Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INTEGRATED SOLVENT EXTRACTION/MEMBRANE EXTRACTION WITH RETENTATE RECYCLE FOR IMPROVED RAFFINATE YIELD
Document Type and Number:
WIPO Patent Application WO/1992/010448
Kind Code:
A1
Abstract:
Raffinate yield from solvent extraction is improved when the extract phase (5) recovered from the solvent extraction process (2) is subjected to a membrane separation step (6) wherein a saturates/1-ring aromatics rich retentate (8) is produced and a 2+ ring aromatics rich permeate (7) are produced and the saturates/1-ring aromatic rich retentate phase is recycled to the solvent extraction process.

Inventors:
CHEN TAN-JEN (US)
SWEET JAMES RONALD (US)
Application Number:
PCT/US1991/008956
Publication Date:
June 25, 1992
Filing Date:
November 27, 1991
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EXXON RESEARCH ENGINEERING CO (US)
International Classes:
C07C7/00; C07C7/10; C07B63/00; C07C7/144; C07C15/02; C07C15/20; C10G21/00; C10G21/28; C10G53/04; (IPC1-7): C07C7/144; C10G31/00
Foreign References:
US2947687A1960-08-02
US4510047A1985-04-09
Other References:
See also references of EP 0562005A1
Download PDF:
Claims:
CLAIMS:
1. A process for increasing the yield of raffinate produced in the solvent extract of hydrocarbons, said process including the steps of contacting a hydrocarbon feed with a selective aromatics extraction solvent to produce a saturates rich raffinate phase and an aromatics rich extract solution phase, removing the extraction solvent from the extract solution phase to produce recovered solvent and an extract oil, passing the extract oil to a membrane separation process wherein a saturates/1ring aromatics rich retentate is produced and a 2+ ring aromatics rich permeate is produced and recycling the saturates/1ring aromatics retentate back to the solvent extraction process for addition to the hydrocarbon feed for processing in the selective solvent extraction process thereby recovering the saturates/1ring aromatics present in the retentate phase as part of the raffinate from the solvent extraction zone.
2. The process of claim 1 wherein the membrane separation process comprises passing the extract oil along one face of a nonselective porous partition barrier membrane which simultaneous contacting the opposite face of said membrane with an aromatics selective extraction solvent wherein the multiring aromatics selectively permeate through the porous partition membrane in response to the selective aromatics extraction solvent yielding a saturates/1ring aromatics rich retentate and a 2+ ring aromatics rich permeate.
3. The process of claim 2 wherein the selective aromatics extraction solvent used in the membrane separation process is selected from phenol, furfural, sulfolane, Nmethyl 2pyrrolidone and aliphatic polyamines.
4. The process of claim 2 wherein the porous partition barrier has a pore size in the range 100 to 5000A.
5. The process of claim 4 wherein the porous partition barrier is an ultrafil ration membrane selected from polyethylene, polypropylene, teflon and cellulose.
6. The process of claim 1 wherein the selective aromatics extraction solvent is recovered from the extract phase by distillation.
7. The process of claim 1 wherein the retentate is recycled to the solvent extraction zone in an amount ranging from 5 to 50 wt.% based on feed.
8. The process of claim 1 wherein the hydrocarbon feed boils in the about 320 to 1100'F range.
Description:
INTEGRATED SOLVENT EXTRACTION/MEMBRANE EXTRACTION WITH RETENTATE RECYCLE FOR IMPROVED RAFFINATE YIELD

Description of the Invention

The yield of saturates/1-ring aromatics rich raffinate obtained by the solvent extraction of a hydrocarbon feed is increased by a process involving the steps of solvent extracting a hydrocarbon feed to produce a raffinate phase and an extract phase, removing the extraction solvent from the extract phase by, for example, distillation to produce an extract oil passing the extract oil to a membrane separation process wherein a saturates/1-ring aromatics rich retentate is produced as is a 2+ ring aromatics rich permeate phase and recycling the saturates/1-ring aromatics rich retentate back to the solvent extraction process for addition to the hydrocarbon feed for processing in the solvent extraction process.

The amount of saturates/1-ring aromatics rich raffinate obtained by this integrated process is greatly enhanced as compared to the yield obtained without the recycle of the membrane produced retentate phase to the solvent extraction zone.

Background of the Invention

Removal of aromatic hydrocarbons from hydrocarbon feed streams such as fuels or lubes or specialty products (e.g. refrigerator, turbine, electrical insulating or white oils) is a commonly practiced process. This is so because the presence of aromatics in such hydrocarbon products is usually detrimental to their performance and commercial unacceptability.

