Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IMPROVED METHOD FOR NICKEL-FREE PHOSPHATING METAL SURFACES
Document Type and Number:
WIPO Patent Application WO/2019/042951
Kind Code:
A1
Abstract:
The present invention relates to a method for the substantially nickel-free phosphating of a metal surface, in which a metal surface is treated with the following compositions one after the other: i) with an alkaline, aqueous cleaning agent composition, which contains at least a water-soluble silicate, and ii) with an acidic, aqueous, substantially nickel-free phosphating composition, which comprises zinc ions, manganese ions and phosphate ions. The invention also relates to the above cleaning agent composition itself and to a metal surface phosphate-coated by means of the above method and use thereof.

Inventors:
DAHLENBURG OLAF (DE)
KOLBERG THOMAS (DE)
SCHMEIER LISA (DE)
Application Number:
PCT/EP2018/073056
Publication Date:
March 07, 2019
Filing Date:
August 28, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHEMETALL GMBH (DE)
International Classes:
C23C22/13; C11D1/00; C23C22/18; C23C22/36; C23C22/78; C23C22/83; C23G1/20
Domestic Patent References:
WO1995008007A11995-03-23
WO2002070782A22002-09-12
WO1993023522A11993-11-25
Foreign References:
DE19854431A12000-05-31
CN105369271A2016-03-02
EP0264151A11988-04-20
DE1074358B1960-01-28
DE102016205815A12016-10-13
Other References:
W. RAUSCH: "Die Phosphatierung von Metallen", 2005, EUGEN G. LEUZE VERLAG, pages: 332
SIEHE W. RAUSCH: "Die Phosphatierung von Metallen", 2005, EUGEN G. LEUZE VERLAG, pages: 333 - 334
SIEHE W. RAUSCH: "Die Phosphatierung von Metallen", 2005, EUGEN G. LEUZE VERLAG, pages: 334 - 336
SIEHE W. RAUSCH: "Die Phosphatierung von Metallen", 2005, EUGEN G. LEUZE VERLAG, pages: 336 - 338
SIEHE W. RAUSCH: "Die Phosphatierung von Metallen", 2005, EUGEN G. LEUZE VERLAG, pages: 338
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Ansprüche

1 . Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche dadurch gekennzeichnet, dass eine metallische Oberfläche, nacheinander mit den folgenden Zusammensetzungen behandelt wird:

i) mit einer alkalischen, wässrigen Reinigerzusammensetzung, welche mindestens ein wasserlösliches Silikat enthält und dann

ii) mit einer sauren, wässrigen, im Wesentlichen nickelfreien Phosphatierzusammensetzung, welche Zinkionen, Manganionen und Phosphationen umfasst.

2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der pH-Wert der Reinigerzusammensetzung im Bereich von 10,7 bis 12,0, bevorzugt von 1 1 ,0 bis 12,0, weiter bevorzugt von 1 1 ,3 bis 12,0 und besonders bevorzugt im Bereich von 1 1 ,5 bis 12,0 liegt.

3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die metallische Oberfläche zumindest teilweise verzinkt ist.

4. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das mindestens eine wasserlösliche Silikat mindestens ein Wasserglas, und/oder mindestens ein Metasilikat umfasst.

5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass das mindestens eine wasserlösliche Silikat mindestens ein Natronwasserglas und/oder Kaliwasserglas umfasst.

6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das mindestens eine wasserlösliche Silikat in einer Gesamtkonzentration im Bereich von 0,01 bis 15, bevorzugt von 0,2 bis 13 und besonders bevorzugt von 0,5 bis 10 g/l vorliegt.

7. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Reinigerzusammensetzung mindestens einen phosphorhaltigen Komplexbildner und/oder mindestens eine Hydroxycarbonsäure oder deren Salz umfasst.

8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass der mindestens eine phosphorhaltige Komplexbildner ein Pyrophosphat und/oder Tripolyphosphat umfasst.

9. Verfahren nach Anspruch 7 oder 8 dadurch gekennzeichnet, dass die mindestens eine Hydroxycarbonsäure oder deren Salz Gluconat umfasst.

10. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Reinigerzusammensetzung Nitrit umfasst.

1 1 . Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die bereits mit der Phosphatierzusammensetzung behandelte metallische Oberfläche noch mit einer wässrigen Nachspülzusammensetzung behandelt wird, welche Molybdänionen und Zirkoniumionen umfasst.

12. Alkalische, wässrige Reinigerzusammensetzung, welche mindestens ein wasserlösliches Silikat enthält, nach einem der vorhergehenden Ansprüche.

13. Konzentrat, aus dem durch Verdünnen mit einem geeigneten Lösungsmittel und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz eine Reinigerzusammensetzung nach Anspruch 12 erhältlich ist.

14. Phosphatbeschichtete metallische Oberfläche, dadurch gekennzeichnet, dass sie durch das Verfahren nach einem der Ansprüche 1 bis 1 1 erhältlich ist.

15. Verwendung der metallischen Oberfläche nach Anspruch 14 im Bereich der Automobil-, Automobilzulieferer oder Allgemeinindustrie.

Description:
Verbessertes Verfahren zur nickelfreien Phosphatierung von metallischen

Oberflächen

Die vorliegende Erfindung betrifft ein Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche unter Verwendung einer speziellen Reinigerzusammensetzung, diese Reinigerzusammensetzung selbst sowie eine mittels des Verfahrens phosphatbeschichtete metallische Oberfläche und deren Verwendung.

Aus dem Stand der Technik sind Phosphatbeschichtungen auf metallischen Oberflächen bekannt. Solche Beschichtungen dienen dem Korrosionsschutz der metallischen Oberflächen und darüber hinaus auch als Haftvermittler für nachfolgende Lackschichten.

Solche Phosphatbeschichtungen kommen vor allem im Bereich der Automobilindustrie sowie der Allgemeinindustrie zum Einsatz.

Bei den nachfolgenden Lackschichten handelt es sich neben Pulverlacken und Nasslacken vor allem um kathodisch abgeschiedene Elektrotauchlacke (KTL). Da bei der Abscheidung von KTL ein Strom zwischen metallischer Oberfläche und Behandlungsbad fließen muss, ist es wichtig eine definierte elektrische Leitfähigkeit der Phosphatbeschichtung einzustellen, um eine effiziente und homogene Abscheidung zu gewährleisten.

