Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INERTING SYSTEM FOR AN AIRCRAFT
Document Type and Number:
WIPO Patent Application WO/2009/141400
Kind Code:
A3
Abstract:
The invention relates to an inerting system for an aircraft, comprising at least one air separation module provided with at least one air inlet, a first air outlet and a second air outlet. Said air separation module is designed in such a manner that an incoming air flow is divided into a first air flow and a second air flow. The first airflow is enriched with oxygen in relation to the incoming air flow and is removed by the first air outlet and the second air flow is enriched with nitrogen in relation to the incoming air flow and is removed by the second air outlet. The claimed inerting system is characterised in relation to known inerting systems in that the air inlet can be connected to an air removal point in an air preparation system and that the inerting system is designed to guide the first air flow into a cabin that is to be climatised.

Inventors:
CREMERS JOERG (DE)
KRICKE KLAUS-DIETER (DE)
SCHUMACHER CHRISTIAN (DE)
Application Number:
EP2009/056180
Publication Date:
April 29, 2010
Filing Date:
May 20, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AIRBUS OPERATIONS GMBH (DE)
CREMERS JOERG (DE)
KRICKE KLAUS-DIETER (DE)
SCHUMACHER CHRISTIAN (DE)
International Classes:
B64D13/00; B64D37/32
Foreign References:
DE102006007286A12007-08-23
US20030233936A12003-12-25
EP1580123A22005-09-28
DE4221593A11993-01-14
Attorney, Agent or Firm:
MAIWALD PATENTANWALTS GMBH (KorbinianElisenho, Elisenstr. 3 Munich, DE)
Download PDF:
Claims:
A n s p r ü c h e

1. Inertisierungssystem für ein Flugzeug, aufweisend:

- mindestens ein Luftaufbereitungssystem (2); und - mindestens ein Lufttrennungsmodul (20) mit mindestens einem Lufteingang, einem ersten Luftausgang und einem zweiten Luftausgang, wobei das Lufttrennungsmodul (20) dazu eingerichtet ist, einen Eingangsluftstrom in einen ersten Luftstrom (22) und einen zweiten Luftstrom (24) aufzuspalten,

- wobei das Lufttrennungsmodul (20) als ein Inert-Gas-Erzeugungssystem ausgebildet ist;

- wobei der erste Luftstrom (22) gegenüber dem Eingangsluftstrom mit Sauerstoff angereichert ist und am ersten Luftausgang ausgeleitet wird;

- wobei der zweite Luftstrom (24) gegenüber dem Eingangsluftstrom mit Stickstoff angereichert ist und am zweiten Luftausgang ausgeleitet wird; - wobei sich der Lufteingang mit einer oder mehreren Luftentnahmestellen verbinden lässt;

- wobei mindestens eine der Luftentnahmestellen innerhalb des mindestens einen Luftaufbereitungssystems (2) bereitgestellt ist; und

- wobei das Inertisierungssystem dazu eingerichtet ist, den ersten Luftstrom (22) direkt in eine zu klimatisierende Passagierkabine zu leiten.

2. Inertisierungssystem nach Anspruch 1, dadurch gekennzeichnet, dass mindestens eine weitere Luftentnahmestelle an mindestens einer Zapfluftleitung bereitgestellt ist.

3. Inertisierungssystem nach Anspruch 2, dadurch gekennzeichnet, dass sich der Lufteingang steuerbar mit einer oder mehreren Luftentnahmestellen in dem mindestens einen Luftaufbereitungssystem (2) und/oder an der mindestens einen Zapfluftleitung verbinden lässt.

4. Inertisierungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Luftentnahmestelle in dem

mindestens einen Luftaufbereitungssystem in einem Hochdruckbereich angeordnet ist.

5. Inertisierungssystem nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass das Inertisierungssystem mindestens ein Ventil (32) aufweist, das dazu eingerichtet ist, den Lufteingang des Inertisierungssystems mit unterschiedlichen Luftentnahmestellen zu verbinden.

6. Inertisierungssystem nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die mindestens eine weitere Luftentnahmestelle an einer Zapfluftleitung positioniert ist, die in Strömungsrichtung einem Wärmetauscher (4) nachgeordnet ist.

7. Inertisierungssystem nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die mindestens eine weitere Luftentnahmestelle an einer Zapfluftleitung positioniert ist, die in Strömungsrichtung einem Wärmetauscher (4) vorgeordnet ist.

8. Inertisierungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am Lufteingang des Lufttrennungsmoduls (20) ein Kompressor (34) zum Erhöhen des Luftdrucks vor dem Lufttrennungsmodul (20) angeordnet ist.

9. Inertisierungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der erste Luftausgang mit einer Mischereinheit (32) zum Mischen von Frischluft und rezirkulierter Kabinenluft verbinden lässt.

10. Inertisierungssystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich der erste Luftausgang mit der Passagierkabine zum Einleiten von mit Sauerstoff angereicherter Luft verbinden lässt.

11. Inertisierungssystem nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass sich der erste Luftausgang mit einer Speichereinheit (28) zum Zwischenspeichern von mit Sauerstoff angereicherter Luft verbinden lässt, die über ein Ventil (30) bedarfsweise mit Sauerstoff angereicherte Luft zur Passagierkabine leitet.

12. Inertisierungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich am ersten Luftausgang ein Kompressor (26) zum Erhöhen des Drucks der mit Sauerstoff angereicherten Luft zu erhöhen.

13. Inertisierungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich zum Erhöhen des Sauerstoffanteils in der mit Sauerstoff angereicherten Luft der erste Luftausgang mit einer zusätzlichen Einrichtung zum Erzeugen von mit Sauerstoff angereicherter Luft verbinden lässt, die mit Sauerstoff angereicherte Luft an einem dritten Luftausgang abgibt.

14. Inertisierungssystem nach Anspruch 13, dadurch gekennzeichnet, dass sich der dritte Luftausgang mit Sauerstoff verwendenden Einrichtungen verbinden lässt.

15. Verwendung eines Inertisierungssystems nach einem der Ansprüche 1-14 in einem Flugzeug.

16. Klimatisierungssystem für ein Flugzeug, aufweisend mindestens ein Luftaufbereitungssystem (2), - mindestens eine Luftquelle und mindestens ein Inertisierungssystem nach einem der Ansprüche 1-12.

17. Flugzeug mit einem Klimatisierungssystem nach Anspruch 16.

Description:

Inertisierungssystem für ein Flugzeug

VERWANDTE ANMELDUNGEN

Die vorliegende Anmeldung beansprucht die Priorität der US Provisional Patentanmeldung Nr. 61/128 385, eingereicht am 21. Mai 2008 und der deutschen Patentanmeldung Nr. 10 2008 024 503.8, eingereicht am 21. Mai 2008, deren Inhalte hierin durch Referenz inkorporiert werden.

TECHNISCHES GEBIET

Die Erfindung betrifft ein Inertisierungssystem und ein Klimatisierungssystem für ein Flugzeug zum Inertisieren eines Treibstofftanks.

TECHNISCHER HINTERGRUND

Klimatisierungssysteme sind aufgrund der niedrigen Außentemperaturen und des niedrigen Außendrucks in großen Flughöhen ein unverzichtbarer Bestandteil moderner Verkehrsflugzeuge. Nur durch den Einsatz solcher Systeme ist es möglich, Passagiere über größere Entfernungen zu transportieren. Die Architektur von Klimatisierungssystemen ist dabei einem ständigen Anpassungs- und Optimierungsprozess unterworfen. Beispielsweise ist es aufgrund neuer Vorschriften erforderlich, Flugzeuge aus Sicherheitsgründen mit einem Inertisierungssystem zum Erzeugen und Einleiten von Stickstoff in Treibstofftanks zur Verminderung der Explosionsgefahr des Treibstoffs auszurüsten. Derartige Inertisierungssysteme werden auch mit dem englischen Fachbegriff „On Board Inert Gas Generations System" (abgekürzt als „OBIGGS") bezeichnet. Im Rahmen der Optimierung von Klimatisierungssystemen ist bei deren Auslegung gleichermaßen der zum Betrieb erforderliche Kraftstoffmehrverbrauch zu minimieren.

Klimatisierungssysteme mit von Triebwerken entnommener Zapfluft sind derzeit am verbreitetsten. Bei derartigen Klimatisierungssystemen wird die Zapfluft in der Regel

je nach Flugsituation an einer von zwei verschiedenen Stellen von einem oder mehreren Triebwerken abgezweigt, etwa einer Mitteldrucköffhung („Intermediate Pressure Port") und einer Hochdrucköffhung („High Pressure Port"). Das Verwenden von Zapfluft für die Klimatisierung ist vorteilhaft, da die Zapfluft sowohl einen relativ hohen Druck als auch eine relativ hohe Temperatur aufweist und sich daher auf einen großen Bereich gewünschter Drücke und Temperaturen regulieren lässt. Auf beschriebene Weise entnommene Zapfluft kann auch für andere Verbrauchersysteme, wie zum Beispiel für Enteisungssysteme („Wing Ice Protection System") oder auch für Inertisierungssysteme verwendet werden.

Alternativ dazu können Inertisierungssysteme auch mit verbrauchter Luft versorgt werden, die der Passagierkabine des Flugzeugs entnommen wird. Die Luft in einer Passagierkabine wird regelmäßig erneuert, indem ihr Frischluft zugeführt und vorhandene Kabinenluft aus ihr abgeführt wird. Ein signifikanter Anteil der aus der Kabine abgeführten Luft wird wiederverwendet, indem er dem zur Kabine geleiteten Frischluftstrom beigemischt wird. Typischerweise beträgt das Verhältnis Frischluft zu rezirkulierter Luft ca. 50 - 60 %. Der Rest der Kabinenluft wird in die Umgebung des Flugzeugs abgelassen, wobei dafür vorgesehene Auslassventile gleichzeitig auch zur Druckregulierung der Kabine verwendet werden.

Ein Inertisierungssystem weist üblicherweise ein Lufttrennungsmodul auf, welches beispielsweise Zeolithmembranen beinhaltet, durch den ein Luftstrom gepresst wird. Aufgrund unterschiedlicher Stofftransportraten für Stickstoff und Sauerstoff ist es damit möglich, den Luftstrom aufzuteilen, so dass ein Luftstrom mit höherem Stickstoffanteil und einem höheren Sauerstoffanteil erhalten werden kann. Der mit Stickstoff angereicherte Luftanteil wird in Treibstofftanks geleitet, so dass der dort vorhandene Sauerstoff verdrängt wird. Der mit Sauerstoff angereicherte Luftanteil wird häufig nicht weiterverwendet oder wird durch aufwändige zusätzliche Maßnahmen aufbereitet in die Passagierkabine geleitet.

Die Leistungsfähigkeit eines Inertisierungssystems ist im Wesentlichen abhängig vom Verhältnis von Eingangs- zu Ausgangsdruck, vom Feuchtigkeitsgrad der Luft,

von der Temperatur, der Luftqualität und der Ozonkonzentration. Zur Optimierung des Lufttrennungsprozesses und zum Schutz vor Zerstörung der empfindlichen Membranen wird daher üblicherweise vom Inertisierungssystem eine Konditionierung der Zapfluft durchgeführt, bevor sie die Membranen erreicht. Dafür notwendige Vorrichtungen wie Kompressoren, Filter, Luftkühlungsaggregate, Wasserabscheider und dergleichen sind in das Inertisierungssystem integriert und verursachen entsprechende Kosten, Gewicht und Raumbedarf.

In der US 7172156 Bl wird etwa ein Inertisierungssystem beschrieben, das durch Zapfluft aus Flugzeugtriebwerken versorgt wird. Die Zapfluft wird vor Erreichen des Lufttrennungsmoduls durch Filter und Wärmetauscher vorkonditioniert. Der Stickstoff angereicherte Luftanteil wird zu Treibstofftanks geleitet und der mit Sauerstoff angereicherte Luftanteil wird nach außen in die Umgebung des Flugzeugs abgeführt. Desweiteren beinhaltet das offenbarte Inertisierungssystem einen Kompressor und eine Turbine, die sowohl eine hohe Komplexität als auch ein hohes Gewicht des Inertisierungssystems verursachen.

Die US 2007/0062371 Al beschreibt ein Inertisierungssystem, welches von gebrauchter Kabinenluft versorgt wird und bei dem der mit Sauerstoff angereicherte Luftteil aus dem Inertisierungssystem in die Kabine zurückgeleitet wird. Die für die Funktion des Inertisierungssystems notwendige Bereitstellung einer Druckdifferenz zwischen Eingangsluftstrom und Ausgangsluftströmen in allen Flugphasen bleibt im Detail jedoch offen. Auf Reiseflughöhe wird die mit Sauerstoff angereicherte Luft in die Atmosphäre geleitet, so dass sie entspannt wird. Gleichzeitig ist in der unmittelbaren Nähe des Luftauslasses ein Lufteinlass positioniert, der die in die

Umgebung ausgeblasene mit Sauerstoff angereicherte Luft wieder aufsaugt, um sie durch Einsatz von Kompressoren auf einen höheren Druck als den Druck in der Passagierkabine zu komprimieren. Bei diesem Vorgang erfolgt jedoch eine Vermischung mit Umgebungsluft.

Schließlich beschreiben die EP 0975518 Bl und die EP 1358911 Bl ein Klimatisierungssystem, bei dem ein Sauerstofferzeugungsgerät („On Board Oxygen

Generation System", abgekürzt „OBOGS") zur Komforterhöhung durch Einleiten von Luft mit erhöhtem Sauerstoffanteil in die Kabine verwendet wird.

ZUSAMMENFASSUNG DER ERFINDUNG

Nachteilig bei den vorangehend beschriebenen Systemen aus dem Stand der Technik ist die Tatsache, dass entweder mit Sauerstoff angereicherte Luft durch Ausleiten in die Umgebung des Flugzeugs verschwendet wird oder das Druckniveau der in ein Inertisierungssystem eingeleiteten Luft so niedrig ist, dass Kompressoren zum Einleiten von Sauerstoff angereicherter Luft in die Kabine verwendet werden müssen. Weiterhin ist von Nachteil, dass Inertisierungssysteme aus dem Stand der Technik aufwändige Vorrichtungen zum Vorkonditionieren von Zapfluft aufweisen, die zusätzliche Kosten und Gewicht zur Folge haben.

Die Aufgabe der Erfindung ist daher, einen oder mehrere der genannten Nachteile zu verringern oder zu eliminieren. Insbesondere ist Aufgabe der Erfindung, ein Inertisierungssystem vorzuschlagen, welches möglichst ohne separate Kompressoren oder andere zusätzlichen Vorrichtungen zur Vorkonditionierung von Luft in der Lage ist, mit Stickstoff angereicherte Luft in Treibstofftanks und mit Sauerstoff angereicherte Luft in die Passagierkabine eines Flugzeugs einzuleiten.

Die Aufgabe wird gelöst durch ein Inertisierungssystem mit den Merkmalen des unabhängigen Anspruchs 1. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.

Das erfindungsgemäße Inertisierungssystem weist mindestens ein Lufttrennungsmodul auf, welches einen Eingangsluftstrom an einem Eingang des Lufttrennungsmoduls in zwei Luftströme aufspaltet, wobei der erste Luftstrom mit Sauerstoff angereichert ist und an einem ersten Luftausgang ausgeleitet wird und der zweite Luftstrom mit Stickstoff angereichert ist und an einem zweiten Luftausgang ausgeleitet wird.

Um eine effiziente Herstellung von mit Stickstoff angereicherter Luft zu ermöglichen ist es vorteilhaft, als Luftquelle eine oder mehrere Luftquellen an im folgenden „Luftentnahmestellen" genannten Bereichen in dem Flugzeug anzuzapfen, wobei mindestens eine der Luftentnahmestellen innerhalb eines Luftaufbereitungssystems bereitgestellt wird.

Ein Luftaufbereitungssystem - das beispielsweise auch einen thermischen Prozess im Luftkreislaufverfahren durchführt - kann eine Reihe von Leitungen aufweisen, in denen Luft mit unterschiedlichen Drücken und Temperaturen transportiert wird. Der transportierte Luftstrom in einer oder mehreren dieser Leitungen kann angezapft werden, so dass ein Eingangsluftstrom für das Lufttrennungsmodul erhalten wird. Dies hat -je nach Luftentnahmestelle - den Vorteil, dass beispielsweise vorkonditionierte Luft aus dem Luftaufbereitungssystem entnommen werden könnte, so dass der Vorgang des Vorkonditionierens der in das Lufttrennungsmodul eingeleiteten Luft von dem Luftaufbereitungssystem bereits durchgeführt ist.

Dadurch wären keine entsprechenden Einrichtungen in dem Inertisierungssystem erforderlich, so dass durch deren Einsparung zusätzliches Gewicht erspart bleibt. Insbesondere entfällt eine separate Entfeuchtung, Komprimierung und Dekontaminierung im Inertisierungssystem selbst. Es ist außerdem bevorzugt, dass je nach Flugphase und den damit verbundenen spezifischen Eigenschaften der

Umgebungsluft eine Entfeuchtungseinheit des Luftaufbereitungssystems entweder zugeschaltet oder mit Hilfe eines Bypasses umgangen werden kann.

Es sind mehrere weitere bevorzugte Ausführungsformen des erfindungsgemäßen Inertisierungssystems denkbar, die jede für sich eine Reihe von Vorteilen gegenüber Inertisierungssystemen aus dem Stand der Technik aufweisen.

Da innerhalb der Leitungen eines Luftaufbereitungssystems im Vergleich zur Passagierkabine relativ hohe Drücke auftreten, kann eine Lufttrennung durchgeführt werden, bei der die Drücke des ersten Luftstroms und des zweiten Luftstroms höher als der Druck in der Passagierkabine sind. Dies hat zur Folge, dass eine Ausleitung von mit Sauerstoff angereicherter Luft in die Flugzeugumgebung - wie im Stand der

Technik beschrieben - zum Bereitstellen einer ausreichenden Druckdifferenz zum Betrieb des Lufttrennungsmoduls nicht erforderlich ist, so dass der mit Sauerstoff angereicherte erste Luftstrom direkt oder indirekt in die Passagierkabine eingeleitet werden kann. In einer weiter bevorzugten Ausführungsform ist demnach eine Einleitung von mit Sauerstoff angereicherter Luft in eine Passagierkabine möglichst ohne Kompressoren oder dergleichen zu erreichen. Weiterhin könnte außerdem ein dem Lufttrennungsmodul vorgeschalteter Kompressor entfallen.

In einer bevorzugten Ausführungsform kann neben dem Abzapfen von Luft aus einem Luftaufbereitungssystem alternativ oder zusätzlich dazu auch Luft aus einem Zapfluftsystem („Bleed Air") durch Anordnen mindestens einer weiteren Luftentnahmestelle an mindestens einer Zapfluftleitung entnommen werden. Dies hat zur Folge, dass konditionierte Luft aus dem Luftaufbereitungssystem nur dann entnommen werden muss, wenn die Feuchtigkeit der Zapfluft für den Betrieb eines Lufttrennungsmoduls im erfindungsgemäßen Inertisierungssystems nicht optimal ist. Dies liegt üblicherweise dann vor, wenn das Flugzeug seine stationäre Reisehöhe erreicht hat. Falls die Feuchtigkeit der Luft zu hoch sein sollte, wird bevorzugt zuerst ein Wasserabscheidungsprozess über das Luftaufbereitungssystem durchlaufen.

In einer besonders bevorzugten Ausführungsform wird die Luftentnahmestelle über eine Regeleinheit ausgewählt und entsprechende Ventile angesteuert. Die Regeleinheit könnte in einer Regeleinheit des Klimatisierungs- bzw. Luftaufbereitungssystems integriert sein und automatisch eine oder mehrere Luftentnahmestellen zum Versorgen des Lufteingangs des Lufttrennungsmoduls auswählen. Die korrekte Auswahl einer oder mehrerer Luftentnahmestellen und das Durchlaufen von Entfeuchter und dergleichen nur dann, wenn die Luftfeuchtigkeit es erfordert, senkt bei optimaler Auslegung den Treibstoffmehrverbrauch des Flugzeugs.

Bei einer weiteren Ausführungsform könnte beispielsweise eine Luftentnahmestelle im Hochdruckteil eines ein Luftkreislaufverfahren durchführenden Luftaufbereitungssystems vorgesehen werden, die druckbeaufschlagte Luft zu dem

Lufteingang des Lufttrennungsmoduls leitet. Es ist ein relativ großes Druckverhältnis zwischen der entnommenen Luft und dem Druck in der Passagierkabine realisierbar, so dass nicht nur der Stickstoff angereicherte Luftanteil aus dem Inertisierungssystem ohne weitere Hilfsmittel in die Treibstofftanks geleitet werden kann, sondern auch der Sauerstoff angereicherte Teil nicht durch separate

Kompressoren komprimiert werden muss, um in die Passagierkabine geleitet zu werden. Demnach kann der Komfort in der Passagierkabine erhöht werden, indem ein Abfallprodukt eines Inertisierungssystems ohne wesentliche zusätzlichen Elemente weiterverwendet wird.

Bei einer günstigen Ausführungsform des erfindungsgemäßen Inertisierungssystems ist zumindest eine der weiteren Luftentnahmestellen an mindestens einer Zapfluftleitung angeordnet, die in Strömungsrichtung einem primären Wärmetauscher nachgeordnet ist, um der Temperaturempfmdlichkeit aktuell verfügbarer Lufttrennungsmodule Rechnung zu tragen und deren Membran nicht zu beschädigen. Durch entsprechendes Ansteuern vorstehend erwähnter Ventile können auch mehrere Zapfluftleitungen angezapft werden, wobei die entsprechenden Luftströme miteinander kombiniert oder wahlweise ausschließlich verwendet werden könnten.

In einer weiteren vorteilhaften Ausführungsform ist zumindest eine der weiteren Luftentnahmestellen an mindestens einer Zapfluftleitung angeordnet, die in Strömungsrichtung einem primären Wärmetauscher vorgeordnet ist. Dies ist energetisch sinnvoller, wenn es auch ein besonders robustes Lufttrennungsmodul erfordert.

Bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Inertisierungssystems wird ein Kompressor am Lufteingang des Lufttrennungsmoduls zum Erhöhen des Luftdrucks eingesetzt. Dies ist insbesondere dann sinnvoll, wenn der Lufteingang des Lufttrennungsmoduls mit verbrauchter Luft aus der Kabine des Flugzeugs versorgt wird, um das Druckniveau so anzuheben, dass der mit Sauerstoff angereicherte erste Luftstrom wieder in die Kabine zurückgeleitet

werden kann. Diese Ausführungsform ist zwar energetisch gesehen nicht optimal, könnte jedoch relativ leicht in bereits konzipierte Klimatisierungssysteme eines Flugzeugs nachgerüstet werden.

Hierbei kann es sinnvoll sein, bereits vorhandene Kompressoren zu verwenden, etwa falls eine Frischwasseranlage des Flugzeugs mit einem Kompressor zur Druckbeaufschlagung ausgerüstet ist, oder die Hilfsturbine (APU, „Auxiliary Power Unit").

In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen

Inertisierungssystems wird der mit Sauerstoff angereicherte erste Luftstrom in eine Mischereinheit zum Mischen von Frischluft und rezirkulierter Kabinenluft eingeleitet. Dadurch lassen sich bereits vorhandene Klimatisierungssysteme, die üblicherweise bereits eine Mischereinheit aufweisen, mit konstruktiv relativ geringem Aufwand deutlich aufwerten.

Weiterhin lässt sich in einer ebenfalls bevorzugten Ausführungsform der erste Luftausgang des Lufttrennungsmoduls mit der Kabine des Flugzeugs zum Einleiten von mit Sauerstoff angereicherter Luft verbinden. Dies könnte zum gezielten Einleiten von mit Sauerstoff angereicherter Luft in spezielle Bereiche der Kabine genutzt werden, so dass die Sauerstoffkonzentration lokal besonders erhöht werden kann. Andererseits könnte die Einleitung von mit Sauerstoff angereicherter Luft in die Passagierkabine auch in unmittelbarer Nähe von Luftauslässen des Klimatisierungssystems realisiert werden, so dass eine gute Durchmischung der mit Sauerstoff angereicherter Luft mit konditionierter Luft stattfindet und die Sauerstoffkonzentration im Wesentlichen homogen ist.

In einer weiteren vorteilhaften Ausführung wird bevorzugt ein relativ kleiner zusätzlicher Kompressor verwendet, um mit Sauerstoff angereicherte Luft an dem ersten Luftausgang des Lufttrennungsmoduls in einem entsprechenden Tank

Zwischenspeichern zu können. Dadurch wird es möglich, beispielsweise über ein steuerbares Ventil bedarfsweise mit Sauerstoff angereicherte Luft in die Kabine oder

andere Systeme abzugeben.

In einer weiteren vorteilhaften Ausfuhrungsform des erfindungsgemäßen Inertisierungssystems wird bevorzugt statt eines OBIGGS oder zusätzlich hierzu ein Sauerstofferzeugungsgerät („On Board Oxygen Generating Sytem", abgekürzt

OBOGS) eingesetzt, durch das Luft mit einem sehr hohen Sauerstoffanteil gewonnen werden kann, der nahezu im Bereich reinen Sauerstoffs liegt. Ein Abfallprodukt bei der Erzeugung von mit Sauerstoff angereicherter Luft durch dieses System ist ebenfalls ein mit Stickstoff angereicherter Luftstrom, der zur Inertisierung von Treibstofftanks verwendet werden kann. Der Einsatzzweck für die stark mit

Sauerstoff angereicherte Luft könnte beispielsweise im Wiederauffüllen entleerter Sauerstoffzylinder an Bord des Flugzeugs liegen, oder aber auch in der gezielten Versorgung bestimmter Bereiche des Flugzeugs mit Sauerstoff. In Betracht könnten dafür beispielsweise ein Crew Rest Compartment, ein Flight Rest Compartment, das Cockpit, oder Anschlüsse für therapeutischen Sauerstoff und ähnliches kommen. Vorteilhaft wäre hierfür die Bereitstellung eines weiteren Kompressors. Um den Kompressor und das OBOGS energetisch günstig zu betreiben, könnte der Einlass des Kompressors mit der Passagierkabine verbunden werden, der Auslass einer mit dem Kompressor verbundenen Turbine hingegen mit der Außenströmung am Flugzeug. Dadurch kann die Druckdifferenz zwischen der Passagierkabine und der Umgebung des Flugzeugs zur Energieerzeugung genutzt werden. Ferner ist es vorteilhaft, das OBOGS bei kombinierter Verwendung eines OBOGS und eines OBIGGS mit in das OBIGGS zu integrieren.

Die Erfindung wird ferner durch ein Klimatisierungssystem gelöst, in das ein Inertisierungssystem nach den vorangehend beschriebenen Gesichtspunkten integriert ist.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

Die Erfindung wird nachfolgend anhand von Figuren näher erläutert. In den Figuren stehen gleiche Bezugszeichen für gleiche Objekte. Es zeigen:

Fig. 1 : eine schematische Ansicht des erfϊndungsgemäßen

Inertisierungssystems mit Luftentnahmestelle an der Turbine eines Luftaufbereitungssystems; Fig. 2: eine schematische Ansicht des erfindungsgemäßen

Inertisierungssystems mit Luftentnahmestelle an der Turbine eines Luftaufbereitungssystems und nachgeschaltete Aufbereitungseinheit; Fig. 3: eine schematische Ansicht eines erfϊndungsgemäßen

Inertisierungssystems mit Luftentnahmestelle an dem Kontrollventil FCK und/oder dem Hochdruckteil eines Luftaufbereitungssystems;

Fig. 4: eine schematische Ansicht eines erfϊndungsgemäßen

Inertisierungssystems, das in ein Zapfluftsystem integriert ist; Fig. 5: Inertisierungssystem mit Luftentnahmestelle am Ausgang des

Luftaufbereitungssystems; und Fig. 6: ein Schema eines integrierten Luftmanagementsystems.

DETAILLIERTE BESCHREIBUNG VON EXEMPLARISCHEN AUSFüHRUNGSBEISPIELEN

Ein erstes Ausführungsbeispiel des erfϊndungsgemäßen Inertisierungssystems wird in Fig. 1 gezeigt. Dort wird ein Luftaufbereitungssystem 2 dargestellt, welches dazu dient, Zapfluft aus einem Triebwerk so aufzubereiten, dass sie zur Klimatisierung einer Passagierkabine eines Flugzeugs verwendet werden kann. Die aus einer Mitteldruck-Entnahmestelle eines Triebswerks entnommene Zapfluft weist beispielsweise eine Temperatur von ungefähr 200 0 C und einen Druck von 3 bar auf. Sie durchströmt in der dargestellten Anordnung aus Fig. 1 den primären Wärmetauscher 4, der in einem Stauluftkanal 6 angeordnet ist. Dadurch sinkt die Temperatur der Zapfluft beispielhaft auf ungefähr 100 0 C. Der Druck reduziert sich hingegen nur relativ gering und beträgt hinter dem Wärmetauscher 4 noch etwa 2,9 bar. Ein Kompressor 8 komprimiert die Zapfluft, wodurch sich der Druck auf beispielhaft 4,8 bar sowie die Temperatur auf etwa 180 0 C erhöhen. Die komprimierte Luft erreicht schließlich einen Hauptwärmetauscher 10, der ebenfalls im

Stauluftkanal 6 angeordnet ist. Nach Durchlaufen des Hauptwärmetauschers 10 steht Luft mit 4,7 bar und einer Temperatur von etwas über 40 0 C bereit. Nach Durchlaufen eines Zwischenüberhitzers 12 (auch als „Reheater" bezeichnet) wird der Luft durch Kondensation das gegebenenfalls enthaltene Wasser mittels eines Kondensators 14 entzogen und im Wasserabscheider 16 abgeschieden. Abschließend wird die Luft in der Turbine 18 expandiert, wobei sie sich relativ stark abkühlt. Die konditionierte Luft verlässt anschließend das Luftaufbereitungssystem 2 mit einer Temperatur von beispielhaft ca. -8°C und einem Druck von 1,1 bar.

Die aus dem Zwischenüberhitzer 12 strömende trockene Luft, die zur Turbine 18 des Luftaufbereitungssystems 2 geleitet wird, gelangt auch zu einem Teil in ein Lufttrennungsmodul 20 (hier auch mit „OBIGGS" als Abkürzung für „On Board Inert Gas Generation System" bezeichnet), wo es in einen ersten Luftstrom 22 mit höherem Sauerstoffgehalt und einen zweiten Luftstrom 24 mit höherem Stickstoffgehalt aufgeteilt wird. Der mit Stickstoff angereicherte zweite Luftstrom 24 wird zur Inertisierung von Treibstofftanks verwendet, die in Fig. 1 nicht näher dargestellt werden.

Der mit Sauerstoff angereicherte erste Luftstrom 22 ist dazu geeignet, direkt oder indirekt in die Passagierkabine eingeleitet zu werden. Aufgrund des relativ hohen

Druckniveaus der aus dem Zwischenüberhitzer 12 stammenden Luft am Lufteingang des Lufttrennungsmoduls 20 und des Drucks der Passagierkabine von ungefähr 0,8 bar wird ein relativ hohes Druckverhältnis zwischen dem Lufteingang und dem ersten Luftausgang bzw. dem zweiten Luftausgang am Lufttrennungsmodul 20 von beispielhaft größer als 5 erreicht, so dass keine weiteren zusätzlichen Kompressoren zum Einleiten des mit Sauerstoff angereicherten ersten Luftstroms 22 verwendet werden müssen. Bevorzugt wird der mit Sauerstoff angereicherte Luftstrom 22 in eine nicht näher dargestellte Mischereinheit geführt, in der sie sich mit rezirkulierter und konditionierter Luft aus dem Luftaufbereitungssystem 2 vermischt.

Fig. 2 zeigt ein weiteres Ausführungsbeispiel, bei dem der mit Sauerstoff angereicherte erste Luftstrom 22 komprimiert und zwischengespeichert wird, um

dort zur weiteren Anwendung bereitzustehen. Dazu wird bevorzugt ein Kompressor 26 dem Lufttrennungsmodul 20 nachgeschaltet, der die mit Sauerstoff angereicherte Luft komprimiert und sie in einen Tank bzw. Speicher 28 einleitet. Die mit Sauerstoff angereicherte Luft kann dann durch Betätigen eines Ventils 30 aus dem Speicher 28 freigegeben und direkt oder indirekt in die Passagierkabine abgelassen werden.

In einem weiteren Ausführungsbeispiel gemäß Fig. 3 wird der Lufteingang das Lufttrennungsmoduls 20 nicht nur durch Luft aus dem Zwischenüberhitzer 12 beaufschlagt, sondern wahlweise auch durch Zapfluft aus einem oder mehreren

Triebwerken, die den Hauptwärmetauscher 10 durchlaufen hat. Die Versorgung des Lufttrennungsmoduls 20 aus den beiden unterschiedlichen Luftquellen wird durch mindestens ein bevorzugt als Schaltventil ausgeführtes Ventil 32 gesteuert. Falls der Feuchtigkeitsgehalt der Zapfluft ausreichend gering ist, wird die für die Inertisierung benötigte Luftmenge am Ventil 32 direkt zum Lufteingang des Lufttrennungsmoduls 20 geleitet. Diese Bedingung wird normalerweise immer dann erfüllt, wenn das Flugzeug seine stationäre Reisehöhe erreicht hat. Anderenfalls wird zuerst ein Wasserabscheidungsprozess über das Luftaufbereitungssystem 2 durchlaufen, so dass die aus dem Zwischenüberhitzer 12 stammende ideal geeignete getrocknete Luft in den Lufteingang des Lufttrennungsmoduls 20 geleitet wird. Ein vorgeschalteter Kompressor vor dem Lufttrennungsmodul 20 wäre nicht erforderlich.

Ein weiteres Ausführungsbeispiel wird in Fig. 4 dargestellt. Dort wird das Lufttrennungsmodul 20 direkt mittels Zapfluft vom Triebwerk beaufschlagt, wobei die Zapfluft wahlweise vor oder nach dem primären Wärmetauscher 4 entnommen und in den Lufteingang des Lufttrennungsmoduls 20 geleitet wird. Nach dem heutigen Stand der Technik wäre es am sinnvollsten, das Lufttrennungsmodul 20 nach einem Ozonkonverter und nach dem primären Wärmetauscher 4 zu integrieren, um der Temperatur- und Ozonempfmdlichkeit heutiger auf Zeolithmembranen oder dergleichen basierenden Bauweisen beruhenden Lufttrennungsmodulen Rechnung zu tragen. Bei entsprechender technologischer Weiterentwicklung wäre jedoch auch eine Integration vor dem primären Wärmetauscher 4 und gegebenenfalls vor einem

Ozonkonverter denkbar. Wie bereits vorangehend geschildert, wäre auch eine Zapfluftentnahme aus mehreren Triebwerken gleichzeitig möglich, wobei zwischen verschiedenen Eingangsluftströmen per Ventil gewählt werden könnte oder verschiedene Eingangsluftströme kombiniert werden könnten. Ein vorgeschalteter Kompressor vor dem Lufttrennungsmodul 20 wäre nicht erforderlich.

Ein weiteres Ausführungsbeispiel wird in Fig. 5 gezeigt. In dieser Variante wird konditionierte Luft am Ausgang des Luftaufbereitungssystems 2 entnommen und in den Lufteingang des Lufttrennungsmoduls 20 geleitet. Aufgrund des niedrigen Drucks am Ausgang des Luftaufbereitungssystems 2 muss die Luft in einem zusätzlichen Kompressor 34 komprimiert werden, so dass ein entsprechend hohes Druckverhältnis zwischen dem Lufteingang des Lufttrennungsmoduls 20 und dem ersten Luftstrom 22 erreicht werden kann, so dass ein Einleiten des mit Sauerstoff angereicherten ersten Luftstroms 22 in die Kabine möglich wird. Dieses Ausführungsbeispiel ist zwar energetisch betrachtet relativ ungünstig im Vergleich zu den übrigen Ausführungsbeispielen, jedoch dürfte es am einfachsten zu integrieren oder gegebenenfalls in schon bestehende Systeme nachzurösten sein.

Die beschriebenen Ausführungsbeispiele für die Integration eines erfindungsgemäßen Inertisierungssystems sind prinzipiell auch dann realisierbar, wenn die Zapfluft nicht von einem Triebwerk, sondern von einem Kompressor und/oder einem Hilfsaggregat, zum Beispiel der APU („Auxiliary Power Unit") bereitgestellt wird. In einer Ausführung, die vorzugsweise aber nicht ausschließlich bei Systemen zum Einsatz kommen kann, bei denen die Zapfluft von einem der Triebwerke bereitgestellt wird, besteht darin, das Inertisierungssystem direkt mit dem Hochdruckanschluss eines Triebwerks zu verbinden. Hierzu wäre jedoch eine weitergehende änderung der Architektur des Zapfluftsystems erforderlich.

In Fig. 6 ist eine schematische Darstellung eines Klimatisierungssystems dargestellt, das ein erfindungsgemäßes Inertisierungssystem beinhaltet. Das gezeigte

Klimatisierungssystem enthält hier beispielhaft zwei Luftaufbereitungssysteme 2, die von zwei Luftquellen 36 und 38 mit druckbeaufschlagter Luft versorgt werden.

Zusätzlich hierzu könnte eine dritte Luftquelle 40 angeordnet sein, die beispielsweise durch eine APU realisiert wird. Die drei Luftquellen 36 bis 40 sind an ein Leitungssystem 42 angeschlossen, das mit verschiedenen überströmventilen und Sicherheitsvorkehrungen ausgerüstet ist, auf die im weiteren nicht im Detail eingegangen wird. Die Luftaufbereitungssysteme 2 bereiten hier beispielsweise die frische Umgebungsluft aus den Luftquellen 36 bis 40 wie im Stand der Technik üblich im Luftkreislaufverfahren auf und leiten die so konditionierte Luft in eine Mischereinheit 42. Zusätzlich hierzu leiten Rezirkulationsgebläse 44 und 46 einen Anteil verbrauchter Kabinenluft in die Mischereinheit 42 ein, so dass in einem Verhältnis von ungefähr 50:50 oder 60:40 Frischluft und verbrauchte Luft der Passagierkabine wieder zugeführt werden kann.

An das gezeigte Klimatisierungssystem angeschlossen ist ein Lufttrennungsmodul 20, welches beispielhaft von einem der beiden Luftaufbereitungssysteme 2 mit Luft versorgt wird. Alternativ dazu kann das Lufttrennungsmodul 20 direkt von beispielhaft der Luftquelle 38 mit Luft versorgt werden. Durch den vorangehend bereits näher beschriebenen Aufbau ist das Lufttrennungsmodul 20 in der Lage, den Eingangsluftstrom aufzuspalten in einen ersten Luftstrom 22, der mit Sauerstoff angereichert ist und einen zweiten Luftstrom 24, der mit Stickstoff angereichert ist. Der mit Sauerstoff angereicherte erste Luftstrom 22 kann durch ein zusätzliches Aufbereitungssystem 48 so konditioniert werden, dass der mit Sauerstoff angereicherte erste Luftstrom 22 direkt in die Passagierkabine eingeleitet werden könnte. Alternativ dazu kann der mit Sauerstoff angereicherte erste Luftstrom 22 aus dem Aufbereitungssystem 48 über die Mischereinheit 42 der in die Kabine strömenden Luft zugemischt werden.

Das dargestellte Klimatisierungssystem weist ferner eine Regeleinheit 50 auf, die auch dazu geeignet sein könnte, das erfmdungsgemäße Inertisierungssystem zu überwachen und anzusteuern, so dass der mit Stickstoff angereicherte zweite Luftstrom 24 in die Treibstofftanks geleitet wird, der Sauerstoffanteil innerhalb der Passagierkabine gezielt erhöht und auf einem entsprechenden Niveau gehalten werden kann oder der mit Sauerstoff angereicherte erste Luftstrom 22 aus dem

Flugzeug in die Umgebung befördert werden kann. Ferner sollte die Regeleinheit 50 auch dazu eingerichtet sein, abhängig von der jeweiligen Flugphase des Flugzeugs und/oder den Umgebungsbedingungen eine oder mehrere Luftquellen bzw. Luftentnahmestellen innerhalb des Flugzeugs auszuwählen und entsprechend mit dem Lufteingang des Lufttrennungsmoduls 20 zu verbinden. Dabei ist eine solche Ausführung nicht auf eines der Ausführungsbeispiele des erfϊndungsgemäßen Inertisierungssystems beschränkt, sondern ist bevorzugt für alle denkbaren Varianten vorzusehen.

Das erfmdungsgemäße Inertisierungssystem hat einige Vorteile gegenüber Inertisierungssystemen aus dem Stand der Technik. Zunächst wird das Lufttrennungsmodul 20 lediglich mit trockener Luft versorgt, so dass separate Wasserabscheider und andere Vorkonditionierungseinrichtungen im Inertisierungssystem selbst entfallen. Das Druckverhältnis zwischen Eingangsluftstrom und dem ersten Luftstrom 22 bzw. dem zweiten Luftstrom 24 ist relativ hoch und zudem auch unabhängig von der jeweiligen Flughöhe. Dadurch verbessert sich die Leistungsfähigkeit des Inertisierungssystems, so dass es System kosten- und gewichtsoptimiert ausgelegt werden kann. Bei einer herkömmlichen Ausführung aus dem Stand der Technik wäre das Druckverhältnis von der Flughöhe abhängig, so dass ein zusätzlicher Kompressor in dem Inertisierungssystem notwendig wäre. Ebenso wären dazu entsprechende Kontroll- und Regelorgane für die Luftaufbereitung vonnöten. Weiterhin ist ein Vorteil des erfϊndungsgemäßen Inertisierungssystems, dass der mit Sauerstoff angereicherte erste Luftstrom 22 weiterverwendet werden kann, etwa für Anwendungen in der Kabine. Dies ist bei herkömmlichen Ausführungen eines Inertisierungssystems nicht möglich, denn die mit Sauerstoff angereicherte Luft müsste mit der Atmosphäre außerhalb des Flugzeugs verbunden werden, um die Umgebungsbedingung von 0,2 bar zu erreichen und eine Lufttrennung im Lufttrennungsmodul überhaupt in Gang zu bringen.

Ergänzend ist darauf hinzuweisen, dass „umfassend" keine anderen Elemente oder Schritte ausschließt und „eine" oder „ein" keine Vielzahl ausschließt. Ferner sei

darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.

Bezugszeichen:

2 Luftaufbereitungssystem

4 primärer Wärmetauscher 6 Stauluftkanal

8 Kompressor

10 Hauptwärmetauscher

12 Zwischenüberhitzer („Reheater")

14 Kondensator 16 Wasserabscheider

18 Turbine

20 Lufttrennungsmodul

22 mit Sauerstoff angereicherter erster Luftstrom

24 mit Stickstoff angereicherter zweiter Luftstrom 26 Kompressor

28 Zwischenspeicher

30 Ventil

32 Ventil

34 Kompressor 36 Luftquelle

38 Luftquelle

40 Luftquelle

42 Mischereinheit

44 Rezirkulationsgebläse 46 Rezirkulationsgebläse

48 Aufbereitungssystem

50 Regelungseinheit