The typical way to remove aromatic hydrocarbons from hydrocarbon feeds is by solvent extraction. In such a process the hydrocarbon feed is introduced into an extraction zone and contacted with a selective aromatic extraction solvent moving counter currently. Typical aromatics extraction solvents include phenol, furfural, sulfolane, and N-methyl 2-pyrrolidone (NMP).

The solvent extraction process produces a raffinate rich in saturates and an extract lean in saturates and rich in aromatics present in the extraction solvent.

The raffinate is recovered for use as a lubes base stock while the extract, following solvent recovery to yield an extract oil, is used as cat cracker feed, burnt as fuel or sent to a coker.

Despite this use, however, the solvent free extract oil contains valuable lube molecules which are lost.

It would be an advantage if the valuable lube molecules in the extract oil could be recovered.

Description of the Figure

Figure 1 is a schematic of the integrated process of the present invention showing retentate phase recycle to produce enhanced yield of raffinate.

Figure 2 graphically shows the raffinate yield credit, for practicing the integrated retentate recycle process of the present invention, as a function of constant raffinate quality.

The Present Invention

The yield of valuable raffinate material recovered from a conventional solvent extraction process can be increased by a process comprising the steps of integrating the solvent extraction process with a membrane separation process which uses the solvent free extract oil as feed to the membrane unit to produce a saturates/1-ring aromatics rich retentate phase for recycling to the solvent extraction zone. The retentate is recycled to the solvent extraction zone in an amount ranging from 5 to 50 wt.%, preferably 20 to 33 wt.% based on feed, expressed differently, the feed to retentate ratio ranges from 20 to 1 to 1 to 1, preferably 5/1 to 3/1.

The process, therefore, comprises the steps of passing an aromatics containing hydrocarbon feed to a solvent extraction zone, contacting the feed with an aromatics selective extraction solvent to produce a saturate rich raffinate and an aromatics rich extract, removing the solvent from the extract phase by, for example, distillation to recover an extract oil passing the extract oil to a membrane separation zone wherein the saturates and 1-ring aromatics are concentrated in a retentate phase and the 2+ ring aromatics are concentrated as a permeate phase and recycling the retentate phase to the solvent extraction zone for combining with the hydrocarbon feed in said zone and subjecting the combined feed to solvent extraction producing a raffinate phase of increased yield.

The process of the present invention may be practiced on any aromatics containing hydrocarbon feed stream from which it is desired to remove the aromatics and produce a saturate rich raffinate. The hydrocarbon stream can be any light to heavy material coming from any source, natural petroleum or synthetic stream such as coal liquefaction products, tar sands, or shale oil products. The hydrocarbon feed will be any light to heavy fraction, usually a distillate fraction boiling in the about 320 to about 1100 β F range. This embraces the jet and kerosene fraction (320-500 * F) through diesel (400-650 β F) into lube (600 to 1100'F) including Bright Stock.

Selective aromatics extraction solvents which may be used in the solvent extraction process include any of the well known materials such as phenol, furfural, sulfolane, and n-methyl-2-pyrrolidone (NMP).

Following solvent recovery the extract oil from the solvent extraction process is sent as feed to a membrane separation zone wherein a retentate rich in saturates and 1-ring aromatics is produced and a permeate rich in 2+ ring aromatics is produced.

The membrane separation zone can include the system described in U.S. Patent 3,370,102 which separates aromatics from saturates in a wide variety of feed mixtures including various petroleum fractions, naphthas, oils, and other hydrocarbon mixtures.

Expressly recited in '102 is the separation of aromatics from kerosene. The process produces a permeate stream and a retentate stream and employs a sweep liquid to remove the permeate from the face of the membrane to thereby maintain the concentration gradient driving force. U.S. Patent 2,958,656 teaches the separation of hydrocarbons by type i.e. aromatics, unsaturated, saturated by permeating a portion of the mixture through a non-porous cellulose ether membrane and removing permeate from the permeate side of the membrane using a sweep gas or liquid. U.S. Patent 2,930,754 teaches a method for separating hydrocarbons by type, i.e. aromatics and/or olefins from gasoline boiling range mixtures by the selective permeation of the aromatics through certain cellulose ester non-porous membranes. The permeated hydrocarbons are continuously removed from the permeate zone using a sweep gas or liquid. U.S. Patent 4,115,465 teaches the use of polyurethane membranes to selectively separate aromatics from saturates via pervaporation.

U.S. Patent 4,914,064 teaches polyurea/urethane membranes and their use for the separation of aromatics from non-aromatic hydrocarbon. The membrane is characterized by possessing a urea index of at least 20% but less than 100%, an aromatic carbon content of at least 15 mole %, a functional group density of at least about 10 per 1000 grams of polymer and a C=0/NH ratio of less than about 8.

