Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INDUSTRIAL FERMENTATION PROCESS FOR MICROBIAL CELLS USING A FED-BATCH PRE-CULTURE
Document Type and Number:
WIPO Patent Application WO/2021/004830
Kind Code:
A1
Abstract:
The invention relates to a process for culturing microbial cells producing a product of interest comprising fed-batch pre-culture.

Inventors:
KLEIN TOBIAS (DE)
DAUB ANDREAS (DE)
GOLABGIR ANBARANI AYDIN (DE)
Application Number:
PCT/EP2020/068335
Publication Date:
January 14, 2021
Filing Date:
June 30, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
C12P1/00; C12P21/00
Domestic Patent References:
WO2017097869A12017-06-15
WO2004003216A22004-01-08
WO1989006279A11989-07-13
WO1991002792A11991-03-07
WO1995023221A11995-08-31
WO2003054184A12003-07-03
WO2003056017A22003-07-10
WO2003055974A22003-07-10
WO2005063974A12005-07-14
WO2005103244A12005-11-03
WO1992019729A11992-11-12
WO1996034946A11996-11-07
WO1998020115A11998-05-14
WO1998020116A11998-05-14
WO1999011768A11999-03-11
WO2001044452A12001-06-21
WO2002088340A22002-11-07
WO2003006602A22003-01-23
WO2004003186A22004-01-08
WO2004041979A22004-05-21
WO2007006305A12007-01-18
WO2011036263A12011-03-31
WO2011036264A12011-03-31
WO2011072099A22011-06-16
WO2016096711A22016-06-23
WO2002068589A22002-09-06
WO2002068597A22002-09-06
WO2003083054A22003-10-09
WO2004091544A22004-10-28
WO2008080093A22008-07-03
WO1995010603A11995-04-20
WO1994002597A11994-02-03
WO1994018314A11994-08-18
WO1997043424A11997-11-20
WO1999019467A11999-04-22
WO2002010355A22002-02-07
WO1999019467A11999-04-22
WO1996023872A11996-08-08
WO2000022103A12000-04-20
WO2009061380A22009-05-14
WO2013184577A12013-12-12
WO2010104675A12010-09-16
WO2000060060A22000-10-12
WO2006002643A22006-01-12
WO2011098531A12011-08-18
WO2013001078A12013-01-03
WO2013001087A22013-01-03
WO2006066594A22006-06-29
WO1996023874A11996-08-08
WO1995026397A11995-10-05
WO2001066712A22001-09-13
WO2000032758A12000-06-08
WO2003089620A22003-10-30
WO2005032496A22005-04-14
WO2005086900A22005-09-22
WO2006000976A12006-01-05
WO2006031699A22006-03-23
WO2008036863A22008-03-27
WO2011046812A12011-04-21
WO2014059360A12014-04-17
WO1997025417A11997-07-17
WO1998024799A11998-06-11
WO2003068910A22003-08-21
WO2005003319A22005-01-13
WO2009020459A22009-02-12
WO1999064619A21999-12-16
WO2004090099A22004-10-21
WO1999027083A11999-06-03
WO1999027084A11999-06-03
WO2002006442A22002-01-24
WO2002092741A22002-11-21
WO2003095638A12003-11-20
WO2015155350A12015-10-15
WO2015155351A12015-10-15
WO2015166075A12015-11-05
WO2015181287A12015-12-03
WO2015181286A12015-12-03
WO2008110498A12008-09-18
WO1994019444A11994-09-01
WO1997043482A11997-11-20
Foreign References:
JPS6128381A1986-02-08
EP0283075A21988-09-21
DE10064983A12002-07-18
DE102005028295A2005-06-18
EP1921147A22008-05-14
US6124127A2000-09-26
US3451935A1969-06-24
GB1300596A1972-12-20
DE10304331A12004-08-12
US6316240B12001-11-13
Other References:
R. HUBER ET AL: "Equalizing growth in high-throughput small scale cultivations via precultures operated in fed-batch mode", BIOTECHNOLOGY AND BIOENGINEERING, vol. 103, no. 6, 15 August 2009 (2009-08-15), pages 1095 - 1102, XP055651979, ISSN: 0006-3592, DOI: 10.1002/bit.22349
J. OTTEN ET AL: "ACCELERATED YOGHOURT PRODUCTION BY FED-BATCH PREFERMENTATION", NETHERLANDS MILK AND DAIRY JOURNAL, PUDOC. WAGENINGEN, NL, vol. 50, no. 1, 1996, pages 19 - 34, XP000580301, ISSN: 0028-209X
U. E. GIESECKE ET AL: "Production of alkaline protease with Bacillus lichenifortnis in a controlled fed-batch process", APPL MICROBIOL BIOTECHNOL, vol. 35, 1991, pages 720 - 724, XP055610412
CLAUDIA KORNELI ET AL: "Influence of fructose and oxygen gradients on fed-batch recombinant protein production using Bacillus megaterium", ENGINEERING IN LIFE SCIENCES, vol. 11, no. 4, August 2011 (2011-08-01), DE, pages 338 - 349, XP055726365, ISSN: 1618-0240, DOI: 10.1002/elsc.201000161
MARIAN WENZEL ET AL: "Self-Inducible Bacillus subtilis Expression System for Reliable and Inexpensive Protein Production by High-Cell-Density Fermentation", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 77, no. 18, 15 September 2011 (2011-09-15), US, pages 6419 - 6425, XP055616282, ISSN: 0099-2240, DOI: 10.1128/AEM.05219-11
LORENTZ K. ET AL., CLIN. CHEM., vol. 46/5, no. 5, 2000, pages 644 - 649
SIEZEN ET AL., PROTEIN ENG., vol. 4, 1991, pages 719 - 737
SIEZEN ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 501 - 523
R. SIEZEN: "Subtilisin enzymes", 1996, article "Subtilases: Subtilisin-like Proteases", pages: 75 - 95
VASANTHA ET AL., J. BACTERIOL., vol. 159, 1984, pages 811 - 819
JA WELLS ET AL., NUCLEIC ACIDS RESEARCH, vol. 11, 1983, pages 7911 - 7925
EL SMITH ET AL., J. BIOL CHEM, vol. 243, 1968, pages 2184 - 2191
JACOBS ET AL., NUCL. ACIDS RES, vol. 13, 1985, pages 8913 - 8926
GUPTA ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 60, 2002, pages 381 - 395
DELMAR ET AL., ANALYTICAL BIOCHEM, vol. 99, 1979, pages 316 - 320
HOFFMAN, W. S., J. BIOL. CHEM., vol. 120, 1937, pages 51
J. MOL. BIOL., vol. 48, 1979, pages 443 - 453
LEDESMA-AMARO ET AL.: "Microbial production of food ingredients, enzymes and nutraceuticals", WOODHEAD PUBLISHING, article "Microbial Production of Vitamins"
ZAFRMAHMOOD: "Microbial Biotechnology", TAYLOR AND FRANCIS GROUP, article "Microbial amino acids production"
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY, COLD SPRING HARBOR LABORATORY PRESS
CHMIEL ET AL.: "Bioprozesstechnik 1. Einfuhrung in die Bioverfahrenstechnik", 1991, GUSTAV FISCHER VERLAG
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Claims

1. A process for cu ltu ring Bacil lus cel ls producing a protein of interest, comprising the steps of:

(a) providing a pre-cultu re of said Bacil lus cel ls;

(b) inocu lating a production bioreactor with the pre-cultu re of step (a) ; and

(c) cu ltu ring the Bacil lus cel ls in the production bioreactor u nder conditions conducive for the production of the protein of interest,

wherein the pre-cultu re of step (a) is performed in fed-batch mode.

2. The process of claim 1, wherein the volu me of the pre-cultu re used for inoculating the production bioreactor is not more than 15% of the volu me of the fermentation mediu m present in the bioreactor.

3. The process of claim 1 and 2, wherein the pre-cultu re comprises at least two stages, al l performed in fed-batch mode.

4. The process of any one of the preceding claims, wherein step c) is performed in batch mode, fed-batch mode or continuous fermentation mode.

5. The process of claim 4, wherein the Bacil lus cel ls are cel ls of Bacil lus su btilis, Bacil lus pumilus, Bacil lus licheniformis, or Bacil lus lentus, preferably Bacil lus licheniformis.

6. The process of any one of the preceding claims, wherein the protein of interest is an enzyme.

7. The fermentation process of claim 6, wherein the enzyme is selected from the list

consisting of hyd rolases, oxidases, isomerases, amylase, al pha-amylase, glucoamylase, pul lu lanase, protease, metal loprotease, peptidase, lipase, cutinase, acyl transferase, cel lu lase, endoglucanase, glucosidase, cel lubiohyd rolase, xylanase,

xyloglucantransferase, xylosidase, mannanase, phytase, phosphatase, xylose

isomerase, glucose isomerase, lactase, acetolactate decarboxylase, pectinase, pectin methylesterase, polygalacturonidase, lyase, pectate lyase, arabinase,

arabinofu ranosidase, galactanase, laccase, peroxidase, and asparaginase.

8. The process of any one of the preceding claims, wherein the protein of interest is

secreted by the Bacil lus cel ls into the fermentation broth.

9. The process of any one of the preceding claims, further comprising a step (d) of

harvesting the product when the concentration of the protein of interest is at least 10 g product/kg fermentation broth.

10. A process for producing a protein of interest, com prising the steps of:

(a) providing a pre-cultu re of Bacil lus cel ls producing said protein of interest;

(b) inocu lating a production bioreactor with the pre-cultu re of step (a) ; and (c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the protein of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode. 11. A process for reducing the time until harvest in the fermentative production of a protein of interest, comprising the steps of:

(a) providing a pre-culture of Bacillus cells producing said protein of interest;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the protein of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

Description:
Industrial fermentation process for microbial cells using a fed-batch pre-culture Field of the invention

The invention relates to a process for culturing microbial cells producing a product of interest comprising a fed-batch pre-culture.

Background

Microorganisms are widely used as industrial workhorses for the production of a product of interest, especially proteins, and in particular enzymes. The biotechnological production of the product of interest is conducted via fermentation and subsequent purification of the product. Microorganisms, like the Bacillus species, are capable of secreting significant amounts of product into the fermentation broth. This allows a simple product purification process compared to intracellular production and explains the success of Bacillus in industrial application.

Industrial bioprocesses using microorganisms are typically performed in large-scale production bioreactors having a size of more than 50 m 3 . A pre-culture consisting of at least one cultivation step in smaller seed fermenters is used to produce the required amount of inoculum for the production in these large-scale production bioreactors. A pre-culture consisting of more than one cultivation step, i.e. involving the subsequent use of more than one seed fermenter, is most often referred to as a seed train. The seed fermenters are usually run in batch mode. The volume of the inoculum for inoculation of the main bioreactor can range from 0.1 to 15% (v/v) of the volume of the initial volume of the production bioreactor. Depending on the amount of inoculum, the duration of the main fermentation can vary. A larger inoculation volume contains more biomass and can therefore significantly decrease the time until harvest of the desired product. However, an inoculation volume larger than 15% (v/v) of the initial volume of the production bioreactor is not reasonable from a technical and economical point of view. Thus, a new process for culturing of microbial cells is needed, which is able to reduce the time until harvest of the product of interest without exceeding the inoculation volume above 15% of the initial volume of the production bioreactor.

Summary of the invention

The inventors found out that a pre-culture run in fed-batch mode can be used to increase the cell density in the pre-culture seed fermenter, thus increasing the amount of biomass contained in the inoculum. The herein described inoculum enriched with cells can be used to shorten the time until harvest of the fermenter compared to a normal pre-culture, which is run in batch mode, without increasing the volume of inoculum introduced into the production bioreactor.

Therefore, in a first aspect the present invention relates to a process for culturing microbial cells producing a product of interest, comprising the steps of:

(a) providing a pre-culture of said microbial cells; (b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In one embodiment, the volume of the pre-culture used for inoculating the production bioreactor is not more than 15% of the volume of the fermentation medium present in the production bioreactor.

In another embodiment, the pre-culture comprises at least two stages, wherein at least the last stage of the at least two stages is performed in fed-batch mode.

In another embodiment, culturing the microbial cells in the production bioreactor is performed in batch mode, fed-batch mode or continuous fermentation mode.

In a further embodiment, the microbial cells are bacterial or fungal cells. In a preferred embodiment, the bacterial cells are Bacillus cells.

In another embodiment, the product of interest is a protein. In a preferred embodiment, the protein is an enzyme.

Therefore, in particular the present invention relates to a process for culturing Bacillus cells producing a protein of interest, comprising the steps of:

(a) providing a pre-culture of said Bacillus cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the protein of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

Preferably, the protein of interest is not a reporter protein, preferably not GFP or YFP.

The enzyme may be selected from the list consisting of hydrolases, oxidases, isomerases, e.g. amylase, alpha-amylase, glucoamylase, pullulanase, protease, metalloprotease, peptidase, lipase, cutinase, acyl transferase, cellulase, endoglucanase, glucosidase, cellubiohydrolase, xylanase, xyloglucantransferase, xylosidase, mannanase, phytase, phosphatase, xylose isomerase, glucose isomerase, lactase, acetolactate decarboxylase, pectinase, pectin methylesterase, polygalacturonidase, lyase, pectate lyase, arabinase, arabinofuranosidase, galactanase, laccase, peroxidase and asparaginase.

In one embodiment, the product of interest is secreted by the microbial cells into the fermentation broth.

In another embodiment, the process of the present invention further comprises a step (d) of harvesting the product when the concentration of the product of interest is at least lOg product/kg fermentation broth. In another aspect, the invention relates to a process for producing a product of interest, comprising the steps of:

(a) providing a pre-culture of microbial cells, in particular Bacillus cells, producing the product of interest, in particular the protein of interest;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In a further aspect, the invention relates to a process for increasing the yield of a product of interest, comprising the steps of:

(a) providing a pre-culture of microbial cells, in particular Bacillus cells, producing the product of interest, in particular the protein of interest;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In a further aspect, the invention relates to process for reducing the time until harvest in the fermentative production a compound of interest, in particular a protein of interest, comprising the steps of:

(a) providing a pre-culture of microbial cells, in particular Bacillus cells, producing said compound of interest;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the compound of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

Brief description of the drawings

Figure 1 illustrates the relative time until harvest in a production process using either a batch or a fed-batch pre-culture for the production of (A) a protease and (B) an amylase. In each case, results were normalized to the time until harvest of the pre-culture run in batch mode, which is set to 100.

Figure 2 illustrates the relative time until harvest in a production process using either a batch or a fed-batch pre-culture and inoculating the production bioreactor with an inoculum having a volume of either 10% or 1% (v/v) of the initial volume of the fermentation medium present in the production bioreactor. For each volume, results were normalized to the time until harvest of the pre-culture run in batch mode.

