Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IDENTIFICATION AND USE OF KRAS INHIBITORS
Document Type and Number:
WIPO Patent Application WO/2020/234103
Kind Code:
A1
Abstract:
The present invention relates to compounds of formula (1) in which A, U and R1 are as defined herein, to pharmaceutical compositions and combinations comprising the compounds according to the invention, and to the prophylactic and therapeutic use of the inventive compounds, respectively to the use of said compounds for manufacturing pharmaceutical compositions for the treatment or prophylaxis of diseases, in particular for neoplastic disorders, repectively cancer or conditions with dysregulated immune responses or other disorders associated with aberrant KRAS signaling, as a sole agent or in combination with other active ingredients.

Inventors:
NGUYEN DUY (DE)
EIS KNUT (DE)
MORTIER JEREMIE (DE)
BRIEM HANS (DE)
CHRIST CLARA (DE)
FRIBERG ANDERS (DE)
BADER BENJAMIN (DE)
STEIGEMANN PATRICK (DE)
BADOCK VOLKER (DE)
SCHRÖDER JENS (DE)
SIEGEL FRANZISKA (DE)
MOOSMAYER DIETER (DE)
Application Number:
PCT/EP2020/063438
Publication Date:
November 26, 2020
Filing Date:
May 14, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYER AG (DE)
International Classes:
C07D401/04; A61K31/427; A61K31/4353; A61K31/472; A61P35/00; C07D401/14; C07D403/04; C07D417/14; C07D471/04
Domestic Patent References:
WO2018140514A12018-08-02
WO2018140512A12018-08-02
WO2014152588A12014-09-25
WO2016049524A12016-03-31
WO2016044772A12016-03-24
WO2016164675A12016-10-13
WO2015054572A12015-04-16
WO2016049568A12016-03-31
WO2016168540A12016-10-20
WO2017070256A22017-04-27
WO2017087528A12017-05-26
WO2017100546A12017-06-15
WO2017172979A12017-10-05
WO2018064510A12018-04-05
WO2018145012A12018-08-09
WO2018145014A12018-08-09
WO2016049565A12016-03-31
WO2017058768A12017-04-06
WO2017058792A12017-04-06
WO2014143659A12014-09-18
WO2017015562A12017-01-26
WO2017058728A12017-04-06
WO2017058805A12017-04-06
WO2017058807A12017-04-06
WO2017058902A12017-04-06
WO2017058915A12017-04-06
WO2018068017A12018-04-12
WO2018140600A12018-08-02
WO2018145013A12018-08-09
WO2018140599A12018-08-02
WO2018119183A22018-06-28
WO2017201161A12017-11-23
WO2012112363A12012-08-23
WO2005073205A12005-08-11
WO2008130320A22008-10-30
WO2006055625A22006-05-26
WO2009111056A12009-09-11
WO2006117570A12006-11-09
WO2008040934A12008-04-10
WO2008064432A12008-06-05
WO2009023655A12009-02-19
WO2007059613A12007-05-31
WO2010011837A12010-01-28
WO2005115972A12005-12-08
WO2006052722A12006-05-18
WO2005030732A12005-04-07
WO2007091694A12007-08-16
WO2004067516A12004-08-12
WO2007005838A22007-01-11
WO2005110991A12005-11-24
WO2007016525A22007-02-08
WO2010045948A12010-04-29
WO2010055164A22010-05-20
WO2011028741A12011-03-10
WO2009053715A12009-04-30
WO2008051532A12008-05-02
WO2010103278A12010-09-16
Foreign References:
EP2394987A12011-12-14
US20140275025A12014-09-18
US20030232854A12003-12-18
US20020099035A12002-07-25
US20150158865A12015-06-11
US20070185148A12007-08-09
US20060293341A12006-12-28
US20150079028A12015-03-19
US20150329556A12015-11-19
US20120277224A12012-11-01
US20090131468A12009-05-21
Other References:
OSTREM JMSHOKAT KM: "Direct small-molecule inhibitors of KRAS: From structural insights to mechanism-based design", NAT REV DRUG DISCOV, vol. 15, 2016, pages 771 - 785
"Isotopic Compositions of the Elements 1997", PURE APPL. CHEM., vol. 70, no. 1, 1998, pages 217 - 235
C. L. PERRIN ET AL., J. AM. CHEM. SOC., vol. 129, 2007, pages 4490
C. L. PERRIN ET AL., J. AM. CHEM. SOC., vol. 127, 2005, pages 9641
B. TESTA ET AL., INT. J. PHARM., vol. 19, no. 3, 1984, pages 271
A. E. MUTLIB ET AL., TOXICOL. APPL. PHARMACOL., vol. 169, 2000, pages 102
A. M. SHARMA ET AL., CHEM. RES. TOXICOL., vol. 26, 2013, pages 410
C. J. WENTHUR ET AL., J. MED. CHEM., vol. 56, 2013, pages 5208
F. SCHNEIDER ET AL., ARZNEIM. FORSCH. / DRUG. RES., vol. 56, 2006, pages 295
F. MALTAIS ET AL., J. MED. CHEM., vol. 52, 2009, pages 7993
PURE APPL CHEM, vol. 45, 1976, pages 11 - 30
S. M. BERGE ET AL.: "Pharmaceutical Salts", J. PHARM. SCI., vol. 66, 1977, pages 1 - 19, XP002675560, DOI: 10.1002/jps.2600660104
ANGEWANDTE CHEMIE - INTERNATIONAL EDITION, vol. 38, no. 16, 1999, pages 2411 - 2413
BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 22, no. 17, 2012, pages 5618 - 5624
CHEMICAL REVIEWS, vol. 116, no. 19, 2016, pages 12564
CHEMICAL SCIENCE, vol. 4, no. 3, 2013, pages 916
ANGEWANDTE CHEMIE, vol. 125, no. 2, 2013, pages 643
ORGANIC LETTERS, vol. 19, no. 11, 2017, pages 2853
CHEMISTRY - A EUROPEAN JOURNAL, vol. 11, no. 11, 2005, pages 3294 - 3308
ANGEWANDTE CHEMIE - INTERNATIONAL EDITION, vol. 39, no. 8, 2000, pages 1436 - 1439
J. AM. CHEM. SOC., vol. 114, 1992, pages 9327
ORG. LETT., 2011, pages 5048 - 5051
CHEMISTRY - A EUROPEAN JOURNAL, vol. 16, no. 9, 2010, pages 2758 - 2763
JOURNAL OF MEDICINAL CHEMISTRY, vol. 59, no. 19, 2016, pages 8787 - 8803
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 118, 2016, pages 328 - 339
SYNTHESIS, vol. 22, 2011, pages 3697 - 3705
BIOORGANIC AND MEDICINAL CHEMISTRY, vol. 10, no. 2, 2002, pages 253 - 260
SYNLETT, vol. 11, 2001, pages 1707 - 1710
JOURNAL OF ORGANIC CHEMISTRY, vol. 69, no. 20, 2004, pages 6572 - 6589
SYNTHESIS, vol. 10, 2008, pages 1607 - 1611
JOURNAL OF ORGANIC CHEMISTRY, vol. 73, no. 11, 2008, pages 4160 - 4165
SYNTHESIS, vol. 49, no. 21, 2017, pages 4845 - 4852
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 25, no. 8, 1990, pages 673 - 680
INORGANICA CHIMICA ACTA, vol. 479, 2018, pages 261 - 265
JOURNAL OF ORGANIC CHEMISTRY, vol. 83, no. 12, 2018, pages 6673 - 6680
Attorney, Agent or Firm:
BIP PATENTS (DE)
Download PDF:
Claims:
Claims 

1. Compounds of formula (1) 

in which 

A    represents independently of each other either ‐N= or –C(R2)=, 

U    represents independently of each other either ‐N= or –CH=, 

R1   represents  an  optionally  substituted  5  to  10 membered mono‐  or  bicyclic  aryl  or  heteroaryl, 

R2  represents independently –H, ‐halogen, ‐OH or ‐alkoxy 

and  their polymorphs, enantiomers, diastereomers,  racemates,  tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

2. Compounds of formula (1) according to claim 1 in which 

A    represents independently of each other ‐N= or –C(R2)=, 

U    represents ‐N=, 

R1   represents a monocyclic or bicyclic aryl or heteroaryl (with one or two heteroatoms  selected from S or N) having 5 to 10 ring atoms which may optionally be mono‐ or  polysubstituted by identical or different substituents selected from the group 

consisting of ‐H, ‐halogen, ‐CN, ‐OH, ‐C1‐C4‐alkyl, ‐C1‐C4‐alkoxy or   

R2  represents independently –H, ‐halogen, ‐OH or ‐C1‐C4‐alkoxy 

and their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

3. Compounds of formula (1) according to claim 1 in which 

A    represents independently of each other ‐N= or –C(R2)=, 

U    represents ‐CH=  

R1   represents a monocyclic or bicyclic aryl or heteroaryl (with one or two heteroatoms  selected from S or N) having 5 to 10 ring atoms which may optionally be mono‐ or  polysubstituted by identical or different substituents selected from the group 

consisting of ‐H, ‐halogen, ‐CN, ‐OH, ‐C1‐C4‐alkyl, ‐C1‐C4‐alkoxy or 

R2  represents independently –H, ‐halogen, ‐OH or ‐C1‐C4‐alkoxy 

and their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

4. Compounds according to claim 1, 2 or 3 in which  

R1  represents a monocyclic aryl or heteroaryl (with one or two heteroatoms selected from S or  N) having 5 to 6 ring atoms which may optionally be mono‐ or polysubstituted by identical or  different substituents from the group consisting of –F, ‐Cl, ‐CN, ‐OH, ‐CH3, ‐CH2CH3, ‐O‐CH3, ‐

O‐CH2‐CH3 or   or a 9‐ or 10‐membered bicyclic heteroaryl with one or two nitrogen  atoms 

and their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

5. Compounds according to claim 4 in which  

R1  represents 

)

and their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

6. Compounds according to claim 1 , 2 or 3 in which  

R2  represents independently ‐H, ‐halogen, ‐OH or ‐O‐CH3 and   their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

7. The compound according to claim 1, which is selected from 

7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

3‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐7‐(quinolin‐5‐yl)isoquinolin‐1(2H)‐one 

7‐(1H‐Indol‐4‐yl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

7‐(2,4‐Difluorophenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

7‐(2‐Ethylphenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

7‐(3‐Ethoxy‐2,4‐difluorophenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

3‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐7‐(2,3,4‐trifluorophenyl)isoquinolin‐1(2H)‐one 

7‐(3,5‐Difluorophenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one7‐(3‐Fluoropyridin‐2‐ yl)‐6‐methoxy‐3‐[‐1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

3‐(1‐Acryloylpyrrolidin‐3‐yl)‐7‐(3‐fluoropyridin‐2‐yl)‐6‐hydroxy‐isoquinolin‐1(2H)‐one 

6‐(2‐Fluoro‐6‐methoxyphenyl)‐2‐[(1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(2‐Fluorophenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(2,4‐Difluorophenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

2‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐6‐(quinolin‐5‐yl)quinazolin‐4(3H)‐one 

6‐(2‐Ethylphenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

3‐Chloro‐5‐{4‐oxo‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐3,4‐dihydroquinazolin‐6‐yl}benzonitrile  6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(Isoquinolin‐4‐yl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(2,4‐dimethyl‐1,3‐thiazol‐5‐yl)‐2[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐[2‐(Morpholin‐4‐yl)pyridin‐3‐yl]‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

7‐Chloro‐6‐(2‐fluoro‐6‐methoxyphenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one  7‐Chloro‐6‐(2‐fluorophenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

7‐Chloro‐6‐(2,4‐difluorophenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

7‐Chloro‐6‐(2‐fluoro‐6‐hydroxyphenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one  7 ‐Chloro‐6‐(5‐methyl‐1H‐indazol‐4‐yl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one  7‐Chloro‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐6‐(quinolin‐5‐yl)quinazolin‐4(3H)‐one 

6‐Chloro‐7‐(2‐fluoro‐6‐hydroxyphenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one  3‐(2‐Fluoro‐6‐methoxyphenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  3‐(2‐Fluoro‐6‐hydroxyphenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  3‐(2‐Fluorophenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one 

3‐(2,4‐Difluorophenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  7‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐3‐(quinolin‐5‐yl)‐1,6‐naphthyridin‐5(6H)‐one 

3‐(2‐Ethylphenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one 

3‐(2,4‐Dimethyl‐1,3‐thiazol‐5‐yl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  3‐[2‐(Morpholin‐4‐yl)pyridin‐3‐yl]‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  3‐(2‐Fluoro‐5‐hydroxyphenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  3‐(4‐Fluoro‐3‐hydroxyphenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one  6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,2‐d]pyrimidin‐4(3H)‐one  6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐d]pyrimidin‐4(3H)‐one  6‐(5‐Methyl‐1H‐indazol‐4‐yl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐d]pyrimidin‐4(3H)‐one  7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyridin‐1(2H)‐one  7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyridin‐1(2H)‐one  and their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

8. Compounds of general formula (2) 

 

A    represents independently of each other either ‐N= or –C(R2)=, 

U    represents independently of each other either ‐N= or –CH=, 

Hal  represents –Cl, ‐Br 

R2  represents independently –H, ‐halogen, ‐OH or ‐alkoxy 

and their polymorphs, enantiomers, diastereomers, racemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

 

9. Synthesis of compounds of general formula (1) by cross coupling reactions of compounds of  general formula (2) with organometallic compounds. 

 

10.   A compound of general formula (1) according to any one of claims 1 to 13 for the use as a  medicament. 

 

11.   A compound of general formula (1) according to any one of claims 1 to 13 for use in the    treatment or prophylaxis of a disease. 

 

12.   A pharmaceutical composition comprising a compound of general formula (1) according  to  any one of claims 1 to 13 and one or more pharmaceutically acceptable excipients.  13.  A pharmaceutical combination comprising: 

one or more first active ingredients, in particular compounds of general formula (1)  according to any one of claims 1 to 13, and 

one or more pharmaceutical active anti cancer compounds or 

one or more pharmaceutical active immune checkpoint inhibitors. 

 

14. A pharmaceutical combination according to claim 17, characterized in that the 

  pharmaceutical active immune checkpoint inhibitor is an antibody. 

 

15.   Use of a compound of general formula (1) according to any one of claims 1 to 13 for the    treatment or prophylaxis of a disease.  

 

16.   Use of a compound of general formula (1) according to any one of claims 1 to 13 for the    preparation of a medicament for the treatment or prophylaxis of a disease. 

 

17.  Use according to claim 19 or 20, wherein the diseases, respectively the disorders are 

Pancreatic ductal adenocarcinoma, Colorectal adenocarcinoma, Multiple myeloma, Lung  adenocarcinoma, Skin cutaneous melanoma, Uterine corpus endometrioid carcinoma,  Uterine carcinosarcoma, Thyroid carcinoma, Acute myeloid leukaemia, Bladder urothelial  carcinoma, Gastric adenocarcinoma, Cervical adenocarcinoma, Head and neck squamous cell  carcinoma, Diffuse large B cell lymphoma, Noonan Syndrome, Leopard Syndrome, Costello  Syndrome, Cardio‐facio‐cutaneous Syndrome, Autoimmune lymphoproliferative syndrome.     

Description:
IDENTIFICATION AND USE OF KRAS INHIBITORS 

The present invention relates to compounds of form ula (1) 

 

in which A, U and R 1  are as defined herein, to pharmaceutical compo sitions and combinations  comprising the compounds according to the invention,  and to the prophylactic and therapeutic use  of the inventive compounds, respectively to the use  of said compounds for manufacturing  pharmaceutical compositions for the treatment or proph ylaxis of diseases, in particular for neoplastic  disorders, repectively cancer or conditions with dysre gulated immune responses or other disorders  associated with aberrant KRAS signaling, as a sole a gent or in combination with other active  ingredients. 

BACKGROUND OF THE INVENTION 

Mutant  KRAS  is  a well‐understood  oncogenic  driver  and  has  a wide‐spread  prevalence  in  various  human cancer  indications  (Bos, 1989).  In 1982, mutationally activated RAS genes were detect ed  in  human cancer, marking the first discovery of mutated genes in this disease (Cox, 2010). The frequent  mutation of RAS in three of the four most lethal c ancers (lung, colon and pancreatic cancers) in the  United States has spurred intense interest and effort  in developing RAS inhibitors (Cox, 2014). Overall,  RAS mutations have been detected  in 9–30% of all  tumor samples sequenced.  In pancreatic ductal  adenocarcinoma (PDAC; ~90% of all pancreatic cancers) and lung adenocarcinoma (LAC; 30–35% of all  lung cancers) KRAS mutations display a frequency of  97% and 32% respectively. Other indications with  frequently mutated KRAS include colorectal carcinoma ( CRC) (52%), and multiple myeloma (43%) (Cox,  2014). 

RAS proteins act as molecular switches that cycle between an active, GTPbound state and an inactive,  GDP‐bound state. Activated by guanine nucleotide exc hange factors (GEFs), RAS in its GTPbound state  interacts with a number of effectors (Hillig, 2019). Return to the  inactive state  is driven by GTPase‐ activating proteins (GAPs), which down‐regulate activ e RAS by accelerating the weak intrinsic GTPase  activity by up  to 5 orders of magnitude. For oncogenic RAS mutants,  however,  the GAP activity  is  impaired or greatly reduced, resulting  in permanent activation, which  is the basis of oncogenic RAS  signaling  (Haigis,  2017);  for  example,  through  the  RAS‐RAF‐MEK‐ERK  and  RAS‐PI3K‐PDK1‐AKT  pathways, both essential to cell survival and prolife ration (Downward 2003). 

For decades, mutant KRAS has been considered “un druggable” with classical pharmacological small  molecule inhibitors. However, KRASG12C was recently id entified to be potentially druggable by allele‐ specific  covalent  targeting  of  Cys‐12  in  vicinity  to  an  inducible  allosteric  switch  II  pocket  (S‐IIP)  (Oestrem, 2013; Janes, 2018). 

Covalent KRASG12C  inhibitors as described by Shokat et al.  (Ostrem  JM,   Shokat KM  (2016) Direct  small‐molecule inhibitors of KRAS: From structural i nsights to mechanism‐based design. Nat Rev Drug  Discov 15:771–785.) occupy the so‐called switch‐I I pocket and bind with their Michael acceptor system   covalently to the cysteine mutation at G12 in this  specific KRAS mutant. Occupation of this pocket with the covalent inhibitor results in a locked inactive  GDP‐bound protein conformation. Captured in this  conformation, cycling of the mutated protein into the  active GTP‐bound state is prevented and thereby  activity of the mutant KRASG12C is shut down.  

STATE OF THE ART 

Covalent inhibitors of KRAS  G12C have been descr ibed  in literatures and patent applications.   Biaryl derivatives were mentioned as KRAS G12C covale nt inhibitors (WO2014152588, 

WO2016049524 and WO 2016044772). WO2016164675, WO201 5054572, WO2016044772, 

WO2016049568, WO2016168540, WO20170070256, WO201708752 8, WO2017100546, 

WO2017172979, WO2018064510, WO2018145012, WO2018145014  disclosed quinazoline,  quinoline, dihydrobenzo‐naphthyridinone, quinazolinone, dihydropyrimidoquinolinone, isoquinoline  derivatives. Further disclosures include anilinoacetamid e and biaryl derivatives  (WO2016049565,  WO 2017058768, WO 2017058792), naphthalene or hexahydr ofurofurane derivatives (WO 

2014143659), quinazolinone (WO2017015562), phenylpyraz ine derivatives (WO 2017058728).  bezoimidazolsulfone, dihydroquinoxaline or dihydroquinoxa linone (WO 2017058805), 

phenylpiperazine‐1‐carbohydrazide (WO 2017058807),  tetrahydronaphthyridine (WO 2017058902),  imidazolopyridine (WO 2017058915), various chemical ent ities (WO2018068017), bicyclic 6,5‐aryl,  hetaryl rings containing compounds (WO2018140600). 

