Weg des Gases vom Rekuperatorausgang in die Turbine oder in der Nähe des besonders kühlen Turbinenausgangs.

Es sei besonders darauf hingewiesen, dass jeder der Aspekte für sich alleine implementiert werden kann, oder zusammen mit einem weiteren oder mehreren weiteren oder allen anderen genannten Aspekten.

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen:

Fig. 1 ein Prinzipschaltbild einer Gaskältemaschine gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;

Fig. 2a eine Schnittdarstellung einer voll integrierten Gaskältemaschine gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung;

Fig. 2b eine Schnittdarstellung einer voll integrierten Gaskältemaschine gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung mit alternativer Anordnung der Elektronikbaugruppe;

Fig. 3 eine Darstellung verschiedener Temperatur-/Druck-/Volumenstrom-Verhält- nisse an verschiedenen Stellen der Gaskältemaschine;

Fig. 4a eine schematische Darstellung eines Ausschnitts eines bevorzugten Rekuperators mit Sammlungsräumen auf der Sekundärseite;

Fig. 4b eine schematische Draufsicht auf einen bevorzugten Rekuperator mit Sammlungsräumen auf der Sekundärseite;

Fig. 4c eine schematische Querschnittsdarstellung eines im Querschnitt keilförmigen Wärmetauschers mit größerem Eingangsquerschnitt und kleinerem Ausgangsquerschnitt; Fig. 5 eine schematische Darstellung einer bekannten Kaltluftkältemaschine;

Fig. 6 ein Temperatur-Entropie-Diagramm der bekannten Kaltluftkältemaschine von Fig. 5;

Fig. 7a eine perspektivische Ansicht einer bevorzugten Kompressor-Turbinen-Kom- bination; und

Fig. 7b eine Seitenansicht der bevorzugten Kompressor-Turbinen-Kombination aus Fig. 7a.

Fig. 1 zeigt eine Gaskältemaschine mit einem Gaseingang 2 für zu kühlendes Gas, also „warmes“ Gas und einem Gasausgang 5 für gekühltes, also „kaltes“ Gas. Bei bevorzugten Ausführungsbeispielen der vorliegenden Erfindung ist das Gas normale Luft, wie beispielsweise Raumluft in einem Büro, einem Rechenzentrum, einer Fabrik, etc. In einem solchen Fall kann die Gaskältemaschine als offener Kreislauf betrieben werden, indem Luft über den Gaseingang 2 an einer Stelle in einem Raum angesaugt wird und Luft, die gekühlt worden ist, an einer anderen Stelle in dem Raum in den Raum abgegeben wird.

Die vorliegende Erfindung kann jedoch auch als geschlossenes System implementiert werden, bei dem der Gasausgang 5 mit einer Primärseite eines Wärmetauschers verbunden ist und der Gaseingang 2 ebenfalls mit der Primärseite des Wärmetauschers, jedoch dort mit dem „warmen“ Ende verbunden ist, und die Sekundärseite dieses Wärmetauschers mit einer Wärmequelle verbunden ist.

Die Gaskältemaschine umfasst ferner einen Rekuperator 10 mit einem ersten Rekuperatoreingang 11 , einem ersten Rekuperatorausgang 12, einem zweiten Rekuperatoreingang

13 und einem zweiten Rekuperatorausgang 14. Die Strecke vom ersten Rekuperatoreingang 11 zum ersten Rekuperatorausgang 12 stellt die Primärseite des Rekuperators dar, und die Strecke vom zweiten Rekuperatoreingang 13 bis zum zweiten Rekuperatorausgang

14 stellt die Sekundärseite des Rekuperators dar.

Darüber hinaus ist ein Kompressor 40 mit einem Kompressoreingang 41 und einem Kompressorausgang 42 vorgesehen. Der Kompressoreingang 41 ist über einen Ansaugbereich 30, der von der Ansaugwand 31 begrenzt wird, mit dem ersten Rekuperatorausgang 12 gekoppelt. Darüber hinaus ist ein Wärmetauscher 60 mit einem Wärmetauschereingang 61 und einem Wärmetauscherausgang 62 vorgesehen. Der erste Wärmetauschereingang 61 und der erste Wärmetauscherausgang 62 bilden die Primärseite des Wärmetauschers 60. Der zweite Wärmetauschereingang 63 und der zweite Wärmetauscherausgang 64 bilden die Sekundärseite des Wärmetauschers 60. Die Sekundärseite ist mit einer Wärmesenke 80, die beispielsweise auf einem Dach angeordnet sein kann, wenn die Gaskältemaschine zum Kühlen eingesetzt wird, oder die eine Fußbodenheizung sein kann, wenn die Gaskältemaschine zum Heizen eingesetzt wird, gekoppelt, wobei in der Sekundärseite ferner eine Pumpe 90 vorgesehen ist, die vorzugsweise zwischen der Wärmesenke 80 und dem zweiten Wärmetauschereingang 63 angeordnet ist. Wie es in Fig. 1 gezeigt ist, ist der erste Wärmetauschereingang 61 mit dem Kompressorausgang 42 verbunden, und ist der erste Wärmetauscherausgang 62 mit dem zweiten Rekuperatoreingang 13, also der Sekundärseite des Rekuperators verbunden. Darüber hinaus ist eine Turbine 70 vorgesehen, die einen Turbineneingang 71 und einen Turbinenausgang 72 aufweist. Der Turbineneingang 71 ist vorzugsweise mit dem zweiten Ausgang 14 des Rekuperators 10 verbunden, also mit dem Ausgang der Sekundärseite des Rekuperators, und der Gasausgang 5 ist entweder identisch mit dem Turbinenausgang 72 oder mit diesem gekoppelt.