Figure 3 illustrates the relative time until harvest in a production process using either a chemically defined medium or complex medium in the seed fermenter of the pre-culture. Results were normalized to the time until harvest of the pre-culture conducted with chemically defined medium. Figure 4 il lustrates the relative time u ntil harvest in a production process using either a batch or a fed-batch pre-cultu re for the production of a protease in Bacil lus subtilis.

Definitions

U nless otherwise noted, the terms used herein are to be understood according to

conventional usage by those of ordinary skil l in the relevant art.

As used in this specification and in the appended claims, the singular forms of "a" and "an" also include the respective plurals u nless the context clearly dictates otherwise. I n the context of the present invention, the terms "about" and "approximately" denote an interval of accuracy that a person skil led in the art wil l understand to stil l ensu re the tech nical effect of the feature in question. The term typical ly indicates a deviation from the indicated numerical value of ± 20 %, preferably ± 15 %, more preferably ± 10 %, and even more preferably ± 5 %.

It is to be u nderstood that the term "com prising" is not limiting. For the pu rposes of the present invention the term "consisting of" is considered to be a preferred em bodiment of the term "com prising". If hereinafter a grou p is defined to comprise at least a certain num ber of embodiments, this is meant to also encompass a grou p, which preferably consists of these em bodiments on ly.

Fu rthermore, the terms "first", "second", "third" or "(a)", "(b)", "(c)", "(d)" etc. and the like in the description and in the claims are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable u nder appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or il lustrated herein. I n case the terms "first", "second", "third" or "(a)", "(b)", "(c)", "(d)", "i", "ii" etc. relate to steps of a method or use or assay, there is no time or time interval coherence between the steps, i.e. the steps may be carried out simultaneously or there may be time intervals of seconds, minutes, hou rs, days, weeks, months or even years between such steps, u nless otherwise indicated in the application as set forth herein above or below.

It is to be u nderstood that this invention is not limited to the particular methodology, protocols, reagents etc. described herein as these may vary. It is also to be understood that the terminology used herein is for the pu rpose of describing particu lar em bodiments only, and is not intended to limit the scope of the present invention that wil l be limited on ly by the appended claims. U nless defined otherwise, al l technical and scientific terms used herein have the same meanings as com mon ly u nderstood by one of ordinary skil l in the art.

Throughout this application, various pu blications are referenced. The disclosures of al l of these pu blications and those references cited within those pu blications in their entireties are hereby incorporated by reference into this application in order to more fu l ly describe the state of the art to which this invention pertains. A“process for culturing microbial cells producing a product of interest” or“fermentation process” comprises the cultivation of microbial cells in a suitable fermentation medium and under suitable conditions such as a suitable temperature and suitable pH.“Cultivation of the cells” or“growth of the cells” is not understood to be limited to an exponential growth phase, but can also include the physiological state of the cells at the beginning of growth after inoculation and during a stationary phase.

The term“fermentation broth” or“culture broth” as used herein describes the fermentation medium containing microbial cells, which are cultivated to express and, depending on the product of interest, secrete the product of interest into the fermentation medium.

The term“fermentation medium” refers to a water-based solution containing one or more chemical compounds that can support the growth of cells.

The term“feed solution” is used herein for a solution that is added during the fermentation process to the fermentation medium after inoculation of the initial fermentation medium with the microbial cells. The feed solution comprises compounds supportive for the growth of the cells. In one embodiment, the feed solution has the same composition as the initial fermentation medium. In another embodiment, the feed solution has a composition which is different from the composition of the fermentation medium. Compared to the fermentation medium the feed solution may be enriched for one or more compounds.

The term "pre-culture" refers to a liquid actively growing culture of the microbial cell which is cultivated in a seed fermenter and which is used for inoculating the“production bioreactor”.“Actively growing” is intended to mean that the culture is in a stage where the number of microbial cells in the culture increases. Thus, at the beginning of the pre-culture the cells may be in a lag phase and switch to an exponential growth phase over time. The cells of the pre-culture are in general used as inoculation material in order to avoid or reduce the lag phase in the production bioreactor. Thus, at the time point of the transfer of the pre-culture cells into the production bioreactor, or into the next seed fermenter of a seed train, the cells are preferably in exponential phase or in late exponential phase where the cells are growing actively.

The term "seed fermenter" refers to a culture vessel in which the pre-culture is formed by fermenting microbial cells until a sufficiently high number of cells for inoculation into the main fermenter or into the next seed fermenter of a seed train is obtained. The seed fermenter has a smaller volume than the production bioreactor. In one embodiment, the volume of the seed fermenter is between 5% and 20% of the volume of the production reactor. In one embodiment, the volume of the seed fermenter is between 8% and 15% of the volume of the production reactor. In one embodiment, the volume of the seed fermenter is 10% of the volume of the production reactor.

The term "seed train" is intended to mean a series of seed fermenters of increasing size in which the pre-culture is conducted in a series of fermenters where the last fermenter in the seed train has a sufficient size to contain the necessary inoculum for the production bioreactor. Hence, the volu me of the last seed fermenter in the seed train is between 5% and 20% of the volume of the production reactor. I n one embodiment, the volu me of the last seed fermenter in the seed train is between 8% and 15% of the volume of the production reactor. I n one em bodiment, the volume of the last seed fermenter in the seed train is 10% of the volu me of the production reactor. The volu me of the seed fermenters within a seed train may increase 5 to 20 fold from one seed fermenter to the next seed fermenter, u ntil a sufficient amou nt of cel ls to inocu late the production bioreactor has been obtained.

The term“production bioreactor” or“main bioreactor” or“main fermenter” or“production fermenter” is a term known in the art and is intended to mean a vessel in which the cultivation of cel ls in large scale and the large-scale production of a product of interest takes place.“Large scale production”,“Large scale fermentation” or also cal led herein “industrial ly relevant fermentation” refers to a fermentation process in which more than 200 g of a carbon sou rce (preferably, a chemical ly defined carbon sou rce) per liter of initial fermentation medium are added to the production bioreactor du ring cu ltu ring of the cel ls in the production bioreactor. Hence, cultu ring cel ls in a“production bioreactor” or“main bioreactor” or“main fermenter” or“production fermenter” refers to a fermentation process in which more than 200 g of a carbon source (preferably, a chemical ly defined carbon sou rce) per liter of initial fermentation medium are added to the production bioreactor during culturing of the cel ls in the production bioreactor. After termination of the cultivation in the production bioreactor the fermentation broth is harvested and the product of interest is recovered. The bioreactor may contain in lets and outlets, for exam ple for media, and different sensors, e.g. for measu ring pH and tem peratu re during the fermentation process. The fermentation medium in the production bioreactor may be the same as or different from the fermentation mediu m used in the seed fermenter or the last seed fermenter in a seed train.

The production bioreactor may have a volume of at least 500 L, at least 1,000 L, at least 5,000 L, at least 10,000 L, at least 20,000 L, at least 50,000L, or at least 100,000 L.

Preferably, the production bioreactor may have a volu me of 500-1000 L, 1,000-5,000 L, at 5,000-10,000 L, 10,000-20,000 L, 20,000-50,000 L, 50,000-100,000 L, or 100,000-150,000 L. The production bioreactor may have a volu me of 500 L, 1,000 L, 5,000 L, 10,000 L, 20,000 L 50,000L, or 100,000 L.

If the production bioreactor has a volume of 500 L, the volu me of the seed fermenter may be between 25 L and 100 L, or between 40 L and 75 L or 50 L. If the production bioreactor has a volu me of 1,000 L, the volu me of the seed fermenter may be between 50 L and 200 L, or between 80 L and 150 L or 100 L. If the production bioreactor has a volu me of 5,000 L, the volume of the seed fermenter may be between 250 L and 1,000 L, or between 400 L and 750 L or 500 L. If the production bioreactor has a volu me of 10,000 L, the volu me of the seed fermenter may be between 500 L and 2,000 L, or between 800 L and 1,500 L or 1,000 L. If the production bioreactor has a volu me of 20,000 L, the volume of the seed fermenter may be between 1,000 L and 4,000 L, or between 1,600 L and 3,000 L or 2,000 L. If the production bioreactor has a volu me of 50,000 L, the volume of the seed fermenter may be between 2,500 L and 10,000 L, or between 4,000 L and 7,500 L or 5,000 L. If the production bioreactor has a volume of 10,000 L, the volu me of the seed fermenter may be between 5,000 L and 20,000 L, or between 8,000 L and 15,000 L or 10,000 L.

If the production bioreactor has a volu me of 1,000 L, the volume of the last seed fermenter in the seed train may be between 50 L and 200 L, or between 80 L and 150 L or 100 L. If the production bioreactor has a volu me of 5,000 L, the volu me of the last seed fermenter in the seed train may be between 250 L and 1,000 L, or between 400 L and 750 L or 500 L. If the production bioreactor has a volu me of 10,000 L, the volume of the last seed fermenter in the seed train may be between 500 L and 2,000 L, or between 800 L and 1,500 L or 1,000 L. If the production bioreactor has a volu me of 20,000 L, the volu me of the last seed fermenter in the seed train may be between 1,000 L and 4,000 L, or between 1,600 L and 3,000 L or 2,000 L. If the production bioreactor has a volu me of 50,000 L, the volu me of the last seed fermenter in the seed train may be between 2,500 L and 10,000 L, or between 4,000 L and 7,500 L or 5,000 L. If the production bioreactor has a volu me of 100,000 L, the volu me of the last seed fermenter in the seed train may be between 5,000 L and 20,000 L, or between 8,000 L and 15,000 L or 10,000 L.

The term "inoculu m" is intended to mean an amou nt of the microbial cel ls that is added from the seed fermenter to the production bioreactor in order to start the fermentation process in the production bioreactor. Fu rthermore,“inoculu m” is also intended to mean an amou nt of the microbial cel ls from a seed fermenter that is added to the su bsequent seed fermenter in a seed train.

The term "batch mode” or“batch fermentation" refers to a cultu re mode wherein the cel ls are cultu red in the initial ly present fermentation mediu m without any change in medium composition or the volume of the mediu m. Thus, in batch mode no su bstantial or significant amount of fresh liquid cu lture mediu m is added to the cel l cu ltu re and no su bstantial or significant amou nt of liquid cu ltu re mediu m is removed from the cel l culture du ring culturing.

The term "fed-batch mode” or“fed-batch fermentation" refers to a cu lture mode wherein the cel ls are cu ltu red in the initial ly present fermentation mediu m and a feed solution is added in a periodic or continuous man ner without su bstantial or significant removal of liquid culture mediu m du ring cu ltu ring. Fed-batch cu ltu res can include various feeding regimens and times, for example, daily feeding, feeding more than once per day, or feeding less than once per day, and so on.

The term“continuous fermentation mode” or“continuous fermentation” refers to a cu ltu re mode wherein the cel ls are cultu red in the initial ly present fermentation mediu m and new fermentation medium is continuously fed to the fermenter and ferment is removed from the fermenter at the same rate so that the volume in the fermenter is constant.

The term“titer of a protein of interest” as used herein is u nderstood as the amou nt of protein of interest in g per volu me of fermentation broth in liter (g/L) . The term“harvesting” (as in "harvesting the product of interest") refers to separation of the product of interest from at least a part of the biomass in the fermentation mediu m.

Harvesting can be done by any known method, such as filtration and centrifugation. The harvesting method is preferably adjusted to the needs and characteristics of the specific product of interest.

The term“time u ntil harvest” or“time to harvest” as used herein is defined as the period between the inocu lation of the production bioreactor and the time point at which the titer of a product of interest such as a protein reaches a certain amou nt measured in g product / kg fermentation broth. The time until harvest may be the period between the inocu lation of the production bioreactor and the time point at which the titer of a product of interest reaches 2 to 20 g product / kg fermentation broth. I n one embodiment, the time until harvest is the period between the inocu lation of the production bioreactor and the time point at which the titer of a product of interest reaches 5 to 15 g product / kg fermentation broth. I n one embodiment, the time u ntil harvest may be the period between the inocu lation of the production bioreactor and the time point at which the titer of a product of interest reaches 8 to 12 g product / kg fermentation broth. I n one embodiment, the time u ntil harvest may be the period between the inoculation of the production bioreactor and the time point at which the titer of a product of interest reaches 10 g product / kg fermentation broth. The time u ntil harvest may be the period between the inoculation of the production bioreactor and the time point at which the titer of a product of interest reaches at least 2 g product / kg fermentation broth, at least 5 g product / kg fermentation broth, at least 10 g product / kg fermentation broth, at least 15 g product / kg fermentation broth, or at least 20 g product / kg fermentation broth, preferably at least 10 g product / kg fermentation broth. I n one embodiment, the time u ntil harvest is the period between the inocu lation of the production bioreactor and the time point at which the titer of a protein of interest such as a protein reaches 5 to 15 g protein / kg fermentation broth. I n one em bodiment, the time u ntil harvest may be the period between the inocu lation of the production bioreactor and the time point at which the titer of a protein of interest such as a protein reaches 8 to 12 g protein / kg fermentation broth. I n one em bodiment, the time u ntil harvest may be the period between the inocu lation of the production bioreactor and the time point at which the titer of a protein of interest such as a protein reaches 10 g protein / kg fermentation broth. The time u ntil harvest may be the period between the inocu lation of the production bioreactor and the time point at which the titer of a protein of interest reaches at least 2 g protein / kg fermentation broth, at least 5 g protein / kg fermentation broth, at least 10 g protein / kg fermentation broth, at least 15 g protein / kg fermentation broth, or at least 20 g protein / kg fermentation broth, preferably at least 10 g protein / kg fermentation broth. The time u ntil harvest may be the period between the inoculation of the production bioreactor and the time point at which the titer of a protein of interest reaches 2 g protein / kg

fermentation broth, 5 g protein / kg fermentation broth, 10 g protein / kg fermentation broth, 15 g protein / kg fermentation broth, or 20 g protein / kg fermentation broth, preferably 10 g protein / kg fermentation broth.

The term "heterologous” (or exogenous or foreign or recom binant or non-native)

polypeptide is defined herein as a polypeptide that is not native to the host cel l, a polypeptide native to the host cel l in which structu ral modifications, e.g., deletions, su bstitutions, and/or insertions, have been made by recombinant DNA techniques to alter the native polypeptide, or a polypeptide native to the host cel l whose expression is quantitatively altered or whose expression is directed from a genomic location different from the native host cel l as a resu lt of manipu lation of the DNA of the host cel l by recombinant DNA techniques, or whose expression is quantitatively altered as a resu lt of manipu lation of the regu latory elements of the polynucleotide by recombinant DNA techniques, e.g. by using a stronger promoter; or a polynucleotide native to the host cel l, but integrated not within its natu ral genetic environment as a resu lt of genetic manipulation by recombinant DNA techniques.

With respect to two or more polynucleotide sequences or two or more amino acid

sequences, the term "heterologous” is used to characterize that the two or more

polynucleotide sequences or two or more amino acid sequences are natu ral ly not occu rring in the specific com bination with each other.