Benzimidazol, (aza)indole, imidazopyridine derivatives  were disclosed as KRAS covalent inhibitors in  WO2018145013, benzothiazole, benzothiophene, benzisoxazol e derivatives in WO2018140599,  pyridopyrimidone, benzothiazole in WO2018119183 and tet rahydropyridopyrimidine in 

WO2017201161. 

However, so far compounds of general formula (1)  have not been disclosed as covalent KRAS  inhibitors. 

DESCRIPTION OF THE INVENTION 

In accordance with a first aspect, the present in vention covers compounds of general formula (1): 

in which 

A    represents independently of each other either ‐N= o r –C(R 2 )=, 

U    represents independently of each other either ‐N= o r –CH=, 

R 1    represents  an  optionally  substituted  5  to  10 membered mono‐  or  bicyclic  aryl  or  heteroaryl, 

R 2   represents independently ‐H, ‐halogen, ‐OH or  alkoxy 

and  their polymorphs, enantiomers, diastereomers,  racemates,  tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

DEFINITIONS 

The term “substituted” means that one or more hydrogen atoms on the designated atom or group  are replaced with a selection from the indicated gro up, provided that the designated atom's normal  valency under the existing circumstances is not excee ded. Combinations of substituents and/or  variables are permissible. 

The term “optionally substituted” means that th e number of substituents can be equal to or differe nt  from zero. Unless otherwise indicated, it is possible  that optionally substituted groups are  substituted with as many optional substituents as can  be accommodated by replacing a hydrogen  atom with a non‐hydrogen substituent on any availab le carbon or nitrogen atom. Commonly, it is  possible for the number of optional substituents, whe n present, to be 1, 2, 3, 4 or 5, in particular  1, 2  or 3. 

As used herein, the term “one or more”, e.g. in the definition of the substituents of the compou nds  of general formula (1) of the present invention, mea ns “1, 2, 3, 4 or 5, particularly 1, 2, 3 or 4 , more  particularly 1, 2 or 3, even more particularly 1 or  2”. 

A hyphen or a star close to a hyphen at a give n substituent indicates the point of attachment of s aid  substituent to the rest of the molecule. Should a r ing, comprising carbon atoms and optionally one or  more heteroatoms, such as nitrogen, oxygen or sulfur atoms for example, be substituted with a  substituent, it is possible for said substituent to  be bound at any suitable position of said ring, be it  bound to a suitable carbon atom and/or to a suitabl e heteroatom. 

The term “comprising” when used in the specifi cation includes “consisting of”. 

If within the present text any item is referred  to as “as mentioned herein”, it means that it m ay be  mentioned anywhere in the present text.  The terms as mentioned in the present text have the  following meanings:  

The term “halogen” means a fluorine, chlorine, bromine or iodine atom, particularly a fluorine,  chlorine or bromine atom. 

(C 1 ‐C 4 )‐Alkyl in the context of the invention means  a straight‐chain or branched alkyl group having 1 ,  2, 3 or 4 carbon atoms, such as: methyl, ethyl, n propyl, isopropyl, n‐butyl, isobutyl, sec‐butyl,  and  tert‐butyl, for example. 

C 4 )‐Alkoxy in the context of the invention mean s a straight‐chain or branched alkoxy group having 1, 2, 3 or 4 carbon atoms, such as: methoxy, ethox y, n‐propoxy, isopropoxy, n‐butoxy, iso‐butoxy,  sec‐butoxy, and tert‐butoxy, for example. 

The term “heteroaryl” means a monovalent, monoc yclic, bicyclic or tricyclic aromatic ring having 5, 6,  8, 9, 10, 11, 12, 13 or 14 ring atoms (a “5‐ to 14‐membered heteroaryl” group), particularly 5,  6, 9 or  10 ring atoms, which contains at least one ring het eroatom and optionally one, two or three further  ring heteroatoms from the series: N, O and/or S, an d which is bound via a ring carbon atom or  optionally via a ring nitrogen atom (if allowed by  valency). 

Said heteroaryl group can be a 5‐membered hetero aryl group, such as, for example, thienyl, furanyl,  pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, i soxazolyl, isothiazolyl, oxadiazolyl, triazolyl,  thiadiazolyl or tetrazolyl; or a 6‐membered heteroar yl group, such as, for example, pyridinyl,  pyridazinyl, pyrimidinyl, pyrazinyl or triazinyl; or a  tricyclic heteroaryl group, such as, for example,  carbazolyl, acridinyl or phenazinyl; or a 9‐membered  heteroaryl group, such as, for example,  benzofuranyl, benzothienyl, benzoxazolyl, benzisoxazolyl,  benzimidazolyl, benzothiazolyl,  benzotriazolyl, indazolyl, indolyl, isoindolyl, indolizi nyl or purinyl; or a 10‐membered heteroaryl  group, such as, for example, quinolinyl, quinazolinyl,  isoquinolinyl, cinnolinyl, phthalazinyl,  quinoxalinyl or pteridinyl. 

In general, and unless otherwise mentioned, the he teroaryl or heteroarylene groups include all  possible isomeric forms thereof, e.g.: tautomers and  positional isomers with respect to the point of  linkage to the rest of the molecule. Thus, for some  illustrative non‐restricting examples, the term  pyridinyl includes pyridin‐2‐yl, pyridin‐3‐yl an d pyridin‐4‐yl; or the term thienyl includes thie n‐2‐yl  and thien‐3‐yl. 

The term “C 1 ‐C 4 ”, as used in the present text, e.g. in the  context of the definition of “C 1 ‐C 4 ‐alkyl” and  “C 1 ‐C 6 ‐alkoxy” means an alkyl group having a fini te number of carbon atoms of 1 to 4, i.e. 1, 2,  3 or 4  carbon atoms. 

When a range of values is given, said range enco mpasses each value and sub‐range within said range.   For example: "C 1 ‐C 4 " encompasses C 1 , C 2 , C 3 , C 4 , C 1 ‐C 4 , C 1 ‐C 3 , C 1 ‐C 2 , C 2 ‐C 4 , C 2 ‐C 3  and C 3 ‐C 4

As used herein, the term “leaving group” means  an atom or a group of atoms that is displaced in  a  chemical reaction as stable species taking with it t he bonding electrons. In particular, such a leaving  group is selected from the group comprising: halide, in particular fluoride, chloride, bromide or  iodide, (methylsulfonyl)oxy, [(trifluoromethyl)sulfonyl]ox y, [(nonafluorobutyl)sulfonyl]oxy, 

(phenylsulfonyl)oxy, [(4‐methylphenyl)sulfonyl]oxy, [ (4‐bromophenyl)sulfonyl]oxy, 

[(4‐nitrophenyl)sulfonyl]oxy, [(2‐nitrophenyl)sulfon yl]oxy, [(4‐isopropylphenyl)sulfonyl]oxy, 

[(2,4,6‐triisopropylphenyl)sulfonyl]oxy, [(2,4,6‐tri methylphenyl)sulfonyl]oxy, [(4‐tert‐butyl‐ phenyl)sulfonyl]oxy and [(4‐methoxyphenyl)sulfonyl]oxy.

It is possible for the compounds of general formu la (1) to exist as isotopic variants. The invention therefore includes one or more isotopic variant(s) of  the compounds of general formula (1),  particularly deuterium‐containing compounds of general  formula (1). 

The term “Isotopic variant” of a compound or  a reagent is defined as a compound exhibiting an  unnatural proportion of one or more of the isotopes that constitute such a compound. 

The term “Isotopic variant of the compound of g eneral formula (1)” is defined as a compound of  general formula (1) exhibiting an unnatural proportion  of one or more of the isotopes that constitute  such a compound. 

The expression “unnatural proportion” means a p roportion of such isotope which is higher than its  natural abundance. The natural abundances of isotopes to be applied in this context are described in  “Isotopic Compositions of the Elements 1997”, Pure  Appl. Chem., 70(1), 217‐235, 1998. 

Examples of such isotopes include stable and radio active isotopes of hydrogen, carbon, nitrogen,  oxygen, phosphorus, sulfur, fluorine, chlorine, bromine  and iodine, such as  2 H (deuterium),  3 H  (tritium),  11 C,  13 C,  14 C,  15 N,  17 O,  18 O,  32 P,  33 P,  33 S,  34 S,  35 S,  36 S,  18 F,  36 Cl,  82 Br,  123 I,  124 I,  125 I,  129 I and  131 I,  respectively. 

With respect to the treatment and/or prophylaxis o f the disorders specified herein the isotopic  variant(s) of the compounds of general formula (1) p referably contain deuterium (“deuterium‐ containing compounds of general formula (1)”). Isoto pic variants of the compounds of general  formula (1) in which one or more radioactive isotope s, such as  3 H or  14 C, are incorporated are useful  e.g. in drug and/or substrate tissue distribution stu dies. These isotopes are particularly preferred for  the ease of their incorporation and detectability. Po sitron emitting isotopes such as  18 F or  11 C may be  incorporated into a compound of general formula (1). These isotopic variants of the compounds of  general formula (1) are useful for in vivo imaging  applications. Deuterium‐containing and  13 C‐ containing compounds of general formula (1) can be u sed in mass spectrometry analyses in the  context of preclinical or clinical studies. 

Isotopic variants of the compounds of general form ula (1) can generally be prepared by methods  known to a person skilled in the art, such as thos e described in the schemes and/or examples herein,  by substituting a reagent for an isotopic variant of  said reagent, preferably for a deuterium‐ containing reagent. Depending on the desired sites of  deuteration, in some cases deuterium from  D 2 O can be incorporated either directly into the compounds or into reagents that are useful for  synthesizing such compounds. Deuterium gas is also a useful reagent for incorporating deuterium  into molecules. Catalytic deuteration of olefinic bond s and acetylenic bonds is a rapid route for  incorporation of deuterium. Metal catalysts (i.e. Pd, Pt, and Rh) in the presence of deuterium gas can  be used to directly exchange deuterium for hydrogen  in functional groups containing hydrocarbons.  A variety of deuterated reagents and synthetic buildi ng blocks are commercially available from  companies such as for example C/D/N Isotopes, Quebec,  Canada; Cambridge Isotope Laboratories  Inc., Andover, MA, USA; and CombiPhos Catalysts, Inc. , Princeton, NJ, USA.  

The term “deuterium‐containing compound of gener al formula (1)” is defined as a compound of  general formula (1), in which one or more hydrogen  atom(s) is/are replaced by one or more  deuterium atom(s) and in which the abundance of deut erium at each deuterated position of the  compound of general formula (1) is higher than the  natural abundance of deuterium, which is about  0.015%. Particularly, in a deuterium‐containing compo und of general formula (1) the abundance of  deuterium at each deuterated position of the compound  of general formula (1) is higher than 10%,  20%, 30%, 40%, 50%, 60%, 70% or 80%, preferably hig her than 90%, 95%, 96% or 97%, even more  preferably higher than 98% or 99% at said position(s ). It is understood that the abundance of  deuterium at each deuterated position is independent  of the abundance of deuterium at other  deuterated position(s). 

The selective incorporation of one or more deuteri um atom(s) into a compound of general formula  (1) may alter the physicochemical properties (such as  for example acidity [C. L. Perrin, et al., J. Am.   Chem. Soc., 2007, 129, 4490], basicity [C. L. Perrin  et al., J. Am. Chem. Soc., 2005, 127, 9641],  lipophilicity [B. Testa et al., Int. J. Pharm., 1984 , 19(3), 271]) and/or the metabolic profile of the  molecule and may result in changes in the ratio of parent compound to metabolites or in the  amounts of metabolites formed. Such changes may resul t in certain therapeutic advantages and  hence may be preferred in some circumstances. Reduced  rates of metabolism and metabolic  switching, where the ratio of metabolites is changed,  have been reported (A. E. Mutlib et al., Toxicol. Appl. Pharmacol., 2000, 169, 102). These changes in  the exposure to parent drug and metabolites  can have important consequences with respect to the  pharmacodynamics, tolerability and efficacy of  a deuterium‐containing compound of general formula ( 1). In some cases deuterium substitution  reduces or eliminates the formation of an undesired  or toxic metabolite and enhances the formation  of a desired metabolite (e.g. Nevirapine: A. M. Shar ma et al., Chem. Res. Toxicol., 2013, 26, 410;  Efavirenz: A. E. Mutlib et al., Toxicol. Appl. Pharm acol., 2000, 169, 102). In other cases the major  effect of deuteration is to reduce the rate of syst emic clearance. As a result, the biological half‐li fe of  the compound is increased. The potential clinical ben efits would include the ability to maintain  similar systemic exposure with decreased peak levels  and increased trough levels. This could result in  lower side effects and enhanced efficacy, depending o n the particular compound’s pharmacokinetic/  pharmacodynamic relationship. ML‐337 (C. J. Wenthur  et al., J. Med. Chem., 2013, 56, 5208) and  Odanacatib (K. Kassahun et al., WO2012/112363) are ex amples for this deuterium effect. Still other  cases have been reported in which reduced rates of  metabolism result in an increase in exposure of  the drug without changing the rate of systemic clear ance (e.g. Rofecoxib: F. Schneider et al., Arzneim.  Forsch. / Drug. Res., 2006, 56, 295; Telaprevir: F. Maltais et al., J. Med. Chem., 2009, 52, 7993).  Deuterated drugs showing this effect may have reduced  dosing requirements (e.g. lower number of  doses or lower dosage to achieve the desired effect)  and/or may produce lower metabolite loads.  A compound of general formula (1) may have multiple potential sites of attack for metabolism. To  optimize the above‐described effects on physicochemic al properties and metabolic profile,  deuterium‐containing compounds of general formula (1)  having a certain pattern of one or more  deuterium‐hydrogen exchange(s) can be selected. Parti cularly, the deuterium atom(s) of deuterium‐ containing compound(s) of general formula (1) is/are  attached to a carbon atom and/or is/are  located at those positions of the compound of genera l formula (1), which are sites of attack for  metabolizing enzymes such as e.g. cytochrome P 450

Where the plural form of the word compounds, salt s, polymorphs, hydrates, solvates and the like, is  used herein, this is taken to mean also a single c ompound, salt, polymorph, isomer, hydrate, solvate  or the like. 

The compounds of the present invention optionally  contain one or more asymmetric centres,  depending upon the location and nature of the variou s substituents desired. It is possible that one or  more asymmetric carbon atoms are present in the (R) or (S) configuration, which can result in  racemic mixtures in the case of a single asymmetric centre, and in diastereomeric mixtures in the  case of multiple asymmetric centres. In certain insta nces, it is possible that asymmetry also be  present due to restricted rotation about a given bon d, for example, the central bond adjoining two  substituted aromatic rings of the specified compounds.  

Preferred compounds are those which produce the mo re desirable biological activity. Separated,  pure or partially purified isomers and stereoisomers  or racemic or diastereomeric mixtures of the  compounds of the present invention are also included within the scope of the present invention. The  purification and the separation of such materials can  be accomplished by standard techniques known  in the art. 

If only one isomer (enantiomer) displays the desir ed biological activity, and the second isomer  (enantiomer) is inactive: Preferred isomers are those which produce the more desirable biological  activity. These separated, pure or partially purified isomers or racemic mixtures of the compounds of  this invention are also included within the scope of  the present invention. The purification and the  separation of such materials can be accomplished by  standard techniques known in the art.  The optical isomers can be obtained by resolution of  the racemic mixtures according to conventional  processes, for example, by the formation of diastereo isomeric salts using an optically active acid or  base or formation of covalent diastereomers. Examples of appropriate acids are tartaric,  diacetyltartaric, ditoluoyltartaric and camphorsulfonic  acid. Mixtures of diastereoisomers can be  separated into their individual diastereomers on the  basis of their physical and/or chemical  differences by methods known in the art, for example , by chromatography or fractional 

crystallisation. The optically active bases or acid s are then liberated from the separated 

diastereomeric salts. A different process for separ ation of optical isomers involves the use of chiral chromatography (e.g., HPLC columns using a chiral pha se), with or without conventional 

derivatisation, optimally chosen to maximise the se paration of the enantiomers. Suitable HPLC  columns using a chiral phase are commercially availab le, such as those manufactured by Daicel, e.g.,  Chiracel OD and Chiracel OJ, for example, among many  others, which are all routinely selectable.  Enzymatic separations, with or without derivatisation, are also useful. The optically active  compounds of the present invention can likewise be o btained by chiral syntheses utilizing optically  active starting materials. 

In order to distinguish different types of isomers  from each other reference is made to IUPAC Rules  Section E (Pure Appl Chem 45, 11‐30, 1976). 

The present invention includes all possible stereoi somers of the compounds of the present invention  as single stereoisomers, or as any mixture of said  stereoisomers, e.g. (R)‐ or (S)‐ isomers, in any ratio.  Isolation of a single stereoisomer, e.g. a single en antiomer or a single diastereomer, of a compound  of the present invention is achieved by any suitable  state of the art method, such as 

chromatography, especially chiral chromatography, for  example. 

Further, it is possible for the compounds of the present invention to exist as tautomers. For example ,  any compound of the present invention which contains an imidazopyridine moiety as a heteroaryl  group for example can exist as a 1H tautomer, or a  3H tautomer, or even a mixture in any amount of  the two tautomers, namely : 

1 H tautomer 3H tautomer  

The present invention includes all possible tautome rs of the compounds of the present invention as  single tautomers, or as any mixture of said tautomer s, in any ratio. 

Further, the compounds of the present invention ca n exist as N‐oxides, which are defined in that at   least one nitrogen of the compounds of the present  invention is oxidised. The present invention  includes all such possible N‐oxides.  The present invention also covers useful forms of th e compounds of the present invention, such as  metabolites, hydrates, solvates, prodrugs, salts, in p articular pharmaceutically acceptable salts,  and/or co‐precipitates. 

The compounds of the present invention can exist  as a hydrate, or as a solvate, wherein the  compounds of the present invention contain polar solv ents, in particular water, methanol or ethanol  for example, as structural element of the crystal la ttice of the compounds. It is possible for the  amount of polar solvents, in particular water, to ex ist in a stoichiometric or non‐stoichiometric ratio.   In the case of stoichiometric solvates, e.g. a hydra te, hemi‐, (semi‐), mono‐, sesqui‐, di‐, tri ‐, tetra‐,  penta‐ etc. solvates or hydrates, respectively, are possible. The present invention includes all such  hydrates or solvates. 

Further, it is possible for the compounds of the present invention to exist in free form, e.g. as a  free  base, or as a free acid, or as a zwitterion, or t o exist in the form of a salt. Said salt may be  any salt,  either an organic or inorganic addition salt, particu larly any pharmaceutically acceptable organic or  inorganic addition salt, which is customarily used in  pharmacy, or which is used, for example, for  isolating or purifying the compounds of the present  invention. 

The term “pharmaceutically acceptable salt" refers  to an inorganic or organic acid addition salt of  a  compound of the present invention. For example, see  S. M. Berge, et al. “Pharmaceutical Salts,” J.  Pharm. Sci. 1977, 66, 1‐19. 