Wie es in Fig. 1 gezeigt ist, ist der Kompressoreingang 41 mit dem Ansaugbereich 30 verbunden, der durch eine Ansaugwand 31 von dem Rekuperator abgegrenzt und begrenzt ist. Der Ansaugbereich 30 erstreckt sich von dem Kompressor 40 weg, und der Rekuperator 10 ist ausgebildet, um sich zumindest teilweise um den Ansaugbereich herum zu erstrecken. Der Ansaugbereich 30 ist durch die Ansaugwand 31 begrenzt, wobei diese Ansaugwand 31 auch die Begrenzung des Rekuperators darstellt. Die Ansaugwand 31 ist mit Öffnungen versehen, um Gas, das sich an dem zweiten Ausgang 12 des Rekuperators 10 befindet, in den Ansaugbereich 30 zu lassen. Die in der Ansaugwand vorgesehenen Öffnungen stellen somit den ersten Rekuperatorausgang 12 dar. Die Ansaugwand ist ferner ausgebildet, um eine fluidische Trennung zwischen dem Ansaugbereich 30 und sowohl dem zweiten Rekuperatoreingang 13 als auch dem zweiten Rekuperatorausgang 14 (und auch bezüglich des ersten Rekuperatoreingangs 11 , der nur über den vorgesehenen Weg im Rekuperator durch Gas erreichbar ist) zu liefern.

Bei bevorzugten Ausführungsbeispielen erstreckt sich der Rekuperator komplett um den Ansaugbereich 30 herum, wie es beispielsweise in Fig. 2a gezeigt ist. Bei bestimmten Ausführungsbeispielen genügt jedoch bereits eine Erstreckung des Rekuperators um den An- saugbereich nur um einen Teil des gesamten Winkelbereichs von 360°. So kann eine Anordnung des Rekuperators, der sich um lediglich 90° um den Ansaugbereich 30 herum erstreckt, dahingehend günstig sein, wenn die Gaskältemaschine zum Beispiel in einer Ecke eines Raums eingepasst werden soll. Auch andere größere oder kleinere Erstreckungen um den Ansaugbereich herum sind für den Rekuperator je nach Implementierung denkbar. Besonders effizient ist jedoch eine Implementierung, bei der sich der Rekuperator komplett, also um 360° um den Ansaugbereich herum erstreckt.

Hier wird dies ferner bevorzugt, dass der Rekuperator in der Draufsicht einen kreisförmigen Querschnit hat. Andere Querschnitte, wie beispielsweise dreieckige, viereckige, fünfeckige oder andere polygonale Querschnitte in der Draufsicht sind ebenfalls denkbar, da auch diese Rekuperatoren mit solchen Querschnitten in der Draufsicht mit entsprechenden Gaskanälen ohne Weiteres ausgeführt werden können, um eine Rekuperationswirkung mit hohem Wirkungsgrad vorzugsweise von allen Seiten aus zu erreichen.

Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung ist die gesamte Gaskältemaschine in einem Gehäuse untergebracht, wie es beispielsweise in Fig. 2a bei 100 dargestellt ist. In einem oberen Bereich des Gehäuses 100 von Fig. 2a befindet sich der Gaseingang 2, wobei das Gehäuse beziehungsweise die obere Gehäusewand identisch mit der Rekuperatorwand ausgebildet ist. Der Gaseingang 2 stellt somit gleichzeitig den ersten Rekuperatoreingang dar, der durch die Perforierungen 11 in der Gehäusewand dargestellt ist. Wie es in Fig. 2a dargestellt ist, wird es bevorzugt, dass der Rekuperator einen beträchtlichen Teil der Höhe des gesamten Gehäuses 100 in Anspruch nimmt, wie beispielsweise zwischen 30 und 60% der Höhe des Gehäuses. Darüber hinaus befinden sich alle Komponenten der Gaskältemaschine, also sowohl der Kompressor 40 als auch der Rekuperator 10 als auch der Wärmetauscher 60 als auch die Turbine 70 innerhalb des Gehäuses 100, wie es in einer beispielhaften, besonders kompakten Implementierung in Fig. 2a dargelegt ist. Nach außen zugänglich befinden sich lediglich die Anschlüsse 63, 64 für die Sekundärseite des Wärmetauschers 60 sowie der Lufteinlass 2 und der Luftauslass 5. Darüber hinaus befindet sich vorzugsweise unterhalb der Turbine beziehungsweise unterhalb des Turbineneingangs 71 beziehungsweise neben dem Turbinenausgang 72 eine Elektronikbaugruppe 102 mit einem entsprechenden Anschluss 101 , der zusätzlich noch nach außen zugänglich ist. Alle anderen Elemente und Eingänge und Ausgänge etc. sind in der kompakten Implementierung nicht nach außen zugänglich. Die Gaskältemaschine in dem besonders kompakten Aufbau von Fig. 2a hat somit lediglich einen Lufteinlass 2, einen Luftauslass 5, einen Anschluss 63, 64 für die Sekundärseite des Wärmetauschers 60 sowie einen Strom-ZSignalanschluss 101 für die Elektronikbaugruppe 102.