For the purposes of the invention, "recom binant" (or transgenic) with regard to a cel l or an organism means that the cel l or organism contains a heterologous polynucleotide which is introduced by man by gene tech nology and with regard to a polynucleotide the term “recom bi nant” includes al l those constructions brought about by man by gene tech nology / recombinant DNA techniques in which either

(a) the sequence of the polynucleotide or a part thereof, or

(b) one or more genetic control sequences which are operably lin ked with the

polynucleotide, including, but not limited thereto, a promoter, or

(c) both a) and b) are not located in their wildtype genetic environ ment or have been modified.

The term“native” (or wildtype or endogenous) cell or organism and“native” (or wildtype or endogenous) polynucleotide or polypeptide refers to the cel l or organism as fou nd in natu re and to the polynucleotide or polypeptide in question as fou nd in a cel l in its natu ral form and genetic environment, respectively (i.e., without there being any hu man intervention) .

Detailed description

The present invention may be understood more readily by reference to the fol lowing detailed description of the embodiments of the invention and the exam ples included herein.

The present invention is directed to an industrial ly relevant fermentation process for producing a product of interest in microbial cel ls. The inventors su rprisingly found that a pre-cultu re step run in fed-batch mode can be used to increase the cel l density in the seed fermenter, thereby increasing the amou nt of biomass contained in the inoculu m for inocu lation of the production bioreactor without increasing the volu me of the inoculu m. The enriched inocu lu m can be used to shorten the time u ntil harvest of the product of interest com pared to a fermentation process wherein the pre-cultu re is run in batch mode. Therefore, in a first aspect the invention relates to a process for culturing microbial cells producing a product of interest, comprising the steps of:

(a) providing a pre-culture of said microbial cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In a second aspect, the invention relates to a process for producing a product of interest, comprising the steps of:

(a) providing a pre-culture of microbial cells producing said product of interest;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In a further aspect, the invention relates to a process for increasing the yield of a product of interest, comprising the steps of:

(a) providing a pre-culture of microbial cells producing said product of interest;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the microbial cells in the production bioreactor under conditions

conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

Step a): the pre-culture

The majority of the product of interest is produced by culturing the microbial cells in the production bioreactor. Therefore, the fermentation medium present in the production bioreactor has to be inoculated with a starting culture of these microbial cells, the inoculum.

In general, the inoculum is a liquid culture of the microbial cells, which is prepared in a seed fermenter.

In one embodiment, the pre-culture of the microbial cells uses only one seed fermenter, i.e. only one pre-culture step.

In another embodiment, the pre-culture of microbial cells uses more than one pre-culture step conducted using more than one seed fermenter. A pre-culture involving more than one seed fermenter is often referred to as seed train. A seed train for an industrial-scale production process may comprise one to four seed fermenters, preferably one to three seed fermenters. In one embodiment the seed train comprises two seed fermenters. In another embodiment, the pre-culture comprises three seed fermenters. The volume of the fermentation medium present in the seed fermenters may increase within the seed train.

For example, the volume of the second seed fermenter may be larger than the volume of the first seed fermenter. In one embodiment, the volume of the third seed fermenter is larger than the volu me of the second seed fermenter and the volu me of the second seed fermenter is larger than the volume of the first seed fermenter.

The pre-cu ltu re of microbial cel ls may be prepared by inocu lating microbial cel ls producing the product of interest from a frozen vial or a glycerol stock of into a first seed fermenter and the microbial cel ls are grown to a desired density. After the cu ltivation in the first seed fermenter, the microbial cel ls may be inoculated either directly into the production bioreactor, if no seed train is used, or into the next of a series of seed fermenters within a seed train.

I nstead of using a vial containing the microbial cel ls producing the product of interest, the pre-culture may also be prepared from microbial cel ls growing on an agar plate.

The criteria for the transfer of the microbial cel ls from one seed fermenter to a subsequent seed fermenter can be based on cu ltivation time (e.g. the microbial cel ls are transferred after a cu ltivation time of 12 h to 40h) or reaching a certain value in an on line signal e.g. oxygen u ptake rate (OTR) (e.g. the microbial cel ls are transferred at an OTR between 30- 180 mmol/(L*h)) , or carbon dioxide evolution rate (CER) (e.g. the microbial cel ls are transferred at a CER between 40-200 mmol/(L*h)) , or the period for which the feed solution has been added (e.g. the microbial cel ls are transferred after the feed solution has been added for 5-30h). I n one em bodiment, the microbial cel ls are transferred from one seed fermenter to a su bsequent seed fermenter after cu ltu ring the microbial cel ls for 16 hou rs. I n one embodiment a part of the fermentation broth present in the seed fermenter is transferred to another seed fermenter or the production bioreactor. I n one embodiment the com plete fermentation broth present in the seed fermenter is transferred to another seed fermenter or the production bioreactor.

The volu me of the fermentation broth transferred from one seed fermenter to the next seed fermenter in a seed train is not less than 0.1% and not more than 20% of the initial volu me of the fermentation mediu m present in the su bsequent seed fermenter of the seed train. I n one embodiment, the volu me of the transferred fermentation broth of the first seed fermenter is between 0.1% and 15%, preferably between 1% and 15%, more preferably between 5% and 10%, most preferably between 8% and 10% of the volu me of the

fermentation mediu m present in the su bsequent seed fermenter. I n one em bodiment the volume of the fermentation broth transferred from one seed fermenter to the next seed fermenter in a seed train is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%,

3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14% or 15% of the volu me of the fermentation mediu m present in the su bsequent seed fermenter. I n a preferred embodiment the volu me of the fermentation broth transferred from one seed fermenter to the next seed fermenter in a seed train is 10% of the volu me of the fermentation mediu m present in the su bsequent seed fermenter.

According to the invention, the pre-cultu re is performed in fed-batch mode. If a seed train is used, at least the last stage of the seed train, i.e. the cultu re in the last seed fermenter before inocu lation of the production bioreactor is performed in fed-batch mode. The fermentation process in the one or more preceding seed fermenters may be performed in batch mode, fed-batch mode, or continuous mode. Preferably, the fermentation process in the one or more seed fermenters preceding the last seed fermenter is performed in batch mode. Also preferably, the fermentation process in the al l seed fermenters preceding the last seed fermenter is performed in batch mode.

The fermentation medium and cultu re conditions used for pre-cultu re may be suitable for a rapid growth of the microbial cel ls. Therefore, the cel ls present in the pre-culture may initial ly be in lag phase, start to proliferate over time and preferably be in exponential phase at the time of the transfer into the next fermenter or the production bioreactor, respectively.

Step b) : inocu lation of the inocu lum into the production bioreactor

When the amou nt of microbial cel ls in the (last) seed fermenter of the pre-cultu re reaches its maximu m, the fermentation broth present in this seed fermenter is transferred to the production bioreactor, in which the product of interest is produced and inocu lated into the fermentation mediu m.

The criteria for the transfer of the microbial cel ls from the (last) seed fermenter to the production bioreactor can be based on cu ltivation time (e.g. the microbial cel ls are transferred after a cultivation time of 12 h to 40h) or reaching a certain value in an on line signal e.g. oxygen u ptake rate (OTR) (e.g. the microbial cel ls are transferred at an OTR between 30-180 mmol/(L*h)) or carbon dioxide evolution rate (CER) (e.g. the microbial cel ls are transferred at a CER between 40-200 mmol/(L*h)) or the period for which the feed solution has been added (e.g. the microbial cel ls are transferred after the feed solution has been added for 5-30h) . I n one em bodiment, the microbial cel ls are transferred from the (last) seed fermenter to the production bioreactor after culturing the microbial cel ls for 22 hou rs in the (last) seed fermenter. I n one embodiment a part of the fermentation broth present in the seed fermenter is transferred to another seed fermenter or the production bioreactor. I n one embodiment the complete fermentation broth present in the seed fermenter is transferred to another seed fermenter or the production bioreactor.

The volu me of the fermentation broth transferred from the (last) seed fermenter to the production bioreactor is not less than 0.1% and not more than 20% of the initial volume of the fermentation mediu m present in the production bioreactor. I n one embodiment, the volu me of the transferred fermentation broth of the (last) seed fermenter is between 0.1% and 15%, preferably between 1% and 15% or between 1% to 12%, more preferably between 1% and 10% or between 5% and 10%, most preferably between 8% and 10% of the volu me of the fermentation mediu m present in the production bioreactor. I n one em bodiment the volume of the fermentation broth transferred from the (last) seed fermenter to the production bioreactor is 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14% or 15% of the volu me of the fermentation medium present in the production bioreactor. I n one embodiment the volu me of the fermentation broth transferred from the (last) seed fermenter to the production bioreactor is 10% of the volu me of the fermentation mediu m present in the production bioreactor. I n one embodiment the volu me of the fermentation broth transferred from the (last) seed fermenter to the production bioreactor is 15% of the volu me of the fermentation medium present in the production bioreactor.

Step c) : culturing in the production bioreactor

Du ring cu lturing in the production bioreactor the majority of the product of interest is produced. Hence, the amount of product produced in the production bioreactor is greater than the amou nt of product produced in the pre-cultu re. The amou nt of the product of interest produced in the pre-cultu re can be determined by taking a sample of the pre cultu re before the production bioreactor is inocu lated with the cel ls from the pre-cultu re and determining the amount of the product of interest in the sam ple from the pre-cultu re. The amou nt of product produced in the production bioreactor can be determined by taking a sam ple from the production bioreactor at the end of the culture and/or before harvesting the cel ls and determining the amou nt of the product of interest in the sam ple from the production bioreactor. I n one embodiment, the percentage of the amou nt of the product of interest produced in pre-cultu re to the amou nt of product of interest produced in the production bioreactor is not more than 10% or not more than 8%. I n one embodiment, the percentage of the amou nt of the product of interest produced in pre-cultu re to the amount of product of interest produced in the production bioreactor is not more than 7%, not more than 6% or not more than 5%.

I n the process of the present invention more than 200 g of a carbon sou rce (preferably, a chemical ly defined carbon sou rce) per liter of initial fermentation medium are added to the production bioreactor during cu ltu ring in the production bioreactor. Preferably, the total amou nt of a carbon sou rce (preferably, a chemical ly defined carbon source) added to the production bioreactor du ring cu ltu ring in the production bioreactor is more than 300 g, more preferably more than 400 g per liter of initial fermentation medium. Preferably, at least 50% of the carbon sou rce (preferably, a chemical ly defined carbon sou rce) is provided in the fermentation process in the production bioreactor as feed solution, more preferred at least 60%, at least 70%, at least 80%, at least 90%, or 100% of the carbon sou rce (preferably, a chemical ly defined carbon source) provided in the fermentation process is provided as feed solution in the fermentation process.

I n one embodiment, the cultivation of the microbial cel ls in the production bioreactor may be performed in batch mode, fed-batch mode or continuous fermentation mode. I n a preferred embodiment, the cu ltivation of the microbial cel ls in the production bioreactor is performed in fed-batch or continuous fermentation mode. Most preferably, the cu ltivation of the microbial cel ls in the production bioreactor is performed in fed-batch mode.

According to the invention, the microbial cel ls inoculated into the production bioreactor are cu ltured u nder conditions conducive for the production of the product of interest. I n one embodiment, the microbial cel ls inoculated into the production bioreactor are cultu red u nder conditions conducive for the growth of the microbial cel ls and the production of the product of interest. These conditions may be determined by the fermentation medium, the pH and/or the temperature used.

Fermentation processes can be performed with any media suitable for cell growth and production of the desired product for the particular microbial cell.

Microbial cells are in general assumed to grow in a number of phases in fermentation, starting with a lag phase where the microbial cells adapt to the medium and start to grow, an exponential phase where the microbial cells grow at a constant growth rate providing an exponential increase in cell number and cell mass, a stationary phase, where the growth has stopped and the cell number remains constant and finally the death phase where the cell number decreases due to cell death. Preferably, the culture is stopped and the product of interest is harvested before the death phase starts. Also preferably, the culture proceeds to the stationary phase before the product of interest is harvested.

The medium and the culture conditions used in the production bioreactor may be suitable for optimal production of the product of interest by the microbial cells. The culture conditions thus allow the cells present in the production fermenter to be in any growth phase suitable for the production of product.

Fermentation medium

The fermentation medium for the seed fermenter may or may not be the same fermentation medium as used in the production bioreactor. Furthermore, the fermentation medium of the several seed fermenters in a seed train may be the same or different. The fermentation medium of the seed fermenter may be a chemically defined or a complex medium. The fermentation medium of the production bioreactor may be a chemically defined or a complex fermentation medium. In the seed fermenter run in fedbatch mode a complex medium or a chemically defined medium may be used. Preferably, the fermentation medium of the (last) seed fermenter is a chemically defined fermentation medium or a complex fermentation medium and the fermentation medium of the production bioreactor is a chemically defined fermentation medium. In one embodiment, the seed train comprises three seed fermenters and in the first seed fermenter a complex medium is used and in the second and third seed fermenters as well as in the production bioreactor a chemically defined medium is used. In one embodiment, the seed train comprises three seed fermenters and in the first and third seed fermenter a complex medium is used and in the second seed fermenter as well as in the production bioreactor a chemically defined medium is used. In one embodiment, the seed train comprises three seed fermenters and in the first, second and third seed fermenter a complex medium is used and in the production bioreactor a chemically defined medium is used. In one embodiment, the seed train comprises three seed fermenters and in the first, second and third seed fermenter a chemically defined medium is used and in the production bioreactor a chemically defined medium is used.

Complex fermentation medium The term“complex fermentation medium” refers to a fermentation medium that comprise a complex nutrient source in an amount of 0.5-30% w/v of the fermentation medium.

The term“complex nutrient source” is used herein for nutrient sources which are composed of chemically undefined compounds, i.e., compounds that are not known by their chemical formula, preferably comprising undefined organic nitrogen- and / or carbon-containing compounds. In contrast thereto, a“chemically defined nutrient source” (e.g.,“chemically defined carbon source” or“chemically defined nitrogen source”) is understood to be used for nutrient sources which are composed of chemically defined compounds. A“chemically defined component” is a component which is known by its chemical formula.

The term“complex nitrogen source” is used herein for a nutrient source that is composed of one or more chemically undefined nitrogen containing compounds, i.e., nitrogen containing compounds that are not known by their chemical formula, preferably comprising organic nitrogen containing compounds, e.g., proteins and/or amino acids with unknown

composition.

The term“complex carbon source” is used herein for a carbon source that is composed of one or more chemically undefined carbon containing compounds, i.e., carbon containing compounds that are not known by their chemical formula, preferably comprising organic carbon containing compounds, e.g., carbohydrates with unknown composition.

It is clear for the skilled person that a complex nutrient source might be a mixture of different complex nutrient sources. Thus, a complex nitrogen source can comprise a complex carbon source and vice versa and a complex nitrogen source can be metabolized by the cells in a way that it functions as carbon source and vice versa.