A suitable pharmaceutically acceptable salt of the compounds of the present invention may be, for  example, an acid‐addition salt of a compound of th e present invention bearing a nitrogen atom, in a  chain or in a ring, for example, which is sufficien tly basic, such as an acid‐addition salt with an  inorganic acid, or “mineral acid”, such as hydroc hloric, hydrobromic, hydroiodic, sulfuric, sulfamic,  bisulfuric, phosphoric, or nitric acid, for example,  or with an organic acid, such as formic, acetic,  acetoacetic, pyruvic, trifluoroacetic, propionic, butyri c, hexanoic, heptanoic, undecanoic, lauric,  benzoic, salicylic, 2‐(4‐hydroxybenzoyl)‐benzoic, c amphoric, cinnamic, cyclopentanepropionic,  digluconic, 3‐hydroxy‐2‐naphthoic, nicotinic, pamoi c, pectinic, 3‐phenylpropionic, pivalic, 2‐ hydroxyethanesulfonic, itaconic, trifluoromethanesulfonic,  dodecylsulfuric, ethanesulfonic,  benzenesulfonic, para‐toluenesulfonic, methanesulfonic,  

2‐naphthalenesulfonic, naphthalinedisulfonic, camphor sulfonic acid, citric, tartaric, stearic, lactic,  oxalic, malonic, succinic, malic, adipic, alginic, mal eic, fumaric,  

D‐gluconic, mandelic, ascorbic, glucoheptanoic, gly cerophosphoric, aspartic, sulfosalicylic, or  thiocyanic acid, for example. 

Further, another suitably pharmaceutically acceptable  salt of a compound of the present invention  which is sufficiently acidic, is an alkali metal sal t, for example a sodium or potassium salt, an alkal ine  earth metal salt, for example a calcium, magnesium o r strontium salt, or an aluminium or a zinc salt,  or an ammonium salt derived from ammonia or from an  organic primary, secondary or tertiary amine  having 1 to 20 carbon atoms, such as ethylamine, di ethylamine, triethylamine, 

ethyldiisopropylamine, monoethanolamine, diethanolamine , triethanolamine, dicyclohexylamine,  dimethylaminoethanol, diethylaminoethanol, tris(hydroxymet hyl)aminomethane, procaine,  dibenzylamine, N‐methylmorpholine, arginine, lysine, 1 ,2‐ethylenediamine, N‐methylpiperidine, N‐ methyl‐glucamine, N,N‐dimethyl‐glucamine, N‐ethyl glucamine, 1,6‐hexanediamine, glucosamine,  sarcosine, serinol, 2‐amino‐1,3‐propanediol, 3‐am ino‐1,2‐propanediol, 4‐amino‐1,2,3‐butanetriol,  or  a salt with a quarternary ammonium ion having 1 to 20 carbon atoms, such as 

tetramethylammonium, tetraethylammonium, tetra(n‐prop yl)ammonium, tetra(n‐butyl)ammonium,  N‐benzyl‐N,N,N‐trimethylammonium, choline or benzal konium. 

Those skilled in the art will further recognise t hat it is possible for acid addition salts of the  claimed  compounds to be prepared by reaction of the compound s with the appropriate inorganic or organic  acid via any of a number of known methods. Alternat ively, alkali and alkaline earth metal salts of  acidic compounds of the present invention are prepare d by reacting the compounds of the present  invention with the appropriate base via a variety of  known methods. 

The present invention includes all possible salts  of the compounds of the present invention as single salts, or as any mixture of said salts, in any rat io. 

In the present text, in particular in the Experim ental Section, for the synthesis of intermediates and   of examples of the present invention, when a compoun d is mentioned as a salt form with the  corresponding base or acid, the exact stoichiometric  composition of said salt form, as obtained by  the respective preparation and/or purification process,  is, in most cases, unknown. 

Unless specified otherwise, suffixes to chemical na mes or structural formulae relating to salts, such  as "hydrochloride", "trifluoroacetate", "sodium salt",  or "x HCl", "x CF 3 COOH", "x Na + ", for example,  mean a salt form, the stoichiometry of which salt f orm not being specified. 

This applies analogously to cases in which synthes is intermediates or example compounds or salts  thereof have been obtained, by the preparation and/or  purification processes described, as solvates,  such as hydrates, with (if defined) unknown stoichiom etric composition. 

SPECIFIC EMBODIMENTS 

In accordance with a second embodiment of the fir st aspect, the present invention covers  compounds of general formula (1), supra, in which: 

A    represents independently of each other ‐N= or –C( R 2 )=, 

U    represents ‐N=, 

R 1    represents a monocyclic or bicyclic aryl or heteroa ryl (with one or two heteroatoms  selected from S or N) having 5 to 10 ring atoms w hich may optionally be mono‐ or  polysubstituted by identical or different substituents selected from the group 

consisting of ‐H, ‐halogen, ‐CN, ‐OH, ‐C 1 ‐C 4 ‐alkyl, ‐C 1 ‐C 4 ‐alkoxy or 

R 2   represents independently –H, ‐halogen, ‐OH or  C

1‐C 4 ‐alkoxy 

and their polymorphs, enantiomers, diastereomers, ra cemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with a third embodiment of the firs t aspect, the present invention covers compounds  of general formula (1), supra, in which: 

A    represents independently of each other ‐N= or –C( R 2 )=, 

U    represents ‐CH=  

R 1    represents a monocyclic or bicyclic aryl or heteroa ryl (with one or two heteroatoms  selected from S or N) having 5 to 10 ring atoms w hich may optionally be mono‐ or  polysubstituted by identical or different substituents selected from the group 

consisting of ‐H, ‐halogen, ‐CN, ‐OH, ‐C 1 ‐C 4 ‐alkyl, ‐C 1 ‐C 4 ‐alkoxy or 

R 2   represents independently –H, ‐halogen, ‐OH or  C 1 ‐C 4 ‐alkoxy 

and their polymorphs, enantiomers, diastereomers, ra cemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with a fourth embodiment of the fir st aspect, the present invention covers compounds  of general formula (1), supra, in which: 

R 1   represents a monocyclic aryl or heteroaryl (with one or two heteroatoms selected from S or  N) having 5 to 6 ring atoms which may optionally b e mono‐ or polysubstituted by identical or  different substituents from the group consisting of  F, ‐Cl, ‐CN, ‐OH, ‐CH 3 , ‐CH 2 CH 3 , ‐O‐CH 3 , ‐

O‐CH 2 ‐CH 3  or   or a 9‐ or 10‐membered bicyclic heteroaryl with  one or two nitrogen 

atoms 

and their polymorphs, enantiomers, diastereomers, ra cemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with a fifth embodiment of the firs t aspect, the present invention covers compounds  of general formula (1), supra, in which:  R 1   represents 

and their polymorphs, enantiomers, diastereomers, racem ates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with a sixth embodiment of the first  aspect, the present invention covers compounds  of general formula (1), supra, in which: 

R 2   represents independently ‐H, ‐halogen, ‐OH or  O‐CH 3  and  

their polymorphs, enantiomers, diastereomers, racemates,  tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with a seventh embodiment of the first  aspect, the present invention covers the  following compounds of general formula (1): 

7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

3‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐7‐(quino lin‐5‐yl)isoquinolin‐1(2H)‐one 

7‐(1H‐Indol‐4‐yl)‐3‐[1‐(prop‐2‐enoyl)pyrro lidin‐3‐yl]isoquinolin‐1(2H)‐one 

7‐(2,4‐Difluorophenyl)‐3‐[1‐(prop‐2‐enoyl)pyrr olidin‐3‐yl]isoquinolin‐1(2H)‐one 

7‐(2‐Ethylphenyl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidi n‐3‐yl]isoquinolin‐1(2H)‐one 

7‐(3‐Ethoxy‐2,4‐difluorophenyl)‐3‐[1‐(prop‐2 ‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

3‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐7‐(2,3,4 ‐trifluorophenyl)isoquinolin‐1(2H)‐one 

7‐(3,5‐Difluorophenyl)‐3‐[1‐(prop‐2‐enoyl)pyrr olidin‐3‐yl]isoquinolin‐1(2H)‐one7‐(3‐Fluoropyri din‐2‐ yl)‐6‐methoxy‐3‐[‐1‐(prop‐2‐enoyl)pyrrolidin ‐3‐yl]isoquinolin‐1(2H)‐one 

3‐(1‐Acryloylpyrrolidin‐3‐yl)‐7‐(3‐fluoropyrid in‐2‐yl)‐6‐hydroxy‐isoquinolin‐1(2H)‐one 

6‐(2‐Fluoro‐6‐methoxyphenyl)‐2‐[(1‐(prop‐2 enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(2‐Fluorophenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolid in‐3‐yl]quinazolin‐4(3H)‐one 

6‐(2,4‐Difluorophenyl)‐2‐[1‐(prop‐2‐enoyl)pyrr olidin‐3‐yl]quinazolin‐4(3H)‐one 

2‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐6‐(quino lin‐5‐yl)quinazolin‐4(3H)‐one 

6‐(2‐Ethylphenyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidi n‐3‐yl]quinazolin‐4(3H)‐one  3‐Chloro‐5‐{4‐oxo‐2‐[1‐(prop‐2‐enoyl)pyrro lidin‐3‐yl]‐3,4‐dihydroquinazolin‐6‐yl}benzonitr ile  6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(Isoquinolin‐4‐yl)‐2‐[1‐(prop‐2‐enoyl)p yrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

6‐(2,4‐dimethyl‐1,3‐thiazol‐5‐yl)‐2[1‐(pr op‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one

6‐[2‐(Morpholin‐4‐yl)pyridin‐3‐yl]‐2‐[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐ one 

7‐Chloro‐6‐(2‐fluoro‐6‐methoxyphenyl)‐2‐[ 1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H) ‐one  7‐Chloro‐6‐(2‐fluorophenyl)‐2‐[1‐(prop‐2‐e noyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

7‐Chloro‐6‐(2,4‐difluorophenyl)‐2‐[1‐(prop 2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

7‐Chloro‐6‐(2‐fluoro‐6‐hydroxyphenyl)‐2‐[ 1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H) ‐one 

7 ‐Chloro‐6‐(5‐methyl‐1H‐indazol‐4‐yl) 2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin 4(3H)‐one  7‐Chloro‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl] ‐6‐(quinolin‐5‐yl)quinazolin‐4(3H)‐one 

6‐Chloro‐7‐(2‐fluoro‐6‐hydroxyphenyl)‐3‐[ 1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H )‐one  3‐(2‐Fluoro‐6‐methoxyphenyl)‐7‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐on e  3‐(2‐Fluoro‐6‐hydroxyphenyl)‐7‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐on e 

3‐(2‐Fluorophenyl)‐7‐[1‐(prop‐2‐enoyl)pyrro lidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one 

3‐(2,4‐Difluorophenyl)‐7‐[1‐(prop‐2‐enoyl)p yrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one 

7‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl]‐3‐(qu inolin‐5‐yl)‐1,6‐naphthyridin‐5(6H)‐one 

3‐(2‐Ethylphenyl)‐7‐[1‐(prop‐2‐enoyl)pyrrol idin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐one 

3‐(2,4‐Dimethyl‐1,3‐thiazol‐5‐yl)‐7‐[1‐ (prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin 5(6H)‐one  3‐[2‐(Morpholin‐4‐yl)pyridin‐3‐yl]‐7‐[1‐(p rop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐ 5(6H)‐one  3‐(2‐Fluoro‐5‐hydroxyphenyl)‐7‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐on e  3‐(4‐Fluoro‐3‐hydroxyphenyl)‐7‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐on e  6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2[1‐(prop‐2‐eno yl)pyrrolidin‐3‐yl]pyrido[3,2‐d]pyrimidin‐4(3H)‐on e  6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐d]pyrimidin‐4(3H) one  6‐(5‐Methyl‐1H‐indazol‐4‐yl)‐2‐[1‐(prop‐ 2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐d]pyrimidin‐4(3 H)‐one  7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyridin‐1(2H)‐on e  7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐[1‐(prop‐2‐ enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyridin‐1(2H)‐on e  and their polymorphs, enantiomers, diastereomers, racem ates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with another embodiment of the first  aspect, the present invention covers compounds  formula (2):  in which 

A    represents independently of each other either ‐N= o r –C(R 2 )=, 

U    represents independently of each other either ‐N= o r –CH=, 

Hal  represents –Cl, ‐Br 

  represents independently –H, ‐halogen, ‐OH or  alkoxy 

and their polymorphs, enantiomers, diastereomers, ra cemates, tautomers, solvates, physiologically  acceptable salts and solvates of these salts. 

In accordance with another aspect, the present inv ention covers the synthesis of compounds of  general formula (1) by cross coupling reactions of c ompounds of general formula (2) with  organometallic compounds. 

In accordance with a another aspect, the present  invention covers a compound of general formula  (1) for the use as a medicament. 

In accordance with a another aspect, the present  invention covers a compound of general formula  (1) for use in the treatment or prophylaxis of a d isease. 

In  accordance with  a  another  aspect,  the  present  invention  covers  a pharmaceutical  composition  comprising  a  compound  of  general  formula  (1)  and  one  or  more  pharmaceutically  acceptable  excipients.In  accordance  with  a  another  aspect,  the  present  invention  covers  a  pharmaceutical  combination  comprising:  one or more  first  active  ingredients,  in particular  compounds of  general  formula  (1)  and  one  or  more  pharmaceutical  active  anti  cancer  compounds  or  one  or  more  pharmaceutical active immune checkpoint inhibitors. 

In  accordance with  a  another  aspect,  the present  invention  covers  a pharmaceutical  combination  characterized in that the pharmaceutical active immune  checkpoint inhibitor is an antibody. 

In accordance with a another aspect, the present  invention covers the use of a compound of general  formula (1) treatment or prophylaxis of a disease. 

In accordance with a another aspect, the present  invention covers the use of a compound of general  formula (1) for the preparation of a medicament for the treatment or prophylaxis of a disease.  In accordance with a another aspect, the present inv ention covers the uses mentioned above,  wherein the diseases, respectively the disorders are  Pancreatic ductal adenocarcinoma, Colorectal  adenocarcinoma, Multiple myeloma, Lung adenocarcinoma,  Skin cutaneous melanoma, Uterine  corpus endometrioid carcinoma, Uterine carcinosarcoma,  Thyroid carcinoma, Acute myeloid  leukaemia, Bladder urothelial carcinoma, Gastric adenoc arcinoma, Cervical adenocarcinoma, Head  and neck squamous cell carcinoma, Diffuse large B ce ll lymphoma, Noonan Syndrome, Leopard  Syndrome, Costello Syndrome, Cardio‐facio‐cutaneous  Syndrome, Autoimmune lymphoproliferative  syndrome. 

Synthesis of the compounds disclosed 

Another aspect of the invention include the method s which may be used for preparing the  compounds according to the present invention. The sch emes and procedures disclosed illustrate  general synthetic routes to the compounds of formula (1) of the present invention and are not  limiting. It is clear to the person skilled in the art that the order of transformations as exemplified  in  the schemes can be modified in various ways. The or der of transformations exemplified in the  schemes are not intended to be limiting. Interconvers ions of any of the substituents according to the  definition can occur befor and/or after the exemplifi ed transformations. These transformations also  include the introduction of a functionality which all ows for further interconversions of substituents.   

Synthesis of the compounds of the present inventio n 

The compounds according to the invention of genera l formula (1) can be prepared according to the  following Schemes 1‐8. The schemes and procedures d escribed below illustrate synthetic routes to the  compounds of general formula (1) of the invention an d are not intended to be limiting. It is clear to the person skilled in the art that the order of tr ansformations as exemplified in the schemes can be  modified in various ways. The order of transformation s exemplified in these schemes is therefore not  intended to be limiting. In addition, interconversion of any of the substituents, can be achieved before and/or after the exemplified transformations. These mo difications can be such as the introduction of  protecting  groups,  cleavage  of  protecting  groups,  reduction  or  oxidation  of  functional  groups,  halogenation, metallation, substitution or other reacti ons known to the person skilled in the art. These  transformations include those which introduce a functi onality which allows for further interconversion  of substituents. Appropriate protecting groups and the ir introduction and cleavage are well‐known to  the person skilled  in the art (see for example T.W. Greene and P.G.M. Wuts  in Protective Groups  in  Organic  Synthesis,  3 rd   edition,  Wiley  1999).  Specific  examples  are  described  in  the  subsequent  paragraphs. 

The routes for the preparation of compounds of ge neral formula (1) are described in Schemes 1 to 8. Scheme 1 

Compounds of general formula (1) can be obtained by a transition metal catalyzed C‐C bond formation  of compounds of general formula (2) with organometall ic compounds (R 1 ‐MLn). 

 

Starting  from an aryl halogenide, aryl  triflate or aryl nonaflate and an organo boronic aci d or  the  corresponding boronic ester (‐MLn = ‐B(OH) 2  or ‐B(OR) 2 ), C‐C bond formation can occur in the prese nce  of  a  catalyst  /  ligand  system  and  a  base.  Suitable  catalysts  are,  for  example,  bis(diphenylphosphino)ferrocene]dichloropalladium(II),  tetrakis(triphenylphosphine)  palladium (0) ,  bis(dibenzylideneacetone)‐palladium, RuPhos/Ruphos Pd G 3. Bases used in Suzuki‐type reactions are,  for example, potassium phosphate, postasium carbonate, triethylamine, or cesium fluoride, Suitable  solvents are, for example, toluene, 1,4‐dioxane, ace tonitrile, N,N‐dimethyl formamide or butan‐1‐ol.  For  selected  examples,  see  WO2005/73205,  WO2008/130320,  WO2006/55625,  Bioorganic  and  Medicinal Chemistry Letters, 2012, vol. 22, # 17 p.5 618 – 5624, WO2005/73205, WO2009/111056. EP  2394987, US 2014/275025, Chemical reviews. 2016. 116(1 9), 12564, Chemical science. 4(3), 2013. 4(3),  916, Angewandte Chemie. 2013, 125(2), 643, Organic le tters. 2017, 19(11), 2853 and references cited  therein. Compounds of general formula (1) can be obt ained by a Suzuki‐type transition metal catalyzed  reaction of compounds of general formula (2) with an  organo boronic acid or with the corresponding  boronic  ester  in  the  presence  of  RuPhos/RuPhos  Pd  G3  catalyst  and  a  base  such  as  postasium  carbonate in dioxane/water mixture at elevated tempera tures.  

Alternatively, C‐C bond formation affording compounds  of general formula (1) can also occur by the  reaction of compounds of  formula  (2) with an organostannane  (‐MLn = ‐SnR 3 )  in  the presence of a  transition metal catalyst. Selected examples include t he use of tris(dibenzylideneacetone)dipalladium  ( 0) ; tri‐tert‐butyl  phosphine; cesium  fluoride  in  1,4‐dioxane  at  100℃  (Angewandte  Chemie ‐  International  Edition,  1999,  vol.  38,  #  16,  p.  2411 –  2413),  copper(l)  iodide; tri‐tert‐butyl  phosphine; cesium  fluoride; palladium dichloride  in N,N‐dimethylformamide at 45℃  (Chemistry ‐ A  European Journal, 2005, vol. 11, # 11, p. 3294 – 3308), or copper(II) oxide; tetrakis(triphenylphosphine )  palladium (0)  in N,N‐dimethylformamide (Angewandte Chemie   International Edition, 2000, vol. 39, # 8,  p. 1436 – 1439). In the present  invention the use of tetrakis(triphenylphosphine) palla dium (0)   in the  presence of copper(II) oxide in N,N‐dimethylformamide  is preferred. 

  Compounds of general formula (2) can be obtained by an amide coupling reaction, either by the  reaction of compounds of general formula (3) with pr op‐2‐enoyl chloride in the presence of a base or   with prop‐2‐enoyl acid in the presence of an ami de coupling reagent.  