Die Elektronikbaugruppe 102 dient vorzugsweise zur Versorgung eines Antriebsmotors für den Kompressor 40 mit Energie oder zur Lieferung von Steuerdaten an ein Element der Gaskältemaschine oder zur Erfassung von Sensordaten von einem Element der Gaskältemaschine und ist in einem Bereich der Gaskältemaschine angeordnet, der ausgebildet oder geeignet ist, um die Elektronikbaugruppe zu kühlen.

Wie es dargelegt worden ist, kann die Gaskältemaschine zur Kühlung eingesetzt werden. Dann ist der Gaseingang mit einem zu kühlenden Raum entweder direkt oder mit einem zu kühlenden Bereich über einen Wärmetauscher verbunden, und ist der Wärmetauscher 60 beziehungsweise die Sekundärseite 63, 64 des Wärmetauschers mit einer Wärmesenke 80 verbunden, wie beispielsweise einem Ventilator auf dem Dach eines Gebäudes oder einem Ventilator außerhalb eines zu kühlenden Bereichs.

Wenn die Gaskältemaschine dagegen zum Heizen eines Gebäudes beziehungsweise eines zu heizenden Bereichs eingesetzt wird, ist die Sekundärseite 63, 64 des Wärmetauschers mit zum Beispiel einer Fußbodenheizung (FBH) verbunden, oder mit einem beliebigen Heizkreislauf, der auch über andere Heizmöglichkeiten als Fußbodenheizungen verfügen kann. Der Gaseingang 2 ist in diesem Fall mit einer Quelle für warmes Gas verbunden, wenn ein direktes System eingesetzt wird, oder mit einem Wärmetauscher, der auf seiner Primärseite mit einer Wärmequelle verbunden ist, und dessen Sekundärseite der Gaseingang 2 und der Gasausgang 5 bilden. Insbesondere ist der Sekundäreingang dieses in Fig. 1 nicht gezeigten Wärmetauschers der Gaseinlass 2 und ist der Sekundärausgang der Gasausgang 5 dieses in Fig. 1 nicht gezeigten Wärmetauschers.

Nachfolgend werden Bezug nehmend auf Fig. 2a besonders bevorzugte Ausführungsformen für den konstruktiven Aufbau der Gaskältemaschine dargelegt.

Bei einer Implementierung ist, wie es in Fig. 2a gezeigt ist, der Kompressor 40 in Betriebsrichtung der Gaskältemaschine oberhalb der Turbine 70 angeordnet. Dies hat den Vorteil, dass warme Luft in einem zu kühlenden Bereich von oben nach unten angesaugt werden kann und kalte Luft in einen zu kühlenden Bereich nach unten ausgegeben wird. Damit wird beispielsweise der physikalischen Eigenschaft Rechnung getragen, dass sich kalte Luft e- her am Boden beziehungsweise im unteren Bereich eines Raums ansammelt und warme Luft oben in dem Raum.

Darüber hinaus umfasst der Kompressor bei dem in Fig. 2a gezeigten Ausführungsbeispiel ein Kompressorrad, und umfasst die Turbine ebenfalls ein Turbinenrad 70a. Vorzugsweise sind beide Räder auf ein und derselben Achse 43 angeordnet. Ferner ist an der Achse 43 ein Rotor 44 eines Antriebsmotors angeordnet, um die zusätzliche Antriebskraft, die über die durch die Turbine erreichte Antriebskraft hinaus noch benötigt wird, zu liefern. Der Rotor 44 kooperiert dabei mit dem Stator eines Antriebsmotors, welcher in Fig. 2a nicht dargestellt ist.

Ferner ist, wie es in Fig. 2a gezeigt ist, der Rotor 44 vorzugsweise zwischen dem Kompressorrad und dem Turbinenrad 70a angeordnet.

Vorzugsweise ist der Rekuperator in einem äußeren Bereich eines Volumens der Gaskältemaschine angeordnet, so dass im inneren Bereich des Rekuperators der Ansaugbereich 30, der mit dem Kompressoreingang 41 verbunden ist, angeordnet werden kann. Dann wird von allen Seiten Luft angesaugt, wie es in Fig. 2a gezeigt ist, in deren schematischer Querschnittsdarstellung der Lufteinlass 2 sowohl links als auch rechts im Bild gezeigt ist. Der Rekuperator 10 umfasst also eine Volumenform, die einen mittleren Bereich mit einer zentralen Öffnung aufweist, die den Ansaugbereich 30 bildet, wobei sich die Ansaugwand von einem ersten Ende zu einem zweiten Ende erstreckt, wobei das zweite Ende mit einer Abdeckung 32 abgedeckt ist. Von oben fließt daher keine Luft beziehungsweise kein Gas in den Ansaugbereich, sondern lediglich von der Seite durch den Primärbereich des Rekuperators. Die Aufweitung vom ersten Ende beim Kompressoreingang 41 zum zweiten Ende mit der Abdeckplatte 32 ist eine kontinuierliche Aufweitung mit einer etwa parabelfömig beziehungsweise hyperbelartigen Form, die dazu da ist, um optimale Strömungsverläufe innerhalb des Ansaugbereichs sicherzustellen, um soweit als möglich eine laminare Strömung, die den geringsten Strömungswiderstand bildet, im Ansaugbereich von oben nach unten sicherzustellen. Der etwas größere Strömungswiderstand durch längere Gaskanäle in dem Rekuperator näher am Kompressoreingang 41 wird durch etwas kürzere Gaskanäle weiter weg vom Kompressoreingang 41 kompensiert, so dass sich für den gesamten Bereich von unten nach oben entlang des Ansaugbereichs nahezu gleiche Verhältnisse für den Strömungswiderstand ergeben, so dass der Rekuperator in seinem gesamten Volumen gleich effizient durchströmt wird. Vorzugsweise ist der Rekuperator 10 rotationssymmetrisch, und eine Symmetrieachse des Rekuperators 10 fällt mit einer Achse des Kompressors oder einer Achse der Turbine oder einer Achse des Ansaugbereichs und/oder mit einer Achse des Gehäuses zusammen.