Daher werden Phosphatbeschichtungen üblicherweise mittels einer nickelhaltigen Phosphatierlösung aufgebracht. Das dabei elementar oder als Legierungsbestandteil, z.B. Zn/Ni, abgeschiedene Nickel sorgt für eine geeignete Leitfähigkeit der Beschichtung bei der anschließenden Elektrotauchlackierung.

Nickelionen sind jedoch ob ihrer hohen Toxizität und Umweltschädlichkeit nicht mehr als Bestandteil von Behandlungslösungen erwünscht und sollten daher nach Möglichkeit vermieden oder zumindest in ihrem Gehalt reduziert werden.

Die Verwendung von nickelfreien oder nickelarmen Phosphatierlösungen ist zwar prinzipiell bekannt. Diese ist jedoch auf bestimmte Substrate wie Stahl begrenzt.

Bei den genannten nickelarmen oder nickelfreien Systemen können zudem bei gegebenen KTL-Abscheidebedingungen aufgrund einer nicht optimalen Substratoberfläche schlechte Korrosionsschutz- und Lackhaftungswerte resultieren. Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren bereitzustellen, mit dem metallische Oberflächen im Wesentlichen nickelfrei phosphatiert werden können, wobei die vorgenannten Nachteile des Standes der Technik vermieden werden.

Gelöst wird diese Aufgabe durch ein Verfahren nach Anspruch 1 , eine Phosphatierzusammensetzung nach Anspruch 12 und eine phosphatbeschichtete metallische Oberfläche nach Anspruch 14.

Bei dem erfindungsgemäßen Verfahren zur im Wesentlichen nickelfreien Phosphatierung einer metallischen Oberfläche wird eine metallische Oberfläche nacheinander mit den folgenden Zusammensetzungen behandelt: i) mit einer alkalischen, wässrigen Reinigerzusammensetzung, welche mindestens ein wasserlösliches Silikat enthält und dann ii) mit einer sauren, wässrigen, im Wesentlichen nickelfreien Phosphatierzusammensetzung, welche Zinkionen, Manganionen und Phosphationen umfasst.

Definitionen:

Einerseits kann eine unbeschichtete metallische Oberfläche, andererseits kann aber auch eine bereits konversionsbeschichtete metallische Oberfläche mit dem erfindungsgemäßen Verfahren behandelt werden. Wenn im Folgenden von einer „metallischen Oberfläche" die Rede ist, soll daher immer auch eine bereits konversionsbeschichtete metallische Oberfläche mitumfasst sein. Bevorzugt handelt es sich jedoch um eine unbeschichtete metallische Oberfläche.

Als„wässrige Zusammensetzung" wird im Sinne der vorliegenden Erfindung eine solche Zusammensetzung bezeichnet, welche zumindest zum Teil, vorzugsweise zum überwiegenden Teil, d.h. zu mehr als 50 Gew.-%, Wasser als Lösungsmittel/Dispersionsmedium enthält. Sie kann neben gelösten Bestandteilen auch grobdisperse Bestandteile umfassen. Es kann sich also bspw. um eine Emulsion handeln. Bevorzugt handelt es sich jedoch um eine Lösung, also um eine solche Zusammensetzung, die keine grob dispergierten Bestandteile enthält.

Wenn im Folgenden von einem „wasserlöslichen Silikat" die Rede ist, ist ein Silikat gemeint, das bei 25 °C eine Wasserlöslichkeit (in VE-Wasser) von mindestens 1 mg/l, bevorzugt von mindestens 10 mg/l, weiter bevorzugt von mindestens 100 mg/l, weiter bevorzugt von mindestens 1 g/l, weiter bevorzugt von mindestens 10 g/l, weiter bevorzugt von mindestens 100 g/l, weiter bevorzugt von mindestens 200 g/l, weiter bevorzugt von mindestens 300 g/l und besonders bevorzugt von mindestens 350 g/l aufweist. Dabei kann das Silikat auch als kolloidale Lösung vorliegen.

Enthält eine Zusammensetzung weniger als 0,3 g/l Nickelionen soll sie im Sinne der vorliegenden Erfindung als „im Wesentlichen nickelfrei" gelten. Die Phosphatierzusammensetzung enthält bevorzugt weniger als 0,1 g/l und besonders bevorzugt weniger als 0,01 g/l Nickelionen. Im Sinne der vorliegenden Erfindung ist mit„Phosphationen" auch Hydrogenphosphat, Dihydrogenphosphat und Phosphorsäure gemeint. Zudem sollen Pyrophosphorsäure und Polyphosphorsäure sowie alle ihre teilweise und vollständig deprotonierten Formen mitumfasst sein.

Unter„Metallion" wird im Sinne der vorliegenden Erfindung entweder ein Metallkation, ein komplexes Metallkation oder ein komplexes Metallanion verstanden.

Bei der metallischen Oberfläche handelt es sich vorzugsweise um Stahl, eine Stahllegierung, eine Feuerverzinkung, eine elektrolytische Verzinkung, eine Zinklegierung wie Zn/Fe oder Zn/Mg, Aluminium oder eine Aluminiumlegierung. Bei der Feuerverzinkung sowie der elektrolytischen Verzinkung handelt es sich jeweils insbesondere um eine solche auf Stahl. Insbesondere ist die metallische Oberfläche zumindest teilweise verzinkt.

Das erfindungsgemäße Verfahren eignet sich in besonderem Maße für Multimetallanwendungen, insbesondere für metallische Oberflächen, welche neben einer Verzinkung auf Stahl, vorzugsweise einer Feuerverzinkung und einer elektrolytischen Verzinkung, Aluminium und/oder eine Aluminiumlegierung, vorzugsweise eine Aluminiumlegierung enthalten.