Reactions of compounds of general formula (3) with  prop‐2‐enoyl chloride occur in the presence of  a  base,  such  as  triethylamine, pyridine, N‐ethyl‐N,N‐diisopropylamin e,  in  an  aprotic polar/non polar  solvents such as acetonitrile, dichlomethane, 1,2 dich loroethane, chloroform, N,N‐dimethylformamide  (DMF), 1‐methyl‐pyrrolidin‐2‐one  (NMP)  at  ambient or  elevated  temperatures. Occasionally,  small  amount  of  a  catalyst,  such  as N,N‐dimethylaminopyridine,  also  known  as DMAP,  is  added  to  the  reaction. For example, see US2003/232854, WO 2006/1175 70, WO 2008/40934, WO 2008/64432, WO  2009/23655, WO2007/59613, US2002/99035, US2015/158865 an d references therein. 

Amide coupling of compounds of general formula (3)  prop‐2‐enoyl acid occur in the presence of a b ase  and an appropriate coupling  reagent  in an aprotic polar/non polar  solvent at ambient or elevated  temperatures.  Suitable  amide  coupling  are,  for  example, O‐(7‐aza‐1H‐benzotriazol‐1‐yl)‐N,N,N ´,N´‐ tetramethyluronium  hexafluorphosphate,  also  called  HATU,  O‐(Benzotriazol‐1‐yl)‐N,N,N',N'‐ tetramethyluronium  tetrafluoroborate  (TBTU),  dicyclohexylcarbodiimide,  a  combination  of  1H‐ benzotriazol and 1‐ethyl‐3‐[3‐dimethylamino]carbod iimide hydrochloride or propanephosphonic acid  anhydride  (T3P). Appropriate bases  include,  for example, N,N‐dimethylaminopyridine, N‐ethyl‐N,N ‐ diisopropylamine, triethylamine. Solvents used in such amide coupling reaction are, for example, N,N‐ dimethylformamide (DMF), 1‐methyl‐pyrrolidin‐2‐one  (NMP), dichlomethane or tetrahydrofuran. For  example, see WO2010/11837, WO 2005/115972, WO 2006/527 22, US 2007/185148. J. Am. Chem. Soc.  1992, 114, 9327, WO 2010/11837, Org. Lett. 2011, 504 8‐5051 and references cited therein. 

 

Scheme 2 

Compounds of general formula (3) can obtained by  cleavage of the tert‐butylcarbamate group (Boc).  Selected methods for the deprotection of tert‐butylc arbamate group (Boc) include trifluoroacetic acid  in dichloromethane, or a mixture of hydrogen chloride  and acetic acid, or hydrogen chloride  in 1,4‐ dioxane  and  acetone  or  dichloromethane.  For  example,  see  US2006/293341,  WO2005/30732,  WO2008/40934, WO2007/91694 and WO2004/67516 and referen ces cited therein. 

 

Scheme 3 

Compounds of general formula (4) can be divided in  4 different subsgroups with only one A=N for  compounds of general formula (4c) and (4d). 

 

Scheme 4 

Compounds of general formula (4a) can be obtained by  the reaction of compounds of general  formula (5) in the presence of aqueous ammonia at e levated temperatures (WO2007/5838,  WO2005/110991).  Compounds of general formula (5) can  be obtained by acylation reaction of  homophthalic anhydride of general formula (6) with te rt‐butyl‐3‐(chlorocarbonyl)‐pyrrolidine‐1‐ carboxylate in the presence of a base in an aprotic  polar/ non polar solvent.  Selected examples  include the use of a combination triethylamine, N,N,N ',N'‐tetramethylguanidine in acetonitrile at  elevated temperatures (WO2007/16525), or of N,N,N',N' tetramethylguanidine in acetonitrile at  elevated temperatures (Chemistry ‐ A European Journa l, 2010, vol. 16, # 9, p. 2758 – 2763), or the use of pyridine as base and solvent simultaneously ( Journal of Medicinal Chemistry, 2016, vol. 59, #  19, p. 8787 – 8803).  In the present invention,  the use of pyridine as solvent and base is preferre d.  Homophthalic anhydride of general formula (6) are eit her commercially available or can be obtained  by the reaction of homophthalic acid of general form ula (7) with an appropriate dehydrating reagent  in an aprotic polar/non polar solvent. Selected examp les include the use of  acetic anhydride in  toluene at elevated temperatures (European Journal of Medicinal Chemistry, 2016, vol. 118, p. 328 –  339), thionyl chloride in refluxing dichlomethane (Syn thesis, 2011, # 22, p. 3697 – 3705) or acetyl  chloride in acetone (Bioorganic and Medicinal Chemistr y, 2002, vol. 10, # 2, p. 253 – 260). 

Furthermore  the use of acetyl chloride as dehydrati ng reagent under microwave irridation 

(WO2010/45948) or trifluoroacetic anhydride at ambient temperature (WO2010/55164 ) has been  described. In the present invention the use of acety l chloride in acetonitrile at elevated temperatures  is preferred. 

 

Scheme 5 

Quinazolinone of general formula (4b) can be obtai ned by ring closure of 2‐(acylated amino)  benzamide of general formula (8) in the presence of a base or an acid in a protic/aprotic polar/non  polar solvent. Selected examples described in literatu res include the use of potassium hydroxide in  ethanol/water (US2015/79028), sodium ethanolate in etha nol (US2015/329556), sodium methoxide  in methanol (WO2011/28741), toluene‐4‐sulfonic acid in toluene (US2015/329556). In the present  invention the use of sodium methoxide as base in me thanol at elevated temperatures is preferred.    

Scheme 6 

Quinazolinone of general formual (4c) can be obtai ned by the condensation of  2‐amino benzoate of  general formula (10) with commercially available tert butyl‐3‐cyanopyrrolidine‐1‐carboxylate .  Depending on the reaction conditions used, concomitant  cleavage of the BOC‐protecting group can  occur to deliver quinazolinone of general formula (4c 2). Similar examples found include the use of   hydrogen chloride in hexane (Synlett, 2001, # 11, p.  1707 – 1710, Journal of Organic Chemistry, 2004, vol. 69, # 20, p. 6572 ‐ 6589). In the present  invention, the preferred reaction condition  includes the  use of HCl/dioxane at elevated temperatures thus deli vering compounds of general formula (4c2).   

Scheme 7 

Quinazolinone of general formula (4d) can be obtai ned by ring closure of compounds of general  formula (11) in the presence of an acid or a base in an aprotic/protic polar/non polar solvent.  Selected examples found include the use of toluene‐ 4‐sulfonic acid in ethanol at elevated  temperatures (Synthesis, 2008, # 10, p. 1607 – 161 1), or indium(III) bromide in toluene at elevated  temperatures (Journal of Organic Chemistry, 2008, vol.  73, # 11, p. 4160 – 4165), silver nitrate in  water at elevated temperatures (Synthesis, 2017, vol. 49, # 21, p. 4845 – 4852). In the present  invention, the preferred condition employs sodium hydr ide in tetrahydrofuran at ambient  temperatures. 

Compounds of general formula (11) can be obtained by conversion of the cyano group of compounds  of general formula (12) to the carboxamide group. Se lected examples employed sulfuric acid  (US2012/277224), potassium hydroxide in tert‐butyl al cohol (European Journal of Medicinal  Chemistry, 1990, vol. 25, # 8, p. 673 – 680), so dium hydroxide, dihydrogen peroxide 

(WO2009/53715) in methanol. In the present inventio n, the use of sodium hydroxide/hydrogen  peroxide combination in methanol is preferred.  

Compounds of of general formula (12) can be obtai ned by a coupling reaction of compounds of  general formula (13) with tert‐butyl 3‐ethynylpyrro lidine‐1‐carboxylate in the presence of a catalyst   and a base in an aprotic polar/unpolar solvent (Sono gashira reaction). Examples known include the  use of diisopropylamine; bis‐triphenylphosphine‐palla dium(II) chloride; copper(l) iodide in 

tetrahydrofuran (WO2008/51532), tetrakis(triphenylphosp hine)palladium (0) ; potassium carbonate in  N,N‐dimethylformamide (Inorganica Chimica Acta, 2018, vol. 479, p. 261 – 265), copper(l)  iodide; triethylamine; tetrakis(triphenylphosphine)palladi um (0)  in N,N‐dimethylformamide 

(US2009/131468). In the present invention the use  of triethylamine with copper(1) iodide and   tetrakis(triphenylphosphine)palladium (0)  as catalyst in toluene is preferred. 

Alternatively, compounds of general formula (1) can a lso be obtained by a modified synthesis route.  Starting from benzoate of general formula (14), compo unds of general of formula (15) can be  obtained by a Sonogashira coupling reaction with tert ‐butyl 3‐ethynylpyrrolidine‐1‐carboxylate.  Selected conditions for the Sonogashira reaction were described in the section above. Hydrolysis of  the ester under basic conditions can afford compounds  of general formula (16). In the present  invention, the use of aqueous sodium hydroxide in me thanol is preferred. Subsequent C‐C bond  formation reaction of compounds of general formula (1 6) with an organometallic compound can  deliver compounds of general formula (17). Appropriate  C‐C bond formation reactions were  mentioned above. Various conditions have been known f or the conversion of compounds of general  formula (17) to compounds of general formula (18), e g. the use of copper dichloride in ionic liquid  (Journal of Organic Chemistry, 2018, vol. 83, # 12, p. 6673 – 6680), toluene‐4‐sulfonic acid in et hanol  at elevated temperatures under microwave irridation (S ynthesis, 2008, # 10, p. 1607 – 1611) or  trifluoroacetic acid at ambient temperatures (WO2010/10 3278). In the present invention, the use of  triflluoroacetic acid is preferred with concomitant cl eavage of the BOC‐protecting group. Treatment  compounds of general formula (18) with ammonia as me ntioned above can deliver compounds of  general formula (19), which subsequently undergoes acy lation reaction with prop‐2‐enoyl chloride to  afford compounds of general formula (1). 

 

General Methods  

All solvents used were commercially available and  were used without further purification. Reactions  were typically run using anhydrous solvents under an inert atmosphere of nitrogen. 

 

Proton NMR spectra were recorded using a Bruker P lus 400 NMR Spectrometer unless stated  otherwise. All deuterated solvents contained typically 0.03% to 0.05% v/v tetramethylsilane, which  was used as the reference signal (set at  ^ 0.00 for both  1 H and  13 C).  

 

LC‐MS Method 1: 

System:  Agilent 1290 UHPLC‐MS Tof 

Column:  BEH C 18 (Waters) 1.7 µm, 50x2.1 mm 

Solvent:  A = H 2 O + 0.05%vol. HCOOC (99%) 

  B = acetonitrile + 0.05%vol. HCOOC (99%) 

Gradient:  0‐1.7 min 2‐90% B, 1.7‐2 min 90% B, 2‐2.5 m in 90‐2% B 

Flow:  1.2 mL/min 

Temperature:  60°C 

Detection:  DAD scan range 210‐400 nm 

 

LC‐MS Method 2: 

Instrument: Waters Acquity UPLCMS SingleQuad; Column : Acquity UPLC BEH C18 1.7 µm, 50x2.1mm;  eluent A: water + 0.1 vol % formic acid (99%), elu ent B: acetonitrile; gradient: 0‐1.6 min 1‐99% B,  1.6‐ 2.0 min 99% B; flow 0.8 ml/min; temperature: 60 °C ; DAD scan: 210‐400 nm. 

   

Experimental Details  

 

Example 1: 7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐[ 1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H )‐one 

 

Step 1: tert‐Butyl 3‐(7‐bromo‐1‐oxo‐1,2‐ dihydroisoquinolin‐3‐yl)pyrrolidine‐1‐carboxylate 

 

To a solution of 7‐bromo‐1H‐isochromene‐1,3(4 H)‐dione (308 mg, 1.28 mmol) in pyridine (27 mL)  was  added  tert‐butyl  3‐(chlorocarbonyl)pyrrolidine‐1‐carboxylate  (299  mg,  1.2.8  mmol).  The  reaction  mixture was allowed to stir at room temperature over night. The mixture was diluted with toluene.  After removal of  the solvent, aqueous ammonium hydroxide  (20 mL, 128 mmol) was added  to the  crude product (686 mg, 1.56 mmol). The mixture was  allowed to reflux for 6h. After removal of the  solvent and subsequent column chromatography 248 mg o f the product was obtained, which was used  in the next step without further analytics. 

Step 2: 7‐Bromo‐3‐(pyrrolidin‐3‐yl)isoquinoli n‐1(2H)‐one 

 

To a solution of tert‐butyl 3‐(7‐bromo‐1‐o xo‐1,2‐dihydroisoquinolin‐3‐yl)pyrrolidine‐1‐car boxylate  (248 mg, 0.631 mmol) in dichlomethane (12 mL) was a dded trifluoroacetic acid (0,97 mL, 12.6 mmol)  at room temperature. After 2h the solvent was remove d, and the crude product was used in the next  step without prior purification (360 mg). 

Step 3: 3‐(1‐Acryloylpyrrolidin‐3‐yl)‐7‐bro moisoquinolin‐1(2H)‐one 

 

To a solution of 7‐bromo‐3‐(pyrrolidin‐3‐yl )isoquinolin‐1(2H)‐one (360 mg, 1.23 mmol) in  dichloromethane (40 mL) were added acryloylchhloride ( 133 mg, 1.47 mmol) and N,N‐

diidopropylethylamine (2.2 mL, 2.14 mmol).The reacti on mixture was allowed to stir at room  temperature overnight. The mixture was diluted with s aturated aqueous sodium bicarbonate  solution and extracted with dichloromethane. The combi ned organic phases were washed with  saturated aqueous sodium chloride solution and dried  over sodium sulfate. After filtration, removal  of the solvent and column chromatography 222 mg prod uct was obtained, which was used without  further analytics.  

Step 4: 7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H) one 

 

To a solution of 3‐(1‐acryloylpyrrolidin‐3‐yl )‐7‐bromoisoquinolin‐1(2H)‐one (85 mg, 0.245 mmo l) in  dioxan/water (7.5mL / 2.2 mL) in sealed tube were a dded (2‐fluoro‐6‐hydroxyphenyl)boronic acid (42  mg, 0.27 mmol), dicyclohexyl(2',6'‐diisopropoxy‐[1,1' ‐biphenyl]‐2‐yl)phosphine, also known as  RuPhos, (11 mg, 0.024 mmol), (2‐dicyclohexylphosphino ‐2¢,6¢‐diisopropoxy‐1,1¢‐biphenyl)[2‐(2¢‐ amino‐1,1¢‐biphenyl)]palladium(II) methanesulfonate,  also known as RuPhos Pd G3, (10 mg, 0.012  mmol) and postassium carbonate (85 mg, 0.612 mmol).  The reaction mixture was allowed to stir at  65°C for 18h. After cooled to room temperature, the  reaction mixture was diluted with saturated  aqueous ammonium chloride solution, extracted with eth yl acetate. The combined organic phases  were dried over sosium sulfate. After filtration, rem oval of the solvent and purification of the crude  the title compound was obtained in 15% yields (14 m g) 

as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.02 ‐ 2.40 (m, 4 H), 3.37   3.48 (m,  3H), 3.57 ‐ 3.69 (m, 3H), 3.73 ‐ 3.82 (m, 1H),  3.87 ‐ 3.95 (m, 1H), 4.03 ‐ 4.10 (m, 1H), 5. 67 ‐ 5.73 (m,  2H), 6.13 ‐ 6.21 (m, 2H), 6.50 (d, J=10.7 Hz,   2H), 6.58 ‐ 6.66 (m, 2H), 6.71 ‐ 6.77 (m, 2H),  6.82 (d, J=9.3  Hz, 2H) ,7.17 ‐ 7.26 (m, 2H), 7.54 ‐ 7.75 (m, 4H), 8.14 (s,2 H), 9.94 ‐ 10.08 (br, 2H), 11.30 ‐ 11.43 (m,  2H). MS (ESIpos): m/z = 379 (M+H) + ; LC‐MS [Method 1]: R t  = 0.82, 0.85 min. 

  Example 2: 3‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐yl] ‐7‐(quinolin‐5‐yl)isoquinolin‐1(2H)‐one 

o

 

Prepared in analogous fashion as described in step  4 of example 1 to give 36 mg (33%) of the title   compound as a mixture of rotamers.  1 H‐NMR (400MHz, DMSO‐d 6 ): d [ppm] = 2.04 ‐ 2.43 (m, 4H),  3.38 ‐ 3.53 (m, 4H), 3.58 ‐ 3.72 (m, 3H), 3.75  ‐ 3.86 (m, 1H), 3.89 ‐ 3.96 (m, 1H), 4.03   4.13 (m, 1H),  5.63 ‐ 5.76 (m, 2H), 6.11 ‐ 6.24 (m, 2H), 6.55  ‐ 6.69 (m, 4H), 7.49 ‐ 7.58 (m, 2H), 7.61   7.66 (m, 2H),  7.74 ‐ 7.91 (m, 6H), 8.05 ‐ 8.15 (m, 2H), 8.16  ‐ 8.28 (m, 4H), 8.86 ‐ 9.01 (m, 2H), 11.20‐ 11.60 (br, 2H).  MS (ESIpos): m/z = 396 (M+H) + ; LC‐MS [Method 1]: R t  = 0.69 min. 

 

Example 3: 7‐(1H‐Indol‐4‐yl)‐3‐[1‐(prop 2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

o

 

Prepared in analogous fashion as described in step  4 of example 1 to give 36 mg (33%) of the title   compound as a mixture of rotamers. to give 4 mg (3 %) of the title compound as a mixture of  rotamers.  1 H‐NMR (400MHz, DMSO‐d 6 ): d [ppm] = 2.10‐2.40 (m, 4H), 3.38 ‐ 3. 52 (m, 3H), 3.59 ‐ 3.71  (m, 3H), 3.71 ‐ 3.84 (m, 1H), 3.86 ‐ 3.97 (m, 1H), 4.03 ‐ 4.12 (m, 1H), 5.65 ‐ 5.75 (m, 2H) , 6.13 ‐ 6.23  (m, 2H), 6.51 ‐ 6.68 (m, 6H), 7.12 ‐ 7.26 (m, 4H), 7.42 ‐ 7.49 (m, 4H), 7.73 (dd, J=8.24, 1.90  Hz, 2H),  7.94 ‐ 8.04 (m, 2H), 8.39 ‐ 8.54 (m, 2H), 11.2 7 ‐ 11.47 (m, 4H). MS (ESIpos): m/z = 384 (M+H) + ; LC‐MS  [Method 1]: R t  = 0.88; 0.92 min.  

  Example 4: 7‐(2,4‐Difluorophenyl)‐3‐[1‐(prop‐2 ‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one

Prepared in analogous fashion as described in  step 4 of example 1 to give 14 mg (13%) of the t itle compound as a mixture of rotamers.  1 H NMR (400  MHz, DMSO‐d 6 ) d [ppm] = 2.03 ‐ 2.40 (m, 4H), 3.36 ‐ 3.49 (m, 4H), 3.59 ‐ 3.68 (m, 3H), 3.73 ‐ 3.8 1 (m,  1H), 3.87 ‐ 3.95 (m, 1H), 4.02 ‐ 4.09 (m, 1H),  5.65 ‐ 5.73 (m, 2H), 6.11 ‐ 6.21 (m, 2H), 6. 53 (d, J=9.4 Hz,  2H) 6.56 ‐ 6.68 (m, 2H), 7.19 ‐ 7.27 (m, 2H), 7.37 ‐ 7.47 (m, 2H), 7.65 ‐ 7.74 (m, 4H), 7.7 9 ‐ 7.87 (m,  2H), 8.27 (s, 2H), 11.37 ‐ 11.51 (br, 2H). MS (E SIpos): m/z = 381 (M+H) + ; LC‐MS [Method 1]: R t  = 1.03  min. 