In one embodiment, the complex nutrient source is a complex nitrogen source. Complex sources of nitrogen include, but are not limited to protein-containing substances, such as an extract from microbial, animal or plant cells, e.g., plant protein preparations, soy meal, corn meal, pea meal, corn gluten, cotton meal, peanut meal, potato meal, meat, casein, gelatins, whey, fish meal, yeast protein, yeast extract, tryptone, peptone, bacto-tryptone, bacto-peptone, wastes from the processing of microbial cells, plants, meat or animal bodies, and combinations thereof. In one embodiment, the complex nitrogen source is selected from the group consisting of plant protein, preferably potato protein, soy protein, corn protein, peanut, cotton protein, and/or pea protein, casein, tryptone, peptone and yeast extract and combinations thereof.

In one embodiment, the fermentation medium also comprises defined media components. In one embodiment, the fermentation medium also comprises a defined nitrogen source.

Examples of inorganic nitrogen sources are ammonium, nitrate, and nitrit, and combinations thereof. In a preferred embodiment, the fermentation medium comprises a nitrogen source, wherein the nitrogen source is a complex or a defined nitrogen source or a combination thereof. In one embodiment, the defined nitrogen source is selected from the group consisting of ammonia, ammonium, ammonium salts, (e.g., ammonium chloride, ammonium nitrate, ammonium phosphate, ammonium sulfate, ammonium acetate), urea, nitrate, nitrate salts, nitrit, and amino acids, preferably, glutamate, and combinations thereof.

In one embodiment, the complex nutrient source is in an amount of 2-15% v/w of the fermentation medium. In another embodiment, the complex nutrient source is in an amount of 3-10% v/w of the fermentation medium.

In one embodiment, the complex fermentation medium further comprises a carbon source. The carbon source is preferably a complex or a defined carbon source or a combination thereof. In one embodiment, the complex nutrient source comprises a carbohydrate source. Various sugars and sugar-containing substances are suitable sources of carbon, and the sugars may be present in different stages of polymerisation. Preferred complex carbon sources to be used in the present invention are selected from the group consisting of molasse, corn steep liquor, cane sugar, dextrin, starch, starch hydrolysate, and cellulose hydrolysate, and combinations thereof. Preferred defined carbon sources are selected from the group consisting of carbohydrates, organic acids, and alcohols, preferably, glucose, fructose, galactose, xylose, arabinose, sucrose, maltose, lactose, acetic acid, propionic acid, lactic acid, formic acid, malic acid, citric acid, fumaric acid, glycerol, inositol, mannitol and sorbitol, and combinations thereof. Preferably, the defined carbon source is provided in form of a sirup, which can comprise up to 20%, preferably, up to 10%, more preferably up to 5% impurities. In one embodiment, the carbon source is sugar beet sirup, sugar cane sirup, corn sirup, preferably, high fructose corn sirup. In another embodiment, the complex carbon source is selected from the group consisting of molasses, corn steep liquor, dextrin, and starch, or combinations thereof, and wherein the defined carbon source is selected from the group consisting of glucose, fructose, galactose, xylose, arabinose, sucrose, maltose, dextrin, lactose, or combinations thereof.

In one embodiment, the fermentation medium is a complex medium comprising complex nitrogen and complex carbon sources. In one embodiment, the fermentation medium is a complex medium comprising complex nitrogen and carbon sources, wherein the complex nitrogen source may be partially hydrolyzed as described in WO 2004/003216.

In one embodiment, the fermentation medium also comprises a hydrogen source, an oxygen source, a sulfur source, a phosphorus source, a magnesium source, a sodium source, a potassium source, a trace element source, and a vitamin source as further described below.

Chemically defined fermentation medium

The term "chemically defined fermentation medium" (also called herein“chemically defined medium”,“defined medium”, or“synthetic medium”) is understood to be used for fermentation media which are essentially composed of chemically defined components in known concentrations. A“chemically defined component” is a component which is known by its chemical formula. A fermentation medium which is essentially composed of chemically defined component includes a medium which does not contain a complex nutrient source, in particular no complex carbon and/or complex nitrogen source, i.e., which does not contain complex raw materials having a chemically undefined composition. A fermentation medium which is essentially composed of chemically defined components may further include a medium which comprises an essentially small amount of a complex nutrient source, for instance a complex nitrogen and/or carbon source, an amount as defined below, which typically is not sufficient to maintain growth of the microorganism and/or to guarantee formation of a sufficient amount of biomass.

In that regard, complex raw materials have a chemically undefined composition due to the fact that, for instance, these raw materials contain many different compounds, among which complex heteropolymeric compounds, and have a variable composition due to seasonal variation and differences in geographical origin. Typical examples of complex raw materials functioning as a complex carbon and/or nitrogen source in fermentation are soybean meal, cotton seed meal, corn steep liquor, yeast extract, casein hydrolysate, molasses, and the like.

An essentially small amount of a complex carbon and/or nitrogen source may be present in the chemically defined medium according to the invention, for instance as carry-over from the inoculum for the main fermentation. The inoculum for the main fermentation is not necessarily obtained by fermentation on a chemically defined medium. Most often, carry over from the inoculum will be detectable through the presence of a small amount of a complex nitrogen source in the chemically defined medium of the main fermentation. Small amounts of a complex medium components, like complex carbon and/or nitrogen source, might also be introduced into the fermentation medium by the addition of small amounts of these complex components to the fermentation medium. It may be advantageous to use a complex carbon and/or nitrogen source in the fermentation process of the inoculum for the main fermentation, for instance to speed up the formation of biomass i.e. to increase the growth rate of the microorganism, and/or to facilitate internal pH control. For the same reason, it may be advantageous to add an essentially small amount of a complex carbon and/or nitrogen source, e.g. yeast extract, to the initial stage of the main fermentation, especially to speed up biomass formation in the early stage of the fermentation process.

An essentially small amount of a complex nutrient source which may be added to the chemically defined fermentation medium in the fermentation process according to the invention is defined to be an amount of at the most 10% of the total amount of the respective nutrient, which is added in the fermentation process. In particular, an essentially small amount of a complex carbon and/or nitrogen source which may be added to the chemically defined fermentation medium is defined to be an amount of a complex carbon source resulting in at the most 10% of the total amount of carbon and/or an amount of a complex nitrogen source resulting in at the most 10% of the total amount of nitrogen, which is added in the fermentation process, preferably an amount of a complex carbon source resulting in at the most 5% of the total amount of carbon and/or an amount of a complex nitrogen source resulting in at the most 5% of the total amount of nitrogen, more preferably an amount of a complex carbon source resulting in at the most 1 % of the total amount of carbon and/or an amount of a complex nitrogen source resulting in at the most 1 % of the total amount of nitrogen, which is added in the fermentation process. Preferably, at the most 10% of the total amount of carbon and/or at the most 10% of the total amount of nitrogen, preferably an amount of at the most 5% of the total amount of carbon and/or an amount of at the most 5% of the total amount of nitrogen, more preferably an amount of at the most 1 % of the total amount of carbon and/or an amount of at the most 1 % of the total amount of nitrogen which is added in the fermentation process is added via carry-over from the inoculum. Most preferably, no complex carbon and/or complex nitrogen source is added to the fermentation medium in the fermentation process.

The term“chemically defined nutrient source” (e.g.,“chemically defined carbon source” or “chemically defined nitrogen source”) is understood to be used for nutrient sources which are composed of chemically defined compounds.

Culturing a microorganism in a chemically defined fermentation medium requires that cells be cultured in a medium which contain various chemically defined nutrient sources selected from the group consisting of chemically defined hydrogen source, chemically defined oxygen source, chemically defined carbon source, chemically defined nitrogen source, chemically defined sulfur source, chemically defined phosphorus source, chemically defined

magnesium source, chemically defined sodium source, chemically defined potassium source, chemically defined trace element source, and chemically defined vitamin source. Preferably, the chemically defined carbon source is selected from the group consisting of carbohydrates, organic acids, hydrocarbons, alcohols and mixtures thereof. Preferred carbohydrates are selected from the group consisting of glucose, fructose, galactose, xylose, arabinose, sucrose, maltose, maltotriose, lactose, dextrin, maltodextrins, starch and inulin, and mixtures thereof. Preferred alcohols are selected from the group consisting of glycerol, methanol and ethanol, inositol, mannitol and sorbitol and mixtures thereof.

Preferred organic acids are selected from the group consisting of acetic acid, propionic acid, lactic acid, formic acid, malic acid, citric acid, fumaric acid and higher alkanoic acids and mixtures thereof. Preferably, the chemically defined carbon source comprises glucose or sucrose. More preferably, the chemically defined carbon source comprises glucose, even more preferably the predominant amount of the chemically defined carbon source is provided as glucose.

Most preferably, the chemically defined carbon source is glucose. It is to be understood that the chemically defined carbon source can be provided in form of a syrup, preferably as glucose syrup. As understood herein, the term "glucose" shall include glucose syrups. A glucose syrup is a viscous sugar solution with high sugar concentration. The sugars in glucose syrup are mainly glucose and to a minor extent also maltose and maltotriose in varying concentrations depending on the quality grade of the syrup. Preferably, besides glucose, maltose and maltotriose the syrup can comprise up to 10%, preferably, up to 5%, more preferably up to 3% impurities. Preferably, the glucose syrup is from corn.

The chemically defined nitrogen source is preferably selected from the group consisting of urea, ammonia, nitrate, nitrate salts, nitrit, ammonium salts such as ammonium chloride, ammonium sulphate, ammonium acetate, ammonium phosphate and ammonium nitrate, and amino acids such as glutamate or lysine and combinations thereof. More preferably, a chemically defined nitrogen source is selected from the group consisting of ammonia, ammonium sulphate and ammonium phosphate. Most preferably, the chemically defined nitrogen source is ammonia. The use of ammonia as a chemically defined nitrogen source has the advantage that ammonia additionally can function as a pH controlling agent. Additional compounds can be added in complex and chemically defined fermentation medium as described below.

Oxygen is usually provided during the cultivation of the cells by aeration of the fermentation media by stirring or gassing. Hydrogen is usually provided due to the presence of water in the aqueous fermentation medium. However, hydrogen and oxygen are also contained within the carbon and/or nitrogen source and can be provided that way.

Magnesium can be provided to the fermentation medium by one or more magnesium salts, preferably selected from the group consisting of magnesium chloride, magnesium sulfate, magnesium nitrate, magnesium phosphate, and combinations thereof, or by magnesium hydroxide, or by combinations of one or more magnesium salts and magnesium hydroxide.

Sodium can be added to the fermentation medium by one or more sodium salts, preferably selected from the group consisting of sodium chloride, sodium nitrate, sodium sulphate, sodium phosphate, sodium hydroxide, and combinations thereof.

Calcium can be added to the fermentation medium by one or more calcium salts, preferably selected from the group consisting of calcium sulphate, calcium chloride, calcium nitrate, calcium phosphate, calcium hydroxide, and combination thereof.

Potassium can be added to the fermentation medium in chemically defined form by one or more potassium salts, preferably selected from the group consisting of potassium chloride, potassium nitrate, potassium sulphate, potassium phosphate, potassium hydroxide, and combination thereof.

Phosphorus can be added to the fermentation medium by one or more salts comprising phosphorus, preferably selected from the group consisting of potassium phosphate, sodium phosphate, magnesium phosphate, phosphoric acid, and combinations thereof. Preferably, at least 1 g of phosphorus is added per liter of initial fermentation medium.

Sulfur can be added to the fermentation medium by one or more salts comprising sulfur, preferably selected from the group consisting of potassium sulfate, sodium sulfate, magnesium sulfate, sulfuric acid, and combinations thereof.

Preferably, the fermentation medium comprises one or more selected from the group consisting of:

0.1 - 50 g nitrogen per liter of fermentation medium;

1 - 6 g phosphorus per liter of fermentation medium;

0.15 - 2 g sulfur per liter of fermentation medium;

0.4 - 8 g potassium per liter of fermentation medium;

0.1 - 2 g sodium per liter of fermentation medium;

0.01 - 3 g calcium per liter of fermentation medium; and

0.1 - 10 g magnesium per liter of fermentation medium. One or more trace element ions can be added to the fermentation medium, preferably in amou nts of below 10 m mol/L initial fermentation mediu m each. These trace element ions are selected from the grou p consisting of iron, copper, manganese, zinc, cobalt, nickel, molybdenu m, seleniu m, and boron and combinations thereof. Preferably, the trace element ions iron, copper, manganese, zinc, cobalt, nickel, and molybdenu m are added to the fermentation medium. Preferably, the one or more trace element ions are added to the fermentation medium in an amount selected from the grou p consisting of 50 pmol to 5 m mol per liter of initial mediu m of iron, 40 pmol to 4 mmol per liter of initial mediu m copper, 30 pmol to 3 mmol per liter of initial mediu m manganese, 20 pmol to 2 mmol per liter of initial medium zinc, 1 pmol to 100 pmol per liter of initial medium cobalt, 2 pmol to 200 pmol per liter of initial medium nickel, and 0.3 pmol to 30 pmol per liter of initial medium

molybdenum, and com binations thereof. For adding each trace element preferably one or more from the grou p consisting of chloride, phosphate, sul phate, nitrate, citrate and acetate salts can be used.

Com pou nds which may optional ly be included in the fermentation medium are chelating agents, such as citric acid, MG DA, NTA, or GLDA, and buffering agents such as mono- and dipotassiu m phosphate, calcium carbonate, and the like. Buffering agents preferably are added when dealing with processes without an external pH control. I n addition, an antifoaming agent may be dosed prior to and/or during the fermentation process.

Vitamins refer to a group of structu ral ly u nrelated organic com pounds, which are necessary for the normal metabolism of cel ls. Cel ls are known to vary widely in their ability to synthesize the vitamins they require. A vitamin should be added to the fermentation medium of Bacil lus cel ls not capable of synthesizing said vitamin. Vitamins can be selected from the group of thiamin, riboflavin, pyridoxal, nicotinic acid or nicotinamide, pantothenic acid, cyanocobalamin, folic acid, biotin, lipoic acid, pu rines, pyrimidines, inositol, choline and hemins.

Preferably, the fermentation mediu m also comprises a selection agent, e.g., an antibiotic, such as ampicil lin, tetracycline, kanamycin, hygromycin, bleomycin, ch loroamphenicol, streptomycin or phleomycin, to which the selectable marker of the cel ls provides resistance.

The amou nt of necessary com pou nds to be added to the mediu m wil l main ly depend on the amou nt of biomass which is to be formed in the fermentation process. The amou nt of biomass formed may vary widely, typical ly the amou nt of biomass is from about 10 to about 150 grams of d ry cel l mass per liter of fermentation broth. Usual ly, for protein production, fermentations producing an amou nt of biomass which is lower than about 10 g of dry cel l mass per liter of fermentation broth are not considered industrial ly relevant.