Die metallische Oberfläche wird vor der Behandlung mit der sauren, wässrigen, im Wesentlichen nickelfreien Phosphatierzusammensetzung (Schritt ii) erfindungsgemäß erst in einer alkalischen, wässrigen Reinigerzusammensetzung gereinigt (Schritt i), insbesondere entfettet. Hierzu kann gegebenenfalls auch zusätzlich eine saure oder neutrale Beizzusammensetzung verwendet werden. Die Reinigerzusammensetzung kann dabei aus einem Konzentrat durch Verdünnen mit einem geeigneten Lösungsmittel, bevorzugt mit Wasser, vorzugsweise um einen Faktor zwischen 1 ,5 und 1000, weiter bevorzugt zwischen 50 und 200, und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz erhalten werden. Das in der Reinigerzusammensetzung enthaltene mindestens eine wasserlösliche Silikat bewirkt eine bessere Reinigungswirkung und reduziert den Beizangriff im Reinigungsbad (inhibierende Wirkung).

Das mindestens eine wasserlösliche Silikat umfasst hierbei bevorzugt mindestens ein Wasserglas, insbesondere ein Lithiumwasserglas, ein Natronwasserglas und/oder ein Kaliwasserglas, besonders bevorzugt ein Natronwasserglas und/oder ein Kaliwasserglas, und/oder mindestens ein Metasilikat wie beispielsweise Dinatriummetasilikat (Na2SiO3).

Besonders bevorzugte umfasst das mindestens eine wasserlösliche Silikat ein Natronwasserglas oder ein Kaliwasserglas. Bei dem Natronwasserglas handelt es sich bevorzugt um ein solches mit einem molaren Na2O : SiO2-Verhältnis im Bereich von 1 bis 4. Bei dem Kaliwasserglas handelt es sich ebenfalls bevorzugt um ein solches mit einem molaren K2O : SiO2-Verhältnis im Bereich von 1 bis 4.

Das mindestens eine wasserlösliche Silikat liegt vorzugsweise in einer Gesamtkonzentration im Bereich von 0,01 bis 15 g/l, weiter bevorzugt von 0,2 bis 13 g/l und besonders bevorzugt von 0,5 bis 10 g/l vor.

Die Reinigerzusammensetzung kann neben dem mindestens einen wasserlöslichen Silikat mindestens ein kationisches, nichtionisches und/oder anionisches Tensid und/oder andere Zusätze, insbesondere Komplexbildner, Oxidationsmittel, Öle und/oder Hilfsstoffe wie z.B. Lösevermittler, Borat und/oder Carbonat enthalten.

Die Zugabe von mindestens einem Komplexbildner und/oder mindestens einem Oxidationsmittel hat sich hinsichtlich der erzielten Korrosionsschutz- und Lackhaftungswerte als vorteilhaft erwiesen und ist somit bevorzugt.

In der Reinigerzusammensetzung enthaltene Komplexbildner bewirken dabei eine Komplexierung von Wasserhärte und gelösten Kationen, welche durch den Beizangriff im Reinigerbad in Lösung gehen bzw. vorliegen.

Bevorzugte Komplexbildner sind dabei zum einen phosphorhaltige Komplexbildner.

Diese sind insbesondere phosphatbasierte Komplexbildner - bevorzugt wiederum kondensierte Phosphate wie z.B. Pyrophosphate, Tripolyphosphate und andere Polyphosphate - sowie Phosphonsäuren wie z.B. 1 -Hydroxyethan-(1 ,1 - diphosphonsäure) (HEDP) und deren Salze.

Die phosphorhaltigen, insbesondere die phosphatbasierten Komplexbildner liegen vorzugsweise in einer Gesamtkonzentration im Bereich von 0,01 bis 15 g/l, weiter bevorzugt von 0,05 bis 13 g/l und besonders bevorzugt von 0,1 bis 10 g/l (berechnet als Tetrakaliumpyrophosphat) vor.

Bevorzugte Komplexbildner sind zum anderen Hydroxycarbonsäuren, die zumindest eine Hydroxylgruppe sowie zumindest eine Carboxylgruppe aufweisen, und deren Salze, insbesondere Zuckersäuren und deren Salze, besonders bevorzugt Heptonat und Gluconat. Ganz besonders bevorzugt ist Gluconat. Solche Komplexbildener liegen vorzugsweise in einer Gesamtkonzentration im Bereich von 0,01 bis 6 g/l, weiter bevorzugt von 0,05 bis 5 g/l und besonders bevorzugt von 0,1 bis 4 g/l (berechnet als Natriumgluconat) vor.

Gemäß einer besonders bevorzugten Ausführungsform enthält die Reinigerzusammensetzung mindestens einen phosphorhaltigen Komplexbildner, insbesondere ein Pyrophosphat und/oder ein Tripolyphosphat, und mindestens eine Hydroxycarbonsäure oder deren Salz, insbesondere Gluconat. Ganz besonders bevorzugte Kombinationen sind dabei: i) Tetrakaliumpyrophoshat und Gluconat,

ii) Pentanatriumtripolyphosphat und Gluconat. Ein bevorzugtes Oxidationsmittel ist Nitrit. Die Oxidationsmittel liegen vorzugsweise in einer Gesamtkonzentration im Bereich von 10 bis 100 mg/l, besonders bevorzugt von 20 bis 50 mg/l (berechnet als Nitrit) vor.

Der Reinigerzusammensetzung werden vorzugsweise keine Eisenionen, insbesondere keine Eisen(lll)ionen zugegeben. Gegebenenfalls im Reinigungsbad vorhandene Eisenionen stammen in diesem Fall ausschließlich von der behandelten metallischen Oberfläche.

Zur Einstellung der Alkalität der Reinigerzusammensetzung können einerseits insbesondere Natronlauge, Kalilauge, Ätznatron oder Ätzkali andererseits insbesondere Phosphorsäure verwendet werden. Der pH-Wert der Reinigerzusammensetzung liegt dabei vorzugsweise im Bereich von 9,5 bis 13, insbesondere im Bereich von 10,5 bis 12, weiterbevorzugt im Bereich von 10,7 bis 12,0, weiter bevorzugt von 1 1 ,0 bis 12,0, weiter bevorzugt von 1 1 ,3 bis 12,0 und besonders bevorzugt im Bereich von 1 1 ,5 bis 12,0.