 

Example 5: 7‐(2‐Ethylphenyl)‐3‐[1‐(prop‐2 enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

 

Prepared in analogous fashion as described in step  4 of example 1 to give 21 mg (20%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 1.02 (t, J=7.60 Hz, 6H),  2.03‐2.41 (m. 4H), 2.56 (q, J=7.44 Hz, 4H) 3.36   3.51 (m, 3H), 3.57 ‐ 3.69 (m, 3H),  3.74 ‐  3.84 (m, 1H),   3.88 ‐ 3.96 (m, 1H), 4.01 ‐ 4.11 (m, H), 5.64 ‐ 5.79 (m, 2H), 6.10 ‐ 6.24 (m, 2H), 6.53 (d,  J=10.14 Hz,  2H), 6.57 ‐ 6.68 (m, 2H), 7.14 ‐ 7.23 (m, 2H),  7.24 ‐ 7.31 (m, 2H), 7.33 ‐ 7.40 (m, 4H), 7. 59 ‐ 7.73 (m,  4H), 8.02 (s, 2H), 11.30 ‐ 11.49 (br, 2H). 

 

Example 6: 7‐(3‐Ethoxy‐2,4‐difluorophenyl)‐3 [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1 (2H)‐

one  

Prepared in analogous fashion as described in step  4 of example 1 to give 12 mg (10%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] 1.34 (t, J=7.10 Hz, 6H),  2.01 ‐ 2.40 (m, 4H), 3.38 ‐ 3.49 (m, 3H), 3.56  ‐ 3.68 (m, 3H), 3.71 ‐ 3.82 (m, 1H), 3.85   3.96 (m, 1H),  4.02 ‐ 4.09 (m, 1H), 4.22 (q, J=7.01 Hz, 4H), 5. 66 ‐ 5.73 (m, 2H), 6.10 ‐ 6.20 (m, 2H), 6.52  (d, J=7.35 Hz,  2H), 6.56 ‐ 6.67 (m, 2H), 7.21 ‐ 7.38 (m, 4 H ), 7.70 (dd, J=8.24, 4.44 Hz, 2H), 7.79 ‐ 7.85 ( m, 2H), 8.26  (s, 2H). MS (ESIpos): m/z = 381 (M+H) + ; LC‐MS [Method 1]: R t  = 1.12 min. 

 

Example 7: 3‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3‐ yl]‐7‐(2,3,4‐trifluorophenyl)isoquinolin‐1(2H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 4 mg (4%) of the title  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.01 ‐ 2.41 (m, 4H), 3.36  ‐ 3.49 (m, 3H), 3.59 ‐ 3.69 (m, 3H), 3.75 ‐ 3.82 (m, 1H), 3.88 ‐ 3.95 (m, 1H), 4.03 ‐ 4.0 9 (m, 1H), 5.66 ‐  5.73 (m, 2H), 6.12 ‐ 6.20 (m, 2H), 6.55 (d, J=9. 38 Hz, 2H), 6.57‐6.67 (m, 2H), 7.41 ‐ 7.55 (m, 4H) 7.74  (dd, J=8.11, 2.53 Hz, 2H), 7.82 ‐ 7.90 (m, 2H),  8.27 ‐ 8.31 (s, 2H), 11.43 ‐ 11.57 (br, 2H). M S (ESIpos):  m/z = 399 (M+H) + ; LC‐MS [Method 1]: R t  = 1.07 min. 

 

Example 8: 7‐(3,5‐Difluorophenyl)‐3‐[1‐(prop 2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 17 mg (16%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 1.99 ‐ 2.40 (m, 4H), 3.36  ‐ 3.48 (m, 3H), 3.58 ‐ 3.68 (m, 3H), 3.75 ‐ 3.82 (m, 1H), 3.88 ‐ 3.95 (m, 1H), 4.03 ‐ 4.0 9 (m, 1H), 5.59 ‐  5.75 (m, 2H), 6.10 ‐ 6.24 (m, 2H), 6.53 (d, J=8. 11 Hz, 2H), 6.57 ‐ 6.66 (m, 2H), 7.19 ‐ 7.34  (m, 2H), 7.43  ‐ 7.61 (m, 4H), 7.72 (dd, J=8.36, 3.80 Hz, 2H),  8.04 ‐ 8.08 (m, 2H), 8.42 (s, 2H) 11.26 ‐ 11.6 3 (br, 2H).  MS (ESIpos): m/z = 381 (M+H) + ; LC‐MS [Method 1]: R t  = 1.05 min. 

  Example 9: 7‐(3‐Fluoropyridin‐2‐yl)‐6‐methoxy 3‐[‐1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquino lin‐

1(2H)‐one   Step 1: Tert‐butyl‐3‐(chlorocarbonyl)pyrrolidine‐1 ‐carboxylate 

 

1‐(tert‐Butoxycarbonyl)pyrrolidine‐3‐carboxylic  acid (447 mg, 2.08 mmol) was suspended in toluene  (33 ml) under nitrogen atmosphere. Thionyl chloride ( 8.8 ml, 120 mmol; CAS‐RN:[7719‐09‐7]) was  added and the reaction mixture was stirred at 130°C  for 3 h. The mixture was concentrated two times  with toluol in vacuo to give the title compound as crude product which was used directly in next step without further purification. 

 

Step 2: 5‐Bromo‐2‐(carboxymethyl)‐4‐methoxybe nzoic acid 

 

2‐(Carboxymethyl)‐4‐methoxybenzoic acid (2.00 g,  9.52 mmol) and N‐bromosuccinimide (1.69 g, 9.52  mmol; CAS‐RN:[128‐08‐5]) was dissolved  in trifl uoroacetic acid (30 ml, 390 mmol; CAS‐RN:[76‐05‐ 1]).  The supension was stirred at 50°C for 2 h. The so lvent was removed in vacuo and the resulting  residue was purified by recrystallization using methan ol to give 328 mg (12 % yield) of the title  compound.  1 H‐NMR (500MHz, DMSO‐d6): ^ [ppm]= 3.91 (s, 3H), 3.95 (s, 2H), 7.13 (s, 1H),  8.05 (s, 1H),  11.52 ‐ 13.46 m, 2H). LC‐MS [Method 2]: Rt = 0 .81 min; MS (ESIpos): m/z = 290 [M+H] + .  Step 3:  3‐Fluoro‐2‐(tributylstannyl)pyridine   

2‐Bromo‐3‐fluoropyridine (1.00 g, 5.68 mmol) w as dissolved in dry THF (30 ml, 370 mmol; CAS‐ RN:[109‐99‐9]) under nitrogen atmosphere. The solut ion was cooled to ‐78°C and a solution of n‐ Butyllithium (1,6M in hexane) (5.3 ml, 8.5 mmol; CAS ‐RN:[109‐72‐8]) was added dropwise. The  mixture was stirred for 1 h at this temperature, th en tributyl(chloro)‐stannane (2.3 ml, 8.5 mmol) was added dropwise. The reaction mixture was stirred for further 0.5 h at ‐78°C, then allowed to warm  slowly to room temperature. The reaction was stirred for another 17 h at room temperature. The  mixture was quenched with saturated ammonium chloride solution. The layers were separated and  the aqueous layer was extracted with ethyl acetate.  The  combined organic layers were dried over  sodium sulfate and concentrated. The crude product wa s purified by chromatography to give 845 mg  (39 % yield) of the title compound. LC‐MS [Method 2]: Rt = 1.88 min; MS (ESIpos): m/z = 388 [M+H]+ Step 4;  7‐Bromo‐6‐methoxy‐1H‐2‐benzopyran‐ 1,3(4H)‐dione 

 

To 5‐Bromo‐2‐(carboxymethyl)‐4‐methoxybenzoic acid (500 mg, 1.73 mmol) in acetonitrile (7.4 ml), acetyl chloride (7.4 ml, 100 mmol) added. The result ing mixture was stirred for 5 h at 50°C. The  mixture was concentrated twice with toluol in vacuo  to give the title compound as a crude product,  which was used directly in next step without further  purification. 

Step 5: tert‐Butyl‐3‐(7‐bromo‐6‐methoxy‐1 ,3‐dioxo‐3,4‐dihydro‐1H‐2‐benzopyran‐4‐

carbonyl)pyrrolidine‐1‐carboxylate 

 

To tert‐butyl‐3 ‐(chlorocarbonyl)pyrrolidine‐1 carboxylate (485 mg, 2.08 mmol) in 10 ml pyridine (38  ml), 7‐bromo‐6‐methoxy‐1H‐2‐benzopyran‐1,3(4H )‐dione (469 mg, 1.73 mmol) in 27 ml pyridine (38   ml) was added. The reaction mixture was stirred at  room temperature for 16 h. Touene was added and  the mixture was concentrated in vacuo to give 810 m g (100 % yield) of the title compound as a crude  product, which was used directly in next step withou t further purification. LC‐MS [Method 2] : R t  = 1.12  min; MS (ESIpos): m/z = 468 [M+H] +  

Step 6: tert‐Butyl‐3‐(7‐bromo‐6‐methoxy‐1 ‐oxo‐1,2‐dihydroisoquinolin‐3‐yl)pyrrolidine‐1 carboxylate 

 

tert‐Butyl‐3‐(7‐bromo‐6‐methoxy‐1,3‐dioxo ‐3,4‐dihydro‐1H‐2‐benzopyran‐4‐carbonyl)‐pyr rolidine‐1‐ carboxylate (810 mg, 1.73 mmol) was was dissolved  in aqueous ammonium hydroxide (30 ml, 35 %  purity, 260 mmol; CAS‐RN:[1336‐21‐6]). The supens ion was stirred at 69°C for 2 h. The mixture was concentrated and ethyl acetate was added., The precip itate was filtered off, washed with water and  dried  in vacuo  to give 200 mg  (27 % yield) of  the  title compound which was used without  further  purification in the following step. LC‐MS [Method 2 ]: R t  = 1.18 min; MS (ESIpos): m/z = 424 [M+H] +   Step 7: tert‐Butyl‐3‐[7‐(3‐fluoropyridin‐2‐y l)‐6‐methoxy‐1‐oxo‐1,2‐dihydroisoquinolin‐3‐

yl]pyrrolidine‐1‐carboxylate 

  tert‐Butyl‐3‐(7‐bromo‐6‐methoxy‐1‐oxo‐1,2 dihydroisoquinolin‐3‐yl)pyrrolidine‐1‐carboxylate (10.0  mg, 23.6 µmol) was suspended  in DMF (500 µl). 3‐fluoro‐2‐(tributylstannyl)pyri dine  (15.6 mg, 70 %  purity from step C, 28.3 µmol), tetrakis(triphenylpho sphino)palladium‐(0) (2.73 mg, 2.36 µmol; CAS‐ RN:[14221‐01‐3])  and  copper(II)  oxide  (380  µg,  4.7  µmol;  CAS‐RN:[1317‐38‐0])  were  added.  The  obtained mixture was stirred at 100°C for 17 h. Sa turated aqueous ammonium chloride solution was  added. The obtained mixture was extracted with ethyl acetate. The combined organic  layers were  dried over sodium sulfate and concentrated. The crude  product was purified by flash chromatography  to give 28.0 mg of the title compound as crude pro duct which was used in the following step. LC‐MS  [Method 2] R t  = 1.11 min; MS (ESIpos): m/z = 440 [M+H] +  

Step 8:  7‐(3‐Fluoropyridin‐2‐yl)‐6‐methox y‐3‐[pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one 

 

To tert‐butyl (3S)‐3‐[7‐(3‐fluoropyridin‐2 yl)‐6‐methoxy‐1‐oxo‐1,2‐dihydroisoquinolin‐3 ‐

yl]pyrrolidine‐1‐carboxylate (28.0 mg, 63.7 µmol ) in dichloromethane (870 µl) was added  trifluoroacetic acide (200 µl, 2.5 mmol; CAS‐RN:[76 ‐05‐1]) slowly. The reaction mixture was stirred  at  room temperature for 1 h. The mixture was carefully poured into water. The resulting mixture was  cooIed in an ice bath. Aqueous ammonia (210 µl, 30  % purity, 3.3 mmol; CAS‐RN:[7664‐41‐7]) was  slowly added. The aqueous layer was extracted with e thyl acetate. The combined organic layers were  dried over sodium sulfate and concentrated. The crude  product (26.0 mg) was used in the next  reaction without further purification.  LC‐MS [Metho d 2] R t  = 0.60 min; MS (ESIpos): m/z = 340 

[M+H] +

Step 9: 7‐(3‐Fluoropyridin‐2‐yl)‐6‐methoxy 3‐[‐1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquino lin‐1(2H)‐one 

 

To 7‐(3‐fluoropyridin‐2‐yl)‐6‐methoxy‐3‐ [pyrrolidin‐3‐yl]isoquinolin‐1(2H)‐one (74.0 mg,  83 % purity,  181 µmol) dichloromethane (5.4 ml) was added triethy lamine (130 µl, 900 µmol; CAS‐RN:[121‐44‐8]).  Prop‐2‐enoyl chloride (18 µl, 220 µmol) in dich loromethane (100 µL) was added. The obtained mixture   was stirred at room temperature for 45 min. Saturate d aqueous sodium carbonate was added at 0°C.  The mixture was extacted with extracted with ethyl a cetate. The combined organic layers were dried  over  sodium  sulfate  and  concentrated.  The  obtained  crude  product  was  purified  by  flash  chromatography  to give 44.0 mg  (100 % purity, 62 % yield) of  the  title compound as a mixture of  rotamers.  1 H‐NMR (400MHz, DMSO‐d 6 ): d [ppm]= 1.99 ‐ 2.21 (m, 2H), 2.22 ‐  2.31 (m, 1H), 2.33 ‐ 2.41  (m, 1H), 3.24 ‐ 3.50 (m, 4H), 3.57 ‐ 3.67 (m, 3H), 3.71 ‐ 3.81 (m, 1H), 3.87 (m, 7H), 4.02   4.08 (m, 1H),  5.70 (dt, 2H), 6.17 (dt, 2H), 6.49 (d, 2H), 6.62 ( ddd, 2H), 7.30 (d, 2H), 7.53 (dd, 2H), 8.01 (d, 2H ), 8.49  (d, 2H), 8.63 (d, 2H), 11.33 (br d, 2H). LC‐MS [ Method 2]: R t  = 0.82 min; MS (ESIpos): m/z = 394 [M+H] + .   

Example 10: 3‐(1‐Acryloylpyrrolidin‐3‐yl)‐7 (3‐fluoropyridin‐2‐yl)‐6‐hydroxy‐isoquinolin‐ 1(2H)‐one 

 

 

7‐(3‐fluoropyridin‐2‐yl)‐6‐methoxy‐3‐[(3S )‐1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquinolin‐ 1(2H)‐one  (20.0 mg, 50.8 µmol) in dichloromethane (3.0 ml) wa s cooled in an ice bath. Boron tribromide in  dichloromethane (510 µl, 1.0 M, 510 µmol; CAS‐RN: [10294‐33‐4]) was slowly added and  the  resulting mixture was stirred at room tempeature for 19 h. Aqueous saturated sodium carbonate  solution was added at 0°C. The obtained mixture was  extracted with ethyl acetate. The combined  organic layers was dried over sodium sulfate and con centrated. T obtained crude product was  purified by flash chromatography to give 6.50 mg (10 0 % purity, 34 % yield) of the title compound as  a mixture of rotamers.  1 H‐NMR (400MHz, DMSO‐d6):  ^ [ppm]= 2.08 (s, 3H), 3.13 ‐ 3.27 (m, 2H), 3.39  ‐  3.47 (m, 2H), 3.53 ‐ 3.69 (m, 3H), 3.73 ‐ 3.83  (m, 1H), 3.89 (s, 1H), 3.99 ‐ 4.14 (m, 1H), 5. 69 (dt, 2H),  6.16 (dt, 2H), 6.37 (d, 2H), 6.62 (ddd, 2H), 7.01  (s, 2H), 7.55 (dd, 2H), 8.00 (s, 2H), 8.47 (d, 2H) , 8.62 (d,  2H), 11.09 ‐ 11.20 (m, 2H). LC‐MS [Method 2]: R t  = 0.68 min; MS (ESIneg): m/z = 378 [M‐H]

 

Example 11: 6‐(2‐Fluoro‐6‐methoxyphenyl)‐2‐ [(1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3 H)‐

one   Step 1: tert‐Butyl 3‐[(4‐bromo‐2‐carbamoyl‐ph enyl)carbamoyl]pyrrolidine‐1‐carboxylate 

 

To a solution of 2‐amino‐5‐bromobenzamide (2.0  g, 9.3 mmol) and 1‐(tert‐

butoxycarbonyl)pyrrolidine‐3‐carboxylic acid (2.0  g, 9.3 mmol) in N,N‐dimethylformamidi (20 mL)  were added HATU (3.89 g, 10.23 mmol) and N,N‐diiso propylethylamine (4.86 mL, 28 mmol). The  reaction mixture was stirred at 80°C overnight. Afte r adding 200 µL water and removal of solvent,  followed by column chromatography 2.99 g of the prod uct was obtained and used in the next step  without prior analytics. 

Step 2: tert‐Butyl‐3‐(6‐bromo‐4‐oxo‐3H‐ quinazolin‐2‐yl)pyrrolidine‐1‐carboxylate 

 

To a solution of tert‐Butyl 3‐[(4‐bromo‐2‐ carbamoyl‐phenyl)carbamoyl]pyrrolidine‐1‐carboxylate  (2.99 g, 7.25 mmol) in methanol (150 mL) was added 30% solution of sodium methanoxide in  methanol (2.7 mL, 15 mmol). The reaction mixture was  stirred 2h at 50°C. After cooled to room  temperature and subsequent removal of the solvent, th e crude was dissolved in ethyl acetate and  washed with water. The organic phase was dried over sodium sulfate. After filtration, removal of the  sovent followed by chromatography, 1.15 g of the com pound was obtauined and used in the next  without prior analytics. 

Step 3: 6‐Bromo‐2‐[pyrrolidin‐3‐yl]quinazolin ‐4(3H)‐one 

 

To a solution of tert‐butyl‐3‐(6‐bromo‐4‐ oxo‐3H‐quinazolin‐2‐yl)pyrrolidine‐1‐carboxylate  (1.15g,  2.92 mmol) in tetrahydrofuran (12 mL) was added 4M  HCl in Dioxane  (45 mL). The reaction mixture  was allowed to stir 3h at room temperature, followed  by 1h at 60°C. After completion of the  reaction, the solvent was removed and the crude prod uct (858 mg) was used in the next step without  prior purification.  

Step 4: 6‐Bromo‐2‐[(1‐(prop‐2‐enoyl)pyrroli din‐3‐yl]quinazolin‐4(3H)‐one 

 

Prepared in analogous fashion as described in step  3 of example 1 to give 524 mg (51%) of the titl e  compound.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.09 ‐ 2.40 (m, 2 H), 3.35   3.85 (m, 5H), 3.88 ‐  3.99 (m, 1 H), 5.68 (dd, J=10.27, 2.41 Hz, 1H), 6. 15 (dd, J=16.86, 2.41 Hz, 1H), 6.55 ‐ 6.66 (m, 1 H), 7.56  (dd, J=8.74, 1.65 Hz, 1 H), 7.93 (ddd, J=8.74, 2.41 , 1.01 Hz, 1H), 8.17 (dd, J=2.28, 1.27 Hz, 1H), 12 .51  (br, 1H). MS (ESIpos): m/z = 348 (M+H) + ; LC‐MS [Method 1]: R t  = 0.83 min. 