The optimu m amou nt of each component of a defined mediu m, as wel l as which compounds are essential and which are non-essential, wil l depend on the type of microbial cel l which is su bjected to fermentation in a medium, on the amou nt of biomass and on the product to be formed. Typical ly, the amou nt of mediu m components necessary for growth of the microbial cel l may be determined in relation to the amou nt of carbon sou rce used in the fermentation, since the amou nt of biomass formed wil l be primarily determined by the amou nt of carbon sou rce used.

A feed mediu m or feed solution used e.g. when the cultu re is ru n in fed-batch mode may be any of the above mentioned medium com ponents or com bination thereof. It is understood herein that at least part of the compou nds that are provided as feed solution can al ready be present to a certain extent in the fermentation mediu m prior to feeding of said com pou nds. I n one embodiment the feed solution comprises glucose. I n one em bodiment, the feed solution comprises 40% to 60% glucose, preferably 42% to 58% glucose, more preferably 45% to 55% glucose, even more preferably 47% to 52% glucose and most preferably 50% glucose. I n one em bodiment, the same feed solution may be used for the seed fermenter run in fed batch mode and the production bioreactor. I n one embodiment, the feed solution used for the seed fermenter run in fed batch mode differs from the feed solution used in the production bioreactor. I n one em bodiment, the feed solution used for the seed fermenter run in fed batch mode and the feed solution used in the production bioreactor has the same concentration of glucose, but the feed solution used in the production bioreactor contains salts which are not present in the feed solution used for the seed fermenter run in fed batch mode.

Various feed profiles are known in the art. A feed solution can be added continuously or discontinuously du ring the fermentation process. Discontinuous addition of a feed solution can occu r once du ring the fermentation process as a single bolus or several times with different or same volumes. Continuous addition of a feed solution can occu r du ring the fermentation process at the same or at varying rates (i.e., volume per time). Also

com binations of continuous and discontinuous feeding profiles can be applied du ring the fermentation process. Components of the fermentation medium that are provided as feed solution can be added in one feed solution or as different feed solutions. I n case more than one feed solution is applied, the feed solutions can have the same or different feed profiles as described above.

Preferably, prior to inocu lation the fermentation medium and feed solutions are sterilized in order to prevent or reduce growth of microorganisms du ring the fermentation process, which are different from the inocu lated microbial cel ls. Sterilization can be performed with methods known in the art, for exam ple but not limited to, autoclaving or sterile filtration. Some or al l mediu m components can be sterilized separately from other medium

com ponents to avoid interactions of mediu m components during sterilization treatment or to avoid decomposition of medium com ponents u nder sterilization conditions. pH and tem perature of fermentation

The pH, temperature, antifoam or other specific fermentation conditions may be applied according to standard conditions known in the art. I n one embodiment, the fermentation conditions are adjusted to obtain maximum yields of the protein of interest.

Preferably, the microbial cel ls are cu ltu red at a temperatu re of 25° C to 45° C, preferably of 27° C to 40° C, more preferably of 27° C to 37° C, most preferably at a temperatu re of 37° C. Moreover, a tem peratu re shift may be applied, wherein the culture tem perature is lowered, e.g. from 37° C to a tem peratu re of 33° C, 32° C, 31° C, 30° C, 29° C or 28° C.

Depending on the microbial cel l, the pH of the fermentation broth during cu ltivation is adjusted. Preferably, the pH of the chemical ly defined medium is adjusted prior to inocu lation. Preferably, the pH of the chemical ly defined mediu m is adjusted prior to inocu lation, but after sterilization. Preferably, the pH of the chemical ly defined mediu m is adjusted prior to inocu lation to pH 6.6 to 9, preferably to pH 6.6 to 8.5, more preferably to pH 6.8 to 8.5, most preferably to pH 6.8 to pH 8.0. As an example, if a Bacillus cel l is used, the pH is adjusted to or above pH 6.8, pH 7.0, pH 7.2, pH 7.4, or pH 7.6. Preferably, the pH of the fermentation broth du ring cu ltivation of the Bacillus cel ls is adjusted to pH 6.8 to 9, preferably to pH 6.8 to 8.5, more preferably to pH 7.0 to 8.5, most preferably to pH 7.2 to pH 8.0.

I n one embodiment, fermentation is carried out with stirring and/or shaking the

fermentation medium. I n a specific embodiment, fermentation is carried out with stirring the fermentation mediu m with 50 - 2000 rpm, preferably with 50 - 1600 rpm, further preferred with 800 - 1400 rpm, more preferably with 50 - 200 rpm.

I n one embodiment, oxygen is added to the fermentation medium du ring cu ltivation, preferably by stirring and/or agitation as described herein or by gassing, preferably with 0-3 bar air or oxygen. I n one em bodiment, fermentation is performed u nder satu ration with oxygen.

Cu ltu re conditions for a given cel l type may also be found in the scientific literatu re and/or from the source of the cel l such as the American Type Cu ltu re Col lection (ATCC) and Fu ngal Genetics Stock Center.

Time to harvest

The time to harvest is the time span measu red from the inocu lation of the production bioreactor with the microbial cel ls to the time point when the concentration of the product of interest has reached a predetermined level and the fermentation broth is harvested. I n an em bodiment, the product is harvested when its concentration is at least 5 g product/kg fermentation broth, more preferably at least 7.5 g product/kg fermentation broth, most preferably at least 10 g product/kg fermentation broth. I n a preferred embodiment, the product is harvested when its concentration is 10 g product/kg fermentation broth.

Therefore, in one em bodiment, the invention refers to a process for cu ltu ring microbial cel ls producing a product of interest, com prising the steps of:

(a) providing a pre-cultu re of said microbial cel ls;

(b) inocu lating a production bioreactor with the pre-cultu re of step (a) ; and

(c) cu ltu ring the microbial cel ls in the production bioreactor u nder conditions

conducive for the production of the product of interest,

wherein the pre-cultu re of step (a) is performed in fed-batch mode and wherein the process fu rther comprises a step (d) of harvesting the product when the concentration of the product of interest in the fermentation broth is at least lOg product/kg fermentation broth.

The concentration of the product of interest in the fermentation broth may be monitored by continuously measu ring the concentration in sam ples from the fermentation. If the product of interest is an enzyme, enzyme activity assays may be performed which then provide information on the concentration of the enzyme in the sam ple. For example, a protease activity assay may involve succinyl - Ala - Ala - Pro - Phe - p-nitroanilide (Suc-AAPF-pNA, short : AAPF) as su bstrate. An amylase activity assay may em ploy the su bstrate Ethyliden- 4-nitrophenyl- a -D-maltoheptaosid (EPS) as su bstrate. Kits containing EPS substrate and al pha-glucosidase are available from Roche Costu m Biotech (cat. No. 10880078103) and are described in Lorentz K. et al. (2000) Clin. Chem. 46(5) : 644 - 649.

The time to harvest is dependent on the product produced by the microbial cel ls and may thus vary. However, when applying the process of the invention comprising a pre-cultu re step performed in fed-batch mode, the time u ntil harvest is reduced by 5% to 30%, preferably by 10 to 30%, most preferably by 15 to 30% com pared to a process where the pre-cultu re step of performed in batch mode. I n one em bodiment, the fermentation time in the production bioreactor is reduced by at least 5%, preferably by at least 10%, more preferably by at least 15%, more preferably by at least 20%, more preferably by at least 25% and most preferably by at least 30% com pared to a process where the pre-culture step of performed in batch mode.

Microbial cel ls

According to the invention, the product of interest is produced by microbial cel ls. The microbial cel ls may be bacterial, archaea, fu ngal or yeast cel ls. I n a preferred em bodiment, the microbial cel ls are bacterial or fungal cel ls.

I n a preferred embodiment of the invention, the microbial cel ls are bacterial cel ls.

Bacterial cel ls include gram positive or gram negative bacteria. Preferably, the bacterial cel ls are gram-positive. Gram-positive bacteria include, but are not limited to, Bacillus, Brevibacterium, Corynebacterium, Streptococcus, Streptomyces, Staphylococcus,

Enterococcus, Lactobacillus, Lactococcus, Clostridium, Geobacillus, and OceanobaciHus.

I n the process of the present invention, the bacterial cel l may be any Bacillus cel l. I n a preferred embodiment, the bacterial cel l is a Bacillus cel l. Bacillus cel ls usefu l in the practice of the present invention include, but are not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus dausii, Bacillus coagu/ans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus Hcheniformis, Bacillus megaterium, Bacillus pumi/us, Bacillus stearothermophilus, Bacillus methylotrophicus, Bacillus cereus Bacillus para/icheniformis, Bacillus subtl/ls, and Bacillus thuringiensis cel ls. I n one embodiment, the bacterial cel l is a Bacillus amyloliquefaciens, Bacillus lentus, Bacillus Hcheniformis, Bacillus stearothermophilus, Bacillus pumi!us, or Bacillus subti/is cel l. I n another embodiment, the bacterial cel l is a Bacillus Hcheniformis cel l or a Bacillus subti/is cel l. I n one embodiment, the Bacil lus cel l is a Bacillus cel l of Bacillus subti/is, Bacillus pumi/us, Bacillus Hcheniformis, or Bacillus lentus. Preferably, the cel l is a Bacillus

Hcheniformis cel l.

I n the process of the present invention, the bacterial cel l may be Lactobacillus acidophilus, Lactobacillus piantarum, Lactobacillus gasseri, Lactobacillus bulgaricusk, Lactobacillus reuteri, Escherichia coH, Staphylococcus aureus, Corynebacteriu m glutamicu m,

Corynebacterium acetoglutamicum, Corynebacterium acetoacidophilum, Corynebacterium ca unae, Corynebacterium ammoniagenes, Corynebacterium thermoaminogenes,

Corynebacterium meiassecoia, Corynebacterium effiziens, Corynebacterium efficiens, Corynebacterium desert, Brevibacterium fiavum, Brevibacterium iactofermentum,

Brevibacterium divarecatum, Pseudomonas putida, Pseudomonas syringae, Streptomyces coeiicoior, Streptomyces Hvidans, Streptomyces aibus, Streptomyces avermiti/is,

Giuconobacter oxydans, Giuconobacter morbifer, Giuconobacter thaiiandicus, Acetobacter aceti, Clostridium acetobutyiicum, Clostridium saccharobutyiicum, Clostridium beijerinckii, Streptococcus equisimi/is, Streptococcus pyogenes, Streptococcus uberis, Streptococcus equi subsp., Zooepidemicus or Basfia succiniciproducens.

Some other preferred bacteria include strains of the order Actinomycetales, preferably, Streptomyces, preferably Streptomyces spheroides { ATTC 23965) , Streptomyces

thermovioiaceus (I FO 12382) , Streptomyces Hvidans or Streptomyces murinus or

StreptoverticiHum vertici/Hum ssp. verticiHium. Other preferred bacteria i nclude Rhodobacter sphaeroides, Rhodomonas paiustri, Streptococcus iactis. Further preferred bacteria include strains belonging to Myxococcus, e.g., M. virescens.

Gram-negative bacteria include, but are not limited to, Escherichia, Pseudomonas,

Salmonella, Campylobacter, Helicobacter, Acetobacter, Fiavobacterium, Fusobacterium, Giuconobacter. I n a specific embodiment, the bacterial cel l is a Echerichia coii cel l. Another gram negative bacteria is Pseudomonas purrocinia (ATCC 15958) or Pseudomonas f/uorescens (N RRL B-l l) , or Basfia succiniciproducens. Further the gram-negative Bacteria include Butiauxeiia, more specifical ly Butiauxeiia agrestis, Butiauxeiia brennerae,

Butiauxeiia ferragutiae, Butiauxeiia gaviniae, Butiauxeiia izardii, Butiauxeiia noackiae, and Butiauxeiia warmboidiae.

The microbial cel l may be a fu ngal cel l. "Fu ngi" as used herein includes the phyla

Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as wel l as the Oomycota and Deuteromycotina and al l mitosporic fu ngi. Representative groups of Ascomycota incl ude, e.g., Neurospora, EupeniciHium (=Penici//ium), Emericeiia (= Aspergillus) , Eurotium (= Aspergillus), Myceiiophthora, Thermotheiomyces, in particular Thermotheiomyces thermophiia, and the true yeasts listed below. Exam ples of Basidiomycota include mushrooms, rusts, and smuts. Representative grou ps of Chytridiomycota include, e.g., AHomyces, Blastocladiella, Coeiomomyces, and aquatic fungi. Representative groups of Oomycota include, e.g. Saproiegniomycetous aquatic fungi (water molds) such as Achiya. Exam ples of mitosporic fu ngi include Aspergillus, e.g., Aspergillus niger, PeniciHium, Candida, and Aiternaria. Representative grou ps of Zygomycota include, e.g., Rhizopus and Mucor.

Some preferred fu ngi include strains belonging to the su bdivision Deuteromycotina, class Hyphomycetes, e.g., Fusarium, Hu mi col a, Trichoderma, Myrothecium, Verticiiium,

Arthromyces, Caidariomyces, Uiociadium, Embeiiisia, Ciadosporium or Dreschiera, in particu lar Fusarium oxysporum (DSM 2672), Humic oia in so tens, Trichoderma resii,

Myrothecium verrucana (I FO 6113) , Verticiiium aiboatrum, Verticiiium dahiie, Arthromyces ramosus (FERM P-7754) , Caidariomyces fumago, Uiociadium chartarum, Embeiiisia aiii or Dreschiera haiodes.

Other preferred fu ngi include strains belonging to the su bdivision Basidiomycotina, class Basidiomycetes, e.g. Coprinus, Phanerochaete, Corioius or Trametes, in particu lar Coprinus cinereus f. microsporus (I FO 8371) , Coprinus macrorhizus, Phanerochaete chrysosporium (e.g. NA-12) or Trametes (previously cal led Poiyporus) , e.g. T. versicolor {eg. PR4 28-A).

Fu rther preferred fu ngi include strains belonging to the su bdivision Zygomycotina, class Mycoraceae, e.g. Rhizopus or Mucor, in particu lar Mucor hiemaiis.

The microbial cel l may be a yeast cel l. "Yeast" as used herein includes ascosporogenous yeast (Endomyceta/es) , basidiosporogenous yeast, and yeast belonging to the Fungi I m perfecti (B/astomycetes). The ascosporogenous yeasts are divided into the families Spermophthoraceae and Saccharomycetaceae. The latter is comprised of fou r su bfamilies, Schizosaccharomycoideae (e.g., genus Schizosaccharomyces) , Nadsonioideae,

Lipomycoideae, and Saccharomycoideae (e. g. genera Kiuyveromyces, Pichia, and

Saccharomyces) . The basidiosporogenous yeasts include the genera Leucosporidim, Rhodosporidium, Sporidiobo/us, Fiiobasidium, and Fiiobasidieiia. Yeasts belonging to the Fu ngi I m perfecti are divided into two families, Sporoboiomycetaceae (e.g., genera

Sporoboiomyces and Buiiera) and Cryptococcaceae (e.g. genus Candida). I n another embodiment, the fu ngal cel l is a filamentous fungal cel l, e.g., Ashbya spec, preferably Ashbya gossypii ( Eremothecium gossypit) .