Bei einem Ausführungsbeispiel ist der Rekuperator als Gegenstrom-Wärmetauscher ausgebildet, was in der schematischen Darstellung in Fig. 4a als ein Aspekt angedeutet ist. Bei dem Beispiel in Fig. 4a, das zum Beispiel die „linke Hälfte“ oder „rechte Hälfte“ des Rekuperators von Fig. 2a darstellt, existieren erste Gaskanäle 15 vom ersten Rekuperatoreingang 11 zum ersten Rekuperatorausgang 12. Darüber hinaus existieren zweite Gaskanäle 16, die sich zwischen einem ersten Sammlungsraum 17 links in Fig. 4a und zwischen einem zweiten Sammlungsraum 18 rechts in Fig. 4a erstrecken. Die zweiten Gaskanäle 16 stehen in thermischer Wechselwirkung mit den ersten Gaskanälen 15. Je nach Implementierung, also wie die Sekundärseite des Rekuperators belegt wird, ist die Strömungsrichtung in den Gaskanälen 16 in der gleichen Richtung wie die Strömung in den Gaskanälen 15. Dann ist der linke Anschluss links unten in Fig. 4a der zweite Rekuperatoreingang 13 und ist der rechte Anschluss der Rekuperatorausgang 14. Soll der Rekuperator dagegen im Gegenstrom betrieben werden, was bevorzugt wird, wobei die Strömungsrichtung in den Strömungskanälen 15 und 16 entgegengesetzt zueinander ist, so ist der Eingang links in Fig. 4a der zweite Rekuperatorausgang 14 und ist der Anschluss rechts in Fig. 4a der zweite Rekuperatoreingang 13.

Über Material des Rekuperators, das zwischen den Gaskanälen 15 beziehungsweise 16 angeordnet ist, also zwischen einem Gaskanal 15 und einem korrespondierenden Gaskanal 16, findet die thermische Wechselwirkung statt, also die Anwärmung des angesaugten warmen Gases auf Kosten der Abkühlung des im Sekundärbereich des Rekuperators strömenden Gases, das zur Turbine zur Relaxation gebracht wird.

Der Rekuperator umfasst den Sammlungsraum 17, um über den linken Anschluss 4 zugeführtes Gas von unten nach oben bei dem in Fig. 4a gezeigten Ausführungsbeispiel in die verschiedenen Gaskanäle zu verteilen. Entsprechend wird auf der anderen Seite durch den zweiten Sammlungsraum 18 Gas, das die Kanäle durchströmt hat, gesammelt und über den zweiten Anschluss abgezogen. Ist die Belegung dagegen unterschiedlich, also im echten Gegenstrom, so stellt der Sammlungsraum 18 die Aufteilung des Gases in die einzelnen Gaskanäle 16 sicher und bewirkt der Sammlungsraum 17 die Sammlung des von den einzelnen Kanälen ausgegebenen Gases zum Zwecke der Absaugung durch den unteren Anschluss aufgrund der Turbinenrelaxationswirkung.

Bei dem bevorzugten Ausführungsbeispiel ist das Gehäuse, in dem die kompakte Gaskältemaschine angeordnet ist, rotationssymmetrisch beziehungsweise zylinderförmig und hat einen Durchmesser zwischen 0,5 und 1 ,5 Metern und eine Höhe zwischen 1 ,0 und 2,5 Metern. Insbesondere werden Größen mit einem Durchmesser zwischen 70 und 90 und insbesondere 80 Zentimetern bevorzugt, und wird eine Höhe zwischen 170 und 190 und vorzugsweise von 180 cm bevorzugt, um eine bereits signifikante Kühlung für beispielsweise einen Rechnerraum zu schaffen, die vorzugsweise als direkte Luftkühlung implementiert ist. Ferner ist ebenfalls um eine optimale Strömungsverteilung sicherzustellen, eine Aufweitung vom Turbinenausgang 72 bis zum Gasauslass 5 vorgesehen, die ebenfalls in einer Parabel- beziehungsweise Hyperbel-Form verläuft, so dass eine günstige Anpassung der Strömungsverhältnisse von der hohen Geschwindigkeit am Turbinenauslass 72 zu einer angepassten reduzierteren Geschwindigkeit am Luftauslass 5 erreicht wird, damit keine zu starken Geräusche durch die Kühlung erzeugt werden.

Vorzugsweise hat das Gehäuse eine längliche Form, und ist der Gaseinlass durch eine Vielzahl von Perforierungen in einem bezüglich der Betriebsrichtung der Gaskältemaschine oberen Bereich des Gehäuses oder einer Wand des Gehäuses ausgebildet. Darüber hinaus ist der Gasauslass durch eine Öffnung in einem unteren Bereich beziehungsweise im Boden des Gehäuses ausgebildet, wobei die Öffnung im Boden des Bereichs wenigstens 50% einer Querschnittsfläche des Gehäuses in dem oberen Bereich, also im Lufteinlass, entspricht Durch eine möglichst große Öffnung des Gasauslasses werden niedrige Luftgeschwindigkeiten am Gasauslass und damit ein angenehmes Geräuschverhalten und auch ein angenehmes „Zug“-Verhalten in dem Raum mit einem lediglich geringen Luftbewegungsvorkommen erreicht.