Step 5: 6‐(2‐Fluoro‐6‐methoxyphenyl)‐2‐[(1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H) one 

 

Prepared in analogous fashion as described in step  4 of example 1 to give 9 mg (8%) of the title  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.13 ‐ 2.41 (m, 4H), 3.38  ‐ 3.56 (m, 3H), 3.58 ‐ 3.68 (m, 2H), 3.72 ‐ 3.88 (m, 9H), 3.90 ‐ 4.03 (m, 2H), 5.65 ‐ 5.7 3 (m, 2H), 6.16  (dd, J=16.73, 2.28 Hz, 2H), 6.55 ‐ 6.69 (m, 2H), 6.95 (t, J=9.2 Hz, 2H), 7.02 (d, J=9.2 Hz, 2H), 7 .38 ‐ 7.48  (m, 2H), 7.62 ‐ 7.68 (m, 2H), 7.75 (d, J=8.62 Hz , 2H), 8.02 (s, 2H), 12.33 ‐ 12.41 (br, 2H). 

 

Example 12: 6‐(2‐Fluorophenyl)‐2‐[1‐(prop‐2 ‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 35 mg (31%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.11 ‐ 2.44 (m, 4H), 3.39  ‐ 3.68 (m, 5H), 3.71 ‐ 3.88 (m, 3H), 3.90 ‐ 4.03 (m, 2H), 5.62 ‐ 5.74 (m, 2H), 6.16 (dd, J= 16.86, 2.41 Hz,  2H), 6.55 ‐ 6.69 (m, 2H), 7.31 ‐ 7.40 (m, 4H),  7.43 ‐ 7.51 (m, 2H) 7.57 ‐ 7.68 (m, 2H), 7.6 8 ‐ 7.73 (m,  2H), 7.93 ‐ 8.02 (m, 2H) 8.24 (s, 2H), 12.43 (br , 2H). 

 

Example 13: 6‐(2,4‐Difluorophenyl)‐2‐[1‐(prop ‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 30 mg (26%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.13 ‐ 2.41 (m, 4H), 3.38  ‐ 3.68 (m, 5H), 3.71 ‐ 3.88 (m, 3H), 3.90 ‐ 4.02 (m, 2H), 5.63 ‐ 5.72 (m, 2H), 6.15 (dd, J= 16.73, 2.53 Hz,  2H), 6.53 ‐ 6.67 (m, 2H), 7.18 ‐ 7.28 (m, 2 H ), 7.37 ‐ 7.47 (m, 2H) 7.65 ‐ 7.75 (m, 4H), 7 .91 ‐ 7.97 (m,  2H), 8.17 ‐ 8.22 (m, 2H), 12.45 (br, 2H). 

 

Example 14: 2‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3 yl]‐6‐(quinolin‐5‐yl)quinazolin‐4(3H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 18 mg (14%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.16 ‐ 2.43 (m, 4H), 3.40  ‐ 3.70 (m, 5H), 3.75 ‐ 3.89 (m, 3H), 3.94 ‐ 4.04 (m, 2H), 5.67 ‐ 5.72 (m, 2H), 6.17 (dd, J= 16.86, 2.41 Hz,  2H), 6.58 ‐ 6.69 (m, 2H), 7.55 (dd, J=9.5, 4.3 H z, 2H), 7.64 (dd, J=7.1, 1.1 Hz, 2H) 7.77 (dd, J=8 .49, 2.15  Hz, 2H), 7.84 ‐ 7.95 (m, 4H), 8.08 ‐ 8.14 (m, 4H), 8.17 ‐ 8.22 (m, 2H) 8.96 (dd, J=4.06, 1.52 Hz, 2H),  12.45 (br s, 2H). 

 

Example 15: 6‐(2‐Ethylphenyl)‐2‐[1‐(prop‐2 enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one

  Prepared in analogous fashion as described in step 4  of example 1 to give 36 mg (27%) of the title  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 1.02 (t, J=7.48 Hz, 6H),  2.13 ‐ 2.41 (m, 4H), 2.56 (q, J=7.60 Hz,4H), 3.39  ‐ 3.69 (m, 5H), 3.72 ‐ 3.87 (m, 3H), 3.91   4.03 (m, 2H),  5.65 ‐ 5.73 (m, 2H), 6.16 (dd, J=16.73, 2.28 Hz, 2H), 6.56 ‐ 6.69 (m, 2H), 7.19 ‐ 7.23 (m, 2H) , 7.26 ‐ 7.31  (m, 2H), 7.34 ‐ 7.40 (m, 4H), 7.63 ‐ 7.69 (m, 2H), 7.71 ‐ 7.77 (m, 2H), 7.93 ‐ 7.96 (m, 2H) , 12.39 (br s,  2H). 

 

Example 16: 3‐Chloro‐5‐{4‐oxo‐2‐[1‐(prop 2‐enoyl)pyrrolidin‐3‐yl]‐3,4‐dihydroquinazolin 6‐

yl}benzonitrile  

Prepared in analogous fashion as described in step  4 of example 1 to give 14 mg (10%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.12 ‐ 2.43 (m, 4H), 3.39  ‐ 3.69 (m, 5H), 3.72 ‐ 3.88 (m, 3H), 3.91 ‐ 4.04 (m, 2H), 5.65 ‐ 5.74 (m, 2H), 6.16 (dd, J= 16.73, 2.53 Hz,  2H), 6.56 ‐ 6.66 (m, 2H), 7.70 (dd, J=8.62, 2.03 Hz, 2H), 8.02 ‐ 8.09 (m, 2H), 8.18 ‐ 8.26 (m,  4H), 8.29 ‐  8.35 (m, 2H), 8.41 ‐ 8.46 (m, 2H), 12.46 (br, 2H ). 

 

Example 17: 6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H )‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 22 mg (19%) of the title   compound as a mixture of atropisomers.  1 H NMR (500 MHz, DMSO‐d 6 , 80°C) d [ppm] = 2.17 ‐ 2.44  (m, 4H), 3.38 ‐ 4.08 (m, 10H), 5.58 ‐ 5.71 (m,  2H), 6.06 ‐ 6.20 (m, 2H), 6.47 ‐ 6.67 (m, 2H ), 6.68 ‐ 6.78  (m, 2H), 6.84 (d, J=8.27 Hz 2 H), 7.11 ‐ 7.28 ( m, 2H), 7.55 (d, J=8.58 Hz, 1H), 7.63 (d, J=8.58Hz,  1H),  7.76.7.79 (m, 1H), 7.90 (dd, J=8.58, 2.54 HZ, 1H),  8.11 (s, 1H), 8.18 (m, 1H), 9.73 (br, 2H), 12.10 ( br,  2H). 

  Example 18: 6‐(Isoquinolin‐4‐yl)‐2‐[1‐(prop‐ 2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 4 mg (2.9%) of the title   compound as a mixture of rotamers. 

 

Example 19: 6‐(2,4‐dimethyl‐1,3‐thiazol‐5‐y l)‐2[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin 4(3H)‐

one  

Prepared in analogous fashion as described in step  4 of example 1 to give 22 mg (15%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.11 ‐ 2.39 (m, 2H) 2.42  (s, 3H), 2.67 (s, 3H), 3.40 – 3.55 (m, 2H), 3.57  ‐ 3.86 (m, 3 H), 3.89 ‐ 4.02 (m, 1 H) 5.65 ‐ 5.71 (m, 1 H),  6.15 (dd, J=16.73, 2.53 Hz, 1H), 6.56 ‐ 6.67 (m, 1H), 7.67 (dd, J=8.49, 1.65 Hz, 1H), 7.85 (dd, J=8 .49,  2.15 Hz, 1H), 8.06 (d, J=2.28 Hz, 1H), 12.45 (br s , 1H). 

 

Example 20: 6‐[2‐(Morpholin‐4‐yl)pyridin‐3‐ yl]‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazo lin‐4(3H)‐

one  

Prepared in analogous fashion as described in step  4 of example 1 to give 10 mg (6.2%) of the titl e  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.11 ‐ 2.41 (m, 2H), 2.91  ‐ 3.02 (m, 4H), 3.40 ‐ 3.48 (m, 1H), 3.48 ‐ 3.55 (m, 4H), 3.58 ‐ 3.88 (m, 3H), 3.90 ‐ 4.0 3 (m, 1H), 5.63 ‐  5.72 (m, 1H), 6.16 (dd, J=16.73, 2.28 Hz, 1H), 6.57  ‐ 6.69 (m, 1H), 7.08 (dd, J=7.35, 4.82 Hz, 1H),  7.63 ‐  7.72 (m, 2H), 8.10 (br d, J=8.36 Hz, 1H), 8.25 (dd , J=4.82, 1.77 Hz, 1H), 8.33 (d, J=2.03 Hz, 1H), 1 2.38  (br s, 1H). 

 

Example 21: 7‐Chloro‐6‐(2‐fluoro‐6‐methoxyp henyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quin azolin‐

4(3H)‐one  

Step 1: 2‐Amino‐5‐bromo‐4‐chlorobenzamide 

 

To a solution of 4‐chlorobenzamide (3.25 g, 19.0 5 mmol) in acetonitrile (60 mL) was added N‐ bromosuccinimide (3.39 g, 19.05 mmol). The reacrtion  was stirred for 1h at roomtemperature. The  mixture was diluted with dichloromethane. After remova l of the solvent and subsequent column  chromatography of the crude, the title compound was  obtained in quantitative yields (4.74 g).  1 H  NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 6.88 ‐ 6.91 (br s, 2H), 6.94  (s, 1H), 7.29 (br s, 1H) 7.88 (s, 1H)  7.92 (br s, 1H). 

Step 2: tert‐Butyl 3‐(6‐bromo‐7‐chloro‐4 oxo‐3H‐quinazolin‐2‐yl)pyrrolidine‐1‐carboxylat e 

 

Prepared in analogous fashion as described in step  1 of example 11 to give 2.59 g (39%) of the tit le  compound.  1 H NMR (400 MHz, DMSO‐d 6 ) d ppm 1.40 (s, 9H), 1.99 ‐ 2.19 (m, 2H),  3.14‐3.45 (m, 5H),  7.96 (br s, 1 H) 8.20 (s, 1H), 8.46 (br s, 1H),  8.71 (s, 1H), 11.91 (br, s, 1H). 

Step 3: tert‐Butyl 3‐(6‐bromo‐7‐chloro‐4 oxo‐3H‐quinazolin‐2‐yl)pyrrolidine‐1‐carboxylat e   

Prepared in analogous fashion as described in step  2 of example 11 to give 1.22 g (79%) of the cru de  product which was then used without prior analytics.

Step 4: 6‐Bromo‐7‐chloro‐2‐[pyrrolidin‐3‐ yl]quinazolin‐4(3H)‐one 

 

Prepared in analogous fashion as described in step  3 of example 11 to give 935 mg (quatitative yield s)  of the title compound which was then used without p rior analytics. 

Step 5: 6‐Bromo‐7‐chloro‐2‐[1‐(prop‐2‐e noyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐one 

 

Prepared in analogous fashion as described in step  3 of example 1 to give 624 mg (57%) of the titl e  compound which was then used without prior analytics.  

Step 6: 7‐Chloro‐6‐(2‐fluoro‐6‐methoxypheny l)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazol in‐4(3H)‐ one 

 

Prepared in analogous fashion as described in step  4 of example 1 to give 10 mg (6.2%) of the titl e  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.11 ‐ 2.41 (m, 4H), 3.38  ‐ 3.65 (m, 5H), 3.70 ‐ 4.02 (m, 5H), 5.65 ‐ 5.74 (m, 2H), 6.16 (dd, J=16.73, 2.28 Hz, 2H), 6.5 5 ‐ 6.68 (m,  2H), 6.95 (t, =8.86 Hz, 2H), 7.02 (d, J=8.36 Hz, 2 H), 7.42 ‐ 7.53 (m, 2H), 7.79 s, 1H), 7.80 (s,  1H), 7.93  (s, 2H), 12.47 (br s, 2H). MS (ESIpos): m/z = 428 (M+H) + ; LC‐MS [Method 1]: R t  = 1.06 min. 

  Example 22: 7‐Chloro‐6‐(2‐fluorophenyl)‐2‐[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4(3H)‐ one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 20 mg (18%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.11 ‐ 2.41 (m, 4H) 3.39  ‐ 4.02 (m, 10H), 5.64 ‐ 5.73 (m, 2H). 6.16 (dd , J=16.73, 2.53 Hz, 2H), 6.52 ‐ 6.68 (m, 2H), 7. 31 ‐ 7.39  (m, 4H), 7.41 ‐ 7.48 (m, 2H), 7.50 ‐ 7.58 (m, 2H), 7.82 (s, 1H), 7.83 (s, 1H), 8.00 (s, 2H), 12 .46 (br s,  2H).MS (ESIpos): m/z = 398 (M+H) + ; LC‐MS [Method 1]: R t  = 1.06 min. 

 

Example 23: 7‐Chloro‐6‐(2,4‐difluorophenyl)‐2 ‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quinazolin‐4 (3H)‐

one  

Prepared in analogous fashion as described in step  4 of example 1 to give 16 mg (14%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.12 ‐ 2.40 (m, 4H), 3.39  ‐ 4.01 (m, 10H), 5.64 ‐ 5.73 (m, 2H,) 6.16 (dd , J=16.86, 2.41 Hz, 2H), 6.56 ‐ 6.66 (m, 2H), 7. 18 ‐ 7.29  (m, 2H), 7.37 ‐ 7.46 (m, 2H), 7.48 ‐ 7.58 (m, 2H), 7.83 (s, 2 H) 8.01 (s, 1H), 7.84 (s, 1H),  12.39 ‐ 12.57  (br, 2 H). 

 

Example 24: 7‐Chloro‐6‐(2‐fluoro‐6‐hydroxyp henyl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]quin azolin‐

4(3H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 30 mg (26%) of the title   compound.  1 H NMR (500 MHz, DMSO‐d 6 , 80°C) d [ppm] =2.17 ‐ 2.42 (m, 2H), 3.44  ‐ 4.03 (m, 5H), 5.67  (dd, J=10.49, 2.23 Hz, 1H), 6.15 (dd, J=16.85, 2.23 Hz, 1H), 6.60 (dd, J=16.85, 10.49 Hz, 1H), 6.74 (t ,  J=8.42 Hz, 1H), 6.83 (d, J=8.27 Hz, 1H,) 7.25 ‐  7.31 (m, 1H), 7.75 (s, 1H,) 7.96 (s, 1H), 9.74 (br  s, 1H),  12.19 (br s, 1H). MS (ESIpos): m/z = 414 (M+H) + ; LC‐MS [Method 1]: R t  = 0.90, 0.92 min. 

 

Example 25:7 ‐Chloro‐6‐(5‐methyl‐1H‐indazol ‐4‐yl)‐2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl] quinazolin‐

4(3H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 16 mg (14%) of the title   compound as mixture of rotamers.  1 H NMR (500 MHz, DMSO‐d 6 , 80°C) d [ppm] = 2.15 (s, 3H), 2.10‐ 2.43 (m, 2H), 3.39 ‐ 4.06 (m, 5H), 5.69 (dd, J=1 0.9, 1.9 Hz, 1H), 6.14 ‐ 6.19 (dd, J=16.9, 1.2 H z, 1H),  6.59 (d, J=16.90, 10.20 Hz, 1H), 7.34 (d, J=8.58 Hz , 1H), 7.45 (br s, 1H), 7.53 (d, J=8.58 Hz, 1H),  7.84 (s,  1H), 7.97 (s, 1H), 12.93 (br s, 1H). MS (ESIpos):  m/z = 434 (M+H) + ; LC‐MS [Method 1]: R t  = 0.90, 0.92  min. 

 

Example 26: 7‐chloro‐2‐[1‐(prop‐2‐enoyl)pyr rolidin‐3‐yl]‐6‐(quinolin‐5‐yl)quinazolin‐4(3H )‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 22 mg (17%) of the title   compound as mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.13 ‐ 2.41 (m, 2H) 3.41 ‐  4.03 (m, 5H), 5.66 ‐ 5.74 (m, 1H), 6.17 (dd, J=1 6.73, 2.28 Hz, 1H), 6.57 ‐ 6.70 (m, 1H), 7.47   7.54 (m,  1H), 7.59 (d, J=7.10 Hz, 1H), 7.77 ‐ 7.83 (m, 1H ), 7.85 ‐ 7.94 (m, 2H), 8.04 (s, 1H), 8.15 (d,  J=8.36 Hz,  1H), 8.95 (dd, J=4.06, 1.52 Hz, 1H), 12.55 (br s,  1H). MS (ESIpos): m/z = 431 (M+H) + ; LC‐MS [Method  1]: R t  = 0.81 min. 

  Example 27: 6‐Chloro‐7‐(2‐fluoro‐6‐hydroxyphen yl)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquin olin‐

1(2H)‐one  

Step 1: 2,5‐Dibromo‐4.chlorobenzoic acid 

 

To a solution of 2‐bromo‐4‐chlorobenzoic acid (500 mg, 2.12 mmol)  in chlorosulfonic acid (1.41 mL,  21.24 mmol) were added as room temperature sulfur (5 .2 mg, 0.16 mmol) and bromine (109 µL, 2.12  mmol). The reaction mixture was stirred overnight at 70°C. After cooled to room temperature, water  was cautiously added to the mixture. After stirring  for 30 minutes, the precipitates were filtered and  purified by column chromatography  to give the product  (512 mg) which was used  in  the next step  without prior analytics. 

Step 2: 5‐Bromo‐4‐chloro‐2‐(2‐ethoxy‐2‐ oxo‐ethyl)benzoic acid 

 

To a solution of  2,5‐dibromo‐4.chlorobenzoic a cid (512 mg, 1.63 mmol), ethyl 3‐oxobutanoate (424 mg, 3.26 mmol) in ethanol (10 mL) were added at ro om temperature copper(1)bromide 234 mg, 1.63  mmol) and sodium ethoxide (1.82 mL, 4.89 mmol). The mixture was refluxed for 2h. After cooled to  room temperature, the mixture was acidified with 2N  HCl and the solvent was removed under  reduced pressure. Water was added followed by extacti on with dichloromethane. The combined  organic phases were dried over sosium sulfate. After filtration, removal of the solvent and  subsequent purification by column chromatography the t itle compoundwas obtained in 66% yields  over 2 steps (452 mg).  1 H NMR (500 MHz, DMSO‐d 6 ) d [ppm] = 1.16 (t, J=7.15 Hz, 3H), 3.97 (s , 2H),  4.06  (q, J=6.99 Hz 2H), 7.69 (s, 1H), 8.17 (s, 1 H). 

Step 3: 5‐Bromo‐2‐(carboxymethyl)‐4‐chloro‐ benzoic acid 

   

 

To a solution of 5‐bromo‐4‐chloro‐2‐(2‐et hoxy‐2‐oxo‐ethyl)benzoic acid (359 mg, 1.17 mmol)  in  methanol/tetrahydrofuran (4 mL /11 mL) was added 2N  NaOH soltion (5.0 mL, 10.0 mmol). After 2h  at room temeperature, the solvent was removed. The c rude was taken up in water and acidified with  conc.HCl at °0C. After further 30 minutes, the prec ipitates were filtered, dried overnight and used in  the next step without prior purification or analytics  (240 mg). 

Step 4: 7‐Bromo‐6‐chloro‐isochromane‐1,3‐di one 

 

To a solution of 5‐bromo‐2‐(carboxymethyl)‐4 chloro‐benzoic acid (210 mg, 0.72 mmol) in  acetonitrile (4.0 mL) was added acetyl chloride (3.8 µL, 4.29 mmol). The reaction mixture was stirred  3h at 50°C. After cooled to room temperature, the  solvent was removed under reduced pressure and  the crude was used in the next step without prior  purification or analytics (220 mg). 