Die Reinigerzusammensetzung weist vorzugsweise eine Temperatur im Bereich von 35 bis 70, weiter bevorzugt von 40 bis 65 und besonders bevorzugt von 45 bis 60 °C auf. Die Behandlung der metallischen Oberfläche mit der Reinigerzusammensetzung erfolgt bevorzugt für 30 bis 600, besonders bevorzugt für 60 bis 480 und ganz besonders bevorzugt für 90 bis 360 Sekunden, vorzugsweise mittels Tauchen oder Spritzen, oder der Kombination aus beidem. Gemäß einer bevorzugten Ausführungsform wird die metallische Oberfläche zunächst für 30 bis 90 Sekunden mit der Reinigerzusammensetzung besprüht und anschließend für 100 bis 300 Sekunden in diese getaucht.

Nach dem Reinigen/Beizen und vor der Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung findet vorteilhafterweise noch mindestens ein Spülen der metallischen Oberfläche mit Wasser statt, wobei dem Wasser gegebenenfalls auch ein in Wasser gelöster Zusatzstoff wie z. B. ein Nitrit oder Tensid zugesetzt sein kann.

Vor der Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung ist es weiterhin vorteilhaft, die metallische Oberfläche noch mit einer Aktivierungszusammensetzung zu behandeln. Die Aktivierungszusammensetzung dient dazu, eine Vielzahl von feinsten Phosphatpartikeln als Impfkristalle auf der metallischen Oberfläche abzusetzen. Diese helfen im nachfolgenden Verfahrensschritt, im Kontakt mit der Phosphatierzusammensetzung - vorzugsweise ohne zwischenzeitliche Spülung - eine insbesondere kristalline Phosphatschicht mit einer möglichst hohen Zahl dicht angeordneter feiner Phosphatkristalle oder eine weitgehend geschlossene Phosphatschicht auszubilden. Als Aktivierungszusammensetzungen kommen dabei insbesondere alkalische Zusammensetzungen auf Basis von Titanphosphat oder Zinkphosphat in Betracht.

Es kann aber auch von Vorteil sein, Aktivierungsmittel, insbesondere Titanphosphat oder Zinkphosphat, bereits der Reinigerzusammensetzung zuzugeben, also Reinigung und Aktivierung in einem Schritt durchzuführen.

Die saure, wässrige, im Wesentlichen nickelfreie Phosphatierzusammensetzung umfasst Zinkionen, Manganionen sowie Phosphationen.

Die Phosphatierzusammensetzung kann dabei aus einem Konzentrat durch Verdünnen mit einem geeigneten Lösungsmittel, bevorzugt mit Wasser, um einen Faktor zwischen 1 ,5 und 100, vorzugsweise zwischen 5 und 50, und erforderlichenfalls Zugabe einer pH- Wert modifizierenden Substanz erhalten werden.

Die Phosphatierzusammensetzung umfasst vorzugsweise die folgenden Komponenten in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen:

Hinsichtlich der Manganionen hat sich aber bereits eine Konzentration im Bereich von 0,3 bis 2,5 g/l, hinsichtlich des freien Fluorids eine Konzentration im Bereich von 10 bis 250 mg/l als vorteilhaft herausgestellt.

Bei dem Komplexfluorid handelt es sich bevorzugt um Tetrafluoroborat (BF 4 _ ) und/oder Hexafluorosilicat (SiF6 2~ ). Vor allem bei der Behandlung von Aluminium und/oder verzinktem Material ist ein Gehalt an Komplexfluorid sowie Einfachfluorid, beispielsweise Natriumfluorid, in der Phosphatierzusammensetzung von Vorteil.

Al 3+ ist in Phosphatiersystemen ein Badgift und kann durch Komplexierung mit Fluorid aus dem System entfernt werden, z.B. als Kryolith. Komplexfluoride werden dem Bad als„Fluoridpuffer" zugesetzt, da ansonsten der Fluoridgehalt schnell abfiele und keine Beschichtung mehr stattfände. Fluorid unterstützt so die Bildung der Phosphatschicht und führt hierdurch indirekt auch zu einer Verbesserung von Lackhaftung sowie Korrosionsschutz. Komplexfluorid hilft zudem auf verzinktem Material, Fehler wie Stippen zu vermeiden.

Insbesondere bei der Behandlung von Aluminium ist es weiterhin vorteilhaft, wenn die Phosphatierzusammensetzung einen Gehalt an Eisen(lll)ionen aufweist. Die Eisen(lll)ionen werden vorzugsweise der Phosphatierzusammensetzung zugesetzt. Bevorzugt wird hierbei ein Zugabemenge an Eisen(lll)ionen im Bereich von 0,001 bis 0,2 g/l, weiter bevorzugt von 0,001 bis 0,1 g/l, weiter bevorzugt von 0,005 bis 0,1 g/l, besonders bevorzugt von 0,005 bis 0,05 g/l und ganz besonders bevorzugt von 0,005 bis 0,02 g/l.

Zudem enthält die Phosphatierzusammensetzung vorzugsweise mindestens einen Beschleuniger ausgewählt aus der Gruppe bestehend aus den folgenden Verbindungen in den folgenden bevorzugten und besonders bevorzugten Konzentrationsbereichen:

Hinsichtlich des Nitroguanidins hat sich aber bereits eine Konzentration im Bereich von 0,1 bis 3,0 g/l, hinsichtlich des H2O2 eine Konzentration im Bereich von 5 bis 200 mg/l als vorteilhaft herausgestellt. Ganz besonders bevorzugt handelt es sich bei dem mindestens einen Beschleuniger um H2O2.

Bevorzugt enthält die Phosphatierzusammensetzung jedoch weniger als 1 g/l, weiter bevorzugt weniger als 0,5 g/l, besonders bevorzugt weniger als 0,2 g/l und ganz besonders bevorzugt weniger als 0,1 g/l Nitrat. Insbesondere bei einer verzinkten Oberfläche bewirkt nämlich das Nitrat in der Phosphatierzusammensetzung eine zusätzliche Beschleunigung der Schichtbildungsreaktion, was zu niedrigeren Schichtgewichten führt aber vor allem den Einbau des Mangans in den Kristall verringert. Ist der Mangangehalt der Phosphatbeschichtung jedoch zu gering, geht dies zu Lasten ihrer Alkalibeständigkeit.

