Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HEAT EXCHANGER WITH IONIZED FLUIDS FOR REFRIGERATION OR HEAT PUMP SYSTEM OR ENERGY TRANSFORMATION
Document Type and Number:
WIPO Patent Application WO/2017/187231
Kind Code:
A1
Abstract:
The invention is a heat exchanger system with ionized fluids technically characterized by an electrical source of power; ionization chambers and ions accelerators; electrically charged nozzles; electrically charged heat exchanger which is enclosed in a vacuum chamber; ionized fluids; electrically charged diffusers; turbines; magneto 5 hydrodynamic generator; heat source; pumps, electronic control circuit; and when they are put together can become a refrigeration or heat pump system and allow heat transfer mainly by radiation and can produce mechanical energy and electricity. The two ionized fluids flowing into the electrically charged heat exchanger have different temperatures. Heat transfer will occur mainly in the form of radiation. But 10 radiation is not so effective in transferring heat. Thus the area has to be important and this is why the walls have been electrically charged in part and shaped in a way that an important area can be squeezed in a relatively low volume. Thanks to this approach, enough power can be transferred through the heat exchanger. This can be compared to the human lung architecture; when the lung is unfolded it will cover a 15 large area but still can fit in the human body.

Inventors:
MBODJ PAPA ABDOULAYE (US)
Application Number:
PCT/IB2016/052397
Publication Date:
November 02, 2017
Filing Date:
April 27, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MBODJ PAPA ABDOULAYE (SN)
International Classes:
F02C1/10; H02K44/28; F21V29/63; F25B21/00; F28D7/00; F28D15/00; F28F13/16; H02K44/08; F28D20/00
Foreign References:
DE202014000176U12014-02-10
US20090021010A12009-01-22
EP2234253A22010-09-29
US3373299A1968-03-12
FR1519536A1968-04-05
US5086234A1992-02-04
GB1131584A1968-10-23
US5633541A1997-05-27
US20040104018A12004-06-03
Other References:
None
Download PDF:
Claims:
CLAIMS

1 . Heat exchanger with ionized fluids for refrigeration or heat pump system or energy transformation characterized by: two ionization chambers and ions accelerators, placed at the inlets of a heat exchanger, receive energy from an external source and produce a flow of ionized fluids using an electrical field and electrons; the ionized fluids, having the same charge, go through electrically charged nozzles which have also the same charge before entering the heat exchanger which has electrically charged walls and has two inlets and two outlets; the heat exchanger is enclosed in a vacuum chamber having thermal insulation in the outside; the electrically charged walls and the ionized fluids have the same charge and heat transfer happen between the two ionized flows in the electrically charged heat exchanger by radiation mainly.

2. Heat exchanger with ionized fluids for refrigeration or heat pump system or energy transformation with respect to claim 1 characterized by two electrically charge heat exchangers are connected to heat sources; diffusers, turbines and magneto hydrodynamic generators are placed at the outlets of the electrically charged heat exchangers; the turbines and magneto hydrodynamic generators produce mechanical energy and electricity that are used to power the electrical source, used for the ionized flows, and an external system.

Description:
Heat exchanger with ionized fluids for refrigeration or heat pump system or energy transformation.

The invention is a heat exchanger system with ionized fluids technically characterized by an electrical source of power; ionization chambers and ions accelerators; electrically charged nozzles; electrically charged heat exchanger which is enclosed in a vacuum chamber; ionized fluids; electrically charged diffusers; turbines; magneto hydrodynamic generator; heat source; pumps, electronic control circuit; and when they are put together can become a refrigeration or heat pump system and allow heat transfer mainly by radiation and can produce mechanical energy and electricity.

The existing heat exchanger systems used for refrigeration or heat pump system or energy transformation have technical problems which are, between many others:

The significant pressure drop that happened when there is a flow;

The actual coefficient of performance which is very low compared to the theoretical maximum coefficient of performance derived from the Carnot formula.

PREVIOUS STATE OF ART The examination of existing refrigeration or heat pump systems has not showed any refrigeration or heat pump system that can solve the problems mentioned previously as the invention:

Heat exchanger with ionized fluids for refrigeration or heat pump system or energy transformation. DESCRIPTION

Heat exchanger with ionized fluids for refrigeration or heat pump system or energy transformation can allow heat transfer with a great efficiency by reducing the pressure drop due to friction and the heat losses.

DESCRIPTION OF THE DRAWINGS

The first drawing represents the diagram of the system. The 1 corresponds to the electrical power source. The 2 corresponds to an ionization chamber and ion accelerator. The 3 corresponds to an electrically charged nozzle. The 4 corresponds to an electrically charged heat exchanger enclosed in a vacuum chamber. The 5 corresponds to an ionization chamber and ion accelerator. The 6 corresponds to an electrically charged nozzle. The 7 corresponds to deionization chamber. The 8 corresponds to a conventional heat exchanger.