Step 5: tert‐Butyl 3‐(7‐bromo‐6‐chloro‐1,3 ‐dioxo‐isochroman‐4‐yl)pyrrolidine‐1‐carboxylate    

 

Prepared in analogous fashion as described in step  1 of example 1 to give 700 mg of the title  compound as crude product which was then used withou t prior analytics. 

Step 6: tert‐Butyl 3‐(7‐bromo‐6‐chloro‐1 oxo‐2H‐isoquinolin‐3‐yl)pyrrolidine‐1‐carboxyla te   

tert‐Butyl  3‐(7‐bromo‐6‐chloro‐1,3‐dioxo‐isochroman‐4 yl)pyrrolidine‐1‐carboxylate  (700  mg,  1.48  mmol) was dissolved in 25% aqueous ammonium hydroxide  (30 mL). The mixture was allowed to reflux  for 14h. Subsequent removal of the solvent to 1/3 o f the volume resulted in formation of precipitates,  which were filtered and used in the next step witho ut further analytics (200 mg). 

Step 7: (7‐Bromo‐6‐chloro‐3‐ pyrrolidin‐3 yl)‐2H‐isoquinolin‐1one  

 

Prepared in analogous fashion as described in step  3 of example 11 to give 200 mg crude product  which was used in the next step without prior purif ication or analytics. 

Step 8: 7‐Bromo‐6‐chloro‐3‐(1‐prop‐2‐en oylpyrrolidin‐3‐yl)‐2H‐isoquinolin‐1‐one 

 

 Prepared in analogous fashion as described in st ep 3 of example 1 to give 60 mg (25%) of the pro duct  which was used in the next step without prior analy tics. 

Step 9: 6‐Chloro‐7‐(2‐fluoro‐6‐hydroxypheny l)‐3‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]isoquino lin‐1(2H)‐

 

Prepared in analogous fashion as described in step  4 of example 1 to give 6 mg (8%) of the title  compound as a mixture of rotamers.  1 H NMR (500 MHz, DMSO‐d 6 ) d [ppm] =1.84 ‐ 2.33 (m, 4H), 3.30  ‐ 3.96 (m, 10H),  5.67 (dd, J=10.33, 2.38 Hz, 2H ), 6.16 (dd, J=16.53, 2.23 Hz, 2H), 6.46 ‐ 6.50  (br, 2H),  6.60 (dd, J=16.85, 10.49 Hz, 2H), 6.73 (t, J=8.67 H z, 2H), 6.82 (d, J=8.27 Hz, 2H), 7.81 (s, 2H), 8.0 1 (s,  2H), 9.64‐9.74 (br, 2H), 11.15‐11.25 (br, 2H). MS  (ESIpos): m/z = 413 (M+H) + ; LC‐MS [Method 1]: R t  =  0.92 min. 

 

Example 28: 3‐(2‐Fluoro‐6‐methoxyphenyl)‐7‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyr idin‐

o

5(6H)‐one  

Step 1: 5‐Bromo‐2‐ioropyridine‐3‐carbonitrile      

The mixture of 5‐bromo‐2‐chloropyridine‐3‐ca rbonitrile  (40 g, 184 mmol), propionitrile (500 mL) ,  and TMSI (50 g, 250 mmol) was stirred at reflux fo r 12 hours. After evaporation to dryness the crude  was poured into water, and extracted with MTBE. Comb ined organic layer was dried with sodium  sulfate and evaporated under reduced pressure to give  51.6 g of 5‐Bromo‐2‐ioropyridine‐3‐ carbonitrile  (167 mmol, 90% yield).  

Step 2: tert‐Butyl 3‐[2‐(5‐bromo‐3‐cyano 2‐pyridyl)ethynyl]pyrrolidine‐1‐carboxylate 

 

 

To a solution of 5‐bromo‐2‐iodopyridine‐3‐c arbonitrile  (10 g, 32.4 mmol), tert‐butyl 3‐

ethynylpyrrolidine‐1‐carboxylate  (6.32 g, 242.7 mmol) and triethylamine (50 mL, 359 mmol) in  toluene (100 mL) under argon atmosphere were added  CuI (0.124 g, 0.651 mmol), and Pd(PPh 3 ) 4   (0.75 g, 0.649 mmol). The mixture was stirred at 70 °C for 24 h. After the solvent was evaporated  under reduced pressure, water (500 mL) was added to the residue followed by extraction with MTBE.  The combined organic layers were dried with sodium s ulfate, filtrated and  evaporated under  reduced pressure. The crude product was purified by  column chromatography to obtain 6.46 g of the  title compound (17.17 mmol, 73% yield).  

Step 3: tert‐Butyl 3‐[2‐(5‐bromo‐3‐carbamo yl‐2‐pyridyl)ethynyl]pyrrolidine‐1‐carboxylate 

 

 

A solution of  tert‐butyl 3‐[2‐(5‐bromo‐3 cyano‐2‐pyridyl)ethynyl]pyrrolidine‐1‐carboxylate  (12.5 g,  33.2 mmol) and sodium hydroxide (1.2 g, 30.0 mmol)  in methanol (200 mL) was added at 0°C 40%  hydrogen peroxide . The reaction was stirred for 2  hours at 0°C. After evaporation under reduced  pressure it was diluted with water, occurred precipit ate was filtered, and dried in vacuum to give  9.56 g of the title compound (24.24 mmol, 73% yield ).  

Step 4: tert‐Butyl 3‐(3‐bromo‐5‐oxo‐6H‐1 ,6‐naphthyridin‐7‐yl)pyrrolidine‐1‐carboxylate 

 

To a solution of tert‐butyl 3‐[2‐(5‐bromo‐ 3‐carbamoyl‐2‐pyridyl)ethynyl]pyrrolidine‐1‐carbox ylate (7  g, 17.8 mmol) in THF (100 mL) was added in small  portions at 10°C  NaH (1.5 g, 37.5 mmol). After 5 h  at room temperature the reaction mixture was poured  on ice and then extracted with MTBE (3×250  mL). Combined organic layers were washed with the so lution of 1N citric acid, dried over Na 2 SO 4 , and  concentrated under reduced pressure. The crude product  was purified by column chromatography to  obtain 2.11 g of the title compound (5.34 mmol, 30%  yield).  1 H NMR (500 MHz, DMSO‐d 6 ) d [ppm] =  1.40 (s, 9H), 2.05‐2.20 (m, 2H), 3.40‐3.50 (m, 1 H), 3.70‐3.80 (m, 1H), 6.45 (s, 1H), 8.50 (s, 1H) , 9.00 (s,  1H), 11.75 (s, 1H). Some pyrrolidine resonances overl ap with water resonance. 

Step 5: 3‐Bromo‐7‐pyrrolidin‐3‐yl‐6H‐1,6 naphthyridin‐5‐one   

Prepared in analogous fashion as described in step  3 of example 11 to give 1.47 g (quatitative yield s)  of the title compound which was then used without p rior analytics. 

Step 6: 3‐Bromo‐7‐(1‐prop‐2‐enoylpyrrolidin ‐3‐yl)‐6H‐1,6‐naphthyridin‐5‐one 

 

Prepared in analogous fashion as described in step  3 of example 1 to give 1.57 g (90%) of the titl e  compound as mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.02 ‐ 2.38 (m, 4H), 3.37 ‐ 3.52 (m, 4H), 3.57 ‐ 3.80 (m, 4H), 3.92 ‐ 3.94  (m, 1H), 4.00 ‐ 4.08 (m, 1H), 5.62 ‐ 5.73 (m , H), 6.11 ‐  6.21 (m, 2H), 6.49 (, 1H), 6.55 (s,1 H), 6.57‐ 6 .66 (m, 2H), 8.46 ‐ 8.63 (m, 2H), 8.94 ‐ 9.01 (m, 2H),  11.83 (br s, 2H). 

Step 7: 3‐(2‐Fluoro‐6‐methoxyphenyl)‐7‐[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin ‐5(6H)‐one 

 

Prepared in analogous fashion as described in step  4 of example 1 to give 37 mg (32%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.05 ‐ 2.43 (m, 4H), 3.36  ‐ 3.57 (m, 4H), 3.58 ‐ 3.83 (m, 10H), 3.85 ‐  3.97 (m, 1H), 4.00 ‐ 4.13 (m, 1H), 5.64 ‐ 5. 77 (m, 2H), 6.09 ‐  6.24 (m, 2H), 6.49 ‐ 6.70 (m, 4H), 6.91 ‐ 7.09  (m, 4H), 7.32 ‐ 7.57 (m, 2H), 8.34 ‐ 8.43 (m , 2H), 8.78 ‐  8.91 (m, 2H), 11.72 (br, s, 2H). 

  Example 29: 3‐(2‐Fluoro‐6‐hydroxyphenyl)‐7‐[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridi n‐

5(6H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 21 mg (18%) of the title   compound as a mixture of rotamers.  1 H NMR (500 MHz, DMSO‐d 6 , 80°C) d [ppm] = 2.07 ‐ 2.41 (m,  2H), 3.28 ‐ 4.20 (m, 5H), 5.68 (dd, J=10.33, 2.38  Hz, 1H), 6.16 (dd, J=16.85, 2.54 Hz, 1H), 6.49   6.66  (m, 2H), 6.76 ‐ 6.81 (m, 1H), 6.87 (d, J=8.27 Hz , 1H), 7.23 ‐ 7.29 (m, 1H), 8.44 ‐ 8.47 (m, 1 H) 8.67‐8.88  (m, 1H), 9.93 (br s, 1H), 11.43 (br, 1H). 

 

Example 30: 3‐(2‐Fluorophenyl)‐7‐[1‐(prop‐2 ‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H) one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 21 mg (18%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.04 ‐ 2.42 (m, 4H), 3.36  ‐ 3.56 (m, 4H), 3.58 ‐ 3.81 (m, 4H), 3.85 ‐ 3.95 (m, 1H), 4.02 ‐ 4.12 (m, 1H), 5.64 ‐ 5.7 6 (m, 2H), 6.08 ‐  6.24 (m, 2H), 6.52 ‐ 6.70 (m, 4 H) 7.33 ‐ 7.4 4 (m, 4H), 7.46 ‐ 7.56 (m, 2H), 7.67 ‐ 7.78 ( m, 2H), 8.46 ‐  8.64 (m, 2H), 9.04 ‐ 9.14 (m, 2H), 11.76 (br s, 2H). 

 

Example 31: 3‐(2,4‐Difluorophenyl)‐7‐[1‐(prop ‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6 H)‐one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 14 mg (12%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.04 ‐ 2.41 (m, 4H), 3.36  ‐ 3.56 (m, 4H), 3.58 ‐ 3.82 (m, 4H), 3.87 ‐ 3.94 (m, 1H), 4.02 ‐ 4.10 (m, 1H,) 5.60 ‐ 5.7 5 (m, 2H), 6.09 ‐  6.22 (m, 2H,) 6.49 ‐ 6.72 (m, 4H), 7.16 ‐ 7.33  (m, 2H), 7.41 ‐ 7.53 (m, 2H), 7.71 ‐ 7.89 (m , 2H), 8.46 ‐  8.62 (m, 2H), 9.02 ‐ 9.11 (m, 2H,) 11.76 (br s, 2H). 

 

Example 32: 7‐[1‐(Prop‐2‐enoyl)pyrrolidin‐3 yl]‐3‐(quinolin‐5‐yl)‐1,6‐naphthyridin‐5(6H) one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 14 mg (12%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.06 ‐ 2.45 (m, 4H), 3.36  ‐ 3.58 (m, 4H), 3.60 ‐ 3.83 (m, 4H), 3.88 ‐ 3.97 (m, 1H), 4.04 ‐ 4.12 (m, 1H), 5.69 ‐ 5.7 4 (m, 2H,) 6.16‐ 6.21 (m, 2H), 6.59 ‐ 6.70 (m, 4H), 7.57 (dd, J=8 .49, 4.18 Hz, 2H), 7.71 (d, J=6.84 Hz, 2H), 7.87   7.93 (m,  2H) 8.14 (d, J=8.36 Hz, 2H), 8.19 ‐ 8.23 (m, 2H) , 8.48‐8.50 (m, 2H), 8.98 (dd, J=4.18, 1.65 Hz, 1 H), 9.02‐ 9.03 (m, 2H), 11.79 (br s, 2H). 

 

Example 33: 3‐(2‐Ethylphenyl)‐7‐[1‐(prop‐2 enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyridin‐5(6H)‐ one

 

Prepared in analogous fashion as described in step  4 of example 1 to give 37 mg (32%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] =  1.04 (t, J=7.48 Hz, 6 H),  2.08 ‐ 2.42 (m, 4H), 2.56 (q, J=7.35 Hz, 4H), 3. 38 ‐ 3.57 (m, 4H), 3.57 ‐ 3.82 (m, 4H), 3.86  ‐ 3.96 (m,  1H), 4.01 ‐ 4.12 (m, 1H), 5.63 ‐ 5.81 (m, 2H),  6.09 ‐ 6.28 (m, 2H), 6.48 ‐ 6.72 (m, 4H), 7. 25 ‐ 7.46 (m,  8H), 8.30 ‐ 8.32 (m, 2H), 8.79 ‐ 8.90 (m, 2H),  11.66 ‐ 11.80 (m, 2H). MS (ESIpos): m/z = 314  (M+H) + ; LC‐ MS [Method 1]: R t  = 0.97 min. 

  Example 34: 3‐(2,4‐Dimethyl‐1,3‐thiazol‐5‐yl) 7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐na phthyridin‐

5(6H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 13 mg (12%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.03 ‐ 2.38 (m, 4H), 2.43  (s, 6H), 2.66 (s, 6H), 3.38 ‐ 3.54 (m, 4H), 3.54  ‐ 3.79 (m, 4H), 3.82 ‐ 3.94 (m, 1H), 3.96   4.13 (m, 1H),  5.64 ‐ 5.79 (m, 2H), 6.11 ‐ 6.26 (m, 2H), 6.48  ‐ 6.74 (m, 4H), 8.39 (s, 2H), 8.89 ‐ 9.05 (m , 2H), 11.61 ‐  11.87 (m, 2H). MS (ESIpos): m/z = 381 (M+H) + ; LC‐MS [Method 1]: R t  = 0.70 min. 

 

Example 35: 3‐[2‐(Morpholin‐4‐yl)pyridin‐3‐ yl]‐7‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6

naphthyridin‐5(6H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 12 mg (9%) of the title compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) [ppm] d = 2.04 ‐ 2.43 (m, 4H), 2.91  ‐ 3.02 (m, 8H), 3.37 ‐ 3.56 (m, 12H), 3.59 ‐  3.82 (m, 4H), 3.87 ‐ 3.95 (m, 1H), 4.01 ‐ 4. 11 (m, 1H), 5.66 ‐  5.76 (m, 2H), 6.12 ‐ 6.23 (m, 2H), 6.48 ‐ 6.73  (m, 4H), 7.12 (dd, J=7.35, 4.82 Hz, 2H), 7.70 ‐  7.85 (m,  2H), 8.29 (dd, J=4.82, 1.77 Hz, 2H), 8.70‐8.71 (m,  2H), 9.06 ‐ 9.25 (m, 2H), 11.63 ‐ 11.77 (m,  2H). MS  (ESIpos): m/z = 432 (M+H) + ; LC‐MS [Method 1]: R t  = 0.64 min. 

 

Example 36: 3‐(2‐Fluoro‐5‐hydroxyphenyl)‐7‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyr idin‐

  Prepared in analogous fashion as described in step 4  of example 1 to give 10 mg (8%) of the title  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) [ppm] d = 2.06 ‐ 2.41 (m, 4H), 3.39  ‐ 3.57 (m, 4H), 3.59 ‐ 3.82 (m, 4H), 3.87 ‐ 3.96 (m, 1H), 3.96 ‐ 4.10 (m, 1H), 5.60 ‐ 5.8 0 (m, 2H), 6.06 ‐  6.26 (m, 2H), 6.46 ‐ 6.66 (m, 4H), 6.80 ‐ 6.89  (m, 2H), 6.96 ‐ 7.03 (m, 2H), 7.15 ‐ 7.27 (m , 2H), 8.39 ‐  8.55 (m, 2H), 8.98 ‐ 9.10 (m, 2H), 9.49 ‐ 9.84  (br, 2H), 11.54 ‐ 11.93 (br, 2H). MS (ESIpos):  m/z = 380  (M+H) + ; LC‐MS [Method 1]: R t  = 0.70 min. 

 

Example 37: 3‐(4‐Fluoro‐3‐hydroxyphenyl)‐7‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐1,6‐naphthyr idin‐

5(6H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 9 mg (9%) of the title  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.02 ‐ 2.38 (m, 4H), 3.27  ‐ 3.51 (m, 4H, overlap with water), 3.59 ‐ 3.80  (m, 4H), 3.87 ‐ 3.94 (m, 1H), 3.98 ‐ 4.09 (m , 1 H) 5.63 ‐  5.73 (m, 2H), 6.09 ‐ 6.22 (m, 2H). 6.46 ‐ 6.69  (m, 4H), 6.77 ‐ 6.86 (m, 2H), 7.02 ‐ 7.10 (m , 2H), 7.12 ‐  7.22 (m, 2H). 8.40 ‐ 8.50 (m, 2H), 8.98 ‐ 9.04  (m, 2H). NH, and OH were not visible. MS (ESIpos) : m/z =  380 (M+H) + ; LC‐MS [Method 1]: R t  = 0.69 min. 

 

Example 38: 6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,2‐

d]pyrimidin‐4(3H)‐one  

Step 1: tert‐Butyl 3‐[(2‐carbamoyl‐6‐chloro 3‐pyridyl)carbamoyl]pyrrolidine‐1‐carboxylate 

  To a solution of 3‐amino‐6‐chloropyridine‐2‐ca rboxamide (1g, 5.83 mmol) in DMF (20 mL) were  added 1‐(tert‐butoxycarbonyl)pyrrolidine‐3‐carboxyl ic acid (1.38 g, 6.41 mmol), PyBOP (3.26 g, 6.99  mmol), and N,N‐diisopropylethylamine (4.1 mL, 2.34 m mol). The mixture was stirred at room  temperature for 48h, then for further 20h at 50°C. After removal of the solvent the crude (5.7 g,  containing 20% of the title compound based on LC/MS)  was used in the next step without prior  purification  

Step 2: tert‐Butyl 3‐(6‐chloro‐4‐oxo‐3H‐ pyrido[3,2‐d]pyrimidin‐2‐yl)pyrrolidine‐1‐carboxyl ate 

 

Prepared in analogous fashion as described in step  2 of example 11 to give 140 mg (5%) of the titl e  compound which was used in the next step without pr ior analytics. 

Step 3: 6‐Chloro‐2‐pyrrolidin‐3‐yl‐3H‐pyr ido[3,2‐d]pyrimidin‐4‐one 

 

Prepared in analogous fashion as described in step  3 of example 11 to give 129 mg of the title  compound as crude product which was used in the nex t step without prior analytics. 

 

Step 4: 6‐Chloro‐2‐(1‐prop‐2‐enoylpyrrolidi n‐3‐yl)‐3H‐pyrido[3,2‐d]pyrimidin‐4‐one 

 

Prepared in analogous fashion as described in step  3 of example 1 to give 67 mg of the title  compound which was used in the next step without pr ior analytics. 

Step 5: 6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2[1‐(p rop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,2‐d]pyrimidin ‐4(3H)‐ one 

   

Prepared in analogous fashion as described in step  4 of example 1 to give 4.9 mg (5%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 3.45‐4.40 (m, 14H), 5.64  ‐ 5.73 (m, 2H), 6.09 ‐ 6.22 (m, 2H), 6.57 ‐ 6.68 (m, 2H), 6.77 ‐ 6.91 (m, 4H), 7.30 ‐ 7.4 3 (m, 2H), 8.15 ‐  8.24 (m, 2H), 8.32 (d, J=8.9 Hz, 2H), 13.99 (br s,  2H).  