Vorzugsweise ist der Kompressor 40 angeordnet, um eine Luftbewegung im Ansaugbereich, in der Betriebsrichtung der Gaskältemaschine, von oben nach unten zu erreichen. Der Kompressor 40 führt dann zu einer Umlenkung des Stroms von unten nach oben, wobei hier ein Leitraum 45 des Kompressors günstig eingesetzt wird, der bereits inhärent eine 90°-Umlenkung am Übergang vom Kompressorrad zum Leitraum 45 erreicht. Die nächsten 90° werden dann erreicht, indem das Gas, das komprimiert worden ist, am Ausgang des Leitraums von unten nach oben über den Wärmetauschereingang 61 , der gleichzeitig der Kompressorausgang 42 ist, eingespeist wird. In dem zweiten Wärmetauscher bewegt sich das Gas dann von außen nach innen, zu dem Wärmetauscherausgang 62 hin, der mit dem Eingang 13 des Rekuperators zusammenfällt. Das Gas bewegt sich dann über Sammlungsbereiche, wie sie anhand von Fig. 4a dargestellt worden sind, zunächst im Rekuperator von unten nach oben und dann am Ausgang der entsprechenden Gaskanäle von oben nach unten, um dann schließlich am zweiten Rekuperatorausgang 14 in den Turbineneingang 71 einzutreten. Der Turbineneingang 71 ist, wieder strömungsmäßig optimal, in dem äußeren Bereich, also außerhalb des Wärmetauschers mit dem zweiten Rekuperatorausgang verbunden, so dass so wenig Gasumlenkungen als möglich erreicht werden, damit das Gas, ohne signifikante Verluste zu erleiden, in die Turbine 70 eintreten kann, in der Turbine relaxiert, die Turbine entsprechend antreibt und durch den Relaxationsprozess an Wärme verliert.

Bei dem bevorzugten Ausführungsbeispiel in Fig. 2a oder 2b ist der Turbinenausgang unten am Gehäuse angeordnet. Damit kann die Gaskältemaschine auf einen Kühlungseinlassbereich in einem „doppelten“ Boden eines Rechenzentrums aufgesetzt werden. Von diese Kühlungseinlassbereich erstrecken sich Luftkanäle in die zu kühlende Bereich, wie z. B. Rechnerracks. Die Gaskältemaschine stellt somit eine kompakte Maßnahme dar, um kalte Luft in eine bestehende Infrastruktur aus doppeltem Boden oder im Boden verlaufenden Luftkanälen, die vom (zentralen) Kühlungseinlass abgehen, einzuspeisen.

Die Anordnung des Turbinenausgangs unten an der Gaskältemaschine ist ferner dahingehend vorteilhaft, dass kondensierte Feuchte vom Gerät weg nach unten aufgrund der Schwerkraft fällt und einfach aufgefangen und abgeleitet werden kann, ohne dass der Motor aufwändig vor der Feuchte geschützt zu werden braucht.

Fig. 4b zeigt eine schematische Draufsicht auf einen bevorzugten Rekuperator 10 mit Sammlungsräumen auf der Sekundärseite. Die Draufsicht auf Fig. 2a oder 2b ist schematisch. Bei dem Ausführungsbeispiel ist die Gaskältemaschine durch einen geschlossenen Deckel nach oben komplet geschlossen. Fig. 4b zeigt allerdings die Situation, wenn der Deckel durchsichtig ist. In der Mitte ist der Ansaugbereich 30 gezeigt, der durch die Ansaugwand 31 begrenzt wird. Um den Ansaugbereich30 erstreckt sich zum einen die Begrenzung 18a für den inneren Sammlungsraum 18 und die Begrenzung 17a für den äußeren Sammlungsraum 17. Der Glasfluss findet von außen nach innen, wie es durch die Pfeile 50 dargestellt ist, nämlich vom ersten Rekuperatoreingang 11 zum ersten Rekuperatorausgang 12. Dann fließt das Gas im Ansaugbereich 30 nach unten, wie es durch die Pfeilenden 51 im Bereich 30 gezeigt ist. Das Gas wird dann komprimiert und fließt durch den Wärmetauscher 60, um in den zweiten Rekuperatoreingang 13 zu fließen. Von dort fließt es von unten nach oben, wie es durch die Pfeilspitzen im Sammlungsraum 18 gezeigt ist. Durch den Rekuperator fließt das Gas dann wieder nach außen in den Sammlungsraum 17 und dort nach unten, wie es durch die Pfeilenden 53 dargestellt ist. Aus dem Sammlungsraum

17 gelangt das Gas dann über den 2. Rekuperatorausgang 14 in den Turbineneingang 71.

Es sei darauf hingewiesen, dass die Strömungsrichtungen je nach Implementierung auch anders ausgeführt werden können, solange im Rekuperator 10 die Leitungen 15 einerseits und 16 andererseits voneinander getrennt sind, damit im wesentlichen kein Kurzschluss der Gasströme stattfindet. Genauso sind die Sammlungsräume 17, 18 von den Leitungen 15 getrennt. Die Sammlungsräume 17, 18 sind bei dem gezeigten Ausführungsbeispiel den Leitungen 16 zugeordnet, die den zweiten Rekuperatoreingang 3 mit dem zweiten Rekuperatorausgang 14 verbinden. Alternativ kann die Implementierung auch so sein, dass die Sammlungsräume dem ersten Rekuperatoreingang und dem ersten Rekuperatorausgang zugeordnet sind und der zweite Eingang und der zweite Rekuperatorausgang von den Sammlungsräumen gasmäßig isoliert ist.