I n one embodiment, the cel l com prises one or more genetic constructs for heterologous gene expression, i.e. is genetical ly modified to express a protein. Microbial cel ls genetical ly modified to express a protein are also cal led“recombinant” or“transgenic” microbial cel ls. They express a recombinant protein. The recom binant protein may be the protein or interest or a protein involved in the synthesis of the product of interest, such as an enzyme catalyzing the production of a vitamin. Product of interest

The present invention relates to a process for cultu ring microbial cel ls in order to produce a product of interest.

The product of interest may be any product a microbial cel l can produce. Therefore, the product of interest is selected from the grou p consisting of proteins, amino acids, fatty acids, vitamins, coenzymes, polyhydroxyalcanoates, organic acids, antibiotics, alcohols, terpenes, nucleotides, steroids, carotenoids, and polysaccharides.

Proteins

I n a preferred em bodiment, the product of interest is a protein. There is no limitation on the origin of the protein of i nterest produced according to the method of the invention. Thus, the term protein of interest includes not only natu ral or wild-type proteins, but also any mutants, variants, fragments, etc. of the protein of interest, as wel l as a synthetic protein. Such genetical ly engineered proteins can be prepared as is general ly known in the art, e.g., by site-directed mutagenesis, by PCR (using a PCR fragment containing the desired mutation as one of the primers in the PCR reactions), or by random mutagenesis.

The microbial cel l can com prise the gene encoding the protein of interest (i.e., gene of interest) endogenously, i.e. the microbial cel l is not recombinant, or the gene of interest can be heterologous to the microbial cel l, i.e. the microbial cel l is recom binant. Preferably, the gene encoding the protein of interest is heterologous to the microbial cel l.

The desired product may be secreted into the liquid fraction of the fermentation broth or may remain inside the microbial cel ls. I n a preferred embodiment, the fermentation product is secreted by the microorganism into the fermentation broth. Secretion of the product of interest into the fermentation mediu m al lows for separation of the product of interest from the microbial cel ls. For secretion of a protein into the fermentation mediu m the nucleic acid construct used for expressing the product of interest may com prise a polynucleotide coding for a signal peptide that directs secretion of the protein of interest into the fermentation medium. Various signal peptides are known in the art. Preferred signal peptides are selected from the grou p consisting of the signal peptide of the AprE protein from Bacillus subti/is or the signal peptide from the YvcE protein from Bacillus subiti/is.

I n a more preferred em bodiment, the protein of interest is an enzyme.

I n a preferred em bodiment, the enzyme is selected from the group consisting of hyd rolases, oxidases, isomerases, e.g. amylase, al pha-amylase, glucoamylase, pu l lu lanase, protease, metal loprotease, peptidase, lipase, cutinase, acyl transferase, cel lu lase, endoglucanase, glucosidase, cel lubiohydrolase, xylanase, xyloglucantransferase, xylosidase, man nanase, phytase, phosphatase, xylose isomerase, glucose isomerase, lactase, acetolactate decarboxylase, pectinase, pectin methylesterase, polygalactu ronidase, lyase, pectate lyase, arabinase, arabinofuranosidase, galactanase, laccase, peroxidase and asparaginase, preferably wherein the enzyme is an amylase or protease.

In a particular preferred embodiment, the following enzymes are preferred:

Protease

Enzymes having proteolytic activity are called“proteases” or“peptidases”. Proteases are active proteins exerting“protease activity” or“proteolytic activity”.

Proteases are members of class EC 3.4. Proteases include aminopeptidases (EC 3.4.11), dipeptidases (EC 3.4.13), dipeptidyl-peptidases and tripeptidyl-peptidases (EC 3.4.14), peptidyl-dipeptidases (EC 3.4.15), serine-type carboxypeptidases (EC 3.4.16),

metallocarboxypeptidases (EC 3.4.17), cysteine-type carboxypeptidases (EC 3.4.18), omega peptidases (EC 3.4.19), serine endopeptidases (EC 3.4.21), cysteine endopeptidases (EC 3.4.22), aspartic endopeptidases (EC 3.4.23), metallo-endopeptidases (EC 3.4.24), threonine endopeptidases (EC 3.4.25), endopeptidases of unknown catalytic mechanism (EC 3.4.99).

Commercially available protease enzymes include, but are not limited, to Lavergy™ Pro (BASF); Alcalase ® , Blaze ® , Duralase™, Durazym™, Relase ® , Relase ® Ultra, Savinase ® , Savinase ® Ultra, Primase ® , Polarzyme ® , Kannase ® , Liquanase ® , Liquanase ® Ultra,

Ovozyme ® , Coronase ® , Coronase ® Ultra, Neutrase ® , Everlase ® and Esperase ® (Novozymes A/S), those sold under the tradename Maxatase ® , Maxacal ® , Maxapem ® , Purafect ® , Purafect ® Prime, Purafect MA ® , Purafect Ox ® , Purafect OxP ® , Puramax ® , Properase ® ,

FN2 ® , FN3 ® , FN4 ® , Excellase ® , Eraser ® , Ultimase ® , Opticlean ® , Effectenz ® , Preferenz ® and Optimase ® (Danisco/DuPont), Axapem™ (Gist-Brocases N.V.), Bacillus /entus Alkaline Protease, and KAP {Bacillus alkalophilus subtilisin) from Kao.

In one embodiment the protease may be selected from serine proteases (EC 3.4.21). Serine proteases or serine peptidases (EC 3.4.21) are characterized by having a serine in the cata lytica I ly active site, which forms a covalent adduct with the substrate during the catalytic reaction. A serine protease may be selected from the group consisting of chymotrypsin (e.g., EC 3.4.21.1), elastase (e.g., EC 3.4.21.36, EC 3.4.21.37 or EC 3.4.21.71), granzyme (e.g., EC 3.4.21.78 or EC 3.4.21.79), kallikrein (e.g., EC 3.4.21.34, EC 3.4.21.35, EC 3.4.21.118, or EC 3.4.21.119,) plasmin (e.g., EC 3.4.21.7), trypsin (e.g., EC 3.4.21.4), thrombin (e.g., EC 3.4.21.5,) and subtilisin (also known as subtilopeptidase, e.g., EC 3.4.21.62), the latter hereinafter also being referred to as“subtilisin”.

A sub-group of the serine proteases tentatively designated subtilases has been proposed by Siezen et al. (1991), Protein Eng. 4:719-737 and Siezen et al. (1997), Protein Science 6:501- 523. They are defined by homology analysis of more than 170 amino acid sequences of serine proteases previously referred to as subtilisin-like proteases. A subtilisin was previously often defined as a serine protease produced by Gram-positive bacteria or fungi, and according to Siezen et al. now is a subgroup of the subtilases. A wide variety of subtilases have been identified, and the amino acid sequence of a number of subtilases has been determined. For a more detailed description of such subtilases and their amino acid sequences reference is made to Siezen et al. (1997), Protein Science 6:501-523.

The subtilases may be divided into 6 sub-divisions, i.e. the subtilisin family, thermitase family, the proteinase K family, the lantibiotic peptidase family, the kexin family and the pyrolysin family.

A subgroup of the subtilases are the subtilisins, which are serine proteases from the family S8 as defined by the MEROPS database (merops.sanger.ac.uk). Peptidase family S8 contains the serine endopeptidase subtilisin and its homologues. In subfamily S8A, the active site residues frequently occur in the motifs Asp-Thr/Ser-Gly, His-Gly-Thr-His and Gly-Thr-Ser-Met-Ala-Xaa-Pro. Most members of the peptidase family S8 are active at neutral-mildly alkali pH. Many peptidases in the family are thermostable.

Prominent members of family S8, subfamily A are:

Proteases of the subtilisin type (EC 3.4.21.62) and variants may be bacterial proteases. Said bacterial protease may be from a Gram-positive bacterium such as Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobaciiius, Staphylococcus, Streptococcus, or Streptomyces, or a Gram-negative bacterium such as a Campylobacter, E. coH, F/avobacterium, Fusobacterium, Helicobacter, Hyobacter, Neisseria, Pseudomonas, Salmonella, or Ureap/asma. A review of this family is provided, for example, in "Subtilases: Subtilisin-like Proteases" by R. Siezen, pages 75-95 in "Subtilisin enzymes", edited by R. Bott and C. Betzel, New York, 1996.

At least one protease may be selected from the following: subtilisin from Bacillus

amyloliquefaciens P ' (described by Vasantha et al. (1984) J. Bacteriol. Volume 159, p. 811-819 and JA Wells et al. (1983) in Nucleic Acids Research, Volume 11, p. 7911-7925); subtilisin from Bacillus Hcheniformis (subtilisin Carlsberg; disclosed in EL Smith et al.

(1968) in J. Biol Chem, Volume 243, pp. 2184-2191, and Jacobs et al. (1985) in Nucl. Acids Res, Vol 13, p. 8913-8926); subtilisin PB92 (original sequence of the alkaline protease PB92 is described in EP 283075 A2); subtilisin 147 and/or 309 (Esperase ® , Savinase ® ,

respectively) as disclosed in WO 89/06279; subtilisin from Bacillus lentus as disclosed in WO 91/02792, such as from Bacillus lentus DSM 5483 or the variants of Bacillus lentus DSM 5483 as described in WO 95/23221; subtilisin from Bacillus alcalophilus { DSM 11233) disclosed in DE 10064983; subtilisin from Bacillus gibsonii { DSM 14391) as disclosed in WO 2003/054184; subtilisin from Bacillus sp. (DSM 14390) disclosed in WO 2003/056017;

subtilisin from Bacillus sp. (DSM 14392) disclosed in WO 2003/055974; subtilisin from Bacillus gibsonii (DSM 14393) disclosed in WO 2003/054184; subtilisin having SEQ ID NO: 4 as described in WO 2005/063974; subtilisin having SEQ I D NO: 4 as described in WO 2005/103244; subtilisin having SEQ I D NO: 7 as described in WO 2005/103244; and subtilisin having SEQ ID NO: 2 as described in application DE 102005028295.4.

Proteases also include the variants described in: WO 92/19729, WO 95/23221, WO

96/34946, WO 98/20115, WO 98/20116, WO 99/11768, WO 01/44452, WO 02/088340, WO 03/006602, WO 2004/03186, WO 2004/041979, WO 2007/006305, WO 2011/036263,

WO 2011/036264, and WO 2011/072099. Suitable examples comprise especially protease variants of subtilisin protease derived from SEQ I D NO:22 as described in EP 1 921 147 with amino acid substitutions in one or more of the following positions: 3, 4, 9, 15, 24, 27, 33, 36, 57, 68, 76, 77, 87, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 118, 120, 123, 128, 129,

130, 131, 154, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 which have proteolytic activity. I n addition, a subtilisin protease is not mutated at positions Asp32, His64 and Ser221.

A subtilisin-like enzyme may have SEQ ID NO:22 as described in EP 1921147, or may be a variant thereof which is at least 80%, at least 90%, at least 95% or at least 98% identical to SEQ ID NO:22 as described in EP 1 921 147 and has proteolytic activity. In one embodiment, a subtilisin-like enzyme is at least 80%, at least 90%, at least 95% or at least 98% identical to SEQ ID NO:22 as described in EP 1 921 147 and is characterized by having amino acid glutamic acid (E), or aspartic acid (D), or asparagine (N), or glutamine (Q), or alanine (A), or glycine (G), or serine (S) at position 101 (according to BPN’ numbering) and has proteolytic activity. In one embodiment, a subtilisin-like enzyme is at least 80%, at least 90%, at least 95% or at least 98% identical to SEQ I D NO:22 as described in EP 1 921 147 and is characterized by having amino acid glutamic acid (E), or aspartic acid (D), at position 101 (according to BPN’ numbering) and has proteolytic activity. Such a subtilisin variant may comprise an amino acid substitution at position 101, such as R101E or R101D, alone or in combination with one or more substitutions at positions 3, 4, 9, 15, 24, 27, 33, 36, 57, 68, 76, 77, 87, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 118, 120, 123, 128, 129, 130, 131, 154, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and/or 274 (according to BPN’ numbering) and has proteolytic activity. I n one embodiment, said protease comprises one or more further substitutions (a) to (h): (a) threonine at position 3 (3T), (b) isoleucine at position 4 (41), (c) alanine, threonine or arginine at position 63 (63A, 63T, or 63R), (d) aspartic acid or glutamic acid at position 156 (156D or 156E), (e) proline at position 194 (194P), (f) methionine at position 199 (199M), (g) isoleucine at position 205 (2051), (h) aspartic acid, glutamic acid or glycine at position 217 (217D, 217E or 217G), (i) combinations of two or more amino acids according to (a) to (h).

A subtilisin-like enzyme may have an amino acid sequence being at least 80% identical to SEQ ID NO:22 as described in EP 1 921 147 and being further characterized by comprising the substitution R101E, and one or more substitutions selected from the group consisting of S156D, L262E, Q137H, S3T, R45E,D,Q, P55N , T58W,Y,L, Q59D,M ,N ,T, G61 D,R, S87E, G97S, A98D,E,R, S106A,W, N 117E, H 120V,D,K,N, S125M, P129D, E136Q, S144W, S161T, S163A,G, Y171 L, A172S, N 185Q, V199M , Y209W, M222Q, N238H, V244T, N261T,D and L262N ,Q,D (as described in WO 2016/096711 and according to the BPN’ nu m bering) , and has proteolytic activity.

Proteases used in the present invention have proteolytic activity. The methods for determining proteolytic activity are wel l-known in the literature (see e.g. Gu pta et al. (2002), Appl. Microbiol. Biotech nol. 60: 381-395). Proteolytic activity may be determined by using Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (Suc-AAPF-pNA, short AAPF; see e.g. Del Mar et al. (1979) , Analytical Biochem 99, 316-320) as substrate. pNA is cleaved from the su bstrate molecule by proteolytic cleavage, resulting in release of yel low color of free pNA which can be quantified by measuring OD405.

Amylase

Al pha-amylase (E.C. 3.2.1.1) enzymes may perform endohydrolysis of (l->4) -al pha-D- glucosidic linkages in polysaccharides containing three or more (l->4) -al pha-lin ked D- glucose u nits. Amylase enzymes act on starch, glycogen and related polysaccharides and oligosaccharides in a random man ner; reducing grou ps are liberated in the al pha- configu ration. Other exam ples of amylase enzymes include: Beta-amylase (E.C. 3.2.1.2) , Glucan 1,4-al pha-maltotetraohyd rolase (E.C. 3.2.1.60) , Isoamylase (E.C. 3.2.1.68), Glucan 1,4-al pha-maltohexaosidase (E.C. 3.2.1.98) , and Glucan 1,4-al pha-maltohyd rolase (E.C. 3.2.1.133) .