Die Alkalibeständigkeit spielt wiederum bei einer nachfolgenden kathodischen Elektrotauchlackabscheidung eine entscheidende Rolle. Hierbei kommt es an der Substratoberfläche zu einer elektrolytischen Spaltung von Wasser: Es bilden sich Hydroxidionen. Dies führt dazu, dass der der pH-Wert an der Grenzfläche des Substrates ansteigt. Zwar kann erst hierdurch der Elektrotauchlack agglomeriert und abgeschieden werden. Allerdings kann der erhöhte pH-Wert auch die kristalline Phosphatschicht schädigen.

Die Phosphatierzusammensetzung weist vorzugsweise eine Temperatur im Bereich von 30 bis 55 °C auf.

Des Weiteren lässt sich die Phosphatierzusammensetzung durch die folgenden bevorzugten und besonders bevorzugten Parameterbereiche charakterisieren:

Hinsichtlich des FS-Parameters hat sich aber bereits ein Wert im Bereich von 0,2 bis 2,5, hinsichtlich der Temperatur eine solche im Bereich von 30 bis 55 °C als vorteilhaft herausgestellt.

Hierbei steht„FS" für freie Säure, „FS (verd.)" für freie Säure (verdünnt), „GSF" für Gesamtsäure nach Fischer,„GS" für Gesamtsäure und„S-Wert" für Säurewert.

Die Ermittlung dieser Parameter wird im Rahmen der analytischen Kontrolle der Phosphatierchemikalien durchgeführt und dient der laufenden Überwachung des arbeitenden Phosphatierbades (vgl. W. Rausch "Die Phosphatierung von Metallen", Eugen G. Leuze Verlag, 3. Auflage, 2005, Kapitel 8, S. 332 ff.): Freie Säure (FS):

(Siehe W. Rausch "Die Phosphatierung von Metallen", Eugen G. Leuze Verlag, 3. Auflage, 2005, Kapitel 8.1 , S. 333-334)

Zur Bestimmung der freien Säure werden 10 ml der Phosphatierzusammensetzung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert. Enthält die Phosphatierzusammensetzung Komplexfluoride, werden der Probe noch 2-3 g Kaliumchlorid zugegeben. Sodann wird unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 3,6 titriert. Die dabei verbrauchte Menge an 0,1 M NaOH in ml pro 10 ml der Phosphatierzusammensetzung ergibt den Wert der freien Säure (FS) in Punkten.

Freie Säure (verdünnt) (FS (verd.)):

(Siehe W. Rausch "Die Phosphatierung von Metallen", Eugen G. Leuze Verlag, 3. Auflage, 2005, Kapitel 8.1 , S. 333-334)

Zur Bestimmung der freien Säure (verdünnt) werden 10 ml der Phosphatierzusammensetzung in ein geeignetes Gefäß, beispielsweise in einen 300 ml-Erlenmeyerkolben pipettiert. Anschließend werden 150 ml VE-Wasser zugegeben. Unter Verwendung eines pH-Meters und einer Elektrode wird mit 0,1 M NaOH bis zu einem pH-Wert von 4,7 titriert. Die dabei verbrauchte Menge an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierzusammensetzung ergibt den Wert der freien Säure (verdünnt) (FS (verd.)) in Punkten. Über die Differenz zur freien Säure (FS) kann der Gehalt an Komplexfluorid ermittelt werden. Wenn diese Differenz mit dem Faktor 0,36 multipliziert wird, ergibt sich der Gehalt an Komplexfluorid als SiF6 2~ in g/l.

Gesamtsäure nach Fischer (GSF):

(Siehe W. Rausch "Die Phosphatierung von Metallen", Eugen G. Leuze Verlag, 3. Auflage, 2005, Kapitel 8.2, S. 334-336)

Im Anschluss an die Ermittlung der freien Säure (verdünnt) wird die verdünnte Phosphatierzusammensetzung nach Zusatz von Kaliumoxalatlösung unter Verwendung eines pH-Meters und einer Elektrode mit 0,1 M NaOH bis zu einem pH-Wert von 8,9 titriert. Der Verbrauch an 0,1 M NaOH in ml pro 10 ml der verdünnten Phosphatierzusammensetzung ergibt hierbei die Gesamtsäure nach Fischer (GSF) in Punkten. Wenn dieser Wert mit 0,71 multipliziert wird, ergibt sich der Gesamtgehalt an Phosphationen gerechnet als P2O5. Gesamtsäure (GS):

(Siehe W. Rausch "Die Phosphatierung von Metallen", Eugen G. Leuze Verlag, 3. Auflage, 2005, Kapitel 8.3, S. 336-338)

Die Gesamtsäure (GS) ist die Summe aus den enthaltenen zweiwertigen Kationen sowie freien und gebundenen Phosphorsäuren (letztere sind Phosphate). Sie wird durch den Verbrauch an 0,1 M NaOH unter Verwendung eines pH-Meters und einer Elektrode bestimmt. Dazu werden 10 ml der Phosphatierzusammensetzung in ein geeignetes Gefäß, beispielsweise einen 300 ml-Erlenmeyerkolben pipettiert und mit 25 ml VE-Wasser verdünnt. Anschließend wird mit 0,1 M NaOH bis zu einem pH-Wert von 9 titriert. Der Verbrauch in ml pro 10 ml der verdünnten Phosphatierzusammensetzung entspricht hierbei der Punktzahl der Gesamtsäure (GS).

Säurewert (S-Wert):

(Siehe W. Rausch "Die Phosphatierung von Metallen", Eugen G. Leuze Verlag, 3. Auflage, 2005, Kapitel 8.4, S. 338) Der sogenannte Säurewert (S-Wert) steht für das Verhältnis FS : GSF und ergibt sich durch Division des Wertes der freien Säure (FS) durch den Wert der Gesamtsäure nach Fischer (GSF).

Überraschend war die weitere Verbesserung der Lackhaftung, insbesondere auf feuerverzinkten Oberflächen, durch das Einstellen eines Säurewertes im Bereich von 0,03 bis 0,065, insbesondere im Bereich von 0,04 bis 0,06.