Vorzugsweise hat der Wärmetauscher 60 ein scheibenförmiges Volumen, und der Wärme- tauschereingang befindet sich außen an dem scheibenförmigen Volumen und der Wärmetauscherausgang innen an dem scheibenförmigen Volumen. Ferner ist der Wärmetauschereingang vorzugsweise unten an dem Wärmetauscher angeordnet und ist der Wärmetauscherausgang oben an dem scheibenförmigen Volumen angeordnet. Bei anderen Ausführungsbeispielen wird es bevorzugt, den Wärmetauscher im Querschnitt keilförmig auszubil- den, wobei ein Querschnit des Wärmetauschereingangs 61 größer als ein Querschnit des

Wärmetauscherausgangs 62 ausgebildet ist Dadurch ergibt sich ein vorzugsweise rotationsymmetrischer Wärmetauscher, der gewissermaßen ringförmig wie in Fig. 2a ausgebildet ist, aber dessen äußere Begrenzung des Ringquerschnits in Fig. 2b größer als die innere Begrenzung ist, wobei der Wärmetauscher ferner beispielsweise auch nicht horizontal wie in Fig. 2a angeordnet sein muss, sondern schräg von unten nach oben angeordnet sein kann.

Fig. 4c zeigt einen Ausschnit einer Seite dieser Implementierung bezogen auf den Rekuperator 10 und den Kompressor 40 und die Turbine 70 von Fig. 2a oder 2b. Lediglich eine schematische Darstellung einer Seite des Querschnitts ist gezeigt, wobei der größere Eingang 61 und der kleinere Ausgang 62 in der Querschnittsdarstellung zu sehen sind, und wobei ferner der Gasfluss vom Ausgang 62 in den Sammlungsbereich 18, durch den Rekuperator 10 in den Sammlungsbereich 17 und von dort vorbei am Wärmetauscher 60 in den Turbineneingang veranschaulicht ist.

In der Sekundärseite des Wärmetauschers, deren Eingang die Leitung 63 und deren Ausgang die Leitung 64 darstellt, fließt vorzugsweise eine Flüssigkeit, wie beispielsweise ein Wasser-ZGlykol-Gemisch, das die Abwärme zur Wärmesenke 80 trägt. Das in der Wärmesenke 80, welche beispielsweise als Flüssigkeit-ZLuft-Wärmetauscher mit Ventilator auf einem Dach ausgebildet sein kann, abgekühlte Medium wird durch die Pumpe 90 wieder in den Eingang 63 der Sekundärseite des Wärmetauschers 60 eingespeist, wie es auch in Fig. 3 dargestellt ist. Daher befinden sich in dem Wärmetauscher 40 in dem von dem gas- durchströmten Bereich vorzugsweise spiralförmige Flüssigkeitsleitungen, um möglichst effizient Wärme von dem Gas zu entfernen und abzuführen.

Vorzugsweise erstreckt sich der Ansaugbereich um eine Distanz größer als10 cm und vorzugsweise größer als 60 cm von dem Kompressoreingang weg. Ferner sind die Gaskanäle so angeordnet, dass sie auf allen Seiten im Wesentlichen gleichmäßig über das Volumen verteilt sind und damit möglichst effizient möglichst viel Luft mit geringem Widerstand in den Ansaugbereich führen können.

Fig. 3 zeigt ein Diagramm, das die verschiedenen Verhältnisse der Geschwindigkeit c, der Temperatur T, des Volumens V und des Drucks p darstellt. Darüber hinaus sind auch die Wärmeleistung Q und die elektrische Leistung P jeweils in kW dargestellt.

Es wird angenommen, dass Luft beispielsweise mit einem Druck von 1 ,0 bar und einer Temperatur T src von 25°C in den Rekuperatoreingang 11 eintrit. Dort gelangt die Luft mit einer Geschwindigkeit von etwa 5 Metern pro Sekunde in den Ansaugbereich, wobei die Verhältnisse oben im Ansaugbereich gezeigt sind. Durch die thermische Wechselwirkung im Rekuperator wird diese Luft von 25°C auf 38,5°C angewärmt, wobei lediglich ein minimaler Druckabfall statfindet. Durch das Ansaugen im Ansaugbereich erhöht sich die Geschwindigkeit von einer Geschwindigkeit von 5 m/s auf etwa 109 m/s, was mit einer dezenten Temperaturreduktion von 38°C auf 32°C und einer kleinen Druckreduktion einhergeht. Durch die Kompressorwirkung wird die Luft dann jedoch auf eine Temperatur von 56°C und einen leicht höheren Druck von 1 ,2 bar gebracht, wobei zusätzlich noch eine Geschwindigkeitserhöhung stattfindet. Diese hohe Geschwindigkeit wird im Wärmetauscher auf eine Geschwindigkeit von etwa 15 m/s abgebaut, und die Temperatur wird durch die Wirkung des Wärmetauschers von 56°C auf etwa 40°C reduziert. Durch die Wirkung des Rekuperators wird diese Temperatur am Sekundäreingang 13 des Rekuperators auf eine Temperatur von etwa 16°C am T urbineneingang reduziert. Am Ausgang der T urbine findet aufgrund der Relaxation eine Temperaturreduktion auf -1 ,78°C statt, wobei sich die Geschwindigkeit am Eingang der T urbine von 150 m/s auf 117 m/s reduziert, wobei diese Geschwindigkeit dann bis zum Luftauslass hin auf etwa 5 m/s fällt, was mit einer Temperaturerhöhung auf etwa 5,0°C einhergeht. Diese Luft liefert im Vergleich zur eingangsseitigen Lufttemperatur von 25°C eine Kühlung, die je nach Anforderung erhöht oder reduziert werden kann, indem der Kompressor schneller oder langsamer gedreht wird. Auf Ausgangsseite, also bezüglich des Wärmetauschers, sind die Verhältnisse ebenfalls dargestellt. Es wird Flüssigkeit mit einer Temperatur von 55°C ausgekoppelt, wobei die Flüssigkeitsmischung, also die Glykol-ZWas- ser-Mischung durch den Lüfter in der Wärmesenke 80 auf beispielsweise 37,9°C reduziert wird und entsprechend in den Sekundäreingang 63 des Wärmetauschers zurückgeführt wird.