The second drawing represents the electrically charged heat exchanger enclosed in a vacuum chamber. The 1 corresponds to the duct inlet of one of the ionized fluid. The 2 corresponds to the outlet. The 3 and 4 correspond to the thin wall of the duct.

The third drawing represents the electrically charged heat exchanger enclosed in a vacuum chamber. The 1 corresponds to the duct inlet of one of the ionized fluid. The 2 corresponds to the outlet. The 3 corresponds to the duct inlet of the other ionized fluid. The 4 corresponds to the outlet.

The fourth drawing represents the electrically charged heat exchanger enclosed in a vacuum chamber. The 1 corresponds to the duct inlet of one of the ionized fluid. The 2 corresponds to the outlet. The 3 corresponds to the duct inlet of the other ionized fluid. The 4 corresponds to the outlet.

The fifth drawing represents the diagram of the system for energy transformation. The 1 corresponds to the electrical power source. The 2 corresponds to an ionization chamber and ion accelerator. The 3 corresponds to an electrically charged nozzle. The 4 corresponds to an electrically charged heat exchanger enclosed in a vacuum chamber. The 5 corresponds to an ionization chamber and ion accelerator. The 6 corresponds to an electrically charged nozzle. The 7 corresponds to deionization chamber. The 8 corresponds to a conventional heat exchanger. The 9 corresponds to an electrically charged diffuser and a turbine. The 10 corresponds to a magneto hydrodynamic generator. The 1 1 corresponds to a heat source. The 12 corresponds to an electrically charged heat exchanger like 4 but in that case heat is rejected and send back to 1 1 , the heat source.

DESCRIPTION OF THE INVENTION

The ionization chamber and ion accelerator represent together an ion thruster. Ions are created and accelerated by an electrical field. They are connected to an electrical source. The nozzle is electrically charged and is made in metal. It has the same charge as the ions.

The heat exchanger is made of two ducts that have thin walls and have the same charge as the ions. The ducts are flexible and made of a material that can conduct electricity. They are enclosed in a vacuum chamber and a great amount of area is squeezed into a small volume. The external part of the vacuum chamber is insulated from the surrounding with a thermal insulator.

In the case of energy transformation, a diffuser which electrically charged and made of metal, is placed at the exit of one of the outlet and in front of turbines. The diffuser will increase the pressure and temperature as the flow speed is reduced by increasing the frontal area. The turbines are not electrically charged. They are made of steel. They are enclosed in a duct made of metal that has the same charge as the 75 ions in the circuit to reduce friction losses. The electronic control unit is controlling the energy produced and the external power source.

WORKING PRINCIPLE

Initially the ionized chamber produces ions and those ions are accelerated by an so electrical field thanks to the external electrical source. Those ions go through a

nozzle that has the same charge and that will lower the temperature. Particles having the same charge tend to repel each other thus the ions and the walls won't be in contact, reducing the friction. The same approach is applied to the electrically charged heat exchanger. Because the walls has the same charge they will tend to 85 repel each other creating a small gap. The ions will flow through that small gap from the nozzle.

The two ionized fluids flowing into the electrically charged heat exchanger have different temperatures. Heat transfer will occur mainly in the form of radiation. But radiation is not so effective in transferring heat. Thus the area has to be important 90 and this is why the walls have been electrically charged in part and shaped in a way that an important area can be squeezed in a relatively low volume. Thanks to this approach, enough power can be transferred through the heat exchanger. This can be compared to the human lung architecture; when the lung is unfolded it will cover a large area but still can fit in the human body.

95 The second ionized flow going out of an electrically charged heat exchanger is

deionized and send to a conventional heat exchanger where heat is regain from a heat source or removed. Heat source can be produced from the combustion of a fuel or from thermal solar power. The heat removed by the second heat exchanger can be send again to the first heat exchanger (heat regeneration) by preheating the loo deionized flow before sending it to the conventional heat exchanger.

In the case of energy transformation, a diffuser increases the pressure and temperature before the turbines. The turbines extract mechanical work that can be transformed into electricity thanks to an alternator. After the turbines, there is a magneto hydrodynamic generator that transform the residual kinetic energy from the

105 ions directly into electricity. A second electrically charged heat exchanger is placed after the magneto hydrodynamic generator to lower the temperature and act the cold thermal reservoir to allow work to be produced continuously as stated by the Kelvin- Planck statement for a thermodynamic cycle (the first electrically charged heat exchanger being the hot reservoir). For the magneto hydrodynamic generator to no work there should be to ions flow with opposite charge (positive and negative). Thus there are two systems put in parallel. One working with positive ions and the second one with negative ions. For the system to output a net power the energy added by the heat source has to be higher that the energy consumed by the electrical source. The electrical source is connected to the alternator and magneto hydrodynamic generator and it is controlled by the electronic control circuit. The excess of energy produced by the system can be stored in a pressurized liquid tank into which an electrical resistor is installed. The electrical resistor received the electricity and transformed it into heat.