Amylase enzymes have been described in patent documents including, but not limited to: WO 2002/068589, WO 2002/068597, WO 2003/083054, WO 2004/091544, and WO

2008/080093.

An amylase derived from Bacillus Hcheniformis has SEQ I D NO:2 as described in WO

95/10603. Suitable variants of this amylase are those which are at least 90% identical to SEQ I D NO: 2 as described in WO 95/10603 and/or com prise one or more substitutions in the fol lowing positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 178, 179, 181, 188, 190,

197, 201, 202, 207, 208, 209, 211, 243, 264, 304, 305, 391, 408, and 444 and have amylolytic activity. Such variants are described in WO 94/02597, WO 94/018314, WO 97/043424 and SEQ I D NO:4 of WO 99/019467.

An amylase derived from B. stearothermophilus has SEQ I D NO:6 as described in

WO 02/10355. Suitable variants of this amylase are those which are at least 90% identical thereto and have amylolytic activity. Suitable variants of SEQ I D NO:6 include those which are at least 90% identical to SEQ I D NO:6 as described in WO 02/10355 and/or fu rther com prise a deletion in positions 181 and/or 182 and/or a substitution in position 193.

An amylase derived from Bacil lus sp.707 has SEQ I D NO:6 as disclosed in WO 99/19467 or is at least 90% identical thereto having amylolytic activity. An amylase derived from Bacillus halmapalus has SEQ ID NO:2 or SEQ I D NO:7 as described in WO 96/23872, also described as SP-722, or is at least 90% identical to one of the sequences which has amylolytic activity.

An amylase derived from Bacillus sp. DSM 12649 has SEQ ID NO:4 as disclosed in

WO 00/22103 or is at least 90% identical thereto having amylolytic activity.

An amylase derived from Bacillus strain TS-23 has SEQ ID NO:2 as disclosed in

WO 2009/061380 or is at least 90 % identical thereto having amylolytic activity.

An amylase derived from Cytophaga sp. has SEQ ID NO:l as disclosed in WO 2013/184577 or is at least 90% identical thereto having amylolytic activity.

An amylase derived from Bacillus megaterium DSM 90 has SEQ ID NO:l as disclosed in WO 2010/104675 or is at least 90% identical thereto having amylolytic activity.

Amylases are known having amino acids 1 to 485 of SEQ ID NO:2 as described in

WO 00/60060 or amylases comprising an amino acid sequence which is at least 96% identical to amino acids 1 to 485 of SEQ ID NO:2 which have amylolytic activity.

Amylases are also known having SEQ ID NO: 12 as described in WO 2006/002643 or amylases having at least 80% identity thereto and have amylolytic activity. Suitable amylases include those having at least 80% identity compared to SEQ ID NO:12 and/or comprising the substitutions at positions Y295F and M202LITV and have amylolytic activity.

Amylases are also known having SEQ ID NO:6 as described in WO 2011/098531 or amylases having at least 80% identity thereto having amylolytic activity. Suitable amylases include those having at least 80% identity compared to SEQ ID NO:6 and/or comprising a substitution at one or more positions selected from the group consisting of 193 [G,A,S,T or M], 195 [F, W, Y, L, I or V], 197 [F,W,Y,L,I or V], 198 [Q or N], 200 [F,W,Y,L,I or V], 203

[F,W,Y,L,I or V], 206 [F,W,Y,N,L,I,V,H,Q,D or E], 210 [F,W,Y,L,I or V], 212 [F,W,Y,L,I or V],

213 [G,A,S,T or M] and 243 [F,W,Y,L,I or V] and have amylolytic activity.

Amylases are known having SEQ ID NO:l as described in WO 2013/001078 or amylases having at least 85% identity thereto having amylolytic activity. Suitable amylases include those having at least 85% identity compared to SEQ ID NO:l and/or comprising an alteration at two or more (several) positions corresponding to positions G304, W140, W189, D134, E260, F262, W284, W347, W439, W469, G476, and G477 and having amylolytic activity.

Amylases are known having SEQ I D NO:2 as described in WO 2013/001087 or amylases having at least 85% identity thereto and having amylolytic activity. Suitable amylases include those having at least 85% identity compared to SEQ I D NO:2 and/or comprising a deletion of positions 181 + 182, or 182 + 183, or 183+184, which have amylolytic activity. Suitable amylases include those having at least 85% identity compared to SEQ ID NO:2 and/or comprising a deletion of positions 181 + 182, or 182+183, or 183 + 184, which comprise one or two or more modifications in any of positions corresponding to W140, W159, W167, Q169, W189, E194, N260, F262, W284, F289, G304, G305, R320, W347, W439, W469, G476 and G477 and have amylolytic activity.

Amylases also include hybrid a -amylases of the above mentioned amylases as for example as described in WO 2006/066594.

Commercially available amylase enzymes include: Amplify ® , Duramyl™, Termamyl™, Fungamyl™, Stainzyme™, Stainzyme Plus™, Natalase™, Fiquozyme X and BAN™ (from Novozymes A/S), and Rapidase™, Purastar™, PoweraseTM, Effectenz™ (M100 from

DuPont), Preferenz™ (S1000, S110 and F1000; from DuPont), PrimaGreen™ (AFF; DuPont), Optisize™ (DuPont).

In one embodiment, the enzyme is a Termamyl-like amylase. In the present context, the term“Termamyl-like enzyme” is intended to indicate an a -amylase, which, at the amino acid level, has a sequence identity of at least 60% to the B. Hcheniformis a -amylase described in WO 96/23874. In an embodiment, the Termamyl-like a -amylase displays at least 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99% identity to the B. Hcheniformis a -amylase described in WO 96/23874.

Another a -amylase herein is Natalase or a variant thereof as described in WO 95/26397, WO 99/19467 and WO 01/66712.

Lipase

“Fipase”,“lipolytic enzyme”,“lipid esterase”, all refer to an enzyme of EC class 3.1.1 (“carboxylic ester hydrolase”). Fipases (E.C. 3.1.1.3, Triacylglycerol lipase) may hydrolyze triglycerides to more hydrophilic mono- and diglycerides, free fatty acids, and glycerol. Fipase enzymes usually includes also enzymes which are active on substrates different from triglycerides or cleave specific fatty acids, such as Phospholipase A (E.C. 3.1.1.4), Galactolipase (E.C. 3.1.1.26), cutinase (EC 3.1.1.74), and enzymes having sterol esterase activity (EC 3.1.1.13) and/or wax-ester hydrolase activity (EC 3.1.1.50).

Many lipase enzymes have been described in the prior art, including, but not being limited to: WO 00/032758, WO 03/089620, WO 2005/032496, WO 2005/086900, WO 2006/00976, WO 2006/031699, WO 2008/036863, WO 2011/046812, and WO 2014/059360.

Ceiiuiase

"Cellulases",“cellulase enzymes” or“cellulolytic enzymes” are enzymes involved in the hydrolysis of cellulose. Three major types of cellulases are known, namely endo-beta-1,4- glucanase (endo-l,4-P-D-glucan 4-glucanohydrolase, E.C. 3.2.1.4; hydrolyzing - 1,4- glucosidic bonds in cellulose), cellobiohydrolase (1,4-P-D-glucan cellobiohydrolase, EC 3.2.1.91), and beta-glucosidase (EC 3.2.1.21). Cellulase enzymes have been described in patents and published patent applications including, but not limited to: WO 97/025417, WO 98/024799, WO 03/068910, WO

2005/003319, and WO 2009/020459.

Commercially available cellulase enzymes include Celluzyme™, Endolase™, Carezyme™,

Cel I u soft™, Renozyme™, Celluclean™ (from Novozymes A/S), Ecostone™, Biotouch™, Econase™, Ecopulp™ (from AB Enzymes Finland), Clazinase™, and Puradax HA™,

Genencor detergent cellulase L, IndiAge™ Neutra (from Genencor International

Inc. /DuPont), Revitalenz™ (2000 from DuPont), Primafast™ (DuPont) and KAC-500™ (from Kao Corporation).

Cellulases used in the methods according to the invention have“cellulolytic activity” or “cellulase activity”. Assays for measurement of cellulolytic activity are known to those skilled in the art. For example, cellulolytic activity may be determined by virtue of the fact that cellulase hydrolyses carboxymethyl cellulose to reducing carbohydrates, the reducing ability of which is determined colorimetrically by means of the ferricyanide reaction, according to Hoffman, W. S., J. Biol. Chem. 120, 51 (1937).

Mannanase

Mannase (E.C. 3.2.1.78) enzymes hydrolyse internal S -1,4 bonds in mannose polymers. “Mannanase” may be an alkaline mannanase of Family 5 or 26. Mannanase enzymes are known to be derived from wild-type from Bacillus or Humicola, particularly B.

agaradhaerens, B. Hcheniformis, B. halodurans, B. dausii, or H. inso/ens. Suitable mannanases are described in WO 99/064619.

Commercially available mannanase enzymes include, but are not limited to, Mannaway ® (Novozymes AIS).

Pectate lyase

Pectate lyase (E.C. 4.2.2.2) enzymes catalyze eliminative cleavage of (l->4)-alpha-D- galacturonan to give oligosaccharides with 4-deoxy-alpha-D-galact-4-enuronosyl groups at their non-reducing ends.

Pectate lyase enzymes have been described in patents and published patent applications including, but not limited to: WO 2004/090099. Pectate lyases are known to be derived from Bacillus, particularly B. Hcheniformis or B. agaradhaerens, or a variant derived of any of these, e.g. as described in US 6,124,127, WO 99/027083, WO 99/027084, WO 2002/006442, WO 02/092741, WO 03/095638.

Commercially available pectate lyase enzymes include: XpectTM, PectawashTM and PectawayTM (Novozymes A/S); PrimaGreenTM, EcoScour (DuPont). Nuclease

Nuclease (EC 3.1.21.1), also known as Deoxyribonuclease I, or Dnase, performs

endonucleolytic cleavage to 5'-phosphodinucleotide and 5'-phosphooligonucleotide end- products.

Nuclease enzymes have been described in patents and pu blished patent applications including, but not limited to: US 3,451,935, GB 1300596, DE 10304331, WO 2015/155350,

WO 2015/155351, WO 2015/166075, WO 2015/181287, and WO 2015/181286.

Enzyme variants may be defined by their sequence identity when com pared to a parent enzyme. Sequence identity usual ly is provided as“% sequence identity” or“% identity”. To determine the percent-identity between two amino acid sequences in a first step a pairwise sequence align ment is generated between those two sequences, wherein the two sequences are aligned over their com plete length (i.e., a pairwise global alignment) . The alignment is generated with a program implementing the Need leman and Wunsch algorithm (J. Mol. Biol. (1979) 48, p. 443-453), preferably by using the program“N EEDLE” (The Eu ropean Molecu lar Biology Open Software Suite (EM BOSS)) with the programs defau lt parameters (gapopen = 10.0, gapextend=0.5 and matrix=EBLOSU M62). The preferred alignment for the pu rpose of this invention is that alignment, from which the highest sequence identity can be determined.

After aligning the two sequences, in a second step, an identity value shal l be determined from the align ment. Therefore, according to the present invention the fol lowing calcu lation of percent-identity applies:

%-identity = (identical residues / length of the align ment region which is showing the respective sequence of this invention over its complete length) *100. Thus sequence identity in relation to comparison of two amino acid sequences according to this

embodiment is calcu lated by dividing the num ber of identical residues by the length of the alignment region which is showing the respective sequence of this invention over its com plete length. This value is mu ltiplied with 100 to give“%-identity”.

For calcu lating the percent identity of two DNA sequences the same applies as for the calcu lation of percent identity of two amino acid sequences with some specifications. For DNA sequences encoding for a protein the pairwise alignment shal l be made over the com plete length of the coding region from start to stop codon excluding introns. For non- protein-coding DNA sequences the pairwise alignment shal l be made over the complete length of the sequence of this invention, so the complete sequence of this invention is com pared to another sequence, or regions out of another sequence. Moreover, the preferred alignment program implementing the Needleman and Wu nsch algorithm (J. Mol. Biol. (1979) 48, p. 443-453) is“N EEDLE” (The Eu ropean Molecular Biology Open Software Suite

(EM BOSS)) with the programs default parameters (gapopen = 10.0, gapextend=0.5 and matrix=EDNAFULL) . Hormones

I n another em bodiment, the product of interest may be a hormone such as, but not limited to, insulin, human growth hormone, somatostatin and insu lin-like growth factor. Hormones may be produced by any microbial cel l. Preferably, these hormones are produced by

Escherichia coii cel ls.

Vitamins

I n another embodiment, the product of interest may be a vitamin. Vitamins include vitamin A, vitamin D, vitamin E, vitamin B j , vitamin B 2 , vitamin B 6 , vitamin B 5 , vitamin B 12 and vitamin B 2 . Preferably the vitamin produced is vitamin B 5 , vitamin B 12 or vitamin B 2 . Large scale industrial production of vitamin B 12 occu rs via microbial fermentation, predominantly utilizing Pseudomonas denitrificans, Propionibacterium shermanii, or Sinorhizobium meiiioti and Escherichia coii, preferably Escherichia coii. Vitamin B 2 , also known as riboflavin, may be produced by any microbial cel l, preferably by Eremothecium gossypii cel ls or B. subti/is cel ls. An overview of vitamin production in microbial cel ls is provided in Ledesma-Amaro et al.:“M icrobial Production of Vitamins” in“Microbial production of food ingredients, enzymes and nutraceuticals”, Chapter: 14, Pu blisher: Woodhead Pu blishing, Editors: Brian McNeil, David Archer, loan nis Giavasis, Linda Harvey.

Amino acids

I n another embodiment, the product of interest may be an amino acid. Amino acids which may be produced in microbial cel ls include L-glutamic acid, L-lysine, methionine and tryptophan. L-glutamic acid is typical ly produced in coryneform bacteria such as

Corynebacterium giutamicum. L-lysine may be produced in Corynebacterium giutamicum. Methionine may be produced in Corynebacterium giutamicum. Tryptophan may be produced in Corynebacterium giutamicum or £ coii. An overview of amino acid production in microbial cel ls is provided in Zafr and Mah mood:“Microbial amino acids production” in“Microbial Biotech nology”, first edition, chapter 9, Taylor and Francis G rou p, Editors: Farshad Darvishi Harzevili.

Downstream processing

After the process of the present invention has been performed, the product of interest may or may not be further purified from the fermentation broth. Thus, in one em bodiment, the present invention refers to a fermentation broth comprising a protein of interest obtained by a fermentation process according to the present invention.

After the fermentation broth has been harvested, the desired product may be recovered and fu rther pu rified by methods known in the art.