Bei einem Verfahren zum Betreiben der Gaskältemaschine gemäß der vorliegenden Erfindung wird die Gaskältemaschine so betrieben, dass die Ansaugung durch den speziell in den Rekuperator hineinragenden Ansaugbereich 30 erreicht wird.

Bei einem Verfahren zum Herstellen der Gaskältemaschine werden die einzelnen Elemente dahin gehend ausgebildet und angeordnet, dass die spezielle bevorzugte Anordnung des Ansaugbereichs im Volumen des Rekuperators erreicht wird.

Obgleich es nicht in den Fig. 1 bis 6 dargestellt ist, kann der Rekuperator auch mit anderen Wärmetauschertechnologien implementiert sein, also mit einem Wärmetauscher, der zum Beispiel nicht im Gegenstrom arbeitet, und bei dem die Gaskanäle nicht zueinander parallel sind bzw. senkrecht zur Gehäuserichtung bzw. in einer waagrechten Betriebsrichtung angeordnet sind.

Auch der Kompressor und die T urbine müssen nicht unbedingt auf ein und derselben Achse angeordnet werden, sondern es können andere Maßnahmen getroffen werden, um die durch die Turbine freigesetzte Energie für den Antrieb des Kompressors einzusetzen. Darüber hinaus muss der Wärmetauscher nicht unbedingt in dem Gehäuse zwischen dem Rekuperator und der Turbine bzw. zwischen dem Rekuperator und dem Kompressor angeordnet sein. Der Wärmetauscher könnte auch extern angeschlossen werden, obgleich eine im Gehäuse angeordnete Anordnung für einen kompakten Aufbau bevorzugt wird.

Darüber hinaus müssen der Kompressor und die Turbine nicht unbedingt als Radialräder implementiert sein, obgleich dies bevorzugt wird, da durch eine stufenlose Drehzahlsteuerung des Kompressors über die Elektronikbaugruppe 102 von Fig. 2a eine günstige Leistungsanpassung erreicht werden kann.

Je nach Ausführungsform kann der Kompressor wie in Fig. 2a gezeigt als Turbokompressor mit Radialrad und mit einem Leitweg bzw. Leitraum 45 ausgebildet sein, welcher eine 180°- Umlenkung des Gasstroms erreicht. Es können jedoch auch andere Gasleitungsmaßnahmen über eine andere Formung des Leitraums, beispielsweise oder über eine andere Formung des Radialrads erreicht werden, um dennoch einen besonders effizienten Aufbau, der zu einem guten Wirkungsgrad führt, zu erreichen.

Besonders wird auf den außerordentlich hohen Wirkungsgrad e in Höhe von 4,24 hingewiesen, der sich zum Beispiel bei den entsprechenden noch moderaten Drehzahlen von 285,8 Umdrehungen pro Sekunde in Fig. 3 ergibt.

Darüber hinaus wird auf den besonders günstigen Temperaturhub hingewiesen, der sich ergibt, obgleich eine Temperatur von 25 °C eingespeist wird. Trotz dieser relativ hohen Temperatur wird eine niedrige Temperatur nahe dem Gefrierpunkt erreicht, bei einer immer noch moderaten Drehzahl des Kompressors. Darüber hinaus sind auch die Temperaturanforderungen auf Sekundärseite unkritisch. Obgleich ein relativ warmes Wasser/Glykol-Ge- misch mit 37,9°C eingespeist wird, kann dennoch eine Wärmeabfuhr erreicht werden, die zu einem erwärmten Wasser/Glykol-Gemisch auf etwa 55°C führt. Dies bedeutet, dass auch in sehr heißen Klimazonen noch eine sichere Wärmeabfuhr über einen Außenbe- reichs-Dissipator erreicht werden kann.