 

Example 39: 6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐

d]pyrimidin‐4(3H)‐one  

Step 1: 6‐Chloro‐2‐pyrrolidin‐3‐yl‐3H‐pyr ido[3,4‐d]pyrimidin‐4‐one 

 

A mixture  of ethyl 5‐amino‐2‐chloroisonicotin ate (1g, 4.98 mmol) and tert‐butyl 3‐cyanopyrrolid ine‐ 1‐carboxylate (1.17 g, 5.98 mmol) in 4M HCl/dioxane  (60 mL, 240 mmol) was allowed to stirred 20h  at 50°C. Solvent was then removed by decanting, the  residue was dried in vacuo and used in the next  step without prior purification and analytics.  

Step 2: 6‐Chloro‐2‐(1‐prop‐2‐enoylpyrrolidi n‐3‐yl)‐3H‐pyrido[3,4‐d]pyrimidin‐4‐one 

 

Prepared in analogous fashion as described in step  3 of example 1 to give 240 mg (7.6%) of the tit le  compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.11 ‐ 2.40 (m, 4H), 3.39  – 4.00 (m, 10H), 5.65 ‐ 5.71 (m, 2H), 6.15 (dd , J=16.73, 2.28 Hz, 2H), 6.60 (dd, J=16.7, 10.1 Hz,  2H),  7.76 ‐ 8.14 (m, 2H), 8.56 ‐ 8.97 (m, 2H), 12.7 8 (br, 2H). 

Step 3: 6‐(2‐Fluoro‐6‐hydroxyphenyl)‐2‐[1 (prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐d]pyrimi din‐ 4(3H)‐one 

 

Prepared in analogous fashion as described in step  4 of example 1 to give 54 mg (29%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.12 ‐ 2.41 (m, 4H), 3.41  ‐ 3.70 (m, 5H), 3.72 ‐ 4.03 (m, 5H), 5.69 (br d, J=10.39 Hz, 1H), 6.16 (dd, J=16.98, 2.03 Hz, 2H ), 6.53 ‐  6.68 (m, 2H), 6.73 ‐ 6.87 (m, 4H), 7.23 ‐ 7.39  (m, 2H), 8.29 (s, 2H), 9.21 (s, 2H), 12.09 (br s , 2H), 12.60 ‐  12.88 (br, 2H). MS (ESIpos): m/z = 381 (M+H) + ; LC‐MS [Method 1]: R t  = 1.82 min. 

 

Example 40: 6‐(5‐Methyl‐1H‐indazol‐4‐yl)‐ 2‐[1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]pyrido[3,4‐

d]pyrimidin‐4(3H)‐one  

Prepared in analogous fashion as described in step  4 of example 1 to give 25 mg (13%) of the title   compound as a mixture of rotamers.  1 H NMR (400 MHz, DMSO‐d 6 ) d [ppm] = 2.17 ‐ 2.41 (m, 10H),  3.43 – 4.04 (m, 10H), 5.58 ‐ 5.75 (m, 2H), 6.1 7 (dd, J=16.86, 2.41 Hz, 2H), 6.56 ‐ 6.68 (m, 2 H), 7.34 (d,  J=8.62 Hz, 2H), 7.53 (d, J=8.62 Hz, 2H), 7.77 (s,  2H) 8.02‐8.03 (m, 2H), 9.11 ‐ 9.17 (m, 2H), 12. 60 ‐  12.79 (br, 2H), 13.10 (s, 2H). MS (ESIpos): m/z =  401 (M+H) + ; LC‐MS [Method 1]: R t  = 0.7 min. 

 

Example 41: 7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyr idin‐

1(2H)‐one Step 1: Ethyl 5‐bromo‐2‐

chloropyridine‐4‐carboxylate   

5‐bromo‐2‐chloropyridine‐4‐carboxylic acid (2 .00 g, 8.46 mmol) was dissolved in ethanol (40 ml) and  sulfuryl chloride (690 µl, 8.5 mmol; CAS‐RN:[7791 25‐5]) was added. The obtained mixture was stirred   at reflux  for 17 h. The mixture was concentrated under reduced  pressure and poured  into  ice cold  water. The cold solution was extracted with ethyl ac eate. The combined organic layers were washed  with water and  saturated aqueous  sodium carbonate  solution. The organic  layers were dried over  sodium sulfate and concentrated to give 2.18 g (97  % yield) of the title compound. 1H NMR ,  ^ [ppm]  1.33 (t, 3H), 4.37 (q, 2H), 7.73‐8.02 (m, 1H), 8. 77 (s, 1H). LC‐MS [Method 2]: R t  = 1.20 min; MS (ESIpos):  m/z = 265 [M+H] + .  Step 2:  Ethyl 5‐{[1‐(tert‐butoxycarbonyl)pyrrolid in‐3‐yl]ethynyl}‐2‐chloropyridine‐4‐carboxylate (

 

Ethyl 5‐bromo‐2‐chloropyridine‐4‐carboxylate  (542 mg, 2.05 mmol) was  suspended  in THF  (11 ml).  Copper(1)  iodide  (19.5 mg, 102 µmol) and Bis(triphenylphosphine)palladi um(II dichloride  (71.9 mg,  102 µmol; CAS‐RN:[13965‐03‐2]) was added. The r eaction vessel was flushed with nitrogen. Triethyl  amine  (71.9 mg, 102 µmol; CAS‐RN:[13965‐03‐2]) and  tert‐butyl 3‐ethynylpyrrolidine‐1‐carboxylate  (480 mg, 2.46 mmol) was added. The vessel was  flushed again with nitrogen and  the mixture was  stirred at  reflux  for 15 h. The  reaction mixture was  cooled  to  room  temperature and poured  into  saturated aqueous sodium hydrogen carbonate solution.  The aqueous layer was extracted with ethyl  acetate, washed with brine and dried over sodium sul fate. The organic layer was concentrated and the  obtained crude product was purified by flash chromato graphy to give 563 mg (73 % yield) of the title  compound.  1 H‐NMR (400MHz, DMSO‐d6):  ^ [ppm]= 1.33 (t, 3H), 1.37 ‐ 1.45 (m, 12H), 1.7 5 ‐ 2.26 (m,  3H), 3.07 ‐ 3.30 (m, 3H), 3.40 (br d, 2H), 3.54 ‐ 3.65 (m, 1H), 4.35 (q, 2H), 7.84 (s, 1H), 8.6 2 (s, 1H). LC‐ MS [Method 2]: R t  = 1.45 min; MS (ESIpos): m/z = 379 [M+H] + .  Step 3: 5‐{[1‐(Tert‐butoxycarbonyl)pyrrolidin‐3‐ yl]ethynyl}‐2‐chloropyridine‐4‐carboxylic acid  (

 

Ethyl 5‐{[1‐(tert‐butoxycarbonyl)pyrrolidin‐3‐ yl]ethynyl}‐2‐chloropyridine‐4‐carboxylate (516 mg , 1.36  mmol) was dissolved in methanol (3.0 ml) and aqueous  sodium hydroxide solution (2.0 ml, 1.0 M, 2.0  mmol; CAS‐RN:[1310‐73‐2]) was added. The obtained  mixture was stirred at room temperature for 1  h. The reaction mixture was diluted with water and  the pH adjusted to 4.0 using hydrochloric acid  solution (1M). The aqueous layer was extracted with  ethyl acetate. The combined organic layers were  dried over sodium sulfate and concentrated. The crude  product was purified by flash chromatography  to give 571 mg  (120 % yield, 83 % purity) of  the  title  compound which was used without  further  purification. LC‐MS Method 2): R t  = 1.15 min; MS (ESIneg): m/z = 349 [M‐H]

Step 4:  5‐{[1‐(Tert‐butoxycarbonyl)pyrrolidin 3‐yl]ethynyl}‐2‐(2‐fluoro‐6‐methoxyphenyl)‐py ridine‐4‐ carboxylic acid 

  5‐{[1‐(Tert‐butoxycarbonyl)pyrrolidin‐3‐yl]ethynyl }‐2‐chloropyridine‐4‐carboxylic  acid  (440 mg,  1.25  mmol) was suspended in 1,4‐dioxane (44 ml). (2‐Fl uoro‐6‐methoxyphenyl)boronic acid (320 mg, 1.88  mmol),  tetrakis(triphenylphosphine)palladium(0)  (72.5  mg,  62.7  µmol;  CAS‐RN:[14221‐01‐3])  and  aqueous sodium carbonate solution (1.9 ml, 2.0 M, 3. 8 mmol; CAS‐RN:[497‐19‐8]) were added. The  obtained mixture was stirred at 100°C for 24 h. Sa turated aqueous ammonium chloride solution was  added. The obtained mixture was extracted with ethyl acetate. The combined organic  layers were  dried over sodium sulfate and concentrated. The crude  product was purified by flash chromatography  to give 81.0 mg (15 % yield).  1 H‐NMR (400MHz, DMSO‐d 6 ): d [ppm]= 1.42 (s, 9H), 1.98 ‐ 2.28 (m,  2H),  3.35 – 3.70 (m, 5H), 3.75 (s, 3H), 6.83 (s, 1H),  6.89 ‐ 6.98 (m, 1H), 7.03 (d, 1H), 7.43 ‐ 7. 53 (m, 1H), 7.94  (s, 1H), 9.07 (s, 1H). LC‐MS [Method 2]: R t  = 1.31 min; MS (ESIpos): m/z = 441 [M+H] + .  Step 5:  17‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐(pyr rolidin‐3‐yl)‐1H‐pyrano[4,3‐c]pyridin‐1‐one   

 

5‐{[1‐(Tert‐butoxycarbonyl)pyrrolidin‐3‐yl]ethy nyl}‐2‐(2‐fluoro‐6‐methoxyphenyl)pyridine‐4‐ carboxylic acid (60.0 mg, 136 µmol) was was dissolv ed in dichloromethane (3.0 ml) and THF (3.0 ml).  Trifluoromethane sulfonic acid (18 µl, 200 µmol; CA S‐RN:[1493‐13‐6]) was slowly added at 0°C. The supension was stirred at room temperature for 17 h. Dichloromethane was added and the mixture  was concentrated in vacuo to give 46.3 mg (100 % y ield). The residue was used directly in next step  without further purification.  Step 6: 7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐(pyrrol idin‐3‐yl)‐2,6‐naphthyridin‐1(2H)‐one 

 

7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐(pyrrolidin‐ 3‐yl)‐1H‐pyrano[4,3‐c]pyridin‐1‐one (46.4 mg, 136 µmol)  was dissolved in ammonia in methanol (3.0 ml, 7.0 M , 21 mmol; CAS‐RN:[7664‐41‐7]). The supension  was stirred at 69°C for 4 days. The mixture was c oncentrated in vacuo to give 98.0 mg (212 % yield).   The residue was used directly in next step without  further purification. LC‐MS [Method 2]: R t  = 0.63  min; MS (ESIpos): m/z = 340 [M+H] + .  Step 7: 7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐[1‐(p rop‐2‐enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyridin‐ 1(2H)‐one 

 

7‐(2‐Fluoro‐6‐methoxyphenyl)‐3‐[(3S)‐pyrrol idin‐3‐yl]‐2,6‐naphthyridin‐1(2H)‐one (46.2 mg , 136  µmol) was suspended in dichloromethane (4.0 ml) and triethylamine (95 µl, 680 µmol; CAS‐RN:[121‐ 44‐8]) was added. Prop‐2‐enoyl chloride (13 µl,  160 µmol) in dichloromethane (100 µL) was added. The obtained mixture was stirred at rom temperature  for 1 h. Aqueous saturated sodium carbonate  solution was added at 0°C. The obtained mixture was  extracted with ethyl acetate. The combined  organic layers were dried over sodium sulfate and co ncentrated.The crude product was purified by  chromatography to give 35.5 mg (95 % purity, 63 %  yield) of the title compound as a mixture of  rotamers.  1 H‐NMR (400MHz, DMSO‐d6):  ^ [ppm]= 1.99 ‐ 2.43 (m, 4H), 3.17 (d, 6H), 3.40  ‐ 3.51 (m,  4H), 3.58 ‐ 3.69 (m, 4H), 3.74 (s, 8H), 3.87 ‐  3.97 (m, 2H), 4.11 (d, 4H), 5.49 ‐ 5.64 (m, 2H ), 5.65 ‐ 5.76  (m, 2H), 6.00 – 6.28 (m, 4H), 6.54 ‐ 6.65 (m, 2H), 8.85 ‐7.15 (m, 3H), 7.39 ‐ 7.55 (m, 2H), 7.93 (d, 3H),  9.09 (br s, 2H), 11.67 ‐ 11.90 (m, 2H). LC‐MS  [Method 2]: R t  = 0.84 min; MS (ESIneg): m/z = 392 [M‐H]    

Example 42: 7‐(2‐Fluoro‐6‐hydroxyphenyl)‐3‐ [1‐(prop‐2‐enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyr idin‐

1(2H)‐one  

 

7‐(2‐fluoro‐6‐methoxyphenyl)‐3‐[(3S)‐1‐(p rop‐2‐enoyl)pyrrolidin‐3‐yl]‐2,6‐naphthyridin‐ 1(2H)‐one  (32.2 mg, 81.8 µmol) was dissolved in dichloromethan e (4.8 ml). At 0°C, boron tribromide in  dichloromethane (820 µl, 1.0 M, 820 µmol; CAS‐RN: [10294‐33‐4]) was slowly added. The reaction  mixture was stirred at room temperature for 17 h. S aturated aqueous sodium carbonate solution  was added at 0°C. The obtained mixture was extracte d with ethyl acetate. The combined organic  layers were dried over sodium sulfate and concentrate d. The crude product was purified by flash  chromatography to give 24.0 mg (94 % purity, 73 %  yield).  1 H‐NMR (500MHz, DMSO‐d6):  ^ [ppm]=  1.43 ‐ 1.58 (m, 1H), 2.03 ‐ 2.42 (m, 3H), 3.40  ‐ 3.53 (m, H), 3.61 ‐ 3.70 (m, 2H), 3.79 (dd d, 1H), 3.89 ‐  4.12 (m, 1H), 5.70 (dt, 1H), 6.18 (dt, 1H), 6.62 ( ddd, 1H), 6.68 (d, 1H), 6.76 ‐ 6.83 (m, 1H), 6.8 2 (d, 1H),  7.25 ‐ 7.33 (m, 1H), 8.41 ‐ 8.44 (m, 1H), 9.11  ‐ 9.14 (m, 1H), 11.85 (br d, 1H), 12.58 (d, 1H ). LC‐MS  [Method 2]: R t  = 0.98 min; MS (ESIneg): m/z = 378 [M‐H]

 

Biological profiling of compounds 

 

Biochemical KRAS/SOS1 activation assays  

Preparation of test compound dilutions. A 100‐fol d concentrated solution of the test compound  (50 nL) in DMSO was transferred to microtiter test  plates (384 or 1,536 wells, Greiner Bio‐One,  Germany) using either a Hummingbird liquid handler (D igilab, MA, USA) or an Echo acoustic system  (Labcyte, CA, USA). Plates were sealed with adhesive foil or heat‐sealed and stored at –20 °C until   use. Serial dilutions of test compounds were prepared  in 100% DMSO using a Precision Pipetting  System (BioTek, USA). 

 

Measurement and evaluation of inhibition data, calc ulation of IC 50  values. Homogeneous time‐ resolved fluorescence (HTRF) was measured with a PHER Astar reader (BMG, Germany) using the  HTRF module (excitation: 337 nm; emission 1: 620 nm,  emission 2: 665 nm). The ratio of the  emissions at 665 and 620 nm was used as the specif ic signal for further evaluation. The data were  normalized using the controls: DMSO = 0% inhibition, inhibition control wells with inhibitor control  solution = 100% inhibition. Compounds were tested in duplicates at up to 11 concentrations (e.g.  20 µM, 5.7 µM, 1.6 µM, 0.47 µM, 0.13 µM, 38  nM, 11 nM, 3.1 nM, 0.89 nM, 0.25 nM and 0.073 nM) .  IC 50  values were calculated using a four‐parameter  fit, with a commercial software package 

(Genedata Screener, Switzerland). 

 

KRAS G12C  activation by SOS1 cat  assay (“On‐assay”). This assay quantifies SOS1 cat  mediated loading of  KRAS G12C –GDP with a fluorescent GTP analogue. Detectio n of successful loading was achieved by  measuring resonance energy transfer from anti‐GST‐t erbium (FRET donor) bound to GST‐KRAS G12C  to  the loaded fluorescent GTP analogue (FRET acceptor).  The fluorescent GTP analogue EDA–GTP–DY‐ 647P1 [2'/3'‐O‐(2‐aminoethyl‐carbamoyl)guanosine‐ 5'‐triphosphate labelled with DY‐647P1 (Dyomics  GmbH, Germany)] was synthesized by Jena Bioscience (G ermany) and supplied as a 1 mM aqueous  solution. A KRAS G12C  working solution was prepared in assay buffer [10 mM HEPES pH 7.4 

(AppliChem), 150 mM NaCl (Sigma), 5 mM MgCl 2  (Sigma), 1 mM DTT (Thermo Fisher), 0.05% BSA Fraction V pH 7.0 (ICN Biomedicals), 0.0025% (v/v) I gepal (Sigma)] containing 100 nM GST‐KRAS G12C   and 2 nM anti‐GST‐terbium (Cisbio, France). A SOS 1 cat  working solution was prepared in assay buffer containing 20 nM SOS1 cat  and 200 nM EDA–GTP–DY‐647P1. An inhibitor  control solution was  prepared in assay buffer containing 200 nM EDA–GTP DY‐647P1 without SOS1 cat . All steps of the  assay were performed at 20 °C. A volume of 2.5 µ L of the KRAS G12C  working solution was added to all  wells of the test plate using a Multidrop dispenser (Thermo LabSystems). After 180 min, 2.5 µL of the SOS1 cat  working solution was added to all wells, exce pt for the inhibitor control solution wells. After  30 min incubation, HTRF was measured. 

 

Wild‐type KRAS activation by SOS1 cat  assay. This assay quantifies human SOS1 cat  mediated loading of  wild‐type GST‐KRAS WT –GDP with a fluorescent GTP analogue. The ass ay was performed similar to the  KRAS G12C  activation by SOS1 cat  assay. GST‐KRAS G12C  was replaced by GST‐KRAS WT , which was used at  50 nM final concentration. 

  Covalent binding assay  

The percentage of covalent adduct formation at KRa s G12C was determined by intact mass  determination. To this end 25 µM  recombinant kRas mutant (G12C; C51S; C80L; C118S)  (storage  buffer: 50 mM Tris, pH = 8; 50 mM NaCl) were incu bated with 25 µM of compound (1% v/v final  DMSO concentration) at room temperature for 2h. For  LC‐MS analysis the reaction was acidified by  adding 4 µL of 4% v/v TFA to 20 µL reaction vol ume. 

Liquid chromatography‐mass spectrometry (LC‐MS) a nalysis was performed using a Waters SYNAPT  G2‐S quadrupole time‐of‐flight mass spectrometer  connected to a Waters nanoAcquity UPLC system.  Samples were loaded on a 2.1 x 5 mm mass prep C4 guard column (Waters) and desalted with a short  gradient (3 min.) of increasing concentrations of ace tonitrile at a flow rate of 100 µL/min. Spectra  were analyzed by using MassLynx v4.1 software and de convoluted with the MaxEnt1 algorithm.  Percent conversion was determined by the ratio of si gnal intensities of apo‐kRas and kRas+inhibitor.