The desired product of interest, preferably the desired protein, may be secreted (into the liquid fraction of the fermentation broth) or may not be secreted from the microbial cel ls (and therefore is comprised in the cel ls of the fermentation broth) . Depending on this, the desired protein may be recovered from the liquid fraction of the fermentation broth or from cel l lysates. Recovery of the desired protein can be achieved by methods known to those skil led in the art. Suitable methods for recovery of proteins from fermentation broth include but are not limited to col lection, centrifugation, filtration, extraction, and precipitation. If the product of interest precipitates or crystal lizes in the fermentation broth or binds at least in part to the particu late matter of the fermentation broth additional treatment steps might be needed to release the protein of interest from the biomass or to solu bilize protein of interest crystals and precipitates. US 6,316,240 B1 and WO 2008/110498 A1 describe a method for recovering a protein of interest, which precipitates and/or crystal lizes du ring fermentation, from the fermentation broth. I n case the desired protein is com prised in the cel ls of the fermentation broth release of the product of interest from the cel ls might be needed.

Release from the cel ls can be achieved for instance, but not being limited thereto, by cel l lysis with tech niques wel l known to the skil led person, e.g., lysozyme treatment, ultrasonic treatment, French press or com binations thereof.

The product of interest, preferably the protein of interest, may be pu rified from the fermentation broth by methods known in the art. For exam ple, a protein of interest may be isolated from the fermentation broth by conventional procedu res including, but not limited to, centrifugation, filtration, extraction, spray-d rying, evaporation, or precipitation. The isolated polypeptide may then be fu rther pu rified by a variety of procedu res known in the art including, but not limited to, ch romatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion) , electrophoretic procedu res (e.g., preparative isoelectric focusing (I EF) , differential solu bility (e.g., am monium su lfate precipitation) , or extraction (see, e.g., Protein Purification, J.-C. Janson and Lars Ryden, editors, VCH

Pu blishers, New York, 1989) . The purified polypeptide may then be concentrated by procedures known in the art including, but not limited to, u ltrafiltration and evaporation, in particular, thin fil m evaporation.

The purified protein solution may be fu rther processed to form a“protein formu lation”. “Protein formu lation” means any non-com plex formu lation com prising a smal l nu m ber of ingredients, wherein the ingredients serve the purpose of stabilizing the proteins com prised in the protein formu lation and/or the stabilization of the protein formu lation itself. The term “protein stability” relates to the retention of protein activity as a fu nction of time during storage or operation. The term“protein formulation stability” relates to the maintenance of physical appearance of the protein formulation du ring storage or operation as wel l as the avoidance of microbial contamination du ring storage or operation.

The protein formu lation can be either solid or liquid. Protein formulations can be obtained by using tech niques known in the art. For instance, without being limited thereto, solid enzyme formu lations can be obtained by extrusion or granulation. Suitable extrusion and granu lation tech niques are known in the art and are described for instance in WO 94/19444 A1 and WO 97/43482 Al.“Liquid” in the context of enzyme formu lation is related to the physical appearance at 20° C and 101.3 kPa. Liquid protein formu lations may com prise amounts of enzyme in the range of 0.1% to 40% by weight, or 0.5% to 30% by weight, or 1% to 25% by weight, or 3% to 10%, all relative to the total weight of the enzyme formulation.

The protein as produced by the method of the present invention may be used in food, for example the protein can be an additive for baking. The protein can be used in feed, for example the protein is an animal feed additive. The protein can be used in the starch processing industry, for example amylases are used in the conversion of starch to ethanol or sugars (high fructose corn syrup) and other byproducts such as oil, dry distiller’s grains, etc. The protein maybe used in pulp and paper processing, for example, the protein can be used for improving paper strength. In one embodiment, the protein produced by the methods of the present invention are used in detergent formulations or cleaning formulations.

“Detergent formulation” or“cleaning formulation” means compositions designated for cleaning soiled material. Cleaning includes laundering and hard surface cleaning. Soiled material according to the invention includes textiles and/or hard surfaces.

Specific embodiments

The following shows a list of specific embodiments of the invention:

In one embodiment, the invention relates to a process for culturing Bacillus cells producing a protein of interest, comprising the steps of:

(a) providing a pre-culture of said Bacillus cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the protein of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In one embodiment, the invention relates to a process for culturing Bacillus cells producing a protein of interest, comprising the steps of:

(a) providing a pre-culture of said Bacillus cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the protein of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode; and

wherein more than 200 g of a carbon source (preferably, a chemically defined carbon source) per liter of initial fermentation medium are added to the production bioreactor during culturing of the Bacillus cells in the production bioreactor.

In one embodiment, the invention relates to a process for culturing Bacillus cells producing a enyzme, comprising the steps of:

(a) providing a pre-culture of said Bacillus cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the enzyme,

wherein the pre-culture of step (a) is performed in fed-batch mode. In one embodiment, the invention relates to a process for culturing Bacillus cells producing a protease, comprising the steps of:

(a) providing a pre-culture of said Bacillus cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the protease,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In one embodiment, the invention relates to a process for culturing Bacillus cells producing an amylase, comprising the steps of:

(a) providing a pre-culture of said Bacillus cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus cells in the production bioreactor under conditions conducive for the production of the amylase,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In one embodiment, the invention relates to a process for culturing Bacillus Hcheniformis cells producing a product of interest, comprising the steps of:

(a) providing a pre-culture of said Bacillus Hcheniformis cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus Hcheniformis cells in the production bioreactor under

conditions conducive for the production of the product of interest,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In one embodiment, the invention relates to a process for culturing Bacillus Hcheniformis cells producing a protease, comprising the steps of:

(a) providing a pre-culture of said Bacillus Hcheniformis cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus Hcheniformis cells in the production bioreactor under

conditions conducive for the production of the protease,

wherein the pre-culture of step (a) is performed in fed-batch mode.

In one embodiment, the invention relates to a process for culturing Bacillus Hcheniformis cells producing an amylase, comprising the steps of:

(a) providing a pre-culture of said Bacillus Hcheniformis cells;

(b) inoculating a production bioreactor with the pre-culture of step (a); and

(c) culturing the Bacillus Hcheniformis cells in the production bioreactor under

conditions conducive for the production of the amylase,

wherein the pre-culture of step (a) is performed in fed-batch mode.

The invention is further illustrated in the following examples which are not intended to be in any way limiting to the scope of the invention as claimed. The numerous possible variations that are obvious to a person skilled in the art also fall within the scope of the invention.

Examples U n less otherwise stated the fol lowing experiments have been performed by applying standard equipment, methods, chemicals, and biochemicals as used in genetic engineering and fermentative production of chemical compou nds by cultivation of microorganisms. See also Sam brook et al. (Molecu lar Cloning: A Laboratory Manual. 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and Ch miel et al. (Bioprozesstech nik 1. Einfdh rung in die Bioverfah renstech nik, Gustav Fischer Verlag, Stuttgart, 1991) .

For the first pre-cultu re described in the exam ples below (Exam ples 1-3), shake flasks containing a complex mediu m described in Table 1 was used. Shake flasks were inocu lated from cryo stocks of Bacillus Hcheniformis com prising a gene coding for a protease or amylase and cu ltivated for 16h at 30° C at 200 rpm.

Table 1:

Compound Formula Concen tra tion [g/ L ]

Yeast extract 7.4

Sodiu m ch loride 5.6

Sucrose 45

Potassium dihydrogen phosphate 13.6

Tu bermin 25

Before autoclaving, pH was set to 7.5 using NaOH.

For further pre-cultures and the main cultures in the production bioreactors described in the exam ples below, the Bacillus Hcheniformis cel ls from the first pre-culture were cultivated in a fermentation process using a chemical ly defined fermentation medium providing the components listed in Table 2 and Table 3.

Table 2: Macroelements provided in the fermentation process

Compound Formula Concentration [g/L initial volume]

Citric acid C 6 H 8 O 7 3.0

Calciu m su lfate CaS0 4 0.7

Monopotassiu m phosphate KH 2 P0 4 25

Magnesiu m su lfate MgS0 4 *7H20 4.8

Sodiu m hydroxide NaOH 4.0

Am monia N H, 1.3

Table 3: Trace elements provided in the fermentation process

Trace element Symbol Concentration [mM]

Manganese M n 24

Zinc Zn 17

Copper Cu 32

Cobalt Co 1

Nickel Ni 2 Molybdenu m Mo 0.2

I ron Fe 38

The fermentation was started with a mediu m containing 8 g/l glucose. A solution containing 50% glucose was used as feed solution. The pH was adjusted during fermentation using ammonia.

Example 1

Bacillus cel ls were used for the production of either a protease or an amylase. The seed train of the respective pre-cultures consisted of th ree seed fermenters. The first pre-cultu re in a shake flask was run with a complex mediu m as described above. The 2 nd pre-culture in a seed fermenter was inoculated with 10% of its volu me from the first pre-cultu re and cultu red in the chemical ly defined mediu m described above. The 2 nd pre-cultu re was ru n in batch mode for 16h or u ntil glucose depletion which was indicated by a sharp increase in the dissolved oxygen signal and a rise in pH. The 3 rd pre-cultu re containing the chemical ly defined medium described above was inocu lated with 10% of its volu me from the 2 nd pre culture. The 3 rd pre-cultu re was ru n in fed-batch mode using the chemical ly defined medium described above and a feed solution containing 50% glucose. The feed was started upon depletion of the initial amount of 8 g/l glucose which was indicated by an increase of cultu re pH by 0.2 pH u nits. The feed was added for 22 h .

As a control, a pre-cultu re was conducted using the same num ber of seed fermenters and the same media, wherein the pre-cultu re was run com pletely in batch mode using a chemical ly defined medium containing 20 g/L glucose in the 2 nd and 3 rd pre-culture.

The volume of the inocu lum of both the control pre-cultu re and the fed-batch pre-cultu re transferred to the production bioreactor was 10% of the volu me of the fermentation medium initial ly present in the production bioreactor, respectively. Cu ltivation of the microbial cel ls in the production bioreactor was conducted in fed-batch mode using a chemical ly defined mediu m as described above. The feed with a feed solution containing 50% glucose was started u pon depletion of an initial amou nt of 8 g/l glucose indicated by an increase of cu ltu re pH by 0.2 pH u nits and added u ntil a product concentration of 10 g/kg (corresponds to 10 g/Liter) fermentation broth was reached.

Time u ntil harvest was monitored using enzyme assays for protease and amylase on continuous sam ples. Protease Activity was determined using Succinyl - Ala - Ala - Pro - Phe - p-Nitroanilide (Suc-AAPF-pNA, short : AAPF) as su bstrate. pNA is cleaved from the su bstrate molecule at 30° C, pH 8.6 TRIS buffer. The rate of cleavage can be determined by the increase of the yel low color of free pNA in the solution by measu ring OD 405 , the optical density at 405 n m. Alpha-amylase activity was determined by a method employing the su bstrate Ethyliden-4-nitrophenyl- a -D-maltoheptaoside (EPS) . D-maltoheptaoside is a blocked oligosaccharide which can be cleaved by an endo-amylase. Fol lowing the cleavage an al pha-glucosidase liberates a PN P molecu le which has a yel low color and thus can be measu red by visible spectophotometry at 405n m. Kits containing EPS substrate and al pha- glucosidase are available from Roche Costu m Biotech (cat. No. 10880078t3) and are described in Lorentz K. et al. (2000) , Clin. Chem., 46/5: 644 - 649. The slope of the time dependent absorption-curve is directly proportional to the specific activity (activity per mg enzyme) of the al pha-amylase in question under the given set of conditions.

The time point of harvest was defined as the time point when 10 g of protease or amylase/ kg fermentation broth was produced. The time u ntil harvest was normalized to the control cultu re, i.e. to the time needed if a batch pre-culture was used before inocu lation of the production bioreactor.

For the production of the protease, the time u ntil harvest was reduced by about 30% when the pre-cultu re preceding the bioreactor was ru n in fed-batch mode com pared to the pre culture run completely in batch mode (see Figure 1A). For the production of the amylase, the time until harvest was reduced by arou nd 20% when the pre-cultu re preceding the bioreactor was run in fed-batch mode com pared to the pre-cultu re ru n com pletely in batch mode (see Figu re I B) .

Example 2

Bacillus Hcheniformis cel ls were used for the production of a protease. The seed trai n was performed as described in Exam ple 1 for fed-batch pre-cultu re and batch pre-cu ltu re. The volu me of the respective inoculu m from the pre-culture for the production bioreactor was either 10% of the volume of the fermentation mediu m initial ly present in the production bioreactor or 1% of the volume of the fermentation medium initial ly present in the production bioreactor (Figure 2) . Cu ltivation of the microbial cel ls in the production bioreactor was conducted in fed-batch mode. Time u ntil harvest was monitored using an enzyme assay for protease on continuous sam ples as described in Exam ple 1. The time of harvest, and thus the end of the fermentation process, was defined as the time point when 10 g of protease/ kg fermentation broth has been produced. The time until harvest was normalized to the control culture, i.e. to the time needed if a batch pre-culture is used.

Figu re 2 shows that when the volu me of the inoculu m was 1% or 10%, the time until harvest was reduced by about 20% when the pre-cu ltu re was ru n in fed-batch mode.

Example 3

Bacillus Hcheniformis cel ls were used for the production of a protease. I n this Exam ple, different media were tested in the final seed fermenter preceding the production bioreactor. Thus, the mediu m in the final seed fermenter of the seed-train was either a complex mediu m or a chemically defined medium. The pre-cultu re was then transferred to the production bioreactor. The volu me of the inocu lum was 10% of the volu me of the

fermentation medium initial ly present in the production bioreactor.

Cu ltivation of the microbial cel ls in the production bioreactor was conducted in fed-batch mode as described in Examples 1 and 2. Time u ntil harvest was monitored using an enzyme assay for protease on continuous sam ples, using the assay described in Example 1. The time of harvest, and thus the end of the fermentation process, was defined as the time point when 10 g of product of interest/ kg fermentation broth has been produced. The time u ntil harvest was normalized to the culture conducted with chemically defined media.

Figu re 3 shows that the time until harvest was essential ly the same when either a chemical ly defined medium or a com plex mediu m was used in the fed-batch pre-culture.

Example 4

Bacillus subti/is cel ls were used for the production of a protease. The seed train was performed as described in Exam ple 1 for fed-batch pre-cultu re and batch pre-culture. The volu me of the respective inoculu m from the pre-cultu re for the production bioreactor was 10% of the volume of the fermentation mediu m initially present in the production bioreactor. Cu ltivation of the microbial cel ls in the production bioreactor was conducted in fed-batch mode. Time u ntil harvest was monitored using an enzyme assay for protease on continuous sam ples as described in Example 1. The time of harvest, and thus the end of the

fermentation process, was defined as the time point when 10 g of protease/ kg

fermentation broth has been produced. The time u ntil harvest was normalized to the control cultu re, i.e. to the time needed if a batch pre-culture is used.

The time u ntil harvest was reduced by about 12% when the pre-cultu re preceding the bioreactor was run in fed-batch mode com pared to the pre-cultu re ru n completely in batch mode (see Figu re 4).