Fig. 7a zeigt eine perspektivische Ansicht einer bevorzugten Kompressor-Turbinen-Kombi- nation und Fig. 7b zeigt eine Seitenansicht der bevorzugten Kompressor-Turbinen-Kombi- nation aus Fig. 7a. Die Kombination ist vorzugsweise als monolithische Einheit oder einstückig aus demselben Material ausgeführt. Sie umfasst einen oberen oder ersten Lagerbereich 40b, an dem das Kompressorrad 40a angebracht ist. Das Kompressorrad 40a geht in einen ersten Zwischenbereich 43a über, der auch als Achse 43 dargestellt ist. Dieser Achsenbereich 43a geht wiederum in den Rotor 44 über, der wiederum in einen weiteren Zwischenbereich 43b übergeht. An diesen schließt sich das Turbinenrad 70a an, das über einen unteren Lagerabschnit 70b aufhängbar ist. Die Aufhängungen für die Lagerbereiche sind für den ersten Lagerbereich 40b an der Wand des Ansaugbereichs 30 von Fig. 2a oder Fig. 2b angebracht und der Lagerbereich 70b für das Turbinenrad 70a ist an einer Aufhängung im Turbinenausgang 72 befestigt. Als Lager werden vorzugsweise Wälz- oder Kugellager eingesetzt

Bei bevorzugten Ausführungsbeispielen ist die Kombination aus einem Material wie z. B. Aluminium oder Kunststoff ausgebildet, wobei der Rotor 44 von einem ferromagnetischen Rückschlussring umgeben ist, auf dem die Magnete beispielsweise durch Klebstoff befestigt sind, um mit einem in Fig. 7a oder Fig. 7b nicht gezeigten Stator einen Motorspalt zu bilden.

Wie es ferner in Fig. 7b gezeigt ist, ist die Kombination so dimensioniert, dass der Durchmesser des Kompressorrads 40a größer als der Durchmesser des Rotors 44 ist, und dass der Durchmesser des Rotors 44 (vorzugsweise ohne Rückschluss 44a und Magnete 44b) gleich oder größer als der Durchmesser des T urbinenrads 70a ist. Damit ist eine einfachere Zusammenbaubarkeit erreicht, weil die Gaskältemaschine mit der Kombination in Fig. 7a oder 7b bezüglich Fig. 2a oder 2b vorzugsweise von unten nach oben zusammengebaut werden kann. Außerdem ist es möglich, einen Rückschlussring 44a über das Turbinenrad 70a zu schieben und an dem Rotor 44 an seinem Umfang zu befestigen. Der Zusammenbau findet vorzugsweise von unten nach oben statt, indem das Element mit dem Turbinenausgang 71 als Basis dient, auf das die innere Begrenzung des Rekuperatorausgangs 14 gesetzt wird. Auf diese wird dann die Kombination aus Turbinenrad 70a und Kompressorrad aufgesetzt und in die Lagerhalterung für den unteren Lagerabschnitt 70b eingesetzt. Dann kann ohne weiteres der Ansaugbereich 30 samt Leitraum 45 und der Wärmetauscher 60 und der darüber angeordnete Rekuperator 10 montiert werden, indem die obere Lagerhalterung auf den vorstehenden Lagerabschnitt 40b aufgesetzt wird.

Fig. 2b zeigt eine Schnittdarstellung einer voll integrierten Gaskältemaschine gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung mit alternativer Anordnung der Elektronikbaugruppe 102 bezüglich Fig. 2a. Während die Elektronikbaugruppe in Fig. 2a im kühlen Bereich neben dem Turbinenausgang montiert ist, ist sie in Fig. 2b im sogenannten „Maschinenraum“ zwischen der Basis des Kompressorrads 40a aus Fig. 7b und der Basis des Turbinenrads 70a angeordnet. Insbesondere die Anordnung der Baugruppe 102 auf der oberen Begrenzung 71a des Turbineneingangs 71 ist vorteilhaft, weil dieser Bereich aufgrund des von dem Wärmetauscher kommenden Gases, das bei dem Szenario in Fig. 3 lediglich 27 oder 16 0 Celsius hat, gut gekühlt ist. Eine Motorverlustwärme oder eine Abwärme der Elektronik bzw. Sensorik in der Baugruppe wird daher ohne weiteres über die Turbine 70 abgeführt.

Vorzugsweise hat die Elektronikbaugruppe 102 zur elektrischen Versorgung der Gaskältemaschine mit Energie und/oder Steuersignalen in der Mite eine Öffnung und ist scheibenförmig und erstreckt sich um einen Stator eines Antriebsmotors für den Kompressor 40 herum oder ist mit dem Stator integriert ausgebildet, und ist ferner beispielhaft in einem Bereich zwischen einer Basis eines Kompressorrads 40a des Kompressors 40 und einer Basis eines Turbinenrads 70a der Turbine angeordnet.

Obgleich in Fig. 2b eine ringförmige Baugruppe im Querschnitt gezeigt ist, kann die Baugruppe irgendwie gebildet sein, solange sie im Maschinenraum aufgenommen ist und mit dem der Begrenzung 71a des Eingangs 71 der Turbine 70 In thermischer Wechselwirkung steht, also z. B. auf der Begrenzung 71a befestigt ist. Dabei wird es ferner bevorzugt, die Zuleitung für Energie 101a und Daten 101 b für den Motor durch die seitliche Begrenzung 14a des Rekuperatorausgangs 14 und durch das Gehäuse 100 an der entsprechenden Stelle zu führen, wie es z. B. in Fig. 2b gezeigt ist.

Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar. Einige oder alle der Verfahrensschritte können durch einen Hardware-Apparat (oder unter Verwendung eines Hardware-Apparats), wie zum Beispiel einen Mikroprozessor, einen programmierbaren Computer oder eine elektronische Schaltung ausgeführt werden. Bei einigen Ausführungsbeispielen können einige oder mehrere der wichtigsten Verfahrensschritte durch einen solchen Apparat ausgeführt werden.