Thin film composites can be prepared either from suspension deposition as taught in U.S. Patent 4,861,628 or from solution deposition as taught in U.S. Patent 4,837,054.

The preparation of an anisotropic polyurea/urethane membrane is the subject of U.S. Patent 4,828,773 and U.S. Patent 4,879,044.

Polyurethane imide membranes and their use for aromatics/non-aromatics separation are the subject of U.S. Patent 4,929,358.

Isocyanurate cross!inked polyurethane membranes and their use for the separation of aromatics from non-aromatics is the subject of U.S. Patent 4,929,357.

U.S. Patent 4,962,271 teaches the selective separation of multi-ring aromatic hydrocarbons from distillates by perstraction. The multi-ring aromatics are characterized by having less than 75 mole % aromatic carbon content. Perstractive separation is through any selective membrane, preferably the aforesaid polyurea/urethane, polyurethane imides or polyurethane isocyanurates.

The previously described membranes and processes are all useful for separating aromatics from non-aromatics/saturates mixtures from a variety of feeds. It is herein envisioned that such membranes and processes can be practiced on a selective extraction extract oil to produce a multi-ring aromatics enrich permeate and a saturates rich retentate and that, in accordance with the teaching of the present specification, the retentate can be recycled to the solvent extraction zone for further extraction in combination with fresh feed to produce an enhance raffinate yield.

A preferred membrane separation procedure, however, is the subject of U.S. Patent 5,045.206. In that specification it is taught that multi-ring aromatics, i.e. 2+ ring aromatics containing alkyl and heteroatom alkyl side chains and even heteroatom containing multi-ring aromatics such as benzo thiophene and dibenzo thiophene and quinoline can be selectively separated from a hydrocarbon feed such as distillate or even a solvent extraction extract oil using a procedure involving passing the hydrocarbon feed along one face of a non-selective, porous, partition barrier membrane while simultaneous passing, preferably in countercurrent flow, along the opposite side of said membrane a selective extraction solvent such as phenol, furfural, acetonitrile sulfolane, N-methyl 2-pyrrolidone, an aliphatic polyamine such as ethylene diamine, diethylene triamine or triethylene tetramine, dimethylsulfoxide (DMSO) etc. and mixtures thereof. The multi-ring aromatic selectively permeates through the membrane in response to the selective extraction solvent yielding a retentate rich

in saturates and 1-ring aromatics and a permeate rich in multi-ring aromatics.

The alkyl substituted and alkyl/heteroatom substituted multi-ring aromatics and heteroatom containing multi ring aromatics have less than 75 mole % aromatic carbon. The multi-ring aromatics have at least 2, preferably 3 or more rings, preferably fused rings and one or more alkyl side chains of about 6 to 12 carbon atoms or more in length. The term multi-ring aromatics is used in this specification and the appended claims is meant to include condensed and fused ring aromatics as well as molecules such as biphenyl, diphenyl methane, tri phenyl methane, quinoline, carbozol, phenyl thiophene, benzo-thiophene, dibenzo thiophene etc. and spiro system aromatics consisting of two rings sharing a common atom.

The process makes use of a highly porous partition barrier. The barrier may be an ultrafiltration membrane made of ceramic, sintered glass or metal or of a polymeric material such as polyethylene, polypropylene, teflon, cellulose, nylon, etc. and generally has a pore size in the range 100 to 5000A. The membrane is, preferably, hydrophobic in nature.

The extract oil feed and extraction solvent can be contacted at any temperature so long as both the feed and solvent are in the liquid state. Because the separation process is driven by the affinity of the extraction solvent for the aromatic molecules, the process can be run at atmospheric pressure. Indeed, because of the high porosity of the membrane partition barrier the existence of a pressure differential, either by the direct application of pressure on the feed or solvent side or the creation of a vacuum on either side is undesirable as such a pressure differential would physically force feed or solvent across the barrier and thus defeat its purpose.

The multi-ring aromatics rich permeate phase in the extraction solvent may be separated from said solvent by any known technique such as distillation or selective permeation of the solvent through a membrane. The selective separation of extraction solvents

from aromatic extracts is the subject of U.S. Patent 4,510,047 which shows such selective solvent permeation through a regenerated cellulose membrane and USSN 417,333 which teaches the recovery of extraction solvent using interfacially polymerized membranes.

In the present process the retentate, which is a satu- rates/1-ring aromatics rich phase is recycled in an amount ranging from 5 to 50 wt.% based on feed, (i.e. a feed/retentate rate of 20/1 to 1/1) a feed/retentate rate of preferably 20 to 33 wt.% based on feed, , preferably 5/1 to 3/1 to the solvent extraction zone wherein, in combination with fresh feed, it is re-extracted. By this process the yield of raffinate is increased. The extract from the zone is subjected to membrane separation and the retentate is recycled, thus giving rise to an integrated continuous process.