Es hat sich überraschenderweise herausgestellt, dass insbesondere im Falle von Stahl oder einer Feuerverzinkung als metallische Oberfläche eine Temperatur der Phosphatierzusammensetzung von weniger als 45 °C, bevorzugt im Bereich zwischen 35 und 45 °C zu weiter verbesserten Korrosions- und Lackhaftungswerten führt. Die Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung erfolgt bevorzugt für 30 bis 480, besonders bevorzugt für 60 bis 300 und ganz besondere bevorzugt für 90 bis 240 Sekunden, vorzugsweise mittels Tauchen oder Spritzen.

Durch die Behandlung der metallischen Oberfläche mit der Phosphatierzusammensetzung werden je nach behandelter Oberfläche die folgenden bevorzugten und besonders bevorzugten Zinkphosphat-Schichtgewichte auf der metallischen Oberfläche erzielt (ermittelt mit Röntgenfluoreszenzanalyse (RFA)):

Vorzugsweise wird die metallische Oberfläche nach der Behandlung mit der Phosphatierzusammensetzung gespült, weiter bevorzugt mit vollentsalztem Wasser oder Stadtwasser gespült.

Vorteilhafterweise wird die bereits mit der Phosphatierzusammensetzung behandelte, also phosphatbeschichtete, metallische Oberfläche noch mit einer wässrigen Nachspülzusammensetzung behandelt. Dabei wird die metallische Oberfläche vor der Behandlung mit der Nachspülzusammensetzung gegebenenfalls getrocknet. Die Nachspülzusammensetzung kann dabei aus einem Konzentrat durch Verdünnen mit einem geeigneten Lösungsmittel, bevorzugt mit Wasser, um einen Faktor zwischen 1 ,5 und 1000, vorzugsweise zwischen 5 und 700, und erforderlichenfalls Zugabe einer pH-Wert modifizierenden Substanz erhalten werden.

Durch die Behandlung mit der Nachspülzusammensetzung lässt sich die elektrische Leitfähigkeit der phosphatbeschichteten Metalloberfläche gezielt einstellen, indem definierte Poren in der Phosphatschicht erzeugt werden. Dabei kann die Leitfähigkeit entweder größer, gleich groß oder kleiner als die einer entsprechenden mit einer nickelhaltigen Phosphatbeschichtung versehenen Metalloberfläche sein.

Die eingestellte elektrische Leitfähigkeit der phosphatbeschichteten Metalloberfläche lässt sich dabei über die Variation der Konzentration eines gegebenen Metallions bzw. Polymers in der Nachspülzusammensetzung beeinflussen.

Gemäß einer Ausführungsform enthält die Nachspülzusammensetzung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen der folgenden Metalle in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (alle berechnet als entsprechendes Metall): Mo 1 bis 500 mg/l 10 bis 250 mg/l 20 bis 150 mg/l

Cu 1 bis 1000 mg/l 100 bis 500 mg/l 150 bis 225 mg/l

Ag 1 bis 500 mg/l 5 bis 300 mg/l 20 bis 150 mg/l

Au 1 bis 500 mg/l 10 bis 300 mg/l 20 bis 200 mg/l

Pd 1 bis 200 mg/l 5 bis 100 mg/l 15 bis 60 mg/l

Sn 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l

Sb 1 bis 500 mg/l 2 bis 200 mg/l 3 bis 100 mg/l

Ti 20 bis 500 mg/l 50 bis 300 mg/l 50 bis 150 mg/l

Zr 20 bis 500 mg/l 50 bis 300 mg/l 50 bis 150 mg/l

Hf 20 bis 500 mg/l 50 bis 300 mg/l 50 bis 150 mg/l

Die in der Nachspülzusammensetzung enthaltenen Metallionen scheiden sich entweder in Form eines Salzes, welches das entsprechende Metallkation (z.B. Molybdän oder Zinn) bevorzugt in mindestens zwei Oxidationsstufen enthält - insbesondere in Form eines Oxid-Hydroxyds, eines Hydroxyds, eines Spinells oder eines Defektspinells - oder elementar auf der zu behandelnden Oberfläche ab (z.B. Kupfer, Silber, Gold oder Palladium).

Gemäß einer bevorzugten Ausführungsform handelt es sich bei den Metallionen um Molybdänionen. Diese werden bevorzugt als Molybdat, weiter bevorzugt als Ammoniumheptamolybdat und besonders bevorzugt als Ammoniumheptamolybdat x 7 H2O der Nachspülzusammensetzung zugegeben. Die Molybdänionen können auch als Natriummolybdat zugesetzt werden.

Molybdänionen können aber beispielsweise auch in Form mindestens eines Molybdänkationen enthaltenden Salzes wie Molybdänchlorid der Nachspülzusammensetzung zugesetzt und dann durch ein geeignetes Oxidationsmittel, beispielsweise durch die weiter oben beschriebenen Beschleuniger, zu Molybdat oxidiert werden. In einem solchen Fall enthält die Nachspülzusammensetzung selbst ein entsprechendes Oxidationsmittel.

Weiter bevorzugt enthält die Nachspülzusammensetzung Molybdänionen in Kombination mit Kupferionen, Zinnionen oder Zirkoniumionen.

Besonders bevorzugt enthält sie Molybdänionen in Kombination mit Zirkoniumionen sowie gegebenenfalls ein Polymer oder Copolymer, insbesondere ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten und Polyacrylsäure, wobei der Gehalt an Molybdänionen und Zirkoniumionen jeweils im Bereich von 10 bis 500 mg/l (berechnet als Metall) liegt.

Bevorzugt liegen der Gehalt an Molybdänionen dabei im Bereich von 20 bis 150 mg/l, besonders bevorzugt von 25 bis 100 mg/l und ganz besonders bevorzugt von 30 bis 75 mg/l und der Gehalt an Zirkoniumionen im Bereich von 50 bis 300 mg/l, besonders bevorzugt von 50 bis 150 mg/l. Gemäß einer weiteren bevorzugten Ausführungsform handelt es sich bei den Metallionen um Kupferionen. Vorzugsweise enthält die Nachspüllösung diese dann in einer Konzentration von 100 bis 500 mg/l, weiter bevorzugt von 150 bis 225 mg/l.

Gemäß einer weiteren Ausführungsform enthält die erfindungsgemäße Nachspülzusammensetzung mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymerisaten.

Das mindestens eine Polymer ist dabei vorzugsweise in einer Konzentration im Bereich von 0,1 bis 5 g/l, weiter bevorzugt von 0,1 bis 3 g/l, weiter bevorzugt von 0,3 bis 2 g/l und besonders bevorzugt im Bereich von 0,5 bis 1 ,5 g/l (berechnet als reines Polymer) enthalten.

Als Polymere werden bevorzugt kationische Polymere, insbesondere Polyamine, Polyethylenamine, Polyimine und/oder Polyethylenimine eingesetzt. Besonders bevorzugt kommt ein Polyamin und/oder Polyimin, ganz besonders bevorzugt ein Polyamin zum Einsatz.

Gemäß einer dritten Ausführungsform enthält die erfindungsgemäße Nachspülzusammensetzung mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn, Antimon, Titan, Zirkonium und Hafnium und mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus den Polymerklassen der Polyamine, Polyethylenamine, Polyaniline, Polyimine, Polyethylenimine, Polythiophene und Polypryrole sowie deren Mischungen und Copolymehsaten, jeweils in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (Polymer berechnet als reines Polymer und Metallionen berechnet als entsprechendes Metall).

Gemäß einer bevorzugten Ausführungsform handelt es sich bei dem mindestens einen Polymer um ein kationisches Polymer, insbesondere um ein Polyamin und/oder Polyimin, und bei den Metallionen um Kupferionen, Molybdänionen und/oder Zirkoniumionen, jeweils in den folgenden bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Konzentrationsbereichen (Polymer berechnet als reines Polymer und Metallionen berechnet als entsprechendes Metall).

Die Nachspülzusammensetzung umfasst - insbesondere, wenn es sich bei der metallischen Oberfläche um Aluminium oder eine Aluminiumlegierung handelt - vorzugsweise zusätzlich 20 bis 500 mg/l, weiter bevorzugt 50 bis 300 mg/l und besonders bevorzugt 50 bis 150 mg/l Ti, Zr und/oder Hf in komplexierter Form (berechnet als Metall). Dabei handelt es sich bevorzugt um Fluorokomplexe. Zudem umfasst die Nachspülzusammensetzung vorzugsweise 10 bis 500 mg/l, weiter bevorzugt 15 bis 100 mg/l und besonders bevorzugt 15 bis 50 mg/l freies Fluorid. Besonders bevorzugt enthält die Nachspülzusammensetzung Zr in komplexierter Form (berechnet als Metall) und mindestens eine Art Metallionen ausgewählt aus der Gruppe bestehend aus den Ionen von Molybdän, Kupfer, Silber, Gold, Palladium, Zinn und Antimon, vorzugsweise von Molybdän. Der pH-Wert der Nachspülzusammensetzung liegt vorzugsweise im sauren Bereich, weiter bevorzugt im Bereich von 3 bis 5, besonders bevorzugt im Bereich von 3,5 bis 5.

Überraschenderweise wurde gefunden, dass das Senken des pH-Wert die Abscheidung von Molybdänionen auf der phosphatbeschichteten metallischen Oberfläche fördert. Bei einer Molybdänionen enthaltenden Nachspüllösung beträgt der pH-Wert daher bevorzugt 3,5 bis 4,5 und besonders bevorzugt 3,5 bis 4,0.

Die Nachspülzusammensetzung ist im Wesentlichen nickelfrei. Bevorzugt enthält sie weniger als 0,1 g/l und besonders bevorzugt weniger als 0,01 g/l Nickelionen.

Die Nachspülzusammensetzung weist vorzugsweise eine Temperatur im Bereich von 15 bis 40 °C auf. Die Behandlung der metallischen Oberfläche mit der Nachspülzusammensetzung erfolgt bevorzugt für 10 bis 180, besonders bevorzugt für 20 bis 150 und ganz besondere bevorzugt für 30 bis 120 Sekunden, vorzugsweise mittels Tauchen oder Spritzen.

Auf der phosphatbeschichteten - sowie der gegebenenfalls mit der Nachspülzusammensetzung behandelten - metallischen Oberfläche kann dann kathodisch ein Elektrotauchlack abgeschieden sowie ein Lackaufbau aufgebracht werden.

Gegebenenfalls wird die metallische Oberfläche dabei nach der Behandlung mit der Nachspülzusammensetzung zunächst gespült, bevorzugt mit vollentsalztem Wasser, und gegebenenfalls getrocknet. Die vorliegende Erfindung bezieht sich weiterhin auf die vorstehend beschriebene alkalische, wässrige Reinigerzusammensetzung, welche mindestens ein wasserlösliches Silikat enthält, sowie auf das an entsprechender Stelle beschriebene Konzentrat, aus dem diese Reinigerzusammensetzung erhältlich ist.

Die Erfindung betrifft zudem eine phosphatbeschichtete metallische Oberfläche, welche mit dem erfindungsgemäßen Verfahren erhältlich ist. Schließlich bezieht sich die Erfindung noch auf die Verwendung von den mit dem erfindungsgemäßen Verfahren beschichteten metallischen Oberflächen im Bereich der Automobil-, Automobilzulieferer oder Allgemeinindustrie.

Im Folgenden soll die vorliegende Erfindung durch nicht einschränkend zu verstehende Ausführungsbeispiele und Vergleichsbeispiele erläutert werden.

Beispiele i) Herstellung von Reinigungs- und Phosphatierbädern:

Durch Mischen der Komponenten in VE-Wasser, gegebenenfalls Einstellen des pH- Werts mit Phosphorsäure (Reinigungsbad A) und anschließendes Verdünnen des Gemisches um den Faktor 50 bis 70 wurden die folgenden Reinigungsbäder hergestellt:

Es wurden zudem noch das Reinigungsbad F sowie das Reinigungsbad G angesetzt. Das Reinigungsbad F war dabei mit Ausnahme des pH-Wertes von 10,5 identisch mit dem Reinigungsbad B, während das Reinigungsbad G mit Ausnahme des pH-Wertes von 10,5 identisch mit dem Reinigungsbad E war. Der pH-Wert wurde sowohl beim Reinigungsbad F als auch G mit Phosphorsäure eingestellt.

Durch Mischen der Komponenten in VE-Wasser (Zink, Nickel und Mangan werden als Nitrate bzw. Phosphate zugesetzt) und Einstellen des S-Wertes durch Absenken der Freien Säure (FS) mit Natronlauge wurden die folgenden nickelfreien Phosphatierbäder hergestellt: Phosphatierbad

A ' B ' C

Komponente Gehalte (g/l)

Zn 1 ,3 1 ,3 1 ,3

Ni 1 0 0

Mn 1 ,0 1 ,0 1 ,5

Phosphat 13 13,5 15

(berechnet als P2O5)

freies Fluorid 0,08 0,08 0,07

BF 4 - 1 ,0 1 ,0 1 ,0

Nitrat 3 - 0,05

S-Wert 0,08 0,06 0,07

Durch Mischen von H ZrFe und Ammoniumheptamolybdat in VE-Wasser und Einstellen des pH-Wertes mit verdünnter Ammoniaklösung wurde das folgende Nachspülbad hergestellt:

//) Behandlung von Testblechen:

Testbleche aus feuerverzinktem Stahl (EA), elektrolytisch verzinktem Stahl (G) sowie der Aluminiumlegierung AA 6014 (AI) wurden für 300 Sekunden bei 60 °C in eines der Reinigungsbäder A bis D getaucht und danach für 30 Sekunden bei 25 °C in ein Aktivierungsbad, das 0,6 g/l Zinkphosphat enthielt. Die Testbleche wurden sodann für 180 Sekunden bei 45 °C in eines der Phosphatierbäder A ' bis C und danach für 30 Sekunden bei 25 °C in das oben beschriebene Nachspülbad getaucht. Nach gründlichem Spülen mit VE-Wasser wurden die Testbleche noch mit einem kathodischen Elektrotauchlack sowie einem Standardautomobillackaufbau (Füller, Basislack, Klarlack) beschichtet. iii) Korrosionsschutz- und Lackhaftunpstests:

Die so vorbehandelten und lackierten Testplatten wurden anschließend einem Gitterschnitttest nach DIN EN ISO 2409 unterzogen. Getestet wurden jeweils 3 Bleche vor und nach Belastung für 240 Stunden mit Kondenswasser (DIN EN ISO 6270-2 CH). Die entsprechenden Ergebnisse (Durchschnittswerte) finden sich in Tab. 1. Ein Gitterschnittergebnis von 0 ist hierbei der beste, ein solches von 5 der schlechteste Wert. Werte von 0 und 1 sind dabei vergleichbar gute Werte.

Tabelle 1

Zudem wurden die Testplatten aus elektrolytisch sowie feuerverzinktem Stahl einem VDA-Test (VDA 621 -415; 10 Runden) unterzogen, wobei die Lackunterwanderung (U) in mm festgestellt sowie die Lackablösung nach Steinschlag (DIN EN ISO 20567-1 , Verf. C) bestimmt wurde. Ein Ergebnis von 0 ist hierbei der beste, ein solches von 5 der schlechteste Wert nach erfolgtem Steinschlag. Ein Wert bis 1 ,5 ist dabei als guter Wert zu betrachten. Die Ergebnisse (Durchschnittswerte aus drei Blechen) sind ebenfalls in Tab. 2 zusammengefasst. Tabelle 2

Die Testplatten aus der Aluminiumlegierung wurden hingegen einem 240-stündigen CASS-Test nach DIN EN ISO 9227 sowie einem Filiformtest nach DIN EN 3665 unterzogen. Die Ergebnisse (Durchschnittswerte aus drei Blechen) sind in Tab. 3 zusammengefasst.

Tabelle 3

iv) Ergebnisse und Diskussion:

Die Gitterschnittergebnisse der Tab. 1 zeigen deutlich die Verschlechterung der Lackhaftung bei der nickelfreien gegenüber der nickelhaltigen Phosphatierung auf feuerverzinktem sowie elektrolytisch verzinktem Stahl (vgl. VB2 vs. VB1 ; VB4 vs. VB3). Durch die Verwendung eines erfindungsgemäßen Reinigungsbads lässt sich bei der nickelfreien Variante eine Lackhaftung erzielen, welche der der nickelhaltigen Variante fast entspricht (vgl. B1 vs. VB1 und B2 vs. VB3).

Entsprechendes gilt für die Ergebnisse der Tab. 2. Auch hier wird durch die Verwendung eines erfindungsgemäßen Reinigungsbades bei der nickelfreien Phosphatierung eine deutliche Verbesserung der Korrosionsschutzwerte erzielt. Eine weitere Verbesserung ergibt sich durch die Zugabe von Gluconat und Nitrit zum Reinigungsbad (vgl. B1 vs. B4).

Die CASS- sowie Filiform-Ergebnisse in Tab. 3 zeigen, dass durch die Verwendung eines erfindungsgemäßen Reinigungsbades bei der nickelfreien Phosphatierung auf der Aluminiumlegierung eine deutliche Verbesserung der Korrosionsschutzwerte erzielt wird (vgl. B3 vs. VB5 und VB6). Im Fall von CASS sowie Filiform, Mittel wird sogar ein besserer Korrosionsschutz als bei der nickelhaltigen Variante erzielt.

Aus dem Vergleich der Beispiele B6 und B7 (vgl. Tab. 1 sowie Tab. 2) lässt sich jeweils die weitere Verbesserung der erzielten Ergebnisse durch die Wahl eines pH-Wertes von 1 1 ,6 (B6) statt eines pH-Wertes von 10,5 (B7) entnehmen.

Aus dem Vergleich der Beispiele B8 und B9 (vgl. Tab. 1 sowie Tab. 2) lässt sich jeweils die weitere Verbesserung der erzielten Ergebnisse durch die Wahl eines pH-Wertes von 1 1 ,3 (B8) statt eines pH-Wertes von 10,5 (B9) entnehmen.