The present invention is illustrated in Figure 1. Fresh distillate feed is introduced via line (1) into the solvent extraction zone (2). Selective extraction solvent, in this case NMP is introduced via line (3) into zone (2) and countercurrent!y contacts the feed. A saturates rich raffinate phase is recovered via line (4). The aromatics rich extract phase is sent via line (5) to solvent recovery in separator (5) to yield recovered solvent in line (9) and an extract oil in line (10). The extract oil is recovered via line (10) and sent to a membrane separation unit (6) wherein a multi ring aromatics rich permeate is produced and recovered via line 7. The saturates/1-ring aromatics rich retentate phase is recovered via line 8 and recycled to the extraction zone in an amount ranging from 5 to 50 wt.%, preferably 20 to 33 wt.% based on fresh feed, expressed differently, the fresh feed to recycle retentate ratio of the hydrocarbon fed to the extraction zone following start up, ranges from 20/1 to 1/1, preferably 5/1 to 3/1. The ratio employed in practice, is controlled to a major degree by the amount of extract solution recovered from the extraction tower and the amount of retentate produced in the membrane unit, and these are controlled by the nature of the fresh distillate feed sent to the extraction tower.

Example

To illustrate the benefits of this integrated process, an extract oil sample (100N) was procured and subjected to membrane extraction; the retentate produced from membrane extraction was then solvent extracted in an admixture with a distillate feed. More specifically, in this study, in the membrane separation step, membrane extraction as described in U.S. Patent 5,045,206 was practiced to segregate the saturates and 1-ring aromatics from the 2+ ring aromatics in the extract, although perstraction or any other aromatics selective process could also be used to achieve the desired aromatics/saturates separation. A blend of 75 wt% 100N distillate/25 wt% retentate from the membrane extraction run was then prepared and submitted for solvent extraction with N-methyl pyrrolidone (NMP). NMP solvent extraction runs were also made on the MCT-5 distillate feed neat to determine the base case raffinate yield.

As can be seen from Table 1, in this study, Celgard 2500 which is a polypropylene membrane with 0.04 x 0.20 micrometer pores was used in the membrane separation step, although other micro-porous membranes such as nylon 6,6 or teflon could also have been used. The purpose of the micro-porous membrane was to partition the extract feed from the extraction solvent while still maintaining intimate contact between the two phases. The extraction solvent used in the membrane extraction step was acetonitrile although the process can be extended to other solvents. The separation was carried out at 50'C. As shown in Table 1, mass spec, completed on the permeate and retentate confirm that the desired aromatics/saturates separation was successful by membrane extraction.

After the retentate from the membrane separation step had been generated, it was submitted in an admixture with 100N distillate for NMP (with 0.4% water) solvent extraction. Solvent extraction runs were also made on 100N distillate neat at three different severities by varying treat rate and temperature to determine the base case raffinate yield.

As can be seen from Table 2 a raffinate yield of 56.2 LV% was achieved on the 75 wt%/25 wt% blend of 100N distillate and the retentate from membrane extraction. This compares favorably with a raffinate yield of 49.1 LV% on 100N distillate neat, although the quality of the raffinate from the run on 100N distillate neat was somewhat higher (RI of 1.4449 vs 1.4458 @ 75'C).

In Figure 2, the raffinate yield is plotted against the waxy raffinate refractive index. As can be seen from the figure, at a constant raffinate quality, the raffinate yield was higher by about 3 LV% for the 75%/25% blend relative to 100-N neat. This figure further confirms that there are significant credits from the integrated solvent extraction-membrane extraction process as described in this specification.

Although membrane extraction via a micro-porous membrane was utilized in this patent memorandum, it can be expected that other aromatics/saturates membrane separation processes such as perstraction could also be used to achieve the desired treat of lube extract oil. Also, although data on only a 100 neutral extract oil are shown, it is expected that the benefits of the integration disclosed in this specification to be applicable to other oil grades and other refinery streams where aromatics/saturates separation are needed.

TABLE 1

MEMBRANE EXTRACTION OF T.TTBE EXTRACT

Feed

Scream ( MCT 5 Extract) Permeate Retentate

Membrane Extraction Membrane Celgard 2500 Solvent Acetonitrile

Temperature, β C 50 Yield, Wt% 100.0 66.1 33.9

Composition, V% Saturates 44.3 34.2 77.3 1-R Aromatic 18.6 21.8 7.8 2-R Aromatic 16.6 19.4 7.7 3+R Aromatic 20.5 24.6 7.2

Solvent: 0.4